
Parallelizing Queue Compiler

by

Arquimedes Canedo

Submitted in Partial Fulfillment of the Requirements for the Degree of
Doctor of Engineering

Graduate School of Information Systems
University of Electro-Communications

Tokyo, Japan

September 2008

Parallelizing Queue Compiler

by

Arquimedes Canedo

Approved by Supervisory Committee:

Member: Prof. Masahiro Sowa
Prof. Masanori Idesawa
Prof. Toshihiko Kato
Asoc. Prof. Tsutomu Yoshinaga
Asoc. Prof. Tsuneyasu Komiya
Asoc. Prof. Masaaki Kondo

Copyright 2008 by Arquimedes Canedo

All rights reserved

To Petty Monster

Abstract

論文の和文要旨

 論文題目 Parallelizing Queue Compiler

! ! パラレルキューコンパイラに関する研究

 氏　　名 Arquimedes M. Canedo

キュープロセッサは、中間結果格納用にFIFOレジスタを持っており、キュー内のデータは
キューの先頭から取り出され、データの入力は、キューの末尾にされる。この計算モデル
は、従来のランダムアクセスを用いるレジスタマシンやスタックマシンとは異なるもので
あるため、現用のコンパイラと同様のコード生成方法を適用する事は不可能である。本論
文では、初めて実用に近いコードをコンパイルすることができるようになったキュープロ
セッサ用並列コンパイラの設計及び開発手法について述べるものである。
　本キュープロセッサ用並列コンパイラは、C言語で書かれた任意のプログラムを、キュー
プロセッサの機械語に変換する。キューコンパイラでは、全てのコード生成段階において
キュー計算モデルに沿ってコードを生成しなければならないので、従来のコンパイラとは
異なる構造と手続きを必要とする。そのため内部構造は、従来のコンパイラとは大幅に異
なる構造になっている。
　本コンパイラではプログラムのコントロールフロー及びデータフローグラフを構成し、
それをキューコード生成に適したQTreeに変換し、そこから幅優先トラバース用のLeveled　
DAGを生成する。次に、オフセットの計算を行うため、グラフの解析と変換を行い、最後
に、ターゲットとなるキューマシンへのコード生成を幅優先トラバースによって行う。こ
れらの手続きの多くは未知のものであったため、様々な問題を解決するために新しく効率
的なアルゴリズムとデータ構造の開発を行った。

　本コンパイラでは目的のプロセッサの要求にあうように、コードサイズ、並列性、性
能、オフセット最適化、キューサイズといった目的を指定したコードを生成する方法を同
時に開発した。
　本コンパイラは成功裏に完成し、自身のコードを含め、任意のプログラムをコンパイル
しキューオブジェクトコードを出力するコンパイラとなった。出力されたコードの質は、
従来のコンパイラの命令数、命令種の分布と似たようなものになり、並列性、コードサイ
ズに関しては従来の結果を上回るものとなった。

Abstract

Queue processors arrange high-speed registers in a first-in first-out queue. All read

accesses are performed in the head of the queue and all writes at the tail. This

computation model is substantially different from conventional random access register

machines and stack machines. Traditional code generation methods cannot be applied to

queue machines, therefore, this doctoral dissertation presents the design and development

of a parallelizing queue compiler framework. The queue compiler translates any program

written in C language into queue processor’s machine code. The most important

characteristic of the queue compiler is the integration of the queue computing principle in

all stages of code generation, making it the first available true queue compiler. Novel and

efficient algorithms and data structures have been developed to facilitate and solve all the

problems related to compilation for the queue model. This work is the result of two years of

research and development, and it provides efficient solutions to a broad range of problems

on queue computing including the principles of compiler development, automatic code

generation, offset calculation, scheduling, parallelization, optimization, data allocation,

and constrained compilation. Internally, the queue compiler is completely different to

any other existing compiler, this due to the special characteristics of queue computing.

First, control flow and data flow graphs of the input program are generated. Then a set

of custom analyses and transformations are performed to compute the offset reference

values. Finally, the data flow graph is scheduled in a level-order manner to generate the

final instruction sequence for the target queue machine. The compiler is also capable

of producing code for a set of objective functions such as code size, high parallelism,

high performance, offset reference control, and queue control. The queue compiler has

been successfully completed and any program, including itself, can be compiled into queue

object code. Quantitatively and qualitatively, the generated queue programs are similar to

the ones generated by conventional register compilers in terms of number of instructions,

parallelism, code size, and instruction distribution.

Table of Contents

1 Introduction 11

1.1 Main Objectives . 13

1.2 Related Work to Queue Machines . 13

1.3 Organization of this Dissertation . 16

2 Queue Computation Model 17

2.1 Differences with Conventional Computation Models 17

2.2 Code Generation for Queue Machines . 18

2.2.1 Consumers-Producers Data Ordering Problem 19

2.3 Queue Computation Model Taxonomy . 20

2.3.1 Producer-Consumer Order Queue Computation Model (PC-QCM) . 21

2.3.2 Consumer Order Queue Computation Model (C-QCM) 22

2.3.3 Producer Order Queue Computation Model (P-QCM) 24

3 Producer Order Queue Compiler Framework 29

3.1 Target Queue-based Architecture . 29

3.1.1 Offset Referenced Instructions Classification 31

3.2 Compiler Framework Design and Implementation 32

3.2.1 QTree Generation . 33

3.2.2 Queue Code Generation . 36

3.2.3 Offset Calculation . 39

3.2.4 Instruction Scheduling . 43

3.2.5 Assembly Generation . 44

3.2.6 Application Binary Interface (ABI) 46

1

TABLE OF CONTENTS 2

3.3 Functionality . 50

3.3.1 Self-Hosted Compiler . 51

3.3.2 Lower Bound Execution Time (LBET) 52

3.4 Framework Complexity Evaluation . 54

3.4.1 Lines of Code Complexity . 54

3.4.2 Compile-time Complexity . 55

4 Constraint-Driven Compilation 57

4.1 Code Size-aware Compilation . 58

4.1.1 1-offset P-Code . 59

4.1.2 Code Size Reduction-aware Code Generation 60

4.1.3 Code Size Reduction Evaluation . 65

4.1.4 Effect of dup instructions on Code Size 66

4.1.5 Discussion on Variable-length Instruction Set 68

4.1.6 Conclusion . 69

4.2 Queue Register File Optimization . 70

4.2.1 Related Work . 71

4.2.2 Target Architecture: QueueCore processor 72

4.2.3 Algorithm for Queue Register File Constrained Compilation 73

4.2.4 Evaluation of Queue Register File Constrained Compilation 80

4.2.5 QueueCore Processor Evaluation 86

4.2.6 Conclusion . 88

4.3 Classic Optimization: Common Subexpression Elimination 90

4.3.1 Implementation of CSE in Queue Compiler 91

4.3.2 Effects of CSE on Queue Programs 92

4.3.3 Evaluation . 94

4.3.4 Conclusion . 98

4.4 ILP Optimization: Statement Merging Transformation 100

4.4.1 Algorithm . 101

4.4.2 Evaluation . 104

4.4.3 Conclusion . 105

TABLE OF CONTENTS 3

5 Queue Allocation: reducing memory traffic in producer order queue

machines 106

5.1 Shared Main Memory Communication Method 108

5.1.1 Intra-block Communication . 108

5.1.2 Inter-block Communication . 110

5.2 Operand Queue for Reducing Memory Traffic in Queue Programs 111

5.2.1 Semantics of dup instruction . 113

5.2.2 Algorithm for inserting dup instructions 114

5.2.3 Using queue for inter-block passed variables 116

5.2.4 Enabling Compiler Support . 117

5.3 Evaluation . 118

5.3.1 Memory Traffic Reduction . 119

5.3.2 Expense of dup instructions for offset constrain 119

5.4 Conclusion . 121

6 Queue Computing Evaluation 122

6.1 Code Size Comparison . 122

6.2 Compile-time Extracted ILP Comparison 123

7 Conclusion 125

A P-Code Instruction Set Architecture 128

A.1 Notation . 128

A.2 Arithmetic & Logic Instructions . 129

A.3 Memory Instructions . 129

A.3.1 Efficient Addressing Method for Queue Processors 130

A.4 Comparison Instructions . 132

A.5 Control Flow Instructions . 133

A.6 Data Type Conversion Instructions . 134

A.7 Special Instructions . 134

A.8 Queue Control Instructions . 134

Bibliography 136

TABLE OF CONTENTS 4

List of Publications 146

Author Biography 149

Acknowledgments 150

List of Figures

2.1 Code generation for queue machines consist of: (a) traversing the DAG

in level-order manner, (b) obtain the instruction sequence of the queue

program, and (c) executing the program in the queue. 20

2.2 Producer-consumer model (PC-QCM) strictly uses QH and QT for reading

and writing. 22

2.3 Transforming a DAG into a Level-planar DAG 22

2.4 Consumer model (C-QCM) gives flexibility in writing but the reading

location remains fixed at QH. 23

2.5 Consumer model (C-QCM) execution . 24

2.6 Producer order model (P-QCM) gives flexibility in reading data but the

writing location remains fixed at QT. 24

2.7 Producer Order model (P-QCM) execution 25

2.8 Comparison between (a) original directed acyclic graph, (b) PC-QCM level-

planar model, (c) P-QCM model . 27

3.1 Queue compiler block diagram . 34

3.2 High-level intermediate representation. (a) C fragment, (b) C-like GIM-

PLE representation, (c) GIMPLE representation 35

3.3 QTrees. (a) C-like Qtree representation, (b) QTree representation using

low level generic queue instructions . 36

3.4 Leveled DAG for expression a[i] = (&a + (i ∗ sizeof(a))) ∗ (x + y) 37

3.5 QH relative position for all binary and unary operations in a LDAG 41

3.6 QIR representation . 46

3.7 QueueCore assembly output . 47

5

LIST OF FIGURES 6

3.8 Stack Frame Layout . 48

3.9 Framework’s functionality. Related techniques grouped by color. 52

3.10 Cross-compiler configuration . 53

3.11 Lower Bound Execution Time (LBET) model 54

3.12 Lines of Code complexity of five compiler back-ends 55

3.13 Compile Time Compiler . 56

4.1 4-point Fourier transform directed acyclic graph. 60

4.2 Fourier transform’s directed acyclic graph with dup instructions. 61

4.3 Leveling of QTree into augmented LDAG for expression x = a·a
−a+(b−a)

. . . 64

4.4 1-offset constrained code generation from a LDAG 66

4.5 Code size evaluation of 1-offset P-Code technique 67

4.6 Overhead of dup instructions. 68

4.7 Queue size requirements. The graph quantifies the amount of queue

required to execute statements in SPEC CINT95 benchmarks. A point,

(x, y), denotes that y% of the statements in the program require x, or less,

queue words to evaluate the expression. 71

4.8 Queue length is determined by the width of levels and length of soft edges. 74

4.9 Output of the labeling phase of the clusterization algorithm 76

4.10 Output of the clusterization algorithm. Spill nodes marked in gray circles

and reload operations in rectangles. 78

4.11 Cluster Dependence Graph (CDG) . 80

4.12 Normalized instruction count measurement for different lengths of queue,

threshold = 2, 4, 8, 16, INFTY . 82

4.13 Spill code distribution of 124.m88ksim benchmark. 83

4.14 Queue computation levels in the programs’ data flow graph as an estimation

of static execution time. 84

4.15 Degree of instruction level parallelism for constrained compilation for

different sizes of queue register file. 85

4.16 Normalized size of the text segment for a conventional register machine

and the QueueCore. 88

LIST OF FIGURES 7

4.17 Exposed instruction level parallelism by an ILP compiler for a conventional

multiple issue machine, and for the QueueCore without and with queue-

length optimization. 89

4.18 Queue Compiler Block Diagram . 91

4.19 Queue compiler’s representation of basic block. (a) Original representation.

(b) After common-subexpression elimination the redundant computation is

removed, the number of execution levels decreases, and an edge is stretched. 93

4.20 Instruction count reduction . 95

4.21 Computation levels reduction. 96

4.22 Instruction level parallelism . 97

4.23 Offsetted instructions distribution for scalar and numerical benchmarks. . . 98

4.24 Statement merging transformation . 101

4.25 Statement merging example. 102

4.26 Merged statement with a height of 5+3 = 8 103

4.27 Effects of statement merging transformation on compile-time ILP 104

4.28 Queue utilization on peak parallelism . 105

5.1 Effect of compilation scope on offset characteristics. (a) sample basic

block, (b) resulting program of statement-based compilation scope with a

maximum offset of −2, and (c) resulting program of basic block compilation

scope with a maximum offset of −6. 109

5.2 Maximum offset reference value for statement-based and basic block

compilation scopes. 110

5.3 Problems of sharing data in the queue across basic blocks. (a) long offset

references of live variables across basic blocks produce large amounts of

dead data. (b) BB3 faces an offset inconsistency problem since the correct

offset value depends on runtime behavior and cannot be determined at

compile-time. 111

5.4 Shared main memory for basic block communication. (a) long offsets and

dead data problems are solved with a store and load instructions. (b) offset

inconsistency problem is solved by accessing a known memory location. . . 112

LIST OF FIGURES 8

5.5 Offset reduction by in-queue copies: (a) original program with long offset,

(b) compiler inserted copies to shorten offset references. 113

5.6 Semantics of dup instruction do not affect other instructions offset references.114

5.7 Chain of dup instructions fit any offset reference into the threshold value. . 115

5.8 Insertion of dup at the end of blocks solves the problem of offset

inconsistency for the successor blocks and allows the communication of

frequently used variables in the queue. 117

5.9 Block diagram of the queue compiler. 118

5.10 Memory traffic reduction. For every benchmark the first column represents

the program compiled shared-memory communication model, and the

second column represents the program compiled with the new queue-based

communication model. 120

5.11 Overhead of dup instructions for different threshold values. 120

6.1 Code Size Comparison . 123

6.2 Compile-time extracted instruction level parallelism 124

A.1 Semantics of the new memory instructions. 131

A.2 Level order traversal of parse tree with array address calculation 132

A.3 Level order traversal of parse tree with array address calculation 133

List of Tables

2.1 Characteristics of queue computation model compared to conventional

register and stack models . 19

2.2 C-QCM and P-QCM program characteristics for Livermore loops 26

2.3 Code Size and Depth of Application Graphs Comparison 28

3.1 Generic queue instructions . 30

3.2 Data type and sign information . 31

3.3 Examples of producer-order instructions 32

3.4 QIR specification . 45

3.5 Compiler complexity by compile-time analysis 56

4.1 Distribution of PQP offsetted instructions for a set of embedded and

numerical applications. 59

4.2 Characteristics of programs that affect the queue length in queue-based

computers . 72

4.3 Estimation of constrained compilation complexity measured as compile-

time for the SPEC CINT 95 benchmark programs with threshold set to

two. 81

4.4 Extra spill instructions and total number of instructions for QueueCore

and a conventional 8-way issue machine. 87

9

List of Algorithms

1 dag levelize (tree t, level) . 39

2 qh pos (LDAG w, node u) . 42

3 OffsetCalculation (LDAG W) . 43

4 prologue() . 50

5 epilogue() . 50

6 dag levelize ghost (tree t, level) . 63

7 1offset codegen () . 64

8 dup assignment (i) . 65

9 labelize (LDAG W) . 76

10 clusterize (node u, LDAG W) . 79

11 stmt merge (B) . 102

12 merge (S1, S2, a1, b1, a2, b2) . 103

13 queue communication (BB, threshold) . 116

10

Chapter 1

Introduction

A compiler is a computer program that translates one computer language (source

language) into another computer language (target language). Most of compilers translate

a high-level programming language into machine language program called the object code.

The goal of high-level programming languages is to hide the details of the microprocessor

in a set of abstract, easy to use concepts to make complex programming simpler.

Sophisticated programs such as operating systems and modern applications rely on high-

level programming languages to facilitate their development, to reduce implementation

time, and to avoid error-prone assembly programming. Compilers are a very important

layer in the computer systems stack as they translate application code into machine code

with comparable, or better, performance than hand-coded assembly.

Queue computing is a computation model that has not received much attention

since the invention of microprocessors. A queue-based processor uses a first-in first-

out queue to store and retrieve values for data processing. This model is analogous to

conventional computers based on the concept of random access registers, or stack. In

principle, register, stack, and queue architectures are implementations of sequential von

Neumann architectures. To increase the performance of these kind of processors engineers

have found ways to execute instructions in parallel. Microarchitectural techniques such

as pipelining and multiple execution units have been developed to extract instruction-

level parallelism in a single processor. However, the fundamental characteristics of each

model complicate or facilitate the parallelization of instructions in different degrees.

The stack model, for example, uses the top of the stack to perform reads and writes

11

12

and makes parallelization a challenging problem in the hardware and in the compiler.

Compilers for superscalar and VLIW register must perform complex and sophisticated

transformations to extract parallelism from the compiled programs. On the other hand,

queue computing model allows parallelism to be easily extracted, yet no previous research

has been conducted to understand the automatic compilation of programs for queue

machines, and no compiler has been developed. Some previous attempts were made

to use a conventional compiler and translate register-based code into queue code. These

works made clear that conventional compilation techniques for register machines are not

applicable to queue processors and, in order to obtain practical and competent code we

needed to conduct original research to establish the principles of compilation for queue

machines and to develop the first queue compiler.

Compiler development is a major engineering undertaking that requires significant

time and efforts. Historically, the development time of an optimizing compiler takes

longer than the development of the microarchitecture. Each computation model imposes

distinct, yet very challenging problems to the compiler technology. For example, the

recent trend in computer architecture design to achieve higher performance with identical

VLSI technology is towards multi-core microprocessors. Although compiler technology is

well understood for parallelizing programs for single processing elements, the introduction

of many cores has brought major challenges for the compiler writers [75, 6, 53, 63, 83].

Compiling for queue computing paradigm requires a new and different approach. This

dissertation presents the design and development of a compiler framework for queue

machines. We tackle the fundamental problems of code generation and compiler

development for queue machines with novel methods. We also introduce techniques to

generate code for specific hardware constraints and program transformations dependent

on the target queue machine.

At Sowa Laboratory [85, 86] we are researching and developing the first parallel

queue-based processor. The queue compiler plays a very important role in the research,

implementation, design, and testing of new ideas. Having the ability to generate queue

code for actual applications allows the designers to identify areas of improvement on

the microprocessor and the compiler itself. Once the actual queue processor has been

completed, the compiler remains as a valuable development tool that facilitates the

1.1. Main Objectives 13

deployment of operating systems, system libraries, assemblers, and any application in

general.

1.1 Main Objectives

The primary goal of this dissertation is the research and development of the principles

to compile high-level languages into machine code for queue-based processors. As a

result of this investigation, we present a queue compiler framework able to translate and

accommodate any program in an actual parallel queue processor. Second, we invented

new techniques to generate code for specific objective functions such as code size, high

parallelism, queue size control, offset reduction. Third, we aimed to the generation of

code with quality comparable to that of production and research compilers in terms of

number of instructions, code size, and compile-time instruction level parallelism. Fourth,

to deliver a complete framework that contributes and promotes the study and progress of

queue computing.

1.2 Related Work to Queue Machines

The concept of a queue machine was first proposed by Feller and Ercegovac in [24], they

present and highlight some of the properties of queue machines for parallel processing such

as fast instruction issue, fault-tolerance, and simple interconnection properties. In [71],

Preiss discusses the fundamental techniques to generate programs for a queue machine by

traversing the parse trees in level-order manner, and the complications [35] of generating

code from a directed acyclic graph (DAG). Okamoto [67] proposed the actual design of a

superscalar queue machine able to execute instructions in parallel. In [76], Schmit et al.

proposed a queue machine as the execution engine for reconfigurable hardware with high

parallelism properties and simple hardware complexity. In [87], Sowa et al. established

a method to execute arbitrarily complex DAGs in a single queue without modifications

to the original graph. Instead, this producer order model relies on allowing instructions

to randomly access any operand in the queue with offset references indicating the place,

relative to the head of the queue, from where to read the operands. Based on this model

1.2. Related Work to Queue Machines 14

the QueueCore parallel processor was developed [1] together with a custom compiler [13].

QueueCore programs expose similar parallelism and are smaller than embedded RISC

processors. With the same idea of high flexibility of queue computing, research has been

conducted on consumer order [86] and multidimensional [29] queue computing. Where the

consumer order model only gives flexibility when writing operands anywhere in the queue.

And the multidimensional queue computing introduces the concept of multiple queues to

reuse data as much as possible and thus avoiding long latency memory accesses.

Another class of computers such as the Astronautics ZS-1 [84] and the WM

machine [96] decouple memory accesses from execution using visible queues for com-

munication. Since execution runs asynchronously from memory accesses and instructions

can read/write operands from/to the queues, streamlined processing can be effectively

exploited. Inspired by the decoupled architectures, a VLIW processor using a queue

register file was proposed to boost the execution of software pipelined loops [25]. The

idea is extending the architected register file by connecting registers to queues. Thus,

queues can hold more values than the architected registers. Every write access to register

connected to a queue places the element at the tail of the connected queue, and every read

access to a connected register dequeues on element. A modified register allocator emits

rq connect instructions to map specific registers to specific queues, allowing values of

different iterations to reside in the queues. This technique has also been demonstrated to

be effective in solving register pressure problem in conventional superscalar machines [89].

Register machines using queues for extending the architected register file provided

compiler support [25, 89]. Their approach is to use a traditional register compiler and

modifying the conventional register allocator phase [16] by making visible a larger number

of registers. The modified register allocator attempts to place the most important

variables in the architected registers, while storing the less important variables in the

queues or memory. After register allocator is complete, the compiler is required to

emit the connect instructions to map registers to queues. This process emulates the

register mapping table at compile time [44] instead of run time as the register renaming

process [49]. Clearly, the compiler treats queues as additional low priority registers as

the main computation is done by explicit referencing the architected registers. This

simple approach is able to employ the queues as additional registers, however, it does not

1.2. Related Work to Queue Machines 15

contribute to the design of code generation techniques for formal queue machines.

In [35], it was established that some directed acyclic graphs need more than one queue

to be laid out, however, level-planar graphs can be always laid out in a single queue. Based

on this property, Schmit et al. [76] proposed a heuristic to convert any non level-planar

graph into level-planar. This conversion is achieved through inserting special instructions

to duplicate and exchange position of data. However, no compiler with such functionality

was developed.

Some efforts have been done to improve the performance of conventional high-level

languages by the utilization of the queue computation model. In [58], the idea of using a

queue machine for the implementation of a parallel functional language is discussed. An

initiative to develop a queue-based Java Virtual Machine for parallelizing the execution

of Java bytecode [55] was proposed in [80, 81]. This project developed a Java compiler

capable of rearranging the abstract syntax trees of programs and extracting parallelism

for direct execution on the queue-based Java virtual machine. This compiler generates

bytecodes from abstract syntax trees and their method does not handle code generation

from directed acyclic graphs. Based on this work, [42] presents an improved compiler

able to calculate the correct location of operands relative to the head of the queue and

thus generating offset references for instructions. The latter Queue-Java compiler is able

to handle simple directed acyclic graphs and generate correct bytecode.

From 2000 to 2005, several attempts were made to develop a queue compiler based

on a retargetable register compiler [68, 27, 37, 8, 11]. The idea was to map three-

address register code into queue code. First, the data flow graph of the program had

to be reconstructed and re-scheduled for the queue computation model. During this

process register references had to be eliminated since queue machines do not have explicit

operands. This mapping technique led to very complicated mapping algorithms and very

poor output programs. Furthermore, these compilers were never completed and could only

compile toy programs of less than a hundred lines of code with very simple operations and

control flow. Such approach and results made clear that the fundamental problem lies on

the compilation strategy: to be able to generate clean, correct, and complete queue code,

the compiler must be blind to the concept of registers. Since all back-ends of conventional

compilers are based on the concept of registers, the need of a compiler crafted specifically

1.3. Organization of this Dissertation 16

for the queue computation model became clear.

1.3 Organization of this Dissertation

This dissertation is organized as follows: Chapter 2 presents the principles of queue

computing. Chapter 3 establishes the concepts, abstractions, and algorithms to develop

a queue compiler. Chapter 4 provides novel techniques to cope with the code generation

for constrained hardware. Chapter 5 presents a technique to improve data allocation in

the queue while reducing memory traffic. Chapter 6 presents the evaluation of queue

computing by means of compiling a set of benchmark programs with the presented queue

compiler. Chapter 7 discusses several aspects on the development of a queue compiler

and concludes.

Chapter 2

Queue Computation Model

A queue-based computer employs a first-in first-out (FIFO) queue to evaluate expressions.

To avoid high-latency memory accesses, the queue is implemented with high-speed

registers arranged and accessed in special manner. The physical implementation of the

queue is called the Queue Register File. Reading operation from the queue is done always

through the head of the queue, and writing operation is done always through the tail of

the queue. Therefore, the hardware must provide two pointers to track the head and tail

of the queue. Such pointers are implemented as special registers, QH and QT to track the

head and the tail positions of the queue. The Queue Computation Model (QCM) is the

set of rules and conventions that allow programs to be executed in a queue processor. In

this Chapter, the hardware and software aspects of the QCM are discussed.

2.1 Differences with Conventional Computation Mod-

els

The goal of any computer is to perform correct operations on data items. The underlying

principles of a computer vary from one to another. Conventional register machines, such

as RISC1, employ a set of random access registers to hold data and perform operations.

A typical RISC instruction consists of a quadruple that specifies an operator, and three

operands: a destination operand, and two source operands. For example, the instruction

1Reduced Instruction Set Computer

17

2.2. Code Generation for Queue Machines 18

“add R1, R2, R3” adds (operator) the contents of registers R3 and R2 (source operands),

and places the result of the addition in register R1 (destination operand). An important

characteristic of random access register machines is that all operands must be explicitly

referenced by name (register number).

A stack machine employs a set of registers organized as a last-in first-out (LIFO) stack

to perform computations. All accesses, read and write, to the stack are done through the

top of the stack, or TOS. Since all accesses to the stack are fixed at TOS, operands

can be omitted from the instruction allowing 0-operand instructions. For example, the

stack instruction “sub” reads (pop) two elements from TOS, performs the subtraction,

and writes (push) the result to TOS. Compared to RISC-based 3-operand instructions,

0-operand instructions are smaller and require less memory bandwidth for fetching, less

hardware to decode, and improved instruction cache performance. Generally, stack-based

computers require less hardware and have better power consumption characteristics than

register machines. However, the performance of stack machines is fundamentally limited

by the bottleneck created at the TOS [91, 73, 79].

The QCM inherits all characteristics of 0-operand computers and, contrary to the

stack model, it is a fundamentally parallel computation model. Queue machines can

easily and effectively exploit parallelism as two different locations are used for reading

and writing. One important advantage of queue computers over conventional register

computers is that queue programs are free of false dependencies and the hardware

and power consumption can be greatly improved with the absence of register renaming

techniques [49]. Table 2.1 summarizes the differences between the queue computation

model and conventional random access register and stack models.

2.2 Code Generation for Queue Machines

Queue processors employ a different arrangement of registers with well established rules

for accessing its elements and, therefore, conventional code generation techniques for

register machines cannot be applied for the queue model. As the queue obeys the rule

that the first inserted element is the element that will be read first, the generation of

correct queue programs is guaranteed by a level-order traversal of the expression trees [71].

2.2. Code Generation for Queue Machines 19

Table 2.1: Characteristics of queue computation model compared to conventional register

and stack models

Queue Register Stack

Principle FIFO Random Access LIFO

Operands 0 3 0

Instruction Encoding small large small

False Dependencies no yes no

Hardware Complexity low high low

Power Consumption low high low

Performance high high low

Expression trees have the property that every produced element has only one consumer

and therefore data cannot be used more than once. To reduce the size of the trees a

directed acyclic graph (DAG) is constructed where elements have no limitation in the

number of consumers, thus allowing to reuse data. Despite this property, queue programs

are still generated by a level-order traversal of the expression DAGs [71]. However, a data

ordering problem between producers and consumers is introduced and it should be solved

by the hardware and the software.

2.2.1 Consumers-Producers Data Ordering Problem

To illustrate the queue code generation from DAGs and the data ordering problem consider

the expression in Figure 2.1. The Figure 2.1(a) shows the DAG of expression “x =

(a + b)/(a − c)”. The horizontal dotted lines show the level-order traversal starting at

the deepest level (L0) and finishing at the root level (L3). For each level (L0, L1, L2, L3)

all nodes are visited from left to right. The level-order traversal generates the instruction

sequence to evaluate the expression in a queue machine. Figure 2.1(b) shows the pseudo-

instructions of the queue program. Figure 2.1(c) shows the contents of the queue during

the execution of the program. For every stage, the head of the queue is represented

by the left-most element and the tail of the queue by the right-most end of the queue.

2.3. Queue Computation Model Taxonomy 20

Firstly, operands a, b, c are loaded into the queue. The next instruction, “add”, is a

binary operation that takes its two operands a, b from the head of the queue and writes

the addition a + b into the tail. Notice that after the addition is performed the elements

“a” and “b” were consumed and no longer present in the queue. The problem appears

when any further instruction has any of these consumed data as operand. For example,

the following subtraction “sub” requires operands “b” and “c” but the head of the queue

contains operand “c” and the contiguous element is the result of the addition “a+b”. If

the subtraction is executed the result would be “c + (a − b)” as shown in the shaded

element in the Figure rather than “a− c”. This situation leads to incorrect evaluation of

the expression.

x

/

+ -

a b c

a b c

ld ld ld

c

add

a+b

a+b

sub

c - (a+b)

ld a
ld b
ld c
add
sub
div
st x div

L0

L1

L2

L3

(a). Level-order traversal of a DAG (b). Queue program (c). Queue contents during
execution of program

Figure 2.1: Code generation for queue machines consist of: (a) traversing the DAG in

level-order manner, (b) obtain the instruction sequence of the queue program, and (c)

executing the program in the queue.

2.3 Queue Computation Model Taxonomy

We identify three approaches that can be taken in the hardware and/or software to solve

the problem of consumers-producers. These models constitute a variation of the queue

computation model. In the first solution, called producer-consumer order model, the

software is in charge of modifying the DAGs and the hardware remains intact as a pure

queue machine. The other two solutions, called consumer order model and producer order

2.3. Queue Computation Model Taxonomy 21

model, add hardware support for the execution of DAGs balancing the complexity between

the software and the hardware.

2.3.1 Producer-Consumer Order Queue Computation Model

(PC-QCM)

For this model, the rules of enqueueing and dequeueing remain intact. Reading is strictly

performed at QH, and writing at QT as shown in Figure 2.2. During code generation,

the compiler analyzes the data flow DAGs and determines whether any node incurs in a

consumers-producers data ordering problem. This can be identified by dependency edges

that intersect and by edges spanning across more than one level. In [76], a heuristic

algorithm is proposed where the original DAG is verified to be level-planar [35]. A level-

planar DAG has the properties that all edges span only one level and there are no crossing

arcs, therefore can be executed as is in a pure queue machine. Level-planarity can be

tested in linear time [40]. For non level-planar DAGs, the algorithm selectively places swap

instructions to exchange position of data and remove crossing arcs, and fill2 instructions

to fill empty slots of edges spanning multiple levels. In this way any DAG can be converted

into a level-planar DAG for direct execution in a pure queue machine.

Figure 2.3(a) shows a sample expression whose straightforward representation in a

DAG is non level-planar. In Figure 2.3(b), a crossing arc between (>> → 16) and (−

→ sum) exists. Furthermore, the edge spanning from (* → 4) has two empty levels.

Figure 2.3(c) shows the transformed DAG into a level-planar DAG using fill (squared

nodes) and swap instructions (diamond shaped nodes). Notice that the fill nodes shaded

in gray produce two data. The swap node exchanges the position of a copy of sum with

16. And the chain of fill instructions in the right-most column converts the empty

instruction slots into data. Executing the level-planar graph in the PC-QCM model is

straightforward as no consumers-producers data ordering problem appears. However, the

overhead of level-planarazing a DAG is the insertion of extra instructions and extra levels.

For this example, the original DAG has 8 nodes and 5 levels, and the level-planar graph

16 nodes and 7 levels.

2The original name of fill instruction in [76] is dup. The name has been changed not to confuse the

reader the duplicate (dup) instruction used in this thesis.

2.3. Queue Computation Model Taxonomy 22

QH QT

Read Write

Figure 2.2: Producer-consumer model (PC-QCM) strictly uses QH and QT for reading and

writing.

sum

*

+

>>

sum 16

-

4

sum = ((sum >> 16) + (sum - 4)) * 4

a). Expression

b). Expression DAG (Non Level-planar)

sum 16 4

fill fill fill

fill swap fill

>> - fill

>> fill

*

sum

c). Level-planar DAG

Figure 2.3: Transforming a DAG into a Level-planar DAG

2.3.2 Consumer Order Queue Computation Model (C-QCM)

The Consumer order model, or C-QCM, was named after the strict rule that reading, or

consuming, elements is done always through QH. The rule for writing is broken to give

flexibility and solve the consumers-producers data ordering problem. The instructions in a

C-QCM program, apart from producing always a datum in QT, have the ability to specify

a location relative to the QT where to produce a copy of the produced data as shown

in Figure 2.4. The hardware must be modified to enable the execution of such special

cases of instructions, and the compiler must calculate the correct locations where to place

copies of data. This is a hardware/software approach to solve the consumers-producers

data ordering problem.

2.3. Queue Computation Model Taxonomy 23

QH QT

Read Flexible Write

......

Figure 2.4: Consumer model (C-QCM) gives flexibility in writing but the reading location

remains fixed at QH.

Figure 2.5(a) shows the C-QCM program generated to evaluate the expression “sum =

((sum >> 16) + (sum - 4)) * 4”. The program is obtained by a level-order traversal

of the expression’s DAG. Figure 2.5(b) shows the queue contents during the execution of

the program. The first instruction loads sum into the queue and places a copy two locations

after the current QT location. The second operand in the first instruction, 2, is shown by

the dashed line in the queue contents figure. After the second instruction loads 16, the

third instruction loads 4, and produces a copy four locations away to QH current position.

Notice that the hardware must be capable of identifying the data that was produced ahead.

The elements marked with a question mark, ?, represent queue registers that can be used

for computation. However, the rightmost 4, should be not overwritten. The following

instructions are executed and the ?-nodes are filled with computations to evaluate the

expression. For clarity of tracking the progress of computations, the consumed data is

shown by the light gray queue elements. This hardware/sofware mechanism solves the

consumers-producers problem keeping instruction count same as the original problem and

adding extra complexity to the instructions and the hardware.

The Indexed Queue Machine proposed in [71] follows this principle. The only difference

is that the location to produce the extra copy is relative to QH rather than QT as in our

method. Although same principle, we believe our method is superior than the Indexed

Queue Machine since the offset reference used to specify the location is generally shorter

when relative to the QT. Let the number of elements between QH and QT is N , and a

C-QCM instruction needs to produce a copy M locations away from QT. Then, for our

method the offset reference relative to QTis M , and for the Indexed Queue Machine is

N + M .

2.3. Queue Computation Model Taxonomy 24

sum

ld

16 4sum

ld

ld

rsh
sub

sum 16 4sum >> -

add

+ 4

mul

...

4sum 16 4sum >>

ld sum, 2
ld 16
ld 4, 4
rsh
sub
add
mul
st x

? ? ? 4

- ?

a). C-QCM Program b). Queue Contents

Figure 2.5: Consumer model (C-QCM) execution

2.3.3 Producer Order Queue Computation Model (P-QCM)

The Producer Order model, P-QCM, is a hardware/software approach to solve the

consumers-producers data ordering problem. The unique characteristic is that the rule for

writing, producing, data remains fixed at QT and the rule for reading data has flexibility.

Figure 2.6 shows the rationale behind the P-QCM model.

QHQH

Flexible Read Write

......

Figure 2.6: Producer order model (P-QCM) gives flexibility in reading data but the

writing location remains fixed at QT.

Figure 2.7(a) shows the P-QCM program generated for the same sample expression

“sum = ((sum >> 16) + (sum - 4)) * 4”. The execution of the program and its queue

contents are displayed in Figure 2.7. Execution flows normally up to the fourth instruction.

The subtraction operation needs operands sum and 4. Notice that sum was consumed by

2.3. Queue Computation Model Taxonomy 25

the rsh instruction in the first queue state. Therefore, the subtraction instruction must

specify a location relative to QH to read its operand, for this case −2. The negative

value denotes the access of a value that was already consumed by a previous operation.

Graphically, it represents the access to a value on the left of QH. The addition consumes

its two operands directly from QH, and the multiplication finds the same problem. It

requires the access to operand 4 which is three queue registers away from QH, hence the

offset reference is −3.

sum

ld

ld sum
ld 16
ld 4
rsh
sub -2
add
mul -3
st x

a). P-QCM Program b). Queue Contents

16 4

ld ld

sum 16 4 >>

sum 16 4 >> -

rsh

sub

sum 16 4 >> -

add

+

mul

...

Figure 2.7: Producer Order model (P-QCM) execution

We believe the P-QCM offers the best alternative over the other two queue computa-

tion models. It provides great flexibility for executing scientific and conventional codes.

The C-QCM programs have the tendency to be longer than P-QCM programs. Table 2.2

shows the fundamental characteristics of C-QCM and P-QCM for the Livermore loops

program. The C-QCM needs 22% more instructions than the P-QCM program. The

available parallelism at the instruction level is higher for the C-QCM but the execution

time is the same for both models. This means that the C-QCM requires about 20%

more hardware to execute the program in the same time as the P-QCM. The maximum

queue utilization represents the amount of queue registers needed to execute the most

demanding part of the program. For this benchmark program, the C-QCM needs 60%

2.3. Queue Computation Model Taxonomy 26

Table 2.2: C-QCM and P-QCM program characteristics for Livermore loops

C-QCM P-QCM

Generated Instructions 4094 3350

Instruction Level Parallelism 3.82 3.13

Execution time 1542 1542

Max. Queue Utilization 227 94

more registers than the P-QCM.

To illustrate the advantages of P-QCM over the PC-QCM consider the example

in Figure 2.8(a), it shows the directed acyclic graph for a 4-point Fourier Transform.

Using the method proposed in [76] the original DAG is transformed into a level-planar

graph. Basically, edges spanning more than one level are eliminated by a fill operator,

and crossing arcs are eliminated by a swap operator. By employing these two special

instructions [76] the original DAG is transformed into a level-planar graph as shown

in Figure 2.8(b). Duplicate operators are represented by the squared nodes, and swap

operators are represented by the diamonds. As it is reported by its authors, this method

increases the number of instructions and the depth of the graph, for the given example

from 18 to 49 instructions and from 5 to 12 levels. Figure 2.8(c) shows the producer order

graph. White circles represent instructions that read operands directly from QH gray

circles represent instructions that need one operand to be taken by an offset reference,

and black circles represent instructions that take all its operands using the flexible reading

rule. Compared to the PC-QCM model, the P-QCM model does not increase the number

of instructions nor the depth of the graph.

Table 2.3 compares the code size and depth of data flow graphs (DFG) for the PC-

QCM model and the P-QCM model for a set of benchmark programs. The P-QCM

programs are from 55% to 80% smaller than PC-QCM programs. From the fact that all

instructions belonging to the same level can be potentially executed in parallel, shallow

data flow graphs are preferred over deep ones. The table shows that P-QCM data flow

graphs are about 1.46 to 5.85 times shallower than the PC-QCM. For the aforementioned

reasons, the P-QCM model is preferred over the other two queue computation models and

2.3. Queue Computation Model Taxonomy 27

+1 +2 +3 +4

+5 +6 +7 +8

neg neg

x0 x1 x2 x3

X0 X1 X2 X3L0

L1

L2

L3

L4

x0 x1 x2 x3

neg negd2 d2

s sd dd d

+1 +2 +3 +4

s sd s d

+7 +6d d dd

d ds s

ss s

+5 +8d d

s s

X0 X3

sd d

X1 X2L0

L1

L2

L3

L4

L5

L6

L7

L8

L9

L10

L11

+1 +2 +3 +4

+5 +6 +7 +8

neg negx0

x1

x2

x3

X0 X1 X2 X3L0

L1

L2

L3

L4

(a) Original Graph

(b) Level Planar Graph

(c) Producer Order Graph

Figure 2.8: Comparison between (a) original directed acyclic graph, (b) PC-QCM level-

planar model, (c) P-QCM model

2.3. Queue Computation Model Taxonomy 28

Table 2.3: Code Size and Depth of Application Graphs Comparison

PC-QCM Graph P-QCM Graph

Application Code Size Depth Code Size Depth

dct1 537 49 244 18

fft8 iterative 909 41 176 7

haar16 918 17 248 6

rc6 330 42 148 23

idea 1462 235 606 160

popcount 229 24 62 5

all efforts of this thesis were made to develop a P-QCM compiler framework.

Chapter 3

Producer Order Queue Compiler

Framework

Among all queue computation flavors, the producer-order model offers the highest

flexibility for the software and the hardware. Programs generated for the producer-order

model are characterized by being small and having two offset references that specify the

location with respect of the head of the queue from where to read the source operands.

This chapter presents the main contribution of this dissertation which is the establishment

of the techniques to develop a queue compiler for the producer order queue computation

model. The structure of the queue compiler is different from traditional compilers since it

integrates the concept of queue computing to all phases of code generation. We introduce

a novel data structure that facilitates the compilation process and allows the calculation of

offset references and level-order scheduling. The functionality of the actual queue compiler

implementation is presented and we analyze the complexity of the algorithms in terms of

lines of lines of code and compile time against conventional compilers for a set of standard

applications.

3.1 Target Queue-based Architecture

To avoid compilation complexities introduced by specific hardware implementations, the

queue compiler generates code for a generic producer-order instruction set architecture

inspired by the Parallel Queue Processor (PQP) [87]. The target instruction set, or P-

29

3.1. Target Queue-based Architecture 30

Table 3.1: Generic queue instructions

Class Instructions

Arithmetic add, sub, div, mod, mul, neg,

& Logic rsh, lsh, ior, xor, and, not

rrot, lrot, abs

Memory ld, st, ldi, lea, sld, sst

Comparison ceq, cne, clt, cle, cgt, cge

Ctl. Flow bt, bf, j, jal, ret

Conversion conv

Special copyp, dup, rot

Queue moveqh, moveqt

Code, allows two offset references to be encoded without length restrictions. Hardware

details such as type and number of functional units, memory hierarchy, queue register

file size, instruction length, are parametrized in the compiler to allow flexibility and

to gain the ability to target multiple implementations of queue processors. P-Code

instructions are classified in seven classes as shown in Table 3.1: Arithmetic & Logic,

Memory, Comparison, Control Flow, Special, and Queue. To differentiate between integer

and floating point operations, each instruction defines its data type and sign. Table 3.2

shows the equivalence between C language data types and P-Code data types. For full

description of P-Code instructions refer to Appendix A.

P-Code’s instruction set format is as follows. Instructions using offset references such

as arithmetic and logic, comparison and special groups, and sst and sld instructions the

encoding is as follows:

opcode data type offset1 offset2

For memory instructions that do not use offset references the encoding is as follows:

opcode data type memory address

Control flow instructions do not have a data type and the only operand is the target

label symbol representing the target of jumps or function names.

3.1. Target Queue-based Architecture 31

Table 3.2: Data type and sign information

P-Code type C-Type

Description Data Type

Integer Byte Signed ibs signed char

Integer Byte Unsigned ibu unsigned char

Integer Half-word Signed ihs signed short

Integer Half-word Unsigned ihu unsigned short

Integer Word Signed iws signed {int, long}

Integer Word Unsigned iwu unsigned {int, long}

Integer Long Signed ils signed long long

Integer Long Unsigned ilu unsigned long long

Floating Point Single Precision fps float

Double Precision Floating Point fpd double

Long Double Precision Floating Point fpD long double

opcode target label

3.1.1 Offset Referenced Instructions Classification

P-Code instructions are classified in three categories according the number of operands

read by an offset reference. We say that “an operand is read by an offset reference”

when it is not directly accessed by the current QH, in other words, QH+N where N≤0. 2-

offset instructions read both operands by offset references, 1-offset instructions read only

one operand by an offset reference, and 0-offset instructions do not use offset references.

Thus, the binary instructions can be 2-offset, 1-offset, or 0-offset. Unary instructions can

be 1-offset, and 0-offset. By notation, the two offsets values in binary instructions are

explicitly given by a pair (N, M). Operand location is given by QH+N and QH+M for

the first and second operands, respectively. We use the following convention to specify

0-operand binary instructions:

Definition 3.1. The pair of offset references (0, 1) defines a 0-operand binary instruction,

3.2. Compiler Framework Design and Implementation 32

Table 3.3: Examples of producer-order instructions

Type Binary Unary

0-offset mul 0, 1 not 0

1-offset add -3, 0 neg -3

sub 0, -2

div 1, 0

2-offset rsh -3, -1 N/A

e.g. “div 0, 1”.

Table 3.3 shows examples of binary and unary instructions according their Producer

Order classification.

3.2 Compiler Framework Design and Implementa-

tion

The queue compiler infrastructure consists of six phases, including the front-end.

Figure 3.1 shows the block diagram of the queue compiler. The front-end parses C files

into language independent abstract syntax trees (AST) which are a high level intermediate

representation (HIR). These language independent ASTs facilitate the addition of any

other high-level language parsers and permit the reutilization of the back-end of the

compiler. The queue compiler framework consists of the remaining five phases. QTree

generation phase lowers the high level constructs in ASTs into a generic low level sequence

of queue instructions (P-Code instruction set). The resulting representation is a tree-like

structure called QTrees and its main purpose is representing all program in queue-like

instructions. QTrees completely ignore the concept of registers as the queue machine has

none, instead, they represent a pure data flow graph model of the basic blocks. The second

phase is the Queue Code Generator which takes QTrees as input where redundancies are

eliminated and all nodes are assigned to a hierarchical structure formed by levels according

data dependencies among instructions. This hierarchical structure is called a leveled

3.2. Compiler Framework Design and Implementation 33

directed acyclic graph (LDAG) on which the compiler performs the offset calculation

and tracking of the head of the queue. This structure facilitates also the scheduling of

the program as all nodes are organized into levels. Although direct translation from

ASTs to LDAGs is possible, we introduce the QTrees to separate instruction selection

from redundancy elimination and to simplify the algorithms. The third phase, offset

calculation, consumes the LDAGs and for every instruction it computes the offset reference

values to reach its operands. Offset references are annotated in the LDAGs. The fourth

phase, instruction scheduling traverses the LDAGs and produces a level-order scheduling

of instructions that complies with the queue computing principle. As a result, this phase

generates a low level intermediate representation called QIR. QIR is a linear representation

designed to facilitate target dependent optimizations. The QIR is tightly coupled to the

DFG which allows the retrieval of data dependency information among instructions. The

fifth phase, assembly generation, converts QIR into target assembly code.

Throughout all the compilation process, a common symbol table is created and

maintained by the compiler. This symbol table includes information about local variables,

global variables, function parameters and arguments, function names, read-only data

such as constants and strings, and target labels for jumps. A control flow graph (CFG)

consisting of basic blocks of the compiled program is also built and maintained by the

compiler. These two structures are global and accessible to any phase of the compiler.

One of the goals in our design was to keep the compiler implementation independent

from the target architecture. Although the presented compiler generates code for a specific

target architecture, the Parallel Queue Processor, all the algorithms and data structures

are machine independent and can be applied for the queue computation model in general.

3.2.1 QTree Generation

The front-end of the compiler is based on GCC 4.0.2 and it parses C files into a language

and target independent high-level intermediate representation called GIMPLE [64, 66].

Although our queue compiler is capable of generating code from GCC’s optimized

GIMPLE code, at this point we have not validated the results and correctness of such

programs. For the rest of this section, the GIMPLE code used as input for the queue

compiler is non-optimized code. GIMPLE representation is a tree-based three-address

3.2. Compiler Framework Design and Implementation 34

Front-End

QTree
Generator

C
source file

Queue Code
Generator

Offset
Calculation

Instruction
Scheduling QIR

Assembly

ASTs

QTrees

Leveled
DAGs

Assembly
Generation

Q
ue

ue
 C

om
pi

le
r F

ra
m

ew
or

k

Sy
m

bo
l T

ab
le

Co
nt

ro
l F

lo
w

G
ra

ph

LDAGs
(offsets)

Figure 3.1: Queue compiler block diagram

3.2. Compiler Framework Design and Implementation 35

code suitable for code generation for register machines but not for queue machines. As

the level-order scheduling traverses the full DAG of an expression, we facilitate the job

of the scheduler by reconstructing GIMPLE trees into trees of arbitrary depth and width

called QTrees. During the expansion of GIMPLE into QTrees we also translate the high-

level constructs such as aggregate types into their low level representation in generic

queue instructions. The instruction selection phase is in charge of expressing any high

level statement into generic queue instructions equivalent. Figure 3.2 shows a fragment

of a C program and its GIMPLE representation. Notice that in the C-like GIMPLE

representation in Figure 3.2(b), the statement inside the conditional is split into three-

address statements with the help of compiler generated temporaries (i.e. D1098). To

illustrate the high level nature of GIMPLE representation we show in Figure 3.2(c) the

same program but using GIMPLE language. As shown in Figure 3.3(a), QTrees are

unrestricted in the number of operands and operations. For the given example, the QTree

representation is shown in Figure 3.3(b). Now the program is expressed through low level

generic queue instructions.

if(c == 1) {
 a[i] = a[i] * (x + y);
}

(cond_expr
 (eq_expr (var_decl: c) (integer_cst: 1))
 (goto_expr: L1))
(modify_expr
 (var_decl: i.0) (var_decl: i))
(modify_expr
 (var_decl: i.1) (var_decl: i))
(modify_expr
 (var_decl: D1097) (array_ref: a[i.1]))
(modify_expr
 (var_decl: D1098)
 (plus_expr (var_decl: x) (var_decl:y)))
(modify_expr
 (var_decl: D1099)
 (mult_expr
 (var_decl: D1097) (var_decl:D1098)))
(modify_expr
 (array_ref: a[i.0]) (var_decl: D1099))

if(c == 1) {
 i.0 = i;
 i.1 = i;
 D1097 = a[i.1]
 D1098 = x + y;
 D1099 = D1097 * D1098;
 a[i.0] = D1099;
}

(a) C fragment (c) GIMPLE representation(b) C-like GIMPLE representation

Figure 3.2: High-level intermediate representation. (a) C fragment, (b) C-like GIMPLE

representation, (c) GIMPLE representation

3.2. Compiler Framework Design and Implementation 36

(bt: L1
 (cne
 (ld: c)
 (ld: #1)))
(sst: a[i]
 (mul
 (sld: *a[i]
 (add
 (lea: &a)
 (mul
 (ld: i)
 (ld: #4))))
 (add
 (ld: x)
 (ld: y))
)
)

if(c == 1) {
 a[i] = &a + (i * sizeof(a)) * (x + y);
}

(a) C-like QTree representation

(b) QTree representation

Figure 3.3: QTrees. (a) C-like Qtree representation, (b) QTree representation using low

level generic queue instructions

3.2.2 Queue Code Generation

The most important task of the code generator is to shape the program in a suitable

format that facilitates offset reference calculation and level-order scheduling. Leveled

DAGs offer such characteristics where scalar calculations such as distances between nodes

and levels is simple. In this section we establish the rules and techniques to build LDAGs

from ASTs.

Leveled Directed Acyclic Graph (LDAG) Construction

Formally, a LDAG ~G = (V, ~E) is the mapping of the nodes to integers such that if there

is an edge from u to v, then lev(v) = lev(u) + N, N > 0 for all edges in the graph. A

node v is a level-j node if lev(v) = j. The hierarchical organization of the nodes in the

DAG according their true data dependencies is what makes LDAGs the most suitable

representation for finding offset references. Notice that all instructions in the same level

are independent from each other. Therefore, the queue compiler exposes maximum natural

3.2. Compiler Framework Design and Implementation 37

instruction level parallelism to the queue processor. The compiler builds a list of slots

that bind together all nodes of every level. Figure 3.4 shows a LDAG for expression

“a[i] = (&a + (i ∗ sizeof(a))) ∗ (x + y)”. The squared nodes in the left of the figure are

the slots that indicate the levels of the DAG.

L0

L1

L2

L3

L4

sst

*

lds

+

&a *

L5 i size(a)

+

x y

Figure 3.4: Leveled DAG for expression a[i] = (&a + (i ∗ sizeof(a))) ∗ (x + y)

For describing the algorithm to build LDAGs from ASTs consider the following

definitions:

Definition 3.2. A level is a non-empty list of elements.

Definition 3.3. An α-node is the first element of a level.

Definition 3.4. The root node of the LDAG is the only node in Level-0.

Definition 3.5. The sink of an edge must always be in a deeper or same level than its

source.

Algorithm 1 shows how the construction of a LDAG is performed by a recursive

post-order depth-first traversal of the parse tree together with a lookup table that saves

information about every node and its assigned level. The levelizing of parse trees to

LDAGs works as follows. For every visited node in the parse tree a level is assigned

3.2. Compiler Framework Design and Implementation 38

and the lookup table is searched. If the node is not found in the table then it is its first

appearance and a new entry is recorded in the table and the node is created in the LDAG.

If the node is found in the table then a decision must be taken in order to satisfy the

property in Definition 3.5. If the level of the new node is greater than the one in the

lookup table, then the following steps should be performed: (1) create the new node with

in its corresponding level in the LDAG, (2) the sink of all incoming dependency edges to

the node in the table is replaced by the new node, (3) the old node is eliminated from the

LDAG, and (4) the new level for the node is updated in the lookup table.

3.2. Compiler Framework Design and Implementation 39

Input: Expression tree, t
Input: level
Output: LDAG node, new
begin1

nextlevel ← level + 12

match ← lookup (t)3

/* Satisfy Definition 3.5 */4

if match 6= null then5

if match.level < nextlevel then6

relink ← dag move node (nextlevel, match)7

return relink8

else9

return match10

end11

end12

/* Insert the node to a new level or existing one */13

if nextlevel > get Last Level() then14

new ← new level with alpha (t, nextlevel)15

record (new)16

else17

new ← append to level (t, nextlevel)18

record (new)19

end20

/* Post-Order Depth First Recursion */21

if t is binary operation then22

lhs ← dag levelize (t.right, nextlevel)23

make edge (new, lhs)24

rhs ← dag levelize (t.right, nextlevel)25

make edge (new, rhs)26

else if t is unary operation then27

child ← dag levelize (t.child, nextlevel)28

make edge (new, child)29

end30

return new31

end32

Algorithm 1: dag levelize (tree t, level)

3.2.3 Offset Calculation

The offset calculation phase calculates, for every binary and unary instruction in the

program, the offset reference values to access their operands. Two steps are required

to obtain the offset reference value for any operation u. First, the QH position relative

3.2. Compiler Framework Design and Implementation 40

to u must be determined. And second, the distance δ from QH to the operand must be

calculated. For any operand m of u, the offset reference value is given by the following

equation:

offset(m) = δ(qh pos(u), m) (3.1)

The distance between two nodes (u, v) in a LDAG is given by the number of nodes

found in the level-order traversal from u to v. For example, the QH relative position with

respect of sst node in level L0 of Figure 3.4 is in the only node of level L1, shown by the

dotted line. For its first operand, the QH points exactly to the same location in the LDAG,

making an offset reference value of zero. For its second operand, the first node in level

L3, the distance between QH and the second operand is five as five nodes are visited in

a reversed level-order traversal (+, lds, y, x, +). The output of this phase is LADGs

with offset reference values computed for every operand of every instruction.

QH Position Algorithm

Once the LDAGs have been built, the next step is to calculate the offset reference values for

the instructions. Following the definition of the producer order QCM, the offset reference

value of an instruction represents the distance, in number of queue words, between the

position of QH and the operand to be dequeued. The main challenge in the calculation of

offset values is to determine the QH relative position with respect of every operation. We

define the following properties to facilitate the description of the algorithm to find the

position of QH with respect of any node in the LDAG.

Definition 3.6. The QH position with respect of the α-node of Level-j is always at the

α-node of the next level, Level-(j+1).

Definition 3.7. A level-order traversal of a LDAG is a walk of all nodes in every level

(from the deepest to the root) starting from the α-node.

Definition 3.8. A hard edge is a dependence edge between two nodes that spans only

one level.

3.2. Compiler Framework Design and Implementation 41

Let pn be a node for which the QH position must be found. QH relative position with

respect of pn is found after a node Pi in a traversal from pn−1 to p0 (α-node) meets one

of two conditions. The first condition is that Pi is a binary or unary operation and has a

hard edge to one of its operands qm. QH position is given by qm’s neighbor node as a result

of a level-order traversal. Notice that from a level-order traversal, qm’s following node

can be qm+1, or the α-node of lev(qm) + 1 if qm is the last node in lev(qm). The second

condition is that the node is the α-node, Pi = p0. From Definition 3.6, QH position is at

α-node of the next level lev(p) + 1. The dotted lines in Figure 3.5 show the QH relative

position with respect of every binary and unary operations. The QH position with respect

of add, mul, and div operations is given by the second condition as they are α-nodes

of their respective levels. The QH position for the two neg and sub operations is found

by the above explained rules of the first condition. The proposed algorithm is listed in

Algorithm 2.

x

/

* -

+ 2

a 1

neg neg

b

L3

L2

L1

L0

L4

Figure 3.5: QH relative position for all binary and unary operations in a LDAG

3.2. Compiler Framework Design and Implementation 42

Input: LDAG, w
Input: Node, u
Output: QH position node, v
begin1

I ← getLevel (u)2

for i← u.prev to I.α-node do3

if isOperation (i) then4

if isHardEdge (i.right) then5

v ← BFS nextnode (i.right)6

return v7

end8

if isHardEdge (i.left) then9

v ← BFS nextnode (i.left)10

return v11

end12

end13

end14

L← getNextLevel (u)15

v ← L.α-node16

return v17

end18

Algorithm 2: qh pos (LDAG w, node u)

Offset Reference Calculation Algorithm

Definition 3.9. The distance between two nodes in a LDAG, δ(u, v), is the number of

nodes found in a level-order traversal between u and v including u.

After the QH position with respect of pn has been found, the only operation to calculate

the offset reference value for each of pn’s operands is to measure the distance δ between

QH’s position and Pi as described in Algorithm 3. In brief, for all nodes in a LDAG w,

the offset reference values to their operands are calculated by determining the position of

QH with respect of every node, and measuring the distance to the operands. Every edge

is annotated with its offset reference value.

3.2. Compiler Framework Design and Implementation 43

Input: LDAG, W
Output: Edge set with computed offset references, E
begin1

forall nodes u in W do2

if u.lhs then3

u.lhs.offset ← δ (qh pos(W , u), u.lhs)4

end5

if u.rhs then6

u.rhs.offset ← δ (qh pos(W , u), u.rhs)7

end8

end9

end10

Algorithm 3: OffsetCalculation (LDAG W)

The result is 2-offset instructions where binary instructions require two source

operands. The destination operand is omitted since it is fixed at QT following the

enqueueing rule of producer-order model. The semantics of the 2-offset producer-order

binary operations is the following:

operator QH±M QH±N

Where M, N are integer numbers representing the offset reference from where the

operand will be dequeued. Similarly, the semantics for the unary operations is the

following:

operator QH±M

3.2.4 Instruction Scheduling

The instruction scheduling algorithm of our compiler [12] is a variation of basic block

scheduling [65] where the only difference is that instructions are generated from a level-

order topological order of the LDAGs. The input of the algorithm is a LDAG annotated

with offset reference values. For every level in the LDAG, from the deepest level to the root

level, all nodes are traversed from left to right and an equivalent low level intermediate

representation instruction is selected for every visited node. The output of the algorithm

is QIR, a linear low level intermediate representation of the program implemented as a

double linked list. To match the nature of the queue computation model as much as

3.2. Compiler Framework Design and Implementation 44

possible, we include in the QIR nodes a single operand. The only operand is exclusively

used by memory, and branch instructions to specify the memory location, an immediate

value, or the target label of the jump. All binary and unary instructions resemble the

queue computation model having zero operands. We consider offset references attributes

of the instructions. Additionally, we insert annotations in QIR to facilitate machine

dependent transformations. Table 3.4 shows the full QIR specification. The Operands

class identifies the type of operand for the class One Operand, which is the only type of

instructions that require an explicit operand. It includes immediate values, local variables,

global variables, parameters, arguments, labels, return value, temporaries, symbols, and

QH. The classes Binary, Unary, and Compare do not use any operand and offset values are

encoded as attributes of the instruction itself. The Special class includes all instructions

where the semantics do not fall in the other categories and require special handling by

the code generator.

Figure 3.6 shows the QIR debugging representation of the sample C program in

Figure 3.2. The instructions have one to one equivalence to the generic queue instructions

defined for the queue compiler. Annotations that mark the beginning of levels are shown

and every level has a unique identifier. All instructions show the data type attribute

as [iws]. The offset reference values are indicated for binary operations. Notice that

memory operations (PUSH Q, LOADI Q) have an explicit operand that represents the

memory location of local variables or numeric constants.

3.2.5 Assembly Generation

The last phase translates the QIR program list into assembly code for the QueueCore

processor. Figure 3.7 shows the assembler output for the C program fragment in

Figure 3.2. All instructions in the assembly language consist of the opcode followed by

the data type on which the instruction should be executed. Depending on the instruction

type, there maybe be from one to three extra operands. For example, the instruction “j

iws, L2” has only one extra operand that indicates the target label to where the jump

instruction should pass control. Binary instructions such as “add iws, qt, qh, qh+1”

have three extra operands. The qh indicates that the first source operand should be taken

from QH(the zero offset is omitted), and the second source operand from QH+1. Although

3.2. Compiler Framework Design and Implementation 45

Table 3.4: QIR specification

Class Name
Operands NULL Q, INTEGER Q,

LOCAL VAR Q, GLOBAL VAR Q,

PARM VAR Q, ARG VAR Q,

LABEL Q, RETVAL Q,

TEMP Q, SYMBOL Q, QH Q

Binary ADD Q, SUB Q, DIV Q, MUL Q,

NEG Q, RSHIFT Q, LSHIFT Q,

RROT Q, LROT Q, RDIV Q,

BIT IOR Q, BIT XOR Q,

BIT AND Q, MOD Q,

Unary NEG Q, ABS Q, BIT NOT Q,

ROTATE Q

One Operand PUSH Q, POPQ Q, LOADI Q,

RETURN Q

Compare EQ Q, NE Q, LT Q, LE Q,

GT Q, GE Q

Special LOAD ADDR Q, STORE Q,

SLOAD Q, CONVERT Q,

CALL Q, GOTO Q,

TLABEL Q, COPY P Q,

MOVEQH Q, MOVEQT Q,

DUP Q

Annotations QMARK LEVEL, QMARK STMT,

QMARK BBSTART,

QMARK BBEND,

QMARK FUNCSTART,

QMARK FUNCEND

3.2. Compiler Framework Design and Implementation 46

(QMARK_LEVEL [id=0])
(PUSH_Q [iws] (LOCAL_VAR_Q: 8($fp))
(LOADI_Q [iws] (INTEGER_Q: 1)
(QMARK_LEVEL [id=1])
(NE_Q [iws])
(GOTO_Q [iws] (LABEL_Q: L1)

(TLABEL_Q [iws] (LABEL_Q: L0)
(QMARK_LEVEL [id=2])
(PUSH_Q [iws] (LOCAL_VAR_Q: 12($fp))
(LOADI_Q [iwu] (INTEGER_Q: 4)
(QMARK_LEVEL [id=3])
(LOAD_ADDR_Q [iws] (LOCAL_VAR_Q: 16($fp))
(MUL_Q [iws] (QT, QH+0, QH+1))
(QMARK_LEVEL [id=4])
(ADD_Q [iws] (QT, QH+0, QH+1))
(PUSH_Q [iws] (LOCAL_VAR_Q: 4($fp))
(PUSH_Q [iws] (LOCAL_VAR_Q: 0($fp))
(QMARK_LEVEL [id=5])
(SLOAD_Q [iws] (QT, QH+0, QH+0))
(ADD_Q [iws] (QT, QH+0, QH+1))
(QMARK_LEVEL [id=6])
(MUL_Q [iws] (QT, QH+0, QH+1))
(QMARK_LEVEL [id=7])
(STORE_Q [iws] (QH-5, QH+0))
(GOTO_Q [iws] (LABEL_Q: L2)

Figure 3.6: QIR representation

the QueueCore implicitly writes to the queue always to the QT, we include qt operand in

the assembly for readability. The assembler is in charge of removing unnecessary fields

from the code when generating object code, therefore, the qt field is removed from the

instructions in the object code. Memory operations such as “ld iws, qt, ($fp)12”

have two extra operands, the destination qt and the memory location where to access the

operand. The $fp represents the frame pointer, a special purpose register to access local

variables.

3.2.6 Application Binary Interface (ABI)

Stack Frame Layout

A function that calls another function is the caller function. The function that has been

called is named the callee function. The compiler is responsible for setting the correct

environment so the callee function is executed correctly. The compiler is also responsible

of restoring the status of the processor when the call was made, this is, restoring the

environment of the caller function to continue its execution.

Every function, including leaf functions, have their own stack. The stack frame grows

downwards, from high memory to low memory. The beginning of the stack (from top to

3.2. Compiler Framework Design and Implementation 47

 ld iws, qt, ($fp)8
 ldi iws, qt, 1
 cne iws, iws, $cc, qh, qh+1
 bt iws, L1, $cc
L0:
 ld iws, qt, ($fp)12
 ldi iws, qt, 4
 lea iws, qt, $fp, 16
 mul iws, qt, qh, qh+1
 add iws, qt, qh, qh+1
 ld iws, qt, ($fp)4
 ld iws, qt, ($fp)0
 sld iws, qt, qh
 add iws, qt, qh, qh+1
 mul iws, qt, qh, qh+1
 sst iws, qh-5, qh
 j iws, L2

Figure 3.7: QueueCore assembly output

bottom) contains the saved registers: return address and frame pointer. The next area

in the stack is the one reserved for local variables. The last area is used for temporaries

such as parameters to other functions and return values from other functions. Figure 3.8

shows the stack frame layout for the Queue Compiler. Notice that frame pointer register

points to the beginning of local variable area. All local variables are accessible through an

offset from FP. Stack pointer register points to the end of the stack frame for the current

function. All outgoing parameters to other functions and return values are accessible by

an offset from SP. Stack frames are aligned to 128 bits to match the natural alignment of

the long double data type, the largest data type in P-Code.

Calling Conventions

Variables that are passed to other functions are called outgoing parameters. Variables that

are passed from other functions are called incoming parameters. Outgoing parameters are

placed in the temporaries area. The first outgoing parameter is placed in zero offset from

the Stack Pointer of the caller function and all other outgoing parameters, if any, are

placed from an offset from stack pointer:

outgoing parameters = SP + offset (3.2)

3.2. Compiler Framework Design and Implementation 48

Return Address

Frame Pointer

Local Variables

$fp

Temporaries
&

Outgoing
Parameters

$sp

Incoming
Parameters

Return Value

Ca
lle

e'
s

St
ac

k
Fr

am
e

...

High Memory

Ca
lle

r's
 S

ta
ck

 F
ra

m
e

O
ve

rla
p

of
St

ac
k

Fr
am

es

 Old $sp

 Old $fp

Figure 3.8: Stack Frame Layout

Incoming parameters are available from an offset from frame pointer:

incoming parameters = FP + Size of Local V ariable Space + offset (3.3)

This mechanism allows that outgoing parameters of the caller function become the

input parameters for the callee function. The outgoing parameters area (temporaries

area) for the caller function becomes the incoming parameters area for the callee function.

After the callee function returns, if it returns any value, the value is put after the local

variables area:

return valuecallee = FP + Size of Local V ariable Space (3.4)

Thus, the return value for the caller function after the callee function returns is

3.2. Compiler Framework Design and Implementation 49

available at zero offset from stack pointer as shown in Figure 3.8:

return valuecaller = SP (3.5)

Local Variable Space Calculation

Only two registers are needed to restore the status of the processor after the callee function

returns: the return address register and the frame pointer register. Let function1 be the

caller function and function2 the callee function invoked from the first. Let the Program

Counter (PC) point the instruction which calls function2. Before the processor sets the

effective address of the callee function to the PC, the compiler saves the contents of the

return address register into the stack frame of the callee function. This value is needed for

the return of the callee to restore the execution to the point where the callee was invoked.

The total space occupied by local variables is know at compile time. Thus, the total

amount of space required to hold the local variable space is the total space occupied by

the local variables plus the two saved registers: RA and FP. The local variable space is

64 bit aligned.

Temporaries Area Calculation

The temporaries area is a space allocated to hold all outgoing parameters to other

functions. Let fc be the current function for which the temporaries area is being

calculated. Let σ be the sum of the size of outgoing parameters for a given function.

The size of the temporaries area for fc is given by the biggest σ of all functions called

from fc. Notice that if the current function has no calls to other functions, a leaf function,

then the size of the temporaries area is zero. The temporaries area is aligned to 64 bits.

Prologue and Epilogue

The prologue and epilogue code is fixed for all functions compiled by the Queue Compiler.

The prologue saves the return address and frame pointer registers, allocates space for the

3.3. Functionality 50

saved registers, local variables, and the temporaries area. The epilogue code restores the

status of the processor after the callee function was invoked.

begin1

SP ← SP - (Size of Local Variable Space + Saved Registers Size)2

save registers ()3

FP ← SP4

SP ← SP - σ5

end6

Algorithm 4: prologue()

begin1

FP + Size of Local Variable Space ← return value2

SP ← FP3

restore saved registers ()4

SP ← SP + Size of Local Variable Space + Saved Registers Size5

end6

Algorithm 5: epilogue()

3.3 Functionality

As we presented in the previous sections, the core of the Queue Compiler Framework is

driven by fundamental algorithms crafted for the queue computation model. Having a

completed compiler allowed the further development of advanced compilation techniques.

Figure 3.9 shows all functionality of the queue compiler. Related functionality is

grouped, for example, code generation for specific hardware is formed by “High-ILP,

Code Size, Constant Parallelism, Queue Register File Control, and Reduced bit-width

ISA compilation”. This functionality group describes more sophisticated algorithms that

allow the generation of code for specific hardware implementations. We have made the

compiler aware of the target architecture to accomplish better code. As described by

the figure, the compiler becomes a powerful tool that delivers compact code with high

instruction level parallelism, and it allows fine grained control of the hardware resources.

The next chapter, Chapter 4, is dedicated to show the advanced compilation techniques

for such constrained compilation functionality.

Optimization group is formed by the three top circles: “Optimization, Classic CSE,

Loop Unrolling”. Using the queue compiler we have explored the optimization space

3.3. Functionality 51

for queue processors including data flow optimizations such as common subexpression

elimination, dead code elimination, dead store elimination; and ILP optimizations such

as loop unrolling. We also have developed custom optimizations for queue computation

model. Chapter 4 discusses the main findings in queue code optimization.

Memory traffic optimization group is shown in the bottom: “Memory Traffic

Reduction, Inside BB, BB Communication”. This group represents a novel technique to

reduce memory traffic by using the queue for holding temporaries and propagating them

along computation not to saturate the physical queue register file. Chapter 5 introduces

and evaluates this idea.

Performance models group is shown in the left “Dynamic Evaluation LBET” and for

the rest of this Chapter we will concentrate on the functionality and properties of the

compiler itself and the performance models.

3.3.1 Self-Hosted Compiler

As for today, there is no queue processor hardware available nor system software such as

operating system libraries, linkers, and loaders. Technically, the queue compiler sits on

top of working systems and it produces assembly files for the queue processor making a

cross-compiler. However, the cross-compiler is able to compile itself into queue assembly

code, making it a self-hosted compiler ready for deployment in a queue-based system. As

a cross-compiler it has been bootstrapped in a variety of systems such as Linux, Mac OSX,

Solaris, and Windows; and different hardware platforms: x86, PowerPC, and SPARC. The

portability of the queue compiler framework is a good characteristic. The queue compiler

does not allow statically-linked programs. The reason is that system libraries for queue

system have not been generated as they heavily depend on the target operating system

and hardware implementation. During cross-compilation, system definitions are taken

from the libraries of the host system. This compiler configuration allows the compilation

of any program including standard benchmarks from SPEC CINT95 [21], MiBench [32],

MediaBench [52], DSP Stones [90], and other reference programs. Figure 3.10 shows

the cross-compilation setup of the queue compiler. The flow related to the profiler and

run-time statistics is discussed in the following section.

3.3. Functionality 52

P-QCM
Compiler

High
ILP

Code Size

Constant
Parallelism

Queue
Register

File
Control

Reduce
bit-widh

ISA
Compilation

Optimization

Classic
CSE

Loop
Unrolling

Dynamic
Evaluation

LBET

Memory
Traffic

Reduction

Fundamental
Algorithms

Inside
BB BB

Comm

Figure 3.9: Framework’s functionality. Related techniques grouped by color.

3.3.2 Lower Bound Execution Time (LBET)

In [99, 100], the Lower Bound Execution Time (LBET), is defined as the best performance

that can be achieved by a microarchitecture for a given workload. Performance bounds

models have been used as a way to evaluate the effects of compiler optimizations or

architectural innovations in performance. The addition of LBET in the queue compiler

framework provides a valuable design space exploration tool for the development of specific

code generation optimizations. We use a LBET equation similar to [100]:

LBET =
∑

LBETblocki
∗ freqblocki

(3.6)

=
∑

FIT (data dependence boundblocki
, resource boundblocki

) ∗ freqblocki
(3.7)

3.3. Functionality 53

Host OS
Linux, Mac OSX, Solaris, Windows

Hardware
x86, PowerPC, SPARC

Queue
Compiler

Profiler

SPEC MiBench Media
Bench

DSP
Stones

Libraries

PQP
ASSM

Figure 3.10: Cross-compiler configuration

The LBET of a program is the sum of all LBET computed for each basic block

multiplied by the block’s execution frequency. The execution frequency is obtained by a

profiled execution of the program. The compiler instruments the output code using the

profiler as shown in Figure 3.10. The instrumented code is executed by the host system

and generates a profiled execution statistics which contains the execution frequency of

every basic block in the program.

In equation 3.6, the LBET of a basic block is the relationship (FIT) between the data

dependence bound and the resource bound of the block. Since the level-order scheduling

exposes all parallelism in the data flow graph (DFG), the data dependence bound is

given by number of levels in the DFG, in other words, the height of the DFG. The

resource bound is given by the number and type of functional units in the target queue

processor. Therefore, FIT is the result of constraining a basic block’s DFG into the

available hardware resources. Figure 3.11 shows the procedure to obtain the performance

estimation using LBET. The frequency bound is obtained by profiling the input program

and characterizing the execution for a given workload, the data dependence bound is

obtained by the queue compiler, and the resource bound is given by a machine description

file (MD file) that contains the available hardware resources including functional units and

instruction latencies. Then performance is calculated by LBET as shown in Equation 3.7.

3.4. Framework Complexity Evaluation 54

program

Edge
Profiling

frequency
bound

Queue
Compiler

data dependence
bound

resource
bound

LBET

Performance

Workload

Benchmark

MD
File

Figure 3.11: Lower Bound Execution Time (LBET) model

3.4 Framework Complexity Evaluation

3.4.1 Lines of Code Complexity

The Queue Compiler was developed by the author of this thesis from March 2005 to

March 2008, 3 years. The approximate number of coding lines is 15,000. To provide an

estimation of the programming complexity of the Queue Compiler we compare it against

other opensource research and production compilers. Figure 3.12 shows a histogram

comparing the number of lines of code for five compiler including the Queue Compiler.

For all compilers, except LCC 4.2, the given number of lines belongs only to the back-end.

We ignore the front-ends as the Queue Compiler uses a conventional front-end. The LCC

4.2 [51, 26] compiler is also known as Little C Compiler and it is the smallest of all.

The Trimaran 4.0 [88] is a VLIW research infrastructure. And LLVM 2.2 [57] and GCC

4.2.0 [28] are two production compilers used and developed by large communities. For all

register compiles except GCC 4.2.0, the back-end is clearly identified in the source code

tree. For GCC 4.2.0 we measured the files related to register allocation and instruction

scheduling only.

From this comparison we observe that the implementation complexity of the Queue

Compiler infrastructure is similar to that of conventional compilers. Although the

3.4. Framework Complexity Evaluation 55

compiling phases are completely different, the final result suggests that the man power

required to implement a queue compiler is significant.
Back-End Complexity

2

0

5,000

10,000

15,000

20,000

25,000

30,000

LC
C
 4
.2

Q
ue

ue
 C

om
pi
le
r

Tr
im

ar
an

 4

LL
VM

 2
.2

G
C
C
 4
.2
.0

L
in

es
 o

f
C

o
d
e

Figure 3.12: Lines of Code complexity of five compiler back-ends

3.4.2 Compile-time Complexity

To analyze the complexity of the queue code generation algorithms implemented in

the compiler, we measure and compare the real time taken to compile a set of

benchmark programs. Table 3.5 shows the lines of code (LOC) for each SPEC CINT95

benchmark [21]. The host system is a dual 3.2 GHz Xeon processor computer running

Linux 2.6.20 kernel. We selected GCC 4.0.2 compiler as the native compiler for the

system. Since the Queue Compiler uses GCC’s 4.0.2 front-end, the compilation time is fair

and can be compared without considerations. Both the Queue Compiler and the native

compiler were bootstrapped without optimizations (-O0). Figure 3.13 shows the time,

in seconds, spent to compile the benchmark programs. For all programs the compilation

time is similar for the queue compiler and the native compiler. For the largest benchmark,

126.gcc, the queue compiler is able to compile faster by a factor of 2.

3.4. Framework Complexity Evaluation 56

Table 3.5: Compiler complexity by compile-time analysis

Benchmark LOC

099.go 28547

124.m88ksim 17939

126.gcc 193752

129.compress 1420

130.li 6916

132.ijpeg 27852

134.perl 23678

147.vortex 52633

Compile-time Complexity
Host: dual Xeon 3.15 GHz, 2Gb RAM, Linux 2.6.20

0

6.25

12.50

18.75

25.00

09
9.
go

12
4.
m
88

ks
im

12
6.
gc

c

12
9.
co

m
pr

es
s

13
0.
li

13
2.
ijp

eg

13
4.
pe

rl

14
7.
vo

rt
ex

Queue Compiler
x86 GCC Compiler

C
o
m

p
ile

 t
im

e
(i
n
 s

ec
o
n
d
s)

Figure 3.13: Compile Time Compiler

Chapter 4

Constraint-Driven Compilation

This chapter presents novel techniques to drive the code generator to meet specific

objective functions such as small code size, queue register file control, optimization for

execution time and instruction count reduction, parallelism extraction. To accomplish

such objectives, the compiler must be aware of the available hardware resources, and

make best efforts to generate the most suitable code. This chapter is organized in four

sections, each section presents a compiling technique for different objective. Every section

explains and motivates the need for such functionality, it describes the necessary methods

to accomplish the task, it provides an evaluation for the presented method, and it opens

further discussion and gives conclusions.

57

4.1. Code Size-aware Compilation 58

4.1 Code Size-aware Compilation

Improving code density in CISC and RISC architectures has been a thoroughly studied

problem. A popular architecture enhancement for RISC is to have two different instruction

sets [31, 43] in the same processor. These dual instruction set architectures provide a 32-

bit instruction set, and a reduced instruction set of 16-bit. The premise is to provide a

reduced 16-bit instruction set for the operations most frequently executed in applications

so two instructions are fetched instead of one. The improvement in code density comes

with a performance degradation since more 16-bit instructions are required to execute the

same task when compared to 32-bit instructions. The ARM/Thumb [31] and MIPS16 [41]

are examples of dual instruction sets. In [31], a 30% of code size reduction with a 15% of

performance degradation is reported for the ARM/Thumb processor. Compiler support

for dual instruction set architectures is crucial to maintain a balance between code size

reduction and performance degradation. Different approaches have been proposed to cope

with this problem [47, 33, 78, 50, 48, 46].

One of the major concerns in the design of an embedded processor is code density.

Code size is directly related to the size of the memory and therefore the cost of the

system [54, 95]. Compact instructions improve memory bandwidth, fetching time, and

power consumption [30]. In this section, we propose a code size-aware optimizing compiler

infrastructure that efficiently generates compact code using a queue-based instruction

set. The compiler deals with the potential increase of instructions by inserting a special

queue instruction that creates a duplicate of a datum in the queue. The presented

code generation algorithm selectively inserts these special instructions to constrain all

instructions in the program to have at most one explicit operand. Therefore, this

section presents compilation for a 1-offset P-Code instruction set. We analyze the

compiling results for a set of embedded applications to show the potential of our technique

highlighting the code size and parallelism at the instruction level. In summary, the

contributions of this technique are as follows:

• To demonstrate that a compiler for the PQP processor is able to produce compact

and efficient code.

• The methods and algorithms to build the code size-aware compiling infrastructure

4.1. Code Size-aware Compilation 59

for a producer order queue based processor.

To have an insight of the demands of applications on PQP instruction set we compiled

several applications and obtained the distribution of offsetted instructions. Table 4.1

shows the distribution of offsetted PQP instructions for a set of embedded and numerical

applications. Notice that the 2-offset instructions represent from 0.1% to 2.6%. 1-

offset instructions represent from 2.9% to 18.2%. And 0-offset instructions represent

the majority of instructions in the applications. Restricting PQP’s instructions to encode

at most one offset makes instructions shorter and covers the great majority of instructions

in programs. This has direct effect over the code size of the compiled programs since only

a single operand is encoded in the instruction format. In the following section we discuss

the compiler technique required to deal with the correct evaluation of 2-offset instructions

in programs on a constrained 1-offset instruction set.

Table 4.1: Distribution of PQP offsetted instructions for a set of embedded and numerical

applications.

Application 0-offset 1-offset 2-offset

MPEG2 90.0% 9.3% 0.7%

H263 86.7% 11.4% 1.9%

Susan 97.0% 2.9% 0.1%

FFT8G 93.9% 5.9% 0.2%

Livermore 82.2% 15.6% 2.2%

Linpack 80.8% 18.2% 1.0%

Equake 85.5% 11.9% 2.6%

4.1.1 1-offset P-Code

Figure 4.1 shows a 4-point fourier transform DAG and its evaluation using the PQP

instruction set [87]. 0-offset instructions are represented by the white nodes, 1-offset

instructions by the gray nodes, and 2-offset instructions by the black nodes. It is

responsibility of the compiler to transform the DAG into a suitable form to be executed by

4.1. Code Size-aware Compilation 60

our reduced PQP instruction set. One approach to deal with this problem is to re-schedule

the instructions to execute a subexpression while reading the other intermediate result

with the available offset reference. While this approach generates correct programs, it has

the overhead of extra instructions. In order to efficiently generate compact programs we

propose the utilization of a special queue instruction called dup instruction. The purpose

of this instruction is to create a copy, duplicate, a datum in the queue. The dup instruction

has one operand which is an offset reference that indicates the location with respect of

QH from where to copy the datum into QT. Figure 4.2 shows the transformed DAG with

extra dup instructions. These two dup instructions place a copy of the left hand operand

for nodes +2, +3 transforming them into 1-offset instructions.

+1 +2 +3 +4

+5 +6 +7 +8

neg negx0

x1

x2

x3

X0 X1 X2 X3L0

L1

L2

L3

L4

ld x1
ld x3
ld x0
neg 0
ld x2
neg 0
add 0, 1
add -2,-1
add 0, 1
add -2,-1
add 0,+2
add 0,+2
add -2, 0
add -2, 0
st X0
st X1
st X2
st X3

Figure 4.1: 4-point Fourier transform directed acyclic graph.

4.1.2 Code Size Reduction-aware Code Generation

We implemented the algorithm into the queue compiler infrastructure. The main task of

this algorithm is to determine the correct location of dup instructions in the programs’

data flow graph. The algorithm accomplishes its task in two stages during code generation.

The first stage converts QTrees to LDAGs augmented with ghost nodes. A ghost node is

a node without operation that serves as placeholder for dup instructions. This first stage

gathers information about what instructions violate the 1-offset instruction restriction.

The second stage decides which ghost nodes are turned into dup nodes or are eliminated

4.1. Code Size-aware Compilation 61

+1 +2 +3 +4

+5 +6 +7 +8

neg negx0

x1

x2

x3

X0 X1 X2 X3L0

L1

L2

L3

L4

dup dup

Figure 4.2: Fourier transform’s directed acyclic graph with dup instructions.

from the flow graph. Finally, a level-order traversal of the augmented LDAGs computes

the offset references for all instructions and generates QIR as output.

Augmented LDAG construction

Algorithm 6 presents the leveling function that transforms QTrees into ghost nodes

augmented LDAGs. The algorithm makes a post-order depth-first recursive traversal

over the QTree. All nodes are recorded in a lookup table when they first appear, and are

created in the corresponding level of the LDAG together with its edge to the parent node.

Two restrictions are imposed over the LDAGs for the 1-offset P-Code QCM.

Definition 4.1. The sink of an edge must be always in a deeper or same level than its

source.

Definition 4.2. An edge to a ghost node spans only one level.

When an operand is found in the lookup table the Definition 4.1 must be kept. Line 6

in Algorithm 6 is reached when the operand is found in the lookup table and it has a

shallower level when compared to the new level. The function dag ghost move node()

moves the operand to the new level, updates the lookup table, converts the old node into

a ghost node, and creates an edge from the ghost node to the new created node. The

function insert ghost same level() in Line 6 is reached when the level of the operand

4.1. Code Size-aware Compilation 62

in the lookup table is the same as the new level. This function creates a new ghost node

in the new level, makes an edge from the parent node to the ghost node, and an edge

from the ghost node to the element matched in the lookup table. These two functions

build LDAGs augmented with ghost nodes that obey Definitions 4.1 and 4.2. Figure 4.3

illustrates the result of leveling the QTree for the expression x = (a ∗ a)/(−a + (b− a)).

Figure 4.3(b) shows the resulting LDAG augmented with ghost nodes.

4.1. Code Size-aware Compilation 63

Input: Tree, t
Input: level
Output: Augmented LDAG
begin1

nextlevel ← level + 12

match ← lookup (t)3

if match 6= null then4

if match.level < nextlevel then5

relink ← dag ghost move node (nextlevel, t, match)6

return relink7

else if match.level = lookup (t) then8

relink ← insert ghost same level (nextlevel, match)9

return relink10

else11

return match12

end13

end14

/* Insert the node to a new level or existing one */15

if nextlevel > get Last Level() then16

new ← make new level (t, nextlevel)17

record (new)18

else19

new ← append to level (t, nextlevel)20

record (new)21

end22

/* Post-Order Depth First Recursion */23

if t is binary operation then24

lhs ← dag levelize ghost (t.left, nextlevel)25

make edge (new, lhs)26

rhs ← dag levelize ghost (t.right, nextlevel)27

make edge (new, rhs)28

else if t is unary operation then29

child ← dag levelize ghost (t.child, nextlevel)30

make edge (new, child)31

end32

return new33

end34

Algorithm 6: dag levelize ghost (tree t, level)

dup instruction assignment and ghost nodes elimination

The second stage of the algorithm works in two passes as shown in Lines 4 and 7 in

Algorithm 7. Function dup assignment() decides whether ghost nodes are substituted by

4.1. Code Size-aware Compilation 64

/

* +

a a neg -

a b a

/

* +

ghost ghost neg -

a b ghost

L1

L2

L3

L4

b). LDAG with ghost nodesa). QTree

Leveling
Function

Figure 4.3: Leveling of QTree into augmented LDAG for expression x = a·a
−a+(b−a)

dup nodes or eliminated from the LDAG. Once all the ghost nodes have been transformed

or eliminated, the second pass performs a level order traversal of the LDAG, and for

every instruction the offset references with respect of QH are computed in the same way

as in [10]. The output of the code generation algorithm is QIR where all instructions use

at most one offset reference.

begin1

forall basic blocks BB do2

forall expressions Wk in BB do3

forall instructions Ij in TopBottom (Wk) do4

dup assignment (Ij)5

end6

forall instructions Ij in LevelOrder (Wk) do7

p qcm compute offsets (Wk, Ij)8

end9

end10

end11

end12

Algorithm 7: 1offset codegen ()

The only operations that need a dup instruction are those binary operations whose

both operands are away from QH. The augmented LDAG with ghost nodes facilitate the

task of identifying those instructions. All binary operations having ghost nodes as their left

and right children need to be transformed as follows. The ghost node in the left children

is transformed into a dup node, and the ghost node in the right children is eliminated

4.1. Code Size-aware Compilation 65

from the LDAG. For those binary operations with only one ghost node as the left or right

children, the ghost node is eliminated from the LDAG. Algorithm 8 describes the function

dup assignment(). The effect of Algorithm 8 is illustrated in Figure 4.4. The algorithm

takes as input the LDAG with ghost nodes shown in Figure 4.3(b) and performs the steps

described in Algorithm 8 to finally obtain the LDAG with dup instructions as shown in

Figure 4.4(a) The last step in the code generation is to perform a level-order traversal

of the LDAG with dup nodes and compute for every operation, the offset value with

respect of QH. dup instructions are treated as unary instructions by the offset calculation

algorithm. The final constrained 1-offset QIR for the expression x = (a∗a)/(−a+(b−a))

is given in Figure 4.4(b).

Input: LDAG node, i
Output: Modified LDAG
begin1

if isBinary (i) then2

if isGhost (i.left) and isGhost (i.right) then3

dup assign node (i.left)4

dag remove node (i.right)5

else if isGhost (i.left) then6

dag remove node (i.left)7

else if isGhost (i.right) then8

dag remove node (i.right)9

end10

end11

end12

Algorithm 8: dup assignment (i)

4.1.3 Code Size Reduction Evaluation

We chose a set of recursive and iterative numerical computation benchmarks including the

fast fourier transform, livermore loops, linpack, matrix multiplication, Rijndael encryption

algorithm, etc. We compiled these applications using our queue compiler infrastructure

with the presented code generation algorithm for code size reduction. The resulting code

is 1-offset PQP assembly code where every instruction is 16-bit long. We compare our

result with the code of two conventional RISC processors and their embedded versions:

4.1. Code Size-aware Compilation 66

/

* +

dup neg -

a b

L1

L2

L3

L4

ld a
ld b
dup 0
neg 0
sub -1
mul -2
add 0
div 0
st x

b). 1-offset P-Code program
with dup instruction

a). LDAG with dup instructions

Figure 4.4: 1-offset constrained code generation from a LDAG

MIPS I [41], ARM32 [69], MIPS16 [43], and ARM/Thumb [31]. We prepared GCC 4.0.2

compiler for the register-based architectures and measured the code size from the text

segment of the object files. All compilers, including our compiler, were configured without

optimizations in order to compare the density of the baseline code. Figure 4.5 shows

the normalized code size for all applications with respect of MIPS code. These results

confirm the higher code density of the embedded RISC processors over their original 32-

bit versions. Our compiler technique produces 51% smaller code than the baseline code

size, in average. These results include the extra dup instructions. 1-offset queue code

is, in average, 16% smaller code than gcc for MIPS16, and 36% smaller code than gcc

for ARM/Thumb architecture. For three of the benchmarks, quicksort.c, md5.c, and

matrix.c, our compiler generated larger code compared to MIPS16. These programs have

a common characteristic of having functions with arguments passed by value. Our queue

compiler handles these arguments sub-optimally as they are passed in memory. Therefore,

additional instructions are required to copy the values to local temporary variables.

4.1.4 Effect of dup instructions on Code Size

A single dup instruction is inserted for every binary operation whose both operands are

away from QH (β).

4.1. Code Size-aware Compilation 67
Code Size

Benchmarks

0

0.325

0.650

0.975

1.300

quicksort.c nqueens.c md5.c matrix.c fft8g.c livermore.c vegas.c whetstone.c linpack.c aes.c

MIPS32 ARM32 ARM/Thumb MIPS16 PQP

N
o
rm

al
iz

ed
 c

o
d
e

si
ze

Figure 4.5: Code size evaluation of 1-offset P-Code technique

dupi = βi (4.1)

The increase in number of instructions (∆) for the 1-offset P-Code compared to 2-offset

P-Code is given by the addition of dup instructions in the program.

∆ =
n∑

i=1

(dupi) (4.2)

Thus, the total number of instructions for 1-offset P-Code (Total) is given by the total

number of instructions for 2-offset P-Code (T old) plus the inserted dup instructions (∆):

Total = T old + ∆ (4.3)

The length of the instruction set of the PQP is 2 byte [1]. The PQP has a special

instruction, covop, which extends the value of the operand of the following instruction.

The covop instructions are used to extend immediate values that are not representable

with a single PQP 16-bit instruction. Thus, the code size for a 1-offset P-Code is obtained

from the Equation 4.3 as:

Code Size = 2 ∗ (Total + covop) (4.4)

4.1. Code Size-aware Compilation 68

Figure 4.6 shows the overhead of dup instructions inserted over the original 2-offset

PQP code. The increase in number of instructions is below 5% for all applications. These

results confirm that our technique can effectively exploit the characteristic of applications

having only a few 2-offset instructions to improve code density by compiling for a reduced

bit-width instruction set.
Effect of dup instructions

0

1.25

2.50

3.75

5.00

quicksort.c nqueens.c md5.c matrix.c fft8g.c livermore.c vegas.c whetstone.c linpack.c aes.c

4.804.69

3.27

4.40

4.00

4.58

3.20

2.30

dup instructions

Benchmarks

C
o
d
e

si
ze

 g
ro

w
th

 p
er

ce
n
ta

ge

Figure 4.6: Overhead of dup instructions.

4.1.5 Discussion on Variable-length Instruction Set

The above results show that embedded applications require a small amount of 2-offset

instructions. This motivates the idea of shortening the PQP instruction set to support at

most one offset reference. The compiler is responsible for preserving the data flow graph

to fit the program into the constrained instruction set by the addition of a single dup

instruction. We believe that there is a chance to reduce even more the code size of PQP

programs by using a variable length instruction set. Instructions that read their operands

directly from QH can be encoded in 8-bits as 0-operand instructions without wasting the

field to encode their dead offset. Another possibility is to extend the presented algorithm

to constrain all instructions to 0-offset format with the penalty of a larger increase of

extra dup instructions.

4.1. Code Size-aware Compilation 69

4.1.6 Conclusion

In this Section we presented an improved queue compiler infrastructure to reduce code

size by using a reduced queue-based instruction set of the PQP processor. The algorithm

handles the correct transformation of the data flow graph to evaluate the programs using

a reduced queue instruction set. The algorithm was successfully implemented in the queue

compiler infrastructure. We have presented the potential of our technique by compiling a

set of embedded applications and measuring the code size against a variety of embedded

RISC processors, and a CISC processor. The compiled code is about 16% and 36%

denser than MIPS16 and ARM/Thumb architectures. Queue architectures are a viable

alternative for executing applications that require small code size footprint and high

performance.

4.2. Queue Register File Optimization 70

4.2 Queue Register File Optimization

At any point of execution of a program, the queue length is the number of elements between

QH and QT. Every statement in a program may have different queue length requirements

and the hardware should provide enough words in the FIFO queue to hold the values

and evaluate the expression. We developed the Queue Compiler Infrastructure [12] as

part of the design space exploration tool-chain for the QueueCore processor [2]. The

original queue compiler targets an abstract queue machine with unlimited resources

including an infinite queue register file. On this assumption we measured the queue

length requirements of SPEC CINT95 applications. Figure 4.7 shows that 95% of the

statements in the programs require less than 32 queue words for their evaluation, and the

remaining 5% demand a queue size between 32 and 363 words. In our previous work [15] we

gained insight on how queue length is mainly affected by two characteristics of programs:

parallelism and soft edges. Soft edges represent the lifetime, in queue words, of reaching

definitions of variables. Graphically a soft edge is an edge that spans across more than

one level in the data flow graph. Table 4.2 shows the maximum queue requirements for

the peak parallelism and maximum def-use length in SPEC CINT95 programs compiled

for infinite queue. This table demonstrates that a reasonable and realizable amount of

queue is needed in queue processors to execute the programs without performance penalty.

However, assistance of the compiler is required to schedule the programs in such a way

that parallelism and soft edges comply with the queue register file size in a realistic queue

processor.

This Section presents an optimizing compiler to partition the data flow graphs

of programs into clusters of constant parallelism and limited length of soft edges

that can be executed in a queue processor with a limited queue register file. The

compiler is also responsible for generating clusters that obey the semantics of the queue

computation model. The proposed algorithm was implemented in the queue compiler

infrastructure [12, 10] affecting compile-time by a negligible amount. The goal of this

Section is to estimate how the characteristics of the output code are affected when

the available queue is constrained. We estimate how the critical path, the available

parallelism, and the program length of SPEC CINT95 benchmarks is affected for different

4.2. Queue Register File Optimization 71

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

099.go 124.m88ksim 126.gcc 129.compress
130.li 132.ijpeg 134.perl 147.vortex

Queue length

A
cc

u
m

u
la

ti
ve

 P
er

ce
n
ta

ge

Figure 4.7: Queue size requirements. The graph quantifies the amount of queue required

to execute statements in SPEC CINT95 benchmarks. A point, (x, y), denotes that y% of

the statements in the program require x, or less, queue words to evaluate the expression.

size configurations of the queue register file. The contributions of this work are:

• The first study, for the best of our knowledge, that estimates the performance of a

queue processor with limited amount of queue words.

• An efficient compiler algorithm that partitions the data flow graph into clusters that

demand no more queue than the available in the underlying architecture. This is

achieved by limiting the parallelism and the length of reaching definitions in the

data flow graph.

4.2.1 Related Work

In our previous work [87, 3, 2], we have investigated and designed a producer order parallel

queue processor, QueueCore, capable of executing any data flow graph. Our model breaks

the rule of dequeueing by allowing operands to be read from a location different than

the head of the queue. This location is specified as an offset in the instruction. The

fundamental difference with the Indexed Queue Machine is that our design specifies an

offset reference in the instruction for reading operands instead of specifying an index to

4.2. Queue Register File Optimization 72

Table 4.2: Characteristics of programs that affect the queue length in queue-based

computers

Benchmark Peak Parallelism Max. def-use

099.go 20 19

124.m88ksim 29 19

126.gcc 35 56

129.compress 9 10

130.li 17 18

132.ijpeg 26 24

134.perl 15 15

147.vortex 49 14

write operands. In the QueueCore’s instruction set, the writing location at the rear of the

queue remains fixed for all instructions. To realize QueueCore as an actual processor we

must explore how the queue register file size affects performance. None of the previous

work related to queue computers has considered a constrained queue register file. We

know by the experience of more than fifty years in register machines, that the size of

the register file directly affects the overall performance of a computer system. Many

works have proposed the optimization of the register file for the improvement of execution

time [98, 56, 23], parallelism [93, 70, 59], power consumption [7, 72, 49, 82], hardware

complexity [39, 38], etc [50, 99].

4.2.2 Target Architecture: QueueCore processor

The QueueCore processor [2] implements a producer order instruction set architecture.

Each instruction can encode at most two operands that specify the location in the

queue register file from where to read the operands. The processor determines for each

instruction the physical location of the operands by adding the offset reference in the

instruction to the current position of QH pointer. A special unit called Queue Computation

Unit is in charge of finding the physical location of source operands and destination within

4.2. Queue Register File Optimization 73

the queue register file allowing parallel execution of instructions. Every instruction of the

QueueCore is 16-bit wide. For cases when there are insufficient bits to express large

constants, memory offsets, or offset references, a covop instruction is inserted. This

special instruction extends the operand field of the following instruction by concatenating

it to its operand. The queue register file size of the QueueCore processor is set to 256

words. The Queue Compiler Framework is able of generating code for the QueueCore

processor.

4.2.3 Algorithm for Queue Register File Constrained Compila-

tion

Queue length refers to the number of elements stored between QH and QT at some

computation point. We have introduced how queue length can be determined by counting

the number of elements in a computation level. Nevertheless, DAGs often present a case

when this assumption is not enough to estimate the queue length requirements of an

expression. Consider the DAG shown in Figure 4.8 for multiply-accumulate operation

commonly used in signal processing “y[n] = y[n] + x[i] * b[i]”. Notice that some edges

span more than one level (soft edges), for example the edge with source at node “sst”

and sink at node ’+’ of L3 spans three levels. Soft edges increase the queue length

requirements as the sink node must be kept in the queue until the time when the source

node is executed. For the given example, the maximum queue length requirement of the

DAG is five queue words and it is imposed by the longest soft edge. The algorithm must

deal with two different conditions that directly affect the queue length requirements of

an expression. One is the length of computation levels, and the second is the length of

soft edges. The former can be solved by splitting the level into blocks of manageable size.

The later can be solved by re-scheduling the child’s subtree. The order on which these

actions are performed affects the quality of the output DAGs and therefore the quality of

the generated code.

If the levels are split first and then subtrees re-scheduled, the second action affects the

length of the levels in the final DAG. The first transformation should be performed one

more time to guarantee that all levels comply with the target queue length. If the order of

4.2. Queue Register File Optimization 74

the actions is inverted, then the DAG will be expanded into a tree and all subexpressions

have to be recomputed as all subtrees are completely expanded affecting the performance

and code size due to the extra redundant instructions. We propose an algorithm that

deals with the above problems in a unified manner. Our integrated solution reduces the

subexpression re-scheduling and minimizes the insertion of spill code.

sst

n

+

*lds

+

y * +

x *

i

lds

+

b

lds

size

ld i
ldi size
ld n
lea x
mul 0, 1
lea b
lea y
mul 0,-1
add 0, 1
add 0,-1
add 0, 1
lds 0
lds 0
lds 0
mul 0, 1
add 0, 1
sst -5, 0

L0

L1

L2

L3

L4

L5

L6

Figure 4.8: Queue length is determined by the width of levels and length of soft edges.

Data Flow Graph Clusterization

The main task of the clusterization algorithm is to reduce a DAG’s queue length

requirements by splitting it into clusters of specified size. The algorithm must partition

the DAG in such a way that every cluster is semantically correct in terms of the queue

computing model. Partitioning involves the addition of extra code to communicate

the intermediate values computed in different clusters. Our algorithm uses memory to

communicate intermediate values between clusters. The input of the algorithm is a LDAG

data structure. For the queue compiler, a cluster is defined as a LDAG with spill code that

communicates intermediate values to other clusters through memory. Keeping clusters as

LDAGs allows the implementation to use the same infrastructure and the later phases of

the queue compiler remain without any modification.

The algorithm is divided into two phases: labeling, and spill insertion. The labeling

phase is in charge of grouping subtrees of the DAG into clusters in order to preserve the

4.2. Queue Register File Optimization 75

rules of queue computing. For any given DAG or subtree W rooted at node R, the width

of W is verified to be smaller than the threshold. The threshold is the size of queue

register file for which the compiler should generate constrained code. If the condition

is true then all nodes in W are labeled with a unique identifier called the cluster ID.

In case the width of the DAG exceeds the threshold then the DAG must be recursively

partitioned in post-order manner, this is, starting from the left child and then the right

child of R. The labeling algorithm is listed in Algorithm 9. To measure the width of a

subtree W , the DAG is traversed as a tree and the level with more elements is considered

the width of W . Notice that when the DAG rooted at “sst” in Figure 4.8 is traversed as

a tree, the maximum width is encountered in level L5 with six elements corresponding to

nodes {n, size, x, ∗, b, ∗}. For simplicity of the explanation, assume the threshold to be

equal to 2. Since SubTree Width(sst) > Threshold, the partitioning algorithm recurses

on the left hand side node “+” at L3. The width of “+” subtree is 2, equal to the

threshold. Thus, all nodes belonging to the subtree rooted at “+” node at L3 are marked

with cluster ID = 1 by line 9 of Algorithm 9. The algorithm continues with the rest of

the DAG until all nodes have been traversed and assigned to a cluster. The output of the

labeling phase is a labeled DAG as shown in Figure 4.9. Four clusters are shown in the

Figure, the first cluster has its root node at (+) node in L3, the second cluster is rooted

at (lds) node in L2, the third cluster at (lds) node in L3, and the fourth cluster at (sst)

node in L0.

4.2. Queue Register File Optimization 76

sst

n

+

*lds

+

y * +

x *

i

lds

+

b

lds

size

L0

L1

L2

L3

L4

L5

L6

Figure 4.9: Output of the labeling phase of the clusterization algorithm

Input: Threshold
Input: LDAG, W
Output: LDAG annotated with labels
begin1

root ← W’s root node2

if SubTree Width (root) > Threshold then3

lhs ← labelize (root.lhs)4

if SubTree Width (root.rhs) > Threshold then5

rhs ← labelize (root.rhs)6

root ← Assign ID to node (rhs.id)7

return root8

else9

root.rhs ← Assign ID to subtree (root.rhs);10

root ← Assign ID to node (root.rhs);11

return root12

end13

else14

root ← Assign ID to subtree (root);15

return root16

end17

end18

Algorithm 9: labelize (LDAG W)

Spill insertion phase is the second and last phase of the algorithm. The annotated

LDAG from the previous phase is processed and a list of N number of clusters (a cluster

set) is generated as the output. The input annotated DAG is traversed in post-order

manner. For every visited node in the traversal, a set of actions are performed to: (1)

4.2. Queue Register File Optimization 77

assign the node to the corresponding cluster, (2) insert reload operations to retrieve

temporaries computed in a different cluster, (3) insert operations to spill temporaries

used by different clusters.

Assigning nodes to the corresponding cluster involves the creation the LDAG data

structures, node information, and data dependency edges. Using the queue compiler’s

LDAG infrastructure [10] allows the clusterization algorithm to be implemented in a

clean and simple manner. In terms of memory complexity, the addition of a list of length

N is required in the compiler to generate the clusters. The value of N is the number of

clusters discovered by the labeling phase.

Spill code is inserted in two situations, to deal with intermediate results used by

different clusters, and to solve the problem of soft edges that span more than one level and

demand more queue than the specified by the threshold (same or different clusters). Only

subexpressions are spilled to memory and reloaded. Variables and constants that are used

by multiple nodes are only reloaded since spill/reload would require an extra instruction

and extra memory space for temporaries. For every node, the algorithm detects which

operation u needs operands v to be reloaded whenever the cluster identifier of the node

and the operand are different ID(u) 6= ID(v), or soft edges larger than threshold with

source at node u exist. After reloading detection, the node u is analyzed for spilling as

follows. If the analyzed node u is a subexpression and has more than one parent node

then a spill operation is inserted.

Figure 4.10 shows the generated clusters for the example in Figure 4.9. Four clusters

are generated after the spill code is inserted. The gray nodes in the figure represent

the nodes that are spilled to memory. Notice that the node (size) has two parents in

Figure 4.9 but no temporary is generated as it is not a subexpression but a constant

known at compile time. The rectangle nodes represent the reload operations needed to

retrieve the computed subexpressions from other clusters, variables, and constants. All

four clusters in the figure comply with the requirement of not exceeding a queue utilization

greater than two. For this example, the penalty of compiling for a queue register file size

of two words is the insertion of ten extra instructions: four spills and six reloads.

Algorithm 10 lists the actions performed over the annotated LDAG to generate a set

of clusters. As clusters have the same shape as LDAGs, we can use the queue compiler

4.2. Queue Register File Optimization 78

+

y *

n size

lds

+

x *

i

lds sst

*

+

b

lds

tmp3

size tmp4

tmp1 tmp2

tmp1 +

tmp2

tmp4

tmp1
tmp3

Cluster 1 Cluster 2 Cluster 3

Cluster 4

Figure 4.10: Output of the clusterization algorithm. Spill nodes marked in gray circles

and reload operations in rectangles.

infrastructure to generate code directly from the cluster set. Each cluster is treated as a

LDAG and the code generator [10] calculates the offset references for all instructions,

including spill code. Besides from the described clusterization algorithm, the queue

compiler internals remained untouched and the compilation flow remains the same as

the original compiler.

Clusters are connected to each other by data dependency edges. The order on which

the clusters are scheduled is very important to preserve correctness of the program. We

build a cluster dependence graph (CDG) to facilitate the code generation. The CDG for

the above given example is shown in Figure 4.11. At first the cluster 1 must be scheduled

for execution, followed by clusters 2 and 3, to finally schedule cluster 4. Some clusters are

independent from each other, like clusters 2 and 3, and can be scheduled in any order.

In this algorithm we schedule the clusters in the same order as they are discovered by

the labeling algorithm. However, we notice here that this may present an opportunity for

further optimizations.

4.2. Queue Register File Optimization 79

Input: Node, u
Input: LDAG, W
Input: An empty cluster set C of N elements
Output: Cluster set, C
begin1

/* Traverse as a DAG */2

if AlreadyVisited (u) then3

return NIL4

end5

/* Action 1: add to corresponding cluster */6

ClusterSet Add (C, ID(u), u)7

/* Action 2: generate reloads */8

forall children v of u do9

if ID(v) 6= ID(u) then10

GenReload (C, ID(u), v)11

else if isSoftEdge (u, v) AND EdgeLength (u, v) > Threshold then12

GenReload (C, ID(u), v)13

else14

/* Post-Order traversal */15

clusterize (v, W)16

end17

end18

/* Action 3: generate spills */19

if Parents (u) > 1 AND isSubexpression (u) then20

GenSpill (C, ID(u), u)21

end22

/* Mark visited and return */23

MarkVisited (u)24

return u25

end26

Algorithm 10: clusterize (node u, LDAG W)

4.2. Queue Register File Optimization 80

1

32

4

Figure 4.11: Cluster Dependence Graph (CDG)

4.2.4 Evaluation of Queue Register File Constrained Compila-

tion

The primary concern of this study was to analyze how the quality of the generated

programs is affected when the program is constrained to run with a limited amount of

queue words. We concentrate on three aspects of the output programs: (1) instruction

count, (2) critical path, and (3) instruction level parallelism. Instruction count is the

number of generated instructions including spill code and reloads. The critical path

refers to the height of the program’s data flow graph given by the number of queue

computation levels. This metric provides a compile-time estimation of the execution time

of the program in a parallel queue processor. The instruction level parallelism in a queue

system is estimated as the average number of instructions on every computation level of

the data flow graph of a program.

The methodology followed to perform the experiments is as follows. We successfully

implemented the presented algorithm in the queue compiler infrastructure [10]. The

threshold input value for the algorithm is given as an compiler option. For all experiments,

the compiler was configured only with the presented clusterization algorithm. No other

optimizations are currently available in the queue compiler. We compiled SPEC CINT95

benchmark programs [21] with threshold values of 2, 4, 8, 16, 32, and infinity.

Table 4.3 quantifies the compilation time cost of the presented algorithm. The

second column (LOC) shows the lines of C code for the input programs. The third

column (Baseline) shows the compilation time with constrained compilation disabled.

The rightmost column (Constrained) shows the compilation time taken by the queue

compiler with constrained compilation enable with threshold set to 2. This threshold

4.2. Queue Register File Optimization 81

Table 4.3: Estimation of constrained compilation complexity measured as compile-time

for the SPEC CINT 95 benchmark programs with threshold set to two.

Benchmark LOC Baseline Constrained

099.go 28547 9.34s 9.35s

124.m88ksim 17939 9.58s 9.69s

126.gcc 193752 42.67s 43.39s

129.compress 1420 0.37s 0.38s

130.li 6916 3.20s 3.27s

132.ijpeg 27852 8.88s 9.10s

134.perl 23678 6.92s 7.26s

147.vortex 52633 18.73s 19.02s

value is the worst-case configuration for the algorithm as the available queue is only two

words. The table demonstrates that the penalty of this optimization negligibly affects

the complexity of the queue compiler. The compilation time is the real-time of a dual 3.2

GHz Xeon computer running GNU/Linux 2.6.20. The compiler was bootstrapped with

debugging facilities, and no optimizations.

Instruction Count

The most evident effect of the clusterization algorithm in the output code is in the

instruction count. Spill code is inserted whenever the width of a level or a soft edge

exceeds the threshold value. Table 4.12 shows the normalized instruction count for the

benchmark programs for different lengths of queue. The baseline is the programs compiled

for infinite resources (INFTY), where the clusterization is not present. We selected various

lengths of queue for the following reasons. The most restrictive configuration for a queue

processor is a queue length of 2. This configuration estimates the worst case conditions for

compilation that may strongly affect the quality of the programs. The other three chosen

queue lengths (threshold = 4, 8, 16) are values above the average available parallelism

in non-optimized SPEC CINT95 programs. The relationship between queue length and

available parallelism is that N parallel instructions consume at most 2N queue length.

4.2. Queue Register File Optimization 82

However, peak parallelism and some soft edges are beyond these values and our algorithm

finds clusterization opportunities. The last length of queue is set to the infinity to compare

the previous constrained configurations against an ideal hardware.

As we expected, the most restrictive queue length configuration incurs in the most

substantial insertion of spill code ranging from 3% to 11% more instructions. The

clusterization algorithm works on the premise that the width of the data flow graph,

or degree of parallelism, must be partitioned in case its queue requirements violate the

available queue. Therefore, compiling for a queue length of two queue words forces a

large number of partitions of the original data flow graph inserting a substantial amount

of spill code. For queue lengths of 4 and 8 the increase in number of instructions is about

2% and 1% respectively. Compiling for a queue length of 4 words exceeds the average

queue requirements of SPEC CINT95 programs which is about 3.5 queue words per level.

Compiling for queue length of 16, the insertion of spill code is insignificant for most of

the programs. These few cases that demand more than 16 queue words are the bursts of

peak parallelism and long soft edges.

0.900

0.955

1.010

1.065

1.120

09
9.
go

12
4.
m
88

ks
im

12
6.
gc

c

12
9.
co

m
pr

es
s

13
0.
li

13
2.
ijp

eg

13
4.
pe

rl

14
7.
vo

rt
ex

AV
G

2 4 8 16 INFTY

N
u
m

b
er

 o
f
In

st
ru

ct
io

n
s

Figure 4.12: Normalized instruction count measurement for different lengths of queue,

threshold = 2, 4, 8, 16, INFTY .

4.2. Queue Register File Optimization 83

Spill Code Distribution

We separated the inserted spill code into three components as shown in Figure 4.13:

parallelism, soft edges, and reloads. The parallelism accounts for all spill instructions

inserted to constrain the width of the data flow graph to the available queue. Soft

edges represent all spilled temporaries generated to constrain the soft edges that exceed

the available queue. And reloads are the instructions to read the spilled temporaries

and uses of shared constants and variables of other clusters. The Figure quantifies the

contribution of each component of spill code into the total number of extra instructions

for the 124.m88ksim benchmark. Considering only the two components that contribute

with spill code (parallelism, and soft edges) and ignoring the reload instructions. Notice

that for a queue size of 2 the parallelism component dominates with 89% of extra code.

The other 11% is from the soft edges component. As explained above, the parallelism

component contributes with most of the code since a large number of partitions must be

made for this given configuration and these kind of benchmarks. When a larger queue

size configuration is imposed and exceeds the average queue utilization of the compiled

program the distribution changes, in average, the parallelism component contributes with

40%, and soft edges component with the remaining 60% of spill code.

0

1,125

2,250

3,375

4,500

2 4 8 16

Parallelism Soft edges Reloads

Queue Length

N
u
m

b
er

 o
f
In

st
ru

ct
io

n
s

Figure 4.13: Spill code distribution of 124.m88ksim benchmark.

4.2. Queue Register File Optimization 84

Critical Path

We define the critical path of a program as the number of computation levels in its data

flow graph. These levels represent the true data dependencies of the program’s data flow

graph and the limits of a queue processor. Assuming that all instructions in every level are

executed in parallel by the queue processor, the execution time is bounded by the number

of levels in the program. We use the critical path to estimate the static execution time

of the compiled programs. Since partitioning the data flow graph into clusters increases

the number of levels in the data flow graph, we were interested in determining how the

static execution time is affected when compiling for a constrained queue register file.

Figure 4.14 shows the experimental results for different sizes of queue. For queue sizes of

4, 8, 16 the performance degradation of the static execution time is less than 1% when

compared to the unrestricted (INFTY) configuration. Compiling these programs for a

queue size of 2, the performance degradation is up to 16% of static execution time. These

results demonstrate that constraining the compilation to a queue size value larger than the

average queue utilization maintains the critical path almost unaffected as clusterization

is needed for only few cases.

0.90

0.93

0.96

0.99

1.02

1.05

1.08

1.11

1.14

1.17

09
9.
go

12
4.
m
88

ks
im

12
6.
gc

c

12
9.
co

m
pr

es
s

13
0.
li

13
2.
ijp

eg

13
4.
pe

rl

14
7.
vo

rt
ex

AV
G

2 4 8 16 INFTY

Q
u
eu

e
C

o
m

p
u
ta

ti
o
n
 L

ev
el

s

Figure 4.14: Queue computation levels in the programs’ data flow graph as an estimation

of static execution time.

4.2. Queue Register File Optimization 85

Instruction Level Parallelism

The instruction level parallelism (ILP) in queue programs is given by the number of

instructions per level of the data flow graph. The presented algorithm increases the

number of instructions and the number of computation levels, hence affecting the degree

of ILP. Figure 4.15 shows the normalized degree of ILP for different configurations of queue

size using infinite queue as the baseline. From the Figure two cases are observed, decrease

of ILP and raise of ILP. The former case happens when the number of extra computation

levels inserted as a consequence of the data flow partitioning is proportionally larger than

the extra spill code. Therefore, it results in less instructions per level when compared

to the baseline. This situation is observed clearly for the queue size of 2 where the

critical path is affected more than the instruction count. The latter case occurs when the

number of extra instructions is proportionally larger than the extra computation levels.

In the Figure, the compilation for queue lengths of 4 and 8 show this behavior since the

partitioning of the data flow graph is modest compared to the insertion of spill code. For

a queue size configuration of 16 the ILP is about the same as the baseline. For this case

the clusterization algorithm finds only few levels and soft edges exceeding the threshold

value. Although there is a raise of ILP for some of the queue size configurations, this

parallelism represents artificial ILP introduced by the spill code.

0.900

0.933

0.965

0.998

1.030

09
9.
go

12
4.
m
88

ks
im

12
6.
gc

c

12
9.
co

m
pr

es
s

13
0.
li

13
2.
ijp

eg

13
4.
pe

rl

14
7.
vo

rt
ex

AV
G

2 4 8 16 INFTY

In
st

ru
ct

io
n
 L

ev
el

 P
ar

al
le

lis
m

Figure 4.15: Degree of instruction level parallelism for constrained compilation for

different sizes of queue register file.

4.2. Queue Register File Optimization 86

4.2.5 QueueCore Processor Evaluation

When targeting a real hardware, the queue compiler is configured to generate code

for the QueueCore [2] processor, an embedded 32-bit queue-based ILP processor. The

instructions of QueueCore are 16-bit wide. QueueCore is capable of executing instructions

in parallel. A special unit, called the Queue Computation Unit [2] bookkeeps QH and QT

references. This mechanism decides the correct source operands and the destination for

every instruction. The correct location of operands is found by adding the offset reference

of the instructions to the current location of QH reference. For all experiments the queue

compiler was configured only with the presented queue-length optimization tuned for a

queue length of 32 to match the size of the QueueCore’s queue register file size.

Furthermore, to highlight the features of our queue-based processor and the queue

computing in general, we compare our results with the results obtained in [99, 100]

for a 8-way universal issue machine. In [99], the authors propose a model to find an

optimal compromise between region-enlarging optimizations that affects code size and

global scheduling that affects ILP. We concentrate solely on their experimental results as

they give a realistic estimation on the characteristics of the code compiled and optimized

for a traditional register machine.

Code Size

Our algorithm effectively deals with the statements in a program that demand a large

number of queue words. Table 4.4 shows the number of extra spill instructions generated

by the queue-length optimization for the QueueCore processor. The second column shows

the total number of instructions generated including the spill code. From these results we

observe that the optimization presented in this paper increases the length of the programs

by about 1.46%. The program which presents less extra spill code is 147.vortex with the

addition of 0.66% more instructions. And the program with more spill code is 130.li with

2.23% more instructions. The third column shows the number of instructions generated

for a conventional 8-way issue machine using global ILP scheduling techniques [99]. The

queue compiler generates about 22% larger programs, in terms of number of instructions,

than the optimizing compiler [17, 34] for the 8-way universal machine in [99]. There

is a room for improvement in our queue code since our compiler does not perform any

4.2. Queue Register File Optimization 87

Table 4.4: Extra spill instructions and total number of instructions for QueueCore and a

conventional 8-way issue machine.

Benchmark Spill insn Total insn 8-way issue

099.go 1462 98071 66436

124.m88ksim 882 45542 33965

126.gcc 7700 418963 387408

129.compress 16 2047 1626

130.li 462 21143 14530

132.ijpg 863 56112 41080

134.perl 955 90497 73897

147.vortex 1198 182317 155741

classical optimizations that remove redundant computations [20, 59, 92]. The compact

instruction set of the QueueCore allow programs to present high code density. Figure 4.16

compares the code size of the text segment of the generated programs for QueueCore and

the 8-way issue machine. We assume two byte instructions for the QueueCore and four

byte instructions for a typical register-based multiple-issue machine [36]. The results are

normalized to one using the QueueCore program without queue-length optimization as

the baseline. Our optimization increases the code size of QueueCore programs less than

2%. Compared to the conventional register machine code, ours is from 27% to 47% denser.

Instruction Level Parallelism

Queue computing relies on the level-order scheduling for the generation of correct

programs. The level-order scheduling naturally exposes all available parallelism in an

expression. First, we analyze the effects of the presented optimization on ILP. We

measured the compile-time extracted parallelism of the queue compiler without and with

the queue length optimization presented in this paper. We also compared our code

against the optimized code for the 8-way universal machine. In [99], the compiled code

is classically optimized and scheduled using a global scheduling technique aided by tail

duplication. Figure 4.17 shows the parallelism exposed by the compiler for the 8-way

4.2. Queue Register File Optimization 88

0

0.38

0.76

1.14

1.52

1.90

099.go 124.m88ksim 126.gcc 129.compress 130.li 132.ijpeg 134.perl 147.vortex

1.011.011.021.021.011.021.021.02 1.001.001.001.001.001.001.001.00

1.72
1.65

1.49
1.41

1.60

1.88

1.52

1.38

8-way issue register machine Baseline Queue Length Optimized

C
o
d
e

Si
ze

Figure 4.16: Normalized size of the text segment for a conventional register machine and

the QueueCore.

universal machine, for the QueueCore without queue-length optimization, and for the

QueueCore with queue-length optimization enabled. From the graph we observed that

the impact of the queue length optimization for QueueCore increases ILP for all programs

about 1.3%. The raise represents artificial ILP given by the insertion of extra spill code.

Compared to the ILP compiler for a 8-way universal machine, the level-order scheduling

of the non-optimizing queue compiler can extract about 13.67% more parallelism.

4.2.6 Conclusion

In this Section we developed a queue register file size-aware compiler that effectively

handles the queue utilization by: controlling the degree of parallelism, or width of

computation levels; and limiting the soft edges, or lifetime of reaching definitions of

variables. The proposed algorithm partitions the data flow graph of programs into

clusters in such a way that spill code and redundant computation insertion is minimized.

Our algorithm negligibly affects the complexity of the queue compiler infrastructure. To

measure the effectiveness and overall effects of our proposal, we compiled SPEC CINT95

applications for different sizes of queue register file. For the most restrictive queue size

with two words the instruction count raises up to 11%, the critical path increases up

to 16%, and parallelism decreases up to 7% when compared to code utilizing infinite

4.2. Queue Register File Optimization 89

0

1.5

3.0

4.5

099.go 124.m88ksim 126.gcc 129.compress 130.li 132.ijpeg 134.perl 147.vortex

4.44

3.22

2.67

3.00

2.72

3.06

3.49

2.66

4.41

3.18

2.64

2.95

2.69

3.02

3.43

2.61

3.43

2.90
2.74

2.49

2.782.72

2.29
2.19

8-way Universal Machine Baseline Queue Length Optimized

In
st

ru
ct

io
n
 L

ev
el

 P
ar

al
le

lis
m

Figure 4.17: Exposed instruction level parallelism by an ILP compiler for a conventional

multiple issue machine, and for the QueueCore without and with queue-length

optimization.

queue. For a queue size of four words, which is a number greater than the average queue

utilization and parallelism for these kind of applications, the instruction count increases

about 2%, the critical path increases about 1%, and available parallelism remains about

the same. For queue sizes of eight and sixteen words the increase in number of instructions,

critical path, and available parallelism is insignificant. Our experiments show that queue

lengths from 8 to 16 words suffice to execute unoptimized integer applications and the

code characteristics are nearly the same as code compiled for infinite resources.

Essentially, statements in programs that violate the length of the queue register file are

broken into clusters that are semantically correct for the queue computing model. The

clusterization algorithm effectively deals with the two conditions that make programs

consume a large number of queue words, the width of the statement, and the edges

spanning across several levels. The insertion of spill code to communicate intermediate

values is necessary but we demonstrated that for the SPEC CINT95 applications our

queue compiler optimizes the QueueCore processor with an increase of about 1.36% in

the code size. Additionally, we have shown the code density and high ILP characteristics

of the queue computing and the QueueCore processor against a conventional multiple-

issue register machine. In average, our non-optimized code has 13.67% more parallelism

than the code optimized for a 8-issue conventional processor.

4.3. Classic Optimization: Common Subexpression Elimination 90

4.3 Classic Optimization: Common Subexpression

Elimination

In this section we introduce some problems encountered when optimizing code for queue

machines. Common-subexpression elimination (CSE) is a widely used optimization to

improve execution time. We analyze how this optimization affects the characteristics of

queue programs. We have found that in average, 28% of instructions are eliminated, and

15% of the critical path is reduced. We determine how enlarging the scope of compilation

from expressions to basic blocks affects the distribution of offsetted instructions and

therefore producing extra pressure on the queue utilization.

The queue compiler generates correct programs by traversing the data dependency

graph of every expression and calculating the offset references to access their operands.

This expression-by-expression compilation scheme generates correct code but ignores any

opportunity to generate high performance code. Common-subexpression elimination

(CSE) is a classical compiler optimization [4, 65] that reduces execution time by

removing redundant computations. The program is analyzed for occurrences of identical

computations and replaces the computations for the uses of a temporary that holds the

computed value. We implemented the CSE optimization in the queue compiler that builds

a DAG representation of the basic blocks rather than statements. As the compilation scope

is larger, the characteristics of queue programs vary and may impose new requirements on

the compiler, underlying hardware, and instruction set. The contributions of this section

are as follows:

• Given the unique features of the queue computation model, we introduce the

ways common-subexpression elimination affects the quality and characteristics of

programs.

• We quantify the effects of CSE optimization in number of generated instructions,

reduction in computation steps, and distribution of offsetted instructions for a set of

scalar and numerical benchmark programs. Furthermore, we give a specific example

on how the CSE transformation affects the binaries of QueueCore processor [2].

4.3. Classic Optimization: Common Subexpression Elimination 91

4.3.1 Implementation of CSE in Queue Compiler

The fundamental idea of queue code generation is to produce a level-order scheduling of

the DAGs and correctly calculate the offset reference values of every instruction. This

work is part of the initiative to develop an optimizing queue compiler. Therefore, we

must enlarge the sections of code where to look for optimization opportunities rather

than compiling statement by statement as in the baseline queue compiler. Figure 4.18

shows the block diagram of the queue compiler including the local common subexpression

elimination phase depicted by the shaded block.

We implemented the common subexpression elimination pass after instruction schedul-

ing since the scheduler is tightly related with the offset calculation of instructions [10],

and the offset calculation algorithm works for single statements. The output of CSE is

a DAG representing all statements within a basic block and may have multiple roots.

However, the expressiveness of our QIR representation eases the implementation of

code transformations such as CSE. The CSE pass is based a well known local CSE

algorithm [65].

Assembly
Generation

Front-End

Producer
Order Code
Generation

Offset
Calculation

Instruction
Scheduling

C source file

QueueCore
Assembly

AST
QTrees

Leveled
DAGs

QIRLocal CSEQ
ue

ue
 C

om
pi

le
r B

ac
k-

En
d

Figure 4.18: Queue Compiler Block Diagram

4.3. Classic Optimization: Common Subexpression Elimination 92

4.3.2 Effects of CSE on Queue Programs

Common subexpression elimination identifies computations that are performed more than

once and generates an equivalent program by eliminating the second and later occurrences

of them. The goal of common-subexpression elimination is to improve execution time by

replacing redundant operations with uses of stored temporaries. The effect of classical

optimizations on conventional architectures has been studied [60]. However, these findings

cannot be generalized to a queue-based instruction set computer since the underlying

computation model is substantially different. To illustrate the implications of common-

subexpression elimination in queue programs consider the following statements constitute

a basic block:

S1 : x = (a + b)/(c− d)

S2 : y = 1

S3 : w = 2

S4 : z = a + b

The queue compiler’s unoptimized representation of the basic block is shown in

Figure 4.19(a). The semantics of the queue computation model allow each level in the data

flow graph of the basic block to be processed in parallel. Therefore, the execution time

for a parallel queue machine can be estimated by the number of levels in the flow graph.

The given example has eight levels, from L0 to L7, and sixteen operations. The available

parallelism is 16/8. Notice that the operation “a + b” is computed twice in the block

and the second occurrence can be eliminated by the common-subexpression elimination

algorithm. The resulting optimized data flow graph is shown in Figure 4.19(b). The

number of levels has been reduced from eight to six, and the number of instructions to

thirteen. For this particular example, the available parallelism has been raised to 13/6.

This transformation improves execution time for queue machines not only from code

removal, but also by reducing the number of levels in the data flow graph. Reducing

both number of instructions and execution levels, the available parallelism might remain

about the same as in the original program, unlike conventional machines where available

parallelism is typically reduced [60]. However, optimizing code for a producer order

4.3. Classic Optimization: Common Subexpression Elimination 93

L7

L6

L5

L4

L3

L2

L1

L0

a b c d

+ -

/

x 1

y 2

w a b

+

z

L5

L4

L3

L2

L1

L0

a b c d

+ -

/

x 1

y 2

w z

(a) Internal unoptimized representation of a basic block (b) Internal representation of a basic block after
common-subexpression elimination

Figure 4.19: Queue compiler’s representation of basic block. (a) Original representation.

(b) After common-subexpression elimination the redundant computation is removed, the

number of execution levels decreases, and an edge is stretched.

instruction set [2] raises some problems that the compiler must solve to correctly execute

the program on a system determined by the hardware and instruction set limitations, for

example, given a 1-offset instruction set the compiler must transform the program DAGs

in such a way that 2-offset instructions are able to execute using a single offset instruction

set [14]. Eliminating subexpressions and substituting them with uses of already computed

temporaries enlarges the edges in the data flow graph as shown in Figure 4.19(b). The

edge with source at node “z” and sink in “a + b” was stretched from one level in the

unoptimized program to four levels in the optimized version.

A producer order instruction set such as the one supported by the QueueCore

processor, allows operands to be read from any location in the queue register file specified

as an explicit offset reference with respect of QH. Stretched edges signify that temporary

values must be kept alive longer, therefore the offset values to access these temporaries

are larger. If a temporary is kept alive for too long we may exhaust the available queue.

Assuming an infinite queue, if the offset reference to access an operand is too long the

bits to encode the operand in the instruction may be insufficient. Both cases can be

effectively solved by giving to the compiler knowledge about the size of the queue and the

characteristics of the target instruction set [15].

4.3. Classic Optimization: Common Subexpression Elimination 94

Previous research on unoptimized queue programs [10] shown that the frequency of

instructions that need one or two operands to be read away from QH is about 10% of total

offsetted instructions, the other 90% read their operands directly from QH. As the common-

subexpression elimination stretches the edges in the data flow graph of the programs, it

changes the characteristics of the queue programs by affecting the distribution of offsetted

instructions.

4.3.3 Evaluation

For all experiments, we consider the unoptimized code produced by the queue compiler

as the baseline [10]. We enabled the common-subexpression elimination in the queue

compiler to measure its effect on the output code. The output code is a generic producer

order instruction set where every instruction can explicitly specify at most two offset

references to read its operands [12]. We selected twelve benchmark programs, eight

scalar programs from SPEC CINT95 suite [21] and four numerical intensive benchmarks

including 8-radix fast fourier transform, livermore loops, linpack, and equake.

We start our analysis by measuring the expected reduction in number of instructions.

Then we analyze the exclusive effects of common-subexpression elimination on the queue

computation model. First, we analyze how this transformation reduces the execution

time by reducing the computation levels in the data dependence graph and we estimate

the overall performance gain. Second, we explore how the elimination of redundant

instructions, and the reduction of computation levels affect the available parallelism in

the programs. Third and finally, we analyze how the offsetted instruction distribution

gets affected and we give a concrete estimation on how this change affects the binaries of

the 16-bit embedded QueueCore processor.

Redundancy Elimination

Figure 4.20 shows the reduction in number of instructions for all the benchmark programs

after common-subexpression elimination is performed. The results are normalized using

the unoptimized output of the compiler as the baseline. For all programs there is a

reduction in number of instructions between 9% to 55%. The effectiveness of common-

subexpression elimination algorithm depends on the basic block characteristics of the

4.3. Classic Optimization: Common Subexpression Elimination 95

input program. Large basic blocks present more opportunities to find and eliminate

common subexpressions than small basic blocks. In average, the common-subexpression

elimination pass of the queue compiler, reduces the number of instructions by 28%.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

09
9.
go

12
4.
m
88

ks
im

12
6.
gc

c

12
9.
co

m
pr

es
s

13
0.
li

13
2.
ijp

eg

13
4.
pe

rl

14
7.
vo

rt
ex

FF
T8G

Li
ve

rm
or

e

Li
np

ac
k

Eq
ua

ke
AV

G

Baseline CSE

N
u
m

b
er

 o
f
In

st
ru

ct
io

n
s

Benchmarks

Figure 4.20: Instruction count reduction

Execution Time

The queue computation model requires a level-order scheduling of the data flow graph to

correctly evaluate expressions. The level-order traversal breaks the data flow graph of any

expression into groups of independent instructions that can be safely executed in parallel.

Visually, these groups of independent instructions are the levels Ln of the data flow

graph. For a parallel queue machine, the execution time is bounded by the total number

of levels in the program. On the queue computation model the common-subexpression

elimination may reduce the number of levels of the data flow graph, therefore reducing

execution time. The graph in Figure 4.21 shows the percentage of levels reduced by the

common-subexpression elimination. The reduction in levels ranges from 3% to 55%, or

speeding up the program from 1.03 to 1.81 times. In average, the levels are reduced by

15% speeding up the queue programs by 1.17 times.

4.3. Classic Optimization: Common Subexpression Elimination 96

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

09
9.
go

12
4.
m
88

ks
im

12
6.
gc

c

12
9.
co

m
pr

es
s

13
0.
li

13
2.
ijp

eg

13
4.
pe

rl

14
7.
vo

rt
ex

FF
T8G

Li
ve

rm
or

e

Li
np

ac
k

Eq
ua

ke
AV

G

Baseline CSE

C
o
m

p
u
ta

ti
o
n
 L

ev
el

s
Pe

rc
en

ta
ge

Benchmarks

Figure 4.21: Computation levels reduction.

Available ILP

The instruction level parallelism (ILP) in queue programs is given by the number

of instructions on each level of the data flow graph. In this study we consider the

compile-time available parallelism rather than run-time parallelism since our target is

to quantify the effects of the common-subexpression elimination in the output programs.

Figure 4.22 shows the compile-time extracted parallelism for the benchmark programs.

Since the elimination of common-subexpressions from queue programs affects the number

of instructions and the number of levels, the available parallelism depends on the

proportion on which instructions and levels are reduced. For applications where level

elimination is proportionally more than instruction elimination the ILP raises. In contrast,

applications where instruction elimination is proportionally more than level elimination

the ILP decreases. However, from the experimental results we can observe that the

available ILP remains about the same after common-subexpression elimination on queue

programs is performed.

Producer Order Offsetted Instruction Distribution

As discussed in Section 4.3.2, the elimination of subexpressions enlarge the dependency

edges in the data flow graph. The length of edges is directly related to the offset references

4.3. Classic Optimization: Common Subexpression Elimination 97

1.00

1.68

2.36

3.04

3.72

4.40

09
9.
go

12
4.
m
88

ks
im

12
6.
gc

c

12
9.
co

m
pr

es
s

13
0.
li

13
2.
ijp

eg

13
4.
pe

rl

14
7.
vo

rt
ex

FF
T8G

Li
ve

rm
or

e

Li
np

ac
k

Eq
ua

ke

In
st

ru
ct

io
n
 L

ev
el

 P
ar

al
le

lis
m

Baseline CSE

Benchmarks

Figure 4.22: Instruction level parallelism

in a producer order queue instruction set. Knowing the offset characteristics of programs

is crucial to determine the hardware and instruction set features for a queue processor.

Figure 4.23 shows the distribution of offsetted instructions for a generic producer order

queue-based instruction set. The programs are separated into two groups: scalar and

numerical benchmarks. For each benchmark, two measurements are presented: non

optimized distribution is represented by the benchmark name in the x-axis, and CSE

optimized distribution represented by the benchmark name with CSE suffix in the x-axis.

For the unoptimized scalar benchmarks, the frequency of 2-offset and 1-offset instructions

is about 10% as suggested by our previous research [10]. After common-subexpression

elimination, the distribution of 2-offset instruction changes from less than 1% to 3%,

and 1-offset instruction density changes from 9% to 28%. Together, 1-offset and 2-

offset instructions represent the 31% of offsetted instructions of scalar programs. For

the numerical benchmarks the change is more significant. After common-subexpression

elimination 2-offset instructions represent 12% and 1-offset instructions represent 44% of

all offsetted instructions, together, 56% of all offsetted instructions in programs.

In [2], we implemented a producer order queue-based 32-bit processor, the QueueCore.

The QueueCore features 16-bit instructions to favor code density and hardware simplicity.

The bit limitations in the instruction set of the QueueCore allow at most one offset

reference to be encoded. This feature restricts the QueueCore processor to execute 0-

4.3. Classic Optimization: Common Subexpression Elimination 98

0
9
9
.g

o

0
9
9
.g

o
 C

SE

1
2
4
.m

8
8
ks

im

1
2
4
.m

8
8
ks

im
 C

SE

1
2
6
.g

cc

1
2
6
.g

cc
 C

SE

1
2
9
.c

o
m

p
re

ss

1
2
9
.c

o
m

p
re

ss
 C

SE

1
3
0
.li

1
3
0
.li

 C
SE

1
3
2
.ij

p
eg

1
3
2
.ij

p
eg

 C
SE

1
3
4
.p

er
l

1
3
4
.p

er
l
C

SE

1
4
7
.v

o
rt

ex

1
4
7
.v

o
te

x
 C

SE

A
V

G

A
V

G
 C

SE

2-offset 1-offset 0-offset

Pe
rc

en
ta

ge

100

90

80

70

60

50

40

30

20

10

0

FF
T

8
G

FF
T

8
G

 C
SE

Li
ve

rm
o
re

Li
ve

rm
o
re

 C
SE

Li
n
p
ac

k

Li
n
p
ac

k
C

SE

E
q
u
ak

e

E
q
u
ak

e
C

SE

A
V

G

A
V

G
 C

SE

Benchmarks

Figure 4.23: Offsetted instructions distribution for scalar and numerical benchmarks.

offset and 1-offset instructions, excluding 2-offset instructions. The queue compiler is

responsible of constraining the programs to use the 1-offset QueueCore instruction set.

Compiling for QueueCore requires the conversion of 2-offset instructions into 1-offset

instructions and an additional special instruction called dup instruction [10]. Constraining

the programs to use at most 1-offset reference incurs in a penalty of inserting an extra

dup instruction for every converted 2-offset instruction. Although common-subexpression

elimination increases the amount of 2-offset instructions, and an additional dup instruction

is inserted for QueueCore binaries, the generated programs are in average 24% shorter

than unoptimized code. These results suggest that a 1-offset instruction set computer

such as the QueueCore processor, is a good architectural decision that provides flexibility

and bit-reduced instructions.

4.3.4 Conclusion

This section presents a quantitative analysis on the effects of common-subexpression

elimination in queue machines. Queue programs benefit from this optimization in the

same manner as traditional architectures. However, there are some inherent characteristics

of queue computation model that push the effects of common-subexpression elimination

further. Our results show that for a set of scalar and numerical programs the number of

4.3. Classic Optimization: Common Subexpression Elimination 99

instructions is reduced by 28%. As consequence of CSE, the edges in the data flow graph

are enlarged, and the distribution of offsetted instructions in queue program changes. For

scalar programs, the sum of 2-offset and 1-offset instruction raises from 10% to 32%. For

numerical programs from 16% to 56%. Although the offsetted instruction raises about

three times the number of 2-offset instruction remains low.

4.4. ILP Optimization: Statement Merging Transformation 100

4.4 ILP Optimization: Statement Merging Transfor-

mation

Statement merging transformation reorders the instructions of a sequential program in

such a way that all independent instructions from different statements are in the same

level an can be executed in parallel. This phase makes a dependency analysis on individual

instructions of different statements looking for conflicts in memory locations. Statements

are considered the transformation unit. Whenever an instruction is reordered, the entire

data flow graph of the statement to where it belongs is reordered to keep its original

shape. In this way, all offsets computed by the offset calculation phase remain the same,

and the data flow graph is not altered. The data dependency analysis finds conflicting

memory accesses whenever two instructions have the same offset with respect of the

base register. Instructions that may alias memory locations are merged safely using a

conservative approach to guarantee correctness of the program. Statements with branch

instructions and function calls are non-mergeable.

Figure 4.24(a) shows a program with three statements S1, S2, S3. The original

sequential scheduling of this program is driven by a level-order scheduling as shown in

Figure 4.24(b). When the statement merging transformation is applied to this program

a dependency analysis reveals a flow dependency for variable x in S1, S2 in levels L4, L3.

Instructions from S2 can be moved one level down and the flow dependency on variable x is

kept as long the store to memory happens before the load. Statement S3 is independent

from the previous statements, this condition allows S3 to be pushed to the bottom of

the data flow graph. Figure 4.24(c) shows the DFG for the sample program after the

statement merging transformation. For this example, the number of levels in the DFG

has been reduced from seven to five.

From the QCM principle, the QueueCore is able to execute the maximum parallelism

found in DAGs as no false dependencies occur in the instructions. This transformation

merges statements to expose all the available parallelism [93] in basic block boundaries.

With the help of the compiler, QueueCore is able to execute natural instruction level

parallelism as it appears in the programs. Statement merging is available in the queue

compiler as an optimization flag which can be enabled upon user request.

4.4. ILP Optimization: Statement Merging Transformation 101

x = a + b;
y = x + (1 / y);
z = 3;

S1:
S2:
S3:

3

z

x

a b

+L3

L2

L1

L0

L4

y

x /

+

1 y

y

x /

+

1 y

3

z

x

a b

+

L3

L2

L1

L0

L4

L5

L6

(a) Statements (b) Original data flow graph (c) Data flow graph after statement merging transformation

Figure 4.24: Statement merging transformation

4.4.1 Algorithm

The algorithm, shown in Algorithm 11, scans all statements in a basic block. For

each statement i, a dependency and alias analysis is performed against the following

statement, j. If a data dependency exists between elements of the two statements, the

dependency and alias () function in Line 11 returns a tuple that contains the respective

levels of each statement where the dependency exists. Control flow statements such

as conditional, unconditional, and function calls are marked as NON MERGEABLE and the

algorithm skips to the next statement.

The basic block in Figure 4.25(a) consists of two statements S1, S2. Data dependency

analysis returns the tuple (L4, L6) as there is a read-after-write (RAW) data dependency in

“y”. Notice that although the dependency in S2 exists in level L7, the returned level is L6

to maintain data flow correctness that all dependencies grow downwards. The next step is

to compute, for each statement, the distance from the conflicting level to the statement’s

root level (a1, a2), and the distance from the conflicting level to the statement’s sink level

(b1, b2). The distance to the sink level is the number of levels between the conflicting

level, including itself, and the sink level. The distance to the root level is the number

of levels between the conflicting level, excluding it, to the sink level. For this example

{a1, b1} = {0, 5}, and {a2, b2} = {3, 2}. Figure 4.25(b) shows the conflicting levels as

shaded levels (L4, L6), and the diamond and bold arrows show the distance between the

conflicting and the root/sink levels. With this information the two statements are merged

4.4. ILP Optimization: Statement Merging Transformation 102

into a new one and substituted in the instruction list.

S1: y = !(a & 0xffff) + 1
S2: sum = (-sum >> 16) + y

a). Basic Block

L4

L3

L2

L1

L0 a

not 1

+

y

and

0xffff

L9

L8

L7

L6

L5

>> y

+

sum

neg

S1 S2

16

sum

RAW
Dependency

b).RAW dependency and distance calculation

a1 = 0

b1 = 5

a2 = 3

b2 = 2

Figure 4.25: Statement merging example.

Input: Block’s instruction list, B
begin1

forall statements i in list B do2

j ← i.next3

if i or j is NON MERGEABLE then4

continue;5

else6

(Li, Lj)← dependency and alias (i, j);7

if (Li, Lj) 6= NIL then8

a1 ← distance (Li− root level (i))9

b1 ← distance (Li− root level (i))10

a2 ← distance (Lj− sink level (j))11

b2 ← distance (Lj− sink level (j))12

Snew ← stmt merge (i, j, a1, b1, a2, b2);13

replace (i, j, Snew, B)14

end15

end16

end17

end18

Algorithm 11: stmt merge (B)

If the tuple exists then the pair of statements are merged by the merge () algorithm.

The merging algorithm is shown in Algorithm 12. It takes as input the two statements

and the computed distances a1, b1, a2, b2. A new statement with height MAX(a1, a2) +

MAX(b1, b2) = 5 + 3 = 8 is created. The for loop in Algorithm 12 performs a level-order

traversal over the new statement and fills every level with the corresponding levels of

4.4. ILP Optimization: Statement Merging Transformation 103

the two input statements. It uses two flags (triggers) to determine which levels of the

old statements correspond the levels of the new statement. The result of merging the

statements in Figure 4.25 is shown in Figure 4.26.

Input: Statement, S1, S2
Input: Height, a1, b1, a2, b2
Output: Statement, Snew

begin1

maxdepth ← MAX(a1, a2) + MAX(b1, b2);2

trigger1 ← MAX(b1, b2) - b1;3

trigger2 ← MAX(b1, b2) - b2;4

Snew ← newstmt();5

for i = 0 to i < maxdepth do6

Lnew ← newlevel();7

if trigger1 ≤ i then8

Lnew.append ← S1.level(i).insns;9

end10

if trigger2 ≤ i then11

Lnew.append ← S2.level(i).insns;12

end13

Snew.append ← Lnew14

end15

return Snew16

end17

Algorithm 12: merge (S1, S2, a1, b1, a2, b2)

L7

L4

L3

L2

L1

L0

Snew

L6

L5

a

not 1

+

y

and

0xffff

>> y

+

sum

neg 16

sum

Figure 4.26: Merged statement with a height of 5+3 = 8

4.4. ILP Optimization: Statement Merging Transformation 104

4.4.2 Evaluation

Figure 4.27 shows the improvement of ILP by using the statement merging transformation

for a set of scalar and numerical programs. The exposed parallelism increases with

statement merging by factors ranging from 4.11 to 1.08 times. The effectiveness of this

transformation depends on the characteristics of the basic blocks of the compiled program.

The improvement on programs with small basic blocks is limited like in scalar programs

from SPEC: 099.go, 126.gcc, and 129.compress. Programs with larger blocks allow the

statement merging to work most effectively like in the case of fft8g.c with a gain factor of

4.11 times. This program contains very large unrolled loop bodies without control flow.

Statement merging is a code motion transformation and does not insert or eliminate

instructions.

0

2.3

4.6

6.9

9.2

0
9
9
.g

o
/g

2
5
.c

1
2
6
.g

cc
/l
o
o
p.

c

1
2
9
.c

o
m

p
re

ss
/c

o
m

p
re

ss
9
5
.c

1
3
2
.ij

p
eg

/j
q
u
an

t2
.c

su
sa

n
.c

ff
t8

g.
c

liv
er

m
o
re

.c

lin
p
ac

k.
c

eq
u
ak

e
.c

G
eo

m
. M

ea
n
.

Stmt_merging

Benchmarks

without statement merging statement merging

IL
P

Figure 4.27: Effects of statement merging transformation on compile-time ILP

As it has been discussed in Section 4.2, parallelism is tightly related to queue

utilization. Figure 4.28 shows the peak queue utilization of the programs. In other words,

this graph shows how statement merging transformation, by increasing parallelism, it also

increases the queue utilization of the programs. The extra pressure in queue utilization

depends on how wide the new merged statements become. For scalar code the raise in

queue utilization ranges from 1.44 to 3.46 times. And for numerical code with larger

blocks and fat statements the queue utilization pressure increases up to 18.2 times more.

4.4. ILP Optimization: Statement Merging Transformation 105

However, using the optimization presented in Section 4.2 to control queue utilization this

peak parallelism can be controlled by the insertion of very small amount of extra code.

0

26

52

78

104

130

156

182

0
9
9
.g

o
/g

2
5
.c

1
2
6
.g

cc
/l
o
o
p.

c

1
2
9
.c

o
m

p
re

ss
/c

o
m

p
re

ss
9
5
.c

1
3
2
.ij

p
eg

/j
q
u
an

t2
.c

su
sa

n
.c

ff
t8

g.
c

liv
er

m
o
re

.c

lin
p
ac

k.
c

eq
u
ak

e
.c

Stmt_merging

Benchmarks

without statement merging statement merging

Pe
ak

 Q
u
eu

e
U

ti
liz

at
io

n

Figure 4.28: Queue utilization on peak parallelism

4.4.3 Conclusion

In this section we presented the statement merging transformation that increases compile-

time parallelism by combining independent statements in the same level. The idea behind

this transformation is to maximize the benefits of the level-order scheduling on which

queue programs are generated. We have presented an algorithm implemented in the queue

compiler framework that achieves statement merging. As shown by the experimental

evaluation, this transformation extracts, in average, about 1.66 times more parallelism

than the baseline code generation. However, raising parallelism is associated with extra

pressure in the queue utilization.

Chapter 5

Queue Allocation: reducing memory

traffic in producer order queue

machines

The speed disparity between processors and main-memory is one of primary concerns in

modern computer systems as it directly affects performance. Conventional architectures

use a set of high-speed random access registers for holding values and avoiding long-latency

memory accesses. On the other hand, queue processors employ a different arrangement

of registers organized as a first-in first-out queue, with well established rules for accessing

its elements where all reads are performed at the head of the queue and all writes at the

tail. Therefore, conventional register allocation techniques for register machines cannot

be applied to the queue computation model. In this chapter we propose a technique for

reducing memory traffic and controlling queue utilization and instruction complexity by

the insertion of few instructions that copy and propagate data. To analyze the effectiveness

of our method, we implement a novel compiler algorithm in the Queue Compiler and

measured the load/store instruction reduction for a set of benchmark programs. From

our experimental results we observe that our technique effectively reduces the load/store

instructions by an average of 20%, with a small overhead of around 6.47% and 1.69%

extra data propagation instructions.

Main-memory technology has been unable to improve at the pace of microprocessor

technology. This performance gap that keeps increasing is known as the memory wall [97].

106

107

Processors employ a hierarchy of high-speed memory organized as registers and cache

memories to reduce the long-latency accesses to main-memory and thus achieving high-

performance. Since registers are limited, the problem of allocating data items to registers

such that memory traffic is minimized has attracted the attention of many researchers [16,

18, 9, 94]. From the observation that subroutine calls are a common and expensive

operation due to registers save and restore, interprocedural register allocation techniques

have also been proposed [74, 72].

Register allocation for stack-machines is fundamentally different than conventional

register machines. Stack-machines have a different arrangement and rules for accessing the

registers. To much lesser extent than conventional register machines, register allocation for

stack machines has been studied locally to basic blocks [45], across block boundaries [61],

and globally [77]. A straight-forward stack machine implements the stack in memory,

therefore for every item accessed in the stack a memory access is required. The idea of

a stack cache is to keep the stack items, or part of it, in hardware registers to improve

performance [22]. PicoJava processor uses a stack cache of 64 entries implemented in

hardware as a circular register file to unleash high performance [62]. To overcome the

overhead of stack manipulation instructions and the serialization created at the top of the

stack [91] a technique called instruction folding [73] allows the stack cache to be accessed

as a random access register file and instructions to be parallelized as in RISC machines.

This problem has not been studied for the queue computation model. The primary

objective of this chapter is to introduce a new method and the corresponding efficient

compiler techniques to reduce memory traffic in queue programs to increase performance.

We identify the main causes that produce memory traffic overhead in queue processors, we

discuss the drawbacks of the shared main memory communication method, and propose

the new technique that reuses data in the queue and reduces memory operations within

blocks and across block boundaries. The main principle of the proposed general method

for queue processors with a single queue is to copy data that is consumed more than

once and keep it in the queue long enough to reach its uses without incurring in excessive

pressure on the queue register file and the instruction’s offset references.

5.1. Shared Main Memory Communication Method 108

5.1 Shared Main Memory Communication Method

A straightforward method to solve the long offset references and its associated problems

is to employ main memory for data communication. The main idea is to control the

maximum size of offsets and therefore the queue utilization. Whenever an offset reference

spans more than given threshold the datum is spilled to memory and filled back to the

queue when a use is reached. This mechanism guarantees that queue utilization will never

exceed certain limit and the offset references never violate the instruction set constraints.

The random access nature of the memory alleviates the problem of long offset refer-

ences at the cost of increasing the memory traffic. A more sophisticated implementation

that avoids memory might include an on-chip high speed registers to hold the spilled

values. However, the addition of such functionality would change the nature of a queue-

based processor into a hybrid queue-register model.

We identify two cases when controlling the offset references by shared memory

communication method generates programs with heavy memory traffic. The first case

is inside basic blocks and the second case is across basic blocks.

5.1.1 Intra-block Communication

Depending on the compilation scope, the compiler reduces the basic block from trees into

expression DAGs or it may generate a larger DAG covering all statements in the basic

block. Figure 5.1(a) shows a basic block consisting of three statements. The program

listed in Figure 5.1(b) is the result of compiling the basic block on statement basis.

Redundancies are eliminated within each statement. For example, the “sum” variable is

loaded once but used twice by the rsh and sub instruction. An offset reference of −2 is

needed for the second consumer instruction in line 5. The Figure 5.1(c) lists the result

of compiling the basic block as a whole. As a result of removing redundancies (lines 7, 8,

12) in a larger scope the offset in the “add” instruction of line 14 becomes −6 as it reuses

the “x” variable loaded in line 3. The maximum offset reference value grows from −2 to

−6 as highlighted in the programs.

Figure 5.2 shows the maximum offset reference value for a set of benchmark programs

when compiled on a expression DAG scope and basic block DAG scope. Programs

5.1. Shared Main Memory Communication Method 109

ld sum
ld 16
ld x
rsh 0, 1
sub -2, 0
add 0, 1
st sum
ld sum
ld 2
mul 0, 1
st sum
ld x
ld 1
add 0, 1
st x

S1: sum = (sum >> 16) + (sum - x)
S2: sum = sum * 2
S3: x = x + 1

(a). Basic block

ld sum
ld 16
ld x
rsh 0, 1
sub -2, 0
add 0, 1
Dead store eliminated
Use "sum" computed @ S1
ld 2
mul 0, 1
st sum
Use "x" from S1
ld 1
add -6, 0
st x

(b). Statement DAG
compilation

(c). Basic Block DAG
compilation

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:

Figure 5.1: Effect of compilation scope on offset characteristics. (a) sample basic block,

(b) resulting program of statement-based compilation scope with a maximum offset of

−2, and (c) resulting program of basic block compilation scope with a maximum offset of

−6.

compiled from a basic block DAG raise the maximum offset reference from 4 to 10 times.

Therefore, limiting compilation to a statement scope is a good alternative to generate

programs with modest offset reference values at the cost of increasing memory traffic.

Despite that offset reference values can be relaxed by the compilation scope, the queue

register file utilization remains an unsolved problem. Employing the same shared memory

communication model the queue utilization can be controlled effectively [15]. Whenever

the compiler detects a program exceeding the available hardware queue, the data flow

graph is partitioned into clusters fitting in the available queue registers. And spill/fill

instructions are inserted to communicate the values defined and used in different clusters.

Although this technique efficiently controls queue utilization, it produces extra memory

communication. As it has been reviewed, shared memory communication is an effective

way to control offset references and queue utilization. However, the load/store distribution

of programs is large and may lead to poor execution times.

5.1. Shared Main Memory Communication Method 110

0

62.5

125.0

187.5

250.0

09
9.
go

12
4.
m
88

ks
im

12
6.
gc

c

12
9.
co

m
pr

es
s

13
0.
li

13
2.
ijp

eg

13
4.
pe

rl

14
7.
vo

rt
ex

157

40

237

71

51

230

118

97

129

24
18

10

56

1720

Statement DAGs Basic Block DAGs

O
ff
se

t
R

ef
er

en
ce

 V
al

u
e

Benchmarks

Figure 5.2: Maximum offset reference value for statement-based and basic block

compilation scopes.

5.1.2 Inter-block Communication

To communicate live variables across basic blocks, offset references may be used at the cost

of increasing its length and also more queue to hold dead element fragments of two blocks.

Figure 5.3(a) shows an example of a live variable “i” in BB1 accessed by an operation in

BB2. More queue is required to hold all the values between the definition of “i” in BB1

and its use in BB2. Excluding the previous implications, inter-block communication may

arise a problem of offset inconsistency. Consider the merging block BB3 in Figure 5.3(b).

Let “x” be alive in BB3 and defined in both BB1 and BB2, using offset reference to retrieve

the correct “x” value depends on whether the BB1 or BB2 was executed. Such situation

cannot be determined at compile time and therefore generating an offset reference would

lead to inconsistent execution unless a kind of predicated execution is available in the

hardware.

The shared memory model for inter-block communication has identical effect as

presented in the previous section. Offset references and queue utilization can be

reduced by introducing memory operations to communicate the live variables as shown in

Figure 5.4(a). The offset inconsistency problem on merging blocks disappears as the two

5.2. Operand Queue for Reducing Memory Traffic in Queue Programs 111

i

long offset

... ...

dead data dead data

BB1 BB2

(a). Dead queue elements across basic-blocks

T

F

BB1

BB2

BB3

x

x

-10

-2

(b). Offset inconsistency problem

...

Figure 5.3: Problems of sharing data in the queue across basic blocks. (a) long offset

references of live variables across basic blocks produce large amounts of dead data. (b)

BB3 faces an offset inconsistency problem since the correct offset value depends on runtime

behavior and cannot be determined at compile-time.

possible offset values are replaced by a consistent memory access as shown in Figure 5.4(b).

For inter-block communication, using the shared memory model becomes a necessity as

it provides consistency and guarantees correctness.

5.2 Operand Queue for Reducing Memory Traffic in

Queue Programs

In this section we propose a new method to improve the memory traffic in queue programs

by using the operand queue for data communication within and across basic blocks. The

main premise is to use the main queue as the high-speed storage to hold and forward-

propagate values consumed multiple times. Replacing the memory traffic generated to

constrain offset references for data transfer instructions speeds up the execution of the

5.2. Operand Queue for Reducing Memory Traffic in Queue Programs 112

T

F

BB1

BB2

BB3

x

x

mem
store

store

load

(b). Offset inconsistency solved by a known memory location

mem

i

store load

BB1 BB2

(a). Live variable communication across basic blocks

Figure 5.4: Shared main memory for basic block communication. (a) long offsets and

dead data problems are solved with a store and load instructions. (b) offset inconsistency

problem is solved by accessing a known memory location.

program.

The length of offset references can be controlled if temporaries holding copies of used

variables are inserted in the program and the uses of the original definition are replaced

by uses of the temporaries. Short life ranges of variables represent short offsets and

small queue utilization in the queue computation model. For example, let the offset in

Figure 5.5 be outside the range allowed by the hardware. The transformed program shown

in Figure 5.5(b) includes a compiler inserted temporary inew holding a copy of i. And the

use of i in the last statement is replaced by a use of inew. Assuming that inew is inserted

in right between the first and last statements, the original offset has been reduced by

half. To implement such functionality the queue processor must include an instruction

that produces a copy of a queue register, and the compiler must find the correct location

in the program to insert such instructions. The strength of this technique is that without

addition of extra hardware registers the frequently used values can be kept accessible

within short offset values.

5.2. Operand Queue for Reducing Memory Traffic in Queue Programs 113

i = random ();

...

x = A[i];

long offset

i = random ();
...
inew = i
...
x = A[inew];

i i inew

(a). Long life range of a variable
produces a long offset

(b). Using temporaries to shorten variable
life ranges and offset reference value

copy

Figure 5.5: Offset reduction by in-queue copies: (a) original program with long offset, (b)

compiler inserted copies to shorten offset references.

5.2.1 Semantics of dup instruction

To enable this feature we have added a new instruction called duplicate or dup instruction.

The instruction syntax is a producer order-like instruction consisting of the opcode and one

offset reference. Same as all producer order instructions in the Parallel Queue Processor

the dup instruction is encoded in 16 bits.

dup offset

The dup instruction copies the contents of a queue register specified by an offset

reference relative to QH and produces the result in QT.

QT ← contents of (QH - offset)

The dup instructions produce values in the queue that most probably will be consumed

by an offset reference. Data having no explicit consumers (consumers that dequeue a value

directly from QH) would induce a data ordering problem. Explicit repositioning of the

QH and QT registers is available using instructions. However, we extend the functionality

of the queue processor so that no explicit instructions to reposition QH are required, and

that offset reference values are identical as in the shared memory model program. The

dup instruction flags the queue register pointed by QT to be ignored whenever a read

access is attempted by QH. For better understanding of such new feature consider the

example in Figure 5.6. Let a long offset reference using variable “a” be shortened by

5.2. Operand Queue for Reducing Memory Traffic in Queue Programs 114

a dup instruction inserted between the addition and the load of “c”. During execution,

right after the addition is performed, the “dup −2” instruction produces a copy of ’a’

into the tail of the queue. The queue register pointed by QT is flagged as shown by the

oversized ‘a’ element in the queue. Execution continues until the division requests its

both operands to be read from the QH. After the first operand ’a+b’ is consumed, QH is

updated and now it points to the flagged ’a’ element. Once this situation is discovered by

the processor, the QH position is updated to the next non-flagged element and the second

operand ’c’ is read from QH directly. Thus, the offset values of the division instruction

appear as if there was no element in between the operands making the utilization of dup

instructions transparent to the program.

x

/

+ c

a b

dup

a b

ld ld

add 0, 1

a b

a b

div 0, 1

a+ba b

st

a+b

ld a
ld b
add 0, 1
dup -2
ld c
div 0, 1
st x
...

dup -2 ld

a c (a+b)/c

aa+b c

Figure 5.6: Semantics of dup instruction do not affect other instructions offset references.

5.2.2 Algorithm for inserting dup instructions

The threshold is the maximum offset reference value allowed to exist in the program.

The algorithm inserts dup instructions in the program’s data flow graph to reduce the

length of edges violating the threshold value. It is a good idea to let the user decide the

maximum offset value since this constraint may different for different implementations of

queue processors.

If a single dup instruction is not enough to constrain the length of an edge then a

chain of dup instructions is inserted as shown in Figure 5.7. For this example, two dup

5.2. Operand Queue for Reducing Memory Traffic in Queue Programs 115

instructions (definitions of i1 and i2) are needed to constrain all offsets to a threshold of

8. For the few cases when a very long offset [15] is constrained by a small threshold, the

large number of chained dup instructions may incur in lower performance than using the

shared memory model. Although we discard it from our implementation, we notice here

that allowing the algorithm to reason about using the shared memory communication

model whenever the chain of dup instructions is too long may lead to higher performance

code. Such hybrid solution can be extended from our proposed algorithm by the addition

of a MAX DUP parameter and the logic to discern whether a long offset is reduced by

dup instructions or the shared memory communication model.

i = random ();
...
i1 = i
...
i2 = i1
...
x = A[i2];

i = random ();

...

x = A[i];

20

threshold = 8

4

8

8

Figure 5.7: Chain of dup instructions fit any offset reference into the threshold value.

Algorithm 13 shows the implementation of the dup instruction placement. The outer

loop iterates over the instructions of a basic block reducing all offset references exceeding

the threshold value by inserting dup instructions. The number and location of the dup

instructions, ndup, is decided by dividing the maximum incoming offset by the threshold

and inserting the instructions in fixed intervals between the sink and source instructions.

All other incoming edges are relinked to the most immediate generated copy. Since the

dup instructions are copies of variables that occupy space in the queue they affect other

offset references. The “keep going” flag is set to indicate the outer loop to iterate once

more over the basic block and reduce any new possible violating offsets. The main idea is

letting the first iteration on the basic block to guess the initial number and location of dup

instructions. Further iterations refine the placement taking into account the new offsets.

The function in Line 11 recomputes the offset values of the basic block after placing the

new instructions.

5.2. Operand Queue for Reducing Memory Traffic in Queue Programs 116

Input: DAG representation of the basic block, BB
Input: Maximum offset, threshold
Output: BB with offset references <= threshold
begin1

while keep going do2

keep going ← 0;3

forall nodes n in BB do4

if any incoming edge e ∈ InEdges (n) > threshold then5

ndup← InsertDup (MAX(InEdges(n)), threshold);6

Relink to dups (InEdges (n), ndup);7

keep going ← 1;8

end9

end10

RecomputeOffsets (BB);11

end12

end13

Algorithm 13: queue communication (BB, threshold)

5.2.3 Using queue for inter-block passed variables

To communicate frequently used and live variables across basic blocks we propose to use

the queue instead of memory to reduce memory access and increase performance. We

limit the number of variables that can be passed in the queue to five as the common

knowledge indicates [36]. All others are passed through shared memory communication

model. In our implementation, we copy the variables with the most uses in the successor

blocks. Subroutine calls are treated similarly, up to five arguments are passed in the queue

and are available at the beginning of the first block of the callee function. The return

value is always copied before returning.

The selected candidates are copied by dup instructions inserted at the end of the basic

block. These instructions place copies from one block to the beginning of the successor

block. In case of a merging block this method provides a consistent offset access as in

the shared memory model. Copies are placed at the beginning of the merging block and

thus the offset references are known. In Figure 5.8 the predecessor blocks BB1 and BB2

include code their corresponding code for copying the variable “x” into the beginning of

their merging block BB3. All references to “x” in BB3 are local to the block and can be

determined at compile-time.

5.2. Operand Queue for Reducing Memory Traffic in Queue Programs 117

T

F

BB1

BB2

BB3

x

x

...

x

dup -15

dup -1

known offset

Predecessor Block Successor Block

Figure 5.8: Insertion of dup at the end of blocks solves the problem of offset inconsistency

for the successor blocks and allows the communication of frequently used variables in the

queue.

5.2.4 Enabling Compiler Support

We implemented the new algorithm in the Queue Compiler. Some modifications of the

original compiler were made to support the queue-based communication model. The most

important change is the generation of a basic block DAG rather than statement-based

DAGs. The original compiler was designed to process one statement at a time and all

algorithms worked on this assumption. For example, the offset calculation phase receives

as input single rooted DAGs. However, in a basic block DAG there may be multiple roots.

Figure 5.9 shows the block diagram of the queue compiler. The gray blocks represent the

modified phases.

The Queue Code Generation phase generates a DAG representation of the basic

block. The new algorithm (Algorithm 13) represented by the third phase of the compiler

optimizes the program by using the operand queue for sharing frequently used data.

The Offset Calculation phase computes the offset reference values of the program. This

algorithm was updated to handle the new basic block DAGs correctly. The Level-Order

scheduler schedules the program and lowers the LDAGs representation into a linear low

level intermediate representation (QIR). This QIR representation is consumed by the last

phase of the compiler which generates assembly code for the PQP.

The new algorithm demands detailed data dependency information which is facilitated

by a tree-based representation. But also requires the ability to traverse, modify, and

5.3. Evaluation 118

Front-End

Queue Code
Generation

Level-Order
Scheduler

C source file

PQP Assembly

AST

Leveled
DAGs

QIR

Assembly
Generation

Queue-based
Communication

Method

Offset
Calculation

Figure 5.9: Block diagram of the queue compiler.

gather precise location information of instructions in the program for the insertion of dup

instructions. The latter is facilitated by a linear representation. Given the location of the

new phase (between queue code generation and offset calculation), we had to extend the

original LDAGs [35] which is tree-based to be combined with a linear-based representation.

The new LDAGs can be traversed as a tree or as a list of instructions.

5.3 Evaluation

Memory traffic in queue programs can be reduced by reusing data as much as possible

within computations of a basic block, and communicating frequently used variables in

the queue across blocks. If data reutilization is maximized then offset references grow in

length and in number. Therefore, in this section we look at the comparison of memory

traffic of programs generated by our queue-based communication method against shared-

memory communication model. Then, we analyze the effectiveness of dup instructions

on controlling the length of offsets. We do this by investigating the overhead of dup

instructions when limiting the offsets references to different thresholds. We based our

algorithm on the Queue Compiler [13] infrastructure. To compare the new method against

5.3. Evaluation 119

the baseline code we use the modified, and the original queue compilers respectively. The

selected benchmarks are from SPEC CINT95 suite [21].

5.3.1 Memory Traffic Reduction

Figure 5.10 shows the instruction distribution of loads, stores, and the rest of the generated

instructions (including ALU, control flow, etc). For every benchmark a pair of results is

shown. The first result represents the baseline instruction distribution compiled with

the shared-memory communication model. The second result represents the instruction

distribution obtained with the our proposed queue-based communication model. The

queue-based communication model was configured with a threshold set to infinity and

therefore no dup instructions are inserted in the programs.

For all benchmarks the memory traffic is reduced from 16% to 25%, 20% in average.

This memory traffic reduction is explained by the scope of compilation. The original

compiler generates code for statements and uses memory for holding and reusing data.

The new method generates code for basic blocks and uses the queue for communicating

values rather than memory. Non-memory instructions percentage remains about the same

for the two methods. As a result, the code density of programs compiled by our new

method is improved by about 20%.

Another important qualitative characteristic to be noticed by these results is that the

memory instructions in the original compiler account for about 50% of all instructions in

the program, and in the new method are about 40% of the total.

5.3.2 Expense of dup instructions for offset constrain

Offset characteristics can be classified in two: number and length. Number refers to

the amount of instructions using an offset reference to access an operand. Length is the

distance, in queue words, between the head of the queue and the accessed value. Programs

with high degree of data reusability require an extensive number of offset references. Long

live ranges of reaching definitions demand large offset values. Therefore, the overhead of

dup instructions is a function of the offset characteristics of the program and the selected

threshold value.

5.3. Evaluation 120

0

10

20

30

40

50

60

70

80

90

100

09
9.
go

12
4.
m
88
ks
im

12
6.
gc
c

12
9.
co
m
pr
es
s

13
0.
li

13
2.
ijp
eg

13
4.
pe
rl

14
7.
vo
rt
ex

Load Store Others

Pe
rc
en
ta
ge

Benchmarks

Figure 5.10: Memory traffic reduction. For every benchmark the first column represents

the program compiled shared-memory communication model, and the second column

represents the program compiled with the new queue-based communication model.

Figure 5.11 shows the results of constraining offsets to threshold values of 4, 8, 16,

32, 64. We use the unconstrained offset compilation result (INFTY in the graph) as the

lower bound for our technique since memory traffic is reduced and no efforts are made to

reduce the offsets. The lower bound provides the reference point to measure the overhead

of our technique. And we use the number of instructions generated by the shared-memory

model as the baseline.

70.0

74.4

78.8

83.2

87.6

92.0

96.4

100.8

105.2

109.6

114.0

09
9.
go

12
4.
m
88

ks
im

12
6.
gc

c

12
9.
co

m
pr

es
s

13
0.
li

12
9.
jp
eg

13
4.
pe

rl

14
7.
vo

rt
ex

Shared. Mem. 4 8 16 32 64 INFTY

Pe
rc

en
ta

ge

Benchmarks

Figure 5.11: Overhead of dup instructions for different threshold values.

5.4. Conclusion 121

For the most restrictive threshold, 4, the overhead ranges from a 1% (130.li) to 37.47%

(132.ijpeg) more dup instructions than the lower bound. The geometric mean is 6.47%.

These percentages represent the density of dup instructions in programs. The 132.ijpeg

and 124.m88ksim benchmarks benefits from the larger scope of compilation and produces

a large number of long offset references. As a result, the programs are saturated with dup

instructions. Compiling for a threshold of 8 produces an average overhead of 4.6%, for

16 an average of less than 1.69%. and for larger thresholds an average less than 1%. In

terms of code size, for all programs and for all thresholds except 132.ijpeg, our proposed

technique achieves smaller programs than the original shared-memory model compiler.

These results show that sharing data in the queue reduces memory traffic, and effectively

handles the problem of long offsets with a small overhead of dup instructions.

5.4 Conclusion

We presented an efficient compilation method for reducing memory traffic in queue

processors with a single operand queue. The key idea is to keep data in the operand queue

during their life times without seriously affecting the offset references limitations and

queue register file utilization. Our proposed method avoids redundant memory accesses

within a basic block by duplicating and propagating data near its consumers, and across

blocks by duplicating the most frequently used variables to the beginning of the successor

block. We successfully implemented the queue-based communication compilation method

in the queue compiler and analyzed its effectiveness on a set of benchmark programs.

The new method reduces memory traffic by about 20% when compared to the shared

memory communication model. And the overhead of dup instructions to constrain the

offset reference lengths is small even for very restrictive thresholds, about 6.47% more

instructions for a threshold of 4. This means that our method effectively substitutes a

significant number of long-latency memory accesses for a small number of fast queue-

to-queue communication. In our future work we expect to measure the execution time

improvement of our technique.

Chapter 6

Queue Computing Evaluation

This chapter has the objective to demonstrate, with the use of the Queue Compiler

Framework, the benefits and good characteristics of queue computing for real world

applications. We selected ten applications commonly used in embedded systems from

MiBench and MediaBench suites [32, 52]. This selection includes video compression

applications (H263, MPEG2), signal processing (FFT, Adpcm), image recognition

(Susan), encryption (SHA, Blowfish, Rijndael), and graph processing (Dijkstra, Patricia).

We compiled these applications using our queue compiler infrastructure. The target

architecture for this comparison is the QueueCore processor (See Section 4.2.2). As the

instruction set of the QueueCore processor allows at most one encoded offset reference,

the 1-offset P-Code generation algorithm presented in Section 4.1 was enabled.

6.1 Code Size Comparison

We compare the size of QueueCore binaries with the code size of two dual-instruction

embedded RISC processors: MIPS16 [43], ARM/Thumb [31]. With two traditional RISC

machines: MIPS I [41], ARM [69]. And with a traditional CISC architecture: Pentium

processor [5]. We prepared GCC 4.0.2 compiler for the other five architectures and

measured the code size from the text segment of the object files. All compilers, including

our compiler, were configured without optimizations in order to compare the density of

the baseline code. Figure 6.1 shows the normalized code size for all applications with

respect of MIPS code. These results confirm the higher code density of the embedded

122

6.2. Compile-time Extracted ILP Comparison 123

RISC processors over their original 32-bit versions. Our queue code is, in average, 12.03%

denser than MIPS16 code, and 45.1% denser than ARM/Thumb code. Compared to

a traditional variable length instruction set CISC machine, our PQP achieves 12.58%

denser code. The QueueCore binaries are able to achieve the smallest code sizes due to

instructions being 16-bit.

0

22

44

66

88

110

H.263 MPEG2 FFT Susan Rijndael Sha Blowfish Dijkstra Patricia Adpcm

MIPS MIPS16 ARM ARM/Thumb Pentium PQP

C
o
d
e

Si
ze

Figure 6.1: Code Size Comparison

6.2 Compile-time Extracted ILP Comparison

The queue compiler exposes natural parallelism found in the programs from the level-order

scheduling. All instructions belonging to the same level in the LDAG are independent

from each other and can be executed in parallel by the underlying queue machine. We

compare the parallelism extracted by our compiler against the parallelism extracted by the

MIPS I compiler. Our compiler was set with all optimizations turned off, and the MIPS-

GCC compiler was configured with maximum optimization level (-O3). The extracted

parallelism for the MIPS architecture was measured from the assembly output code using

a conservative analysis by instruction inspection [19] to detect the data dependencies

between registers and grouping those instructions that can be executed in parallel. For the

PQP code, data dependences are given by the levels in the LDAG and are not expressed

6.2. Compile-time Extracted ILP Comparison 124

in the instructions. The only information available in the instructions is their offset

and it cannot be used to determine dependences as it is relative to QH. To measure the

parallelism of our code the compiler emits marks at the beginning of every level in the

LDAGs grouping all parallel instructions.

To match the 32 architected registers of MIPS I, we constrained the compilation

of queue code to a queue register file of 32 words using the algorithm presented in

Section 4.2. Figure 6.2 shows the extracted parallelism by the two compilers. Our compiler

extracts, in average, 1.16 times more parallelism than fully optimized RISC code. The

-O3 optimization in the register compiler rearranges instructions according sophisticated

list scheduling heuristics. The order of instructions in the register program resembles data

flow scheduling which is very similar to the level-order scheduling. From these results we

observe that both, register and queue programs, have similar ILP properties. However,

the MIPS code is limited by the architected registers and register pressure is solved by

the insertion of spill code. For some applications, the queue programs are able to extract

all available parallelism as the limitation of physical registers does not exist in the queue

computation model.

0

1.25

2.50

3.75

5.00

H.263 MPEG2 FFT Susan Rijndael Sha Blowfish Dijkstra Patricia Adpcm

4.9

3.13.0

3.8

3.4

4.8

3.9

4.2

3.9
3.6

2.8
2.6

2.9

4.0

3.3

3.9

3.3

4.6

2.93.0

MIPS I -O3 PQP

IL
P

Figure 6.2: Compile-time extracted instruction level parallelism

Chapter 7

Conclusion

This doctoral dissertation presented the design and development of the first queue

compiler framework. Many aspects of code generation for queue machines were

investigated from a different yet natural perspective and, as a result, novel techniques

have been discovered, implemented, analyzed, and evaluated. The presented methods

integrate the queue computation principle into all stages of automatic compilation of

high-level programming languages to executable code. The most important contribution

of this work, I believe, is the establishment of principles that facilitate code generation

for queue machines taking into consideration all the demands and peculiarities of such

computation model.

Chapter 2 presented a summary on the queue computing variants and concluded that

the producer order queue computation model offers the best characteristics and flexibility.

Chapter 3 defined the concepts on which the queue compiler was developed. It presents

novel and fundamental algorithms to build leveled directed acyclic graphs (LDAGs), to

calculate the position of QH and to perform offset calculation. A queue compiler framework

is developed and the compilation phases are described together with the internals of the

compiler. This part of the dissertation establishes the methodology to build a queue

compiler. We presented that the complexity of the queue compiler is similar to that of

a research and production compilers in terms of lines of code and compile-time. These

results show that the developed algorithms and internal data structures that drive the

queue compiler are efficient.

Chapter 4 introduced the problems of compiling for actual queue processors. First,

125

126

we have presented a technique to make the compiler aware of the reduced instruction

set of a queue processor to achieve high code densities. The idea is to constrain the

instructions to encode at most one offset reference and let the compiler handle the cases

when two offsets are required by inserting extra instructions to copy data and locate it

in the correct place to eliminate one offset reference. The evaluation of the proposed

technique shown that the compiler is able to generate programs about 16% and 36%

smaller than two embedded processors while keeping the insertion of extra instructions

less than 5% of the total generated instructions. Second, we developed a technique

to control the queue register file utilization of peak-parallelism fragments of programs.

The algorithm breaks the data flow graph into clusters that fit into the physical queue

while retaining the semantics of queue computation model and inserting inter-cluster

communication and spill code. For scalar applications, our technique is able to control

queue utilization by around 2% of extra communication and spill code. Third, we explored

the impact of classical, target-independent, data flow optimizations in queue machines.

We introduced how common subexpression elimination raises the offset requirements of

instructions and queue utilization. Our results shown that queue computing does not

restrict this kind of transformations and execution time is reduced together with the total

number of instructions. However, the raise in offsetted instruction increased from 1% to

3% for 2-offset instructions and 9% to 28% for 1-offset instructions. Fourth, we presented

a code motion technique to improve the level-order scheduling by increasing the static

instruction level parallelism. The statement merging technique shown that it is capable

of extracting in average, 1.66 times extra parallelism.

Chapter 5 presented a global compilation technique, Queue Allocation, to reduce

memory traffic in programs by allowing data reutilization. The key idea is to copy

and propagate data inside and across basic blocks using the queue instead of long

latency memory accesses. The argument is that fast queue to queue data transfer

instructions replacing memory accesses may improve the execution time of programs.

The presented algorithm is able to reduce memory traffic by about 20% for a set of scalar

applications while keeping the queue-to-queue communication small with about 7% of

total instructions.

In Chapter 6, by using the here presented queue compiler, we have been able to

127

demonstrate that our framework generates code with practical quality comparable to

that of production compilers. Having small binaries and high amounts of compile-time

instruction level parallelism suggest that an actual queue processor may make efficient use

of cache memories due to its small instructions, may have a simple fetching and decoding

buses and logic, a small instruction window, and no register renaming mechanisms.

Reducing the complexity of the hardware may allow us to produce a very power-efficient

parallel processor.

Engineering the queue compiler took big efforts and special attention. New data

structures and suitable intermediate representations were designed, and the algorithms

were designed and crafted to be part of a production compiler. The compiler has been

completed and it is able to compile any program, including itself which makes it ready

for deployment in a queue-based computer system. Making the compiler aware of the

target hardware configuration allows the generation of customized and optimized code that

helps the current and future research and development of queue machines. I expect this

work will be the starting point for future works and discoveries in queue-based computer

systems. I believe, the queue compiler is a sophisticated tool that will be used to develop

new ideas.

Appendix A

P-Code Instruction Set Architecture

A.1 Notation

We use the following convention for the instructions: a field is specified by its definition

in monospace characters enclosed by ’<’ and ’>’, e.g. “<type>”. The following table

describes the meaning of fields used to describe the syntax and semantics of P-Code

instructions.

Field Description Example

opcode Mnemonic of the instruction add

<type> Data type iws, (See Table 3.2)

<QHoffset> Offset reference relative to QH not −3

<QHoffset2> Second offset reference relative to QH add −3, -4

<register> Special purpose registers used for Frame pointer ($fp)

memory addressing Stack pointer ($sp)

Return address ($ra)

<displacement> Memory displacement addressing mode ld 32($fp)

<label> Label describing a target of a jump

for conditional jumps the label is PC relative $L3

for unconditional jumps is an absolute address $malloc

128

A.2. Arithmetic & Logic Instructions 129

A.2 Arithmetic & Logic Instructions

The format for binary instructions is “opcode <type>, <QHoffset>, <QHoffset2>” and

for unary instructions is “opcode <type>, <QHoffset>”.

Opcode Description Operator

add Addition +

sub Subtraction −

mul Multiplication ∗

div Division /

mod Modulo %

neg Negation (Unary) −

rsh Right shift >>

lsh Left shift <<

and Logic AND &

ior Logic inclusive OR |

xor Logic exclusive OR

not Logic NOT (Unary) !

rrot Bit right rotation

lrot Bit left rotation

abs Absolute value (Unary) |abs|

A.3 Memory Instructions

Opcode Description Format

ld Load from memory “ld <type>, <displacement>(<register>)”

st Store to memory “st <type>, <QHoffset>, <displacement>(<register>)”

ldi Load immediate value “ldi <type>, <constant>”

sld Unary load “sld <type>, <QHoffset>, <displacement>(<register>)”

sst Binary store “sst <type>, <QHoffset>, <QHoffset2>”

The hardware implementation of PQP [87] exposes a small set of special purpose

registers to be used as the stack pointer ($sp), frame pointer ($fp), return address

A.3. Memory Instructions 130

register, two address registers ($a1, $a2, $a3, $a4), and two data registers ($d1,

$d2). Local variables, incoming and outgoing arguments are accessed through $sp, $fp

using displacement addressing mode. Data registers serve to access global variables and

addresses. The queue compiler employs a conventional register-indirect addressing mode

to access memory. First the address is loaded into a data register and that register is used

to compute the effective address. When a pointer access or computed address for array

addressing is required, the compiler makes use of the address registers in similar fashion.

First, the address is computed in the queue. Second, the computed address is moved

from the queue to the address register. Third, the memory operation uses the register for

accessing the effective address.

Although this addressing mechanism is convenient for conventional register computers,

the PQP faces serious challenges that degrade the parallel capabilities of the queue

computation model. Naturally the PQP code is free of false dependencies. Using the

address registers to access memory introduces false dependencies in the queue code that

limit the available parallelism. The quality of the code is seriously affected whenever more

than two address registers are required to perform computation. Since the PQP has a

reduced bit-width instruction set the addressable number of registers is limited. To solve

this limitations we propose a new addressing method for the queue processor that relies

entirely on the queue rather than registers.

A.3.1 Efficient Addressing Method for Queue Processors

We have developed a new addressing method for queue processors which: (1) follows the

single assignment rule by using queue to compute addresses and accessing memory rather

than registers; (2) increases the parallelism by fully computing the addresses every time

that is required and eliminating unnecessary false dependencies; (3) eliminates all data

transfer instructions from queue to registers; (4) presents two new instructions that read

and write to memory taking the address and data directly from the queue.

Two new instructions are required to facilitate the new proposed addressing method.

We have named these instructions binary store (sst) and unary load (sld). The new

store instruction requires two operands that are implicitly read from the QH of the queue,

thus, a binary operation. Similarly, the new load instruction requires a single operand

A.3. Memory Instructions 131

to be read from the QH of the queue making it a unary operation. Figure A.1 shows the

semantics of the two instructions. The sst instruction requires its first operand to be the

computed address, and its second operand to be the data to be stored in that address.

The sld instruction requires its only operand to be the computed address from where to

read data. After reading the data from the specified address the value is written into QT.

computed
address data

QH

sld
dataaddress

Memory

QT

...computed
address data

QH

sst

data address

Memory

(a) Binary Store (a) Unary Load

Figure A.1: Semantics of the new memory instructions.

Consider the following C fragment of a program that copies array y to x:

for(i=0; i<n; i++) {

x[i] = y[i]; /* kernel */

}

For the simplicity of the explanation we concentrate on the kernel of the loop. The

statement “x[i] = y[i];” requires the addresses of arrays x, y to be computed by the

following equation:

addr = base + (index ∗ size) (A.1)

Figure A.2 shows the parse tree of the kernel of the loop including instructions to

compute addresses of “x[i], y[i]” as dictated by Equation A.1. On the right side of

the figure the queue program is shown. The queue program is obtained from making

a level-order traversal of the parse tree. A level-order traversal visits all the nodes on

every level from left to right, from the deepest level towards the root [71]. Notice that

the instruction sequence includes the sst and sld instructions. The sld instruction is

A.4. Comparison Instructions 132

connected to the (+) node in level L2. This addition computes the address of y[i]

(T1). The sst instruction is connected the two nodes in level L1. Its first children holds

the address of x[i] (T2), and the second children holds the value loaded by the sld

instruction.

In Figure A.3 the contents of the queue are shown before the execution of the last

two instructions of the program. For the sld instruction, notice that QH points to the

result of the addition that holds the computed address T1, or y[i]. After sld is executed

it retrieves the value stored at address T1 and writes it into QT. Then, before the sst

instruction is executed, QH points at the result the addition that contains the computed

address T2. As sst reads two operands, the first is the address, and the second is the

value written by sld. Thus, the evaluation of the kernel of the sample loop is performed

solely by using the queue.

x

+

*

i size

sst

y

+

*

i size

sld

L0

L1

L2

L3

L4

ld i
ld size
ld i
ld size
ld &y
mul
ld &x
mul
add
add
sld
sst

T1

T2

Figure A.2: Level order traversal of parse tree with array address calculation

Our proposed addressing method for queue processors is applicable to all aggregate

types such as pointers, arrays, and structures that require their addresses to be computed

at runtime. The new addressing method using unary load and binary store operations

increases parallelism by eliminating false dependencies introduced by the native PQP’s

displacement addressing mode using data and address registers. Instead, se use the queue

to compute and hold effective addresses rather than registers.

A.4 Comparison Instructions

Comparison instructions are binary instructions whose format is “opcode <type>,

<QHoffset>, <QHoffset2>”. After two operands are compared and the condition is

A.5. Control Flow Instructions 133

i size i size y * x * +

T1 = y + (i * size)

QH

+

T2 = x + (i * size)

QT

i size i size y * x * +

QH

+ T1

QT

T2 = x + (i * size)

sld

sst

Instruction
Flow

Queue Contents

Figure A.3: Level order traversal of parse tree with array address calculation

as expected by the operation, the result is automatically placed in the condition code

register $cc. This condition code register is checked by conditional branch instructions

to enable control flow.

Opcode Description

ceq Equal

cne Not equal

clt Less than

cle Less or equal

cgt Greater than

cge Greater or equal

A.5 Control Flow Instructions

Conditional branch instructions check the result stored in condition code register to branch

on true or false. Compiler generated target labels for jumps are defined by ’$L’ followed

by a number, e.g. ’$L7’. All control flow instructions using labels with this format are

PC-relative jumps.

A.6. Data Type Conversion Instructions 134

Opcode Description Format

bt Conditional branch to target if $cc is true “bt <label>”

bf Conditional branch to target if $cc is false “bf <label>”

j Unconditional jump to PC-relative target “j $L3”

Unconditional jump to absolute address target “j 0xffff0000”

jal Subroutine call “jal $subroutine”

ret Return from subroutine call “ret”

A.6 Data Type Conversion Instructions

To convert operands to other data types the conv instruction is employed. This instruction

takes two types, destination and source types, and the operand specified by an offset

reference. The format of the instruction is as follows:

Opcode Description Format

conv Data type conversion “conv <type>, <type>, <QHoffset>”

A.7 Special Instructions

Opcode Description Format

dup Duplicates an operand referenced by an offset “dup <type>, <QHoffset>”

relative to QH placing the result in QT

rot Rotates the operand in QH to QT “rot <type>”

A.8 Queue Control Instructions

For compatibility reasons with the hardware implementation of the PQP [87] the compiler

includes these two instructions. However, the queue compiler does not utilize the

instructions. These instructions allow the QH and QT pointers to be explicitly moved

to any location. As the compiler statically schedules the instructions, and knows at

every point of execution the precise location of the queue pointers, the explicit control is

unnecessary.

A.8. Queue Control Instructions 135

Opcode Description Format

moveqh Moves QH to the specified location “moveqh <QHoffset>”

moveqt Moves QT to the specified location “moveqt <QHoffset>”

Bibliography

[1] B. Abderazek, A. Canedo, T. Yoshinaga, and M. Sowa. The QC-2 Parallel Queue

Processor Architecture. Journal of Parallel and Distributed Computing, 68(2):235–

245, February 2008.

[2] B. Abderazek, S. Kawata, and M. Sowa. Design and Architecture for an Embedded

32-bit QueueCore. Journal of Embedded Computing, 2(2):191–205, 2006.

[3] B. Abderazek, T. Yoshinaga, and M. Sowa. High-Level Modeling and FPGA

Prototyping of Produced Order Parallel Queue Processor Core. Journal of

Supercomputing, 38(1):3–15, October 2006.

[4] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers Principles, Techniques, and

Tools. Addison Wesley, 1986.

[5] D. Alpert and D. Avnon. Architecture of the Pentium microprocessor. Micro, IEEE,

13(3):11–21, June 1993.

[6] S. Amarasinghe. Multicores from the compiler’s perspective: A blessing or a curse?

In CGO ’05: Proceedings of the international symposium on Code generation and

optimization, pages 137–137, Washington, DC, USA, 2005. IEEE Computer Society.

[7] J. Ayala, A. Veidenbaum, and M. Lopez-Vallejo. Power-Aware Compilation for

Register File Reduction. International Journal of Parallel Programming, 31(6):451–

467, December 2004.

[8] P. Boytchev. QRP-GCC a GCC-based C compiler for QRP. Technical Report Sowa

Laboratory SLL050301, University of Electro-Communications, 2005.

136

BIBLIOGRAPHY 137

[9] P. Briggs, K. D. Cooper, K. Kennedy, and L. Torczon. Coloring heuristics for

register allocation. SIGPLAN Not., 24(7):275–284, 1989.

[10] A. Canedo. Code Generation Algorithms for Consumed and Produced Order Queue

Machines. Master’s thesis, University of Electro-Communications, Tokyo, Japan,

September 2006.

[11] A. Canedo, B. Abderazek, and M. Sowa. A GCC-based Compiler for the Queue

Register Processor. In Proceedings of International Workshop on Modern Science

and Technology, pages 250–255, May 2006.

[12] A. Canedo, B. Abderazek, and M. Sowa. A New Code Generation Algorithm for 2-

offset Producer Order Queue Computation Model. Journal of Computer Languages,

Systems & Structures, 34(4):184–194, June 2007.

[13] A. Canedo, B. Abderazek, and M. Sowa. Compiler Support for Code Size Reduction

using a Queue-based Processor. Transactions on High-Performance Embedded

Architectures and Compilers, 2(4):153–169, 2007.

[14] A. Canedo, B. Abderazek, and M. Sowa. New Code Generation Algorithm for

QueueCore - An Embedded Processor with High ILP. In Proceedings of the Eighth

International Conference on Parallel and Distributed Computing, Applications and

Technologies (PDCAT 2007), pages 185–192, 2007.

[15] A. Canedo, B. Abderazek, and M. Sowa. Queue Register File Optimization

Algorithm for QueueCore Processor. In to appear in Proceedings of the

19th International Symposium on Computer Architecture and High Performance

Computing, 2007.

[16] G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins, and P. W.

Markstein. Register allocation via coloring. Computer Languages, 6:47–57, 1981.

[17] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, and W. W. Hwu. IMPACT:

An architectural framework for multiple-instruction-issue processors. In Proceedings

of the 18th International Symposium on Computer Architecture (ISCA), pages 266–

275, 1991.

BIBLIOGRAPHY 138

[18] F. C. Chow and J. L. Hennessy. The priority-based coloring approach to register

allocation. ACM Trans. Program. Lang. Syst., 12(4):501–536, 1990.

[19] S. Debray, R. Muth, and M. Weippert. Alias Analysis of Executable Code. In

Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, pages 12–24, 1998.

[20] S. K. Debray, W. Evans, R. Muth, and B. D. Sutter. Compiler techniques for

code compaction. ACM Transactions on Programming Languages and Systems,

22(2):378–415, 2000.

[21] J. J. Dujmovic and I. Dujmovic. Evolution and evaluation of SPEC benchmarks.

ACM SIGMETRICS Performance Evaluation Review, 26(3):2–9, December 1998.

[22] M. A. Ertl and D. Gregg. Stack Caching in Forth. In EuroForth 2005, pages 6–15,

2005.

[23] K. Farkas, P. Chow, and N. Jouppi. Register File Design Considerations in

Dynamically Scheduled Processors. In Proceedings of 2nd IEEE Symposium on

High-Performance Computer Architecture (HPCA ’96), page 40, 1996.

[24] M. Feller and M. D. Ercegovac. Queue machines: an organization for parallel

computation. In CONPAR ’81: Proceedings of the Conference on Analysing Problem

Classes and Programming for Parallel Computing, pages 37–47, London, UK, 1981.

Springer-Verlag.

[25] M. Fernandes. Using Queues for Register File Organization in VLIW Architectures.

Technical Report ECS-CSG-29-97, University of Edinburgh, 1997.

[26] C. Fraser and D. Hanson. A Retargetable C Compiler: Design and Implementation.

Addison-Wesley, 1995.

[27] J. Fujita. Implementation of c compiler for the parallel queue processor. Master’s

thesis, University of Electro-Communications, January 2004.

[28] GCC, the GNU Compiler Collection, http://gcc.gnu.org.

BIBLIOGRAPHY 139

[29] T. Genda, B. Abderazek, and M. Sowa. Design of a Parallel 2-Dimensional Queue

Processor. In In Proceedings of SWoPP 2007, IPSJ, 2007.

[30] A. Gordon-Ross, S. Cotterell, and F. Vahid. Tiny instruction caches for low power

embedded systems. ACM Transactions on Embedded Computing Systems (TECS),

2(4):449–481, November 2003.

[31] L. Goudge and S. Segars. Thumb: Reducing the Cost of 32-bit RISC Performance

in Portable and Consumer Applications. In Proceedings of COMPCON ’96, pages

176–181, 1996.

[32] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.

Brown. MiBench: A free, commercially representative embedded benchmark suite.

In IEEE 4th Annual Workshop on Workload Characterization, pages 3–14, 2001.

[33] A. Halambi, A. Shrivastava, P. Biswas, N. Dutt, and A. Nicolau. An Efficient

Compiler Technique for Code Size Reduction using Reduced Bit-width ISAs. In

Proceedings of the Conference on Design, Automation and Test in Europe, page

402, 2002.

[34] W. A. Havanki. Treegion Scheduling for VLIW Processors. Master’s thesis, North

Carolina State University, July 1997.

[35] L. S. Heath and S. V. Pemmaraju. Stack and Queue Layouts of Directed Acyclic

Graphs: Part I. SIAM Journal on Computing, 28(4):1510–1539, 1999.

[36] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach.

Morgan Kaufman, 2007.

[37] Y. Ishizaki, P. Boytchev, T. Yoshinaga, and M. Sowa. Queue compiler development

based on gcc. In FIT2005, 2005.

[38] S. Jang, S. Carr, P. Sweany, and D. Kuras. A Code Generation Framework for

VLIW Architectures with Partitioned Register Banks. In Proceedings of the 3rd

International Conference on Massively Parallel Computing Systems, 1998.

BIBLIOGRAPHY 140

[39] J. Janssen and H. Corporaal. Partitioned Register File for TTAs. In Proceedings

of the 28th annual international symposium on Microarchitecture, pages 303–312,

1995.

[40] M. Junger, S. Leipert, and P. Mutzel. Level Planarity Testing in Linear Time.

Technical report, Zentrum fur Angewandte Informatik Koln, 1999.

[41] G. Kane and J. Heinrich. MIPS RISC Architecture. Prentice Hall, 1992.

[42] S. Kawashima. Queue Java Compiler. Master’s thesis, University of Electro-

Communications, Tokyo, Japan, September 2004.

[43] K. Kissel. MIPS16: High-density MIPS for the embedded market. Technical report,

Silicon Graphics MIPS Group, 1997.

[44] T. Kiyohara, S. Mahlke, W. Chen, R. Bringmann, R. Hank, S. Anik, and W.-M.

Hwu. Register connection: a new approach to adding registers into instruction set

architectures. SIGARCH Comput. Archit. News, 21(2):247–256, 1993.

[45] J. P. Koopman. A preliminary exploration of optimized stack code generation.

Journal of Forth Application and Research, 6(3):241–251, 1994.

[46] A. Krishnaswamy. Microarchitecture and Compiler Techniques for Dual Width ISA

Processors. PhD thesis, University of Arizona, September 2006.

[47] A. Krishnaswamy and R. Gupta. Profile Guided Selection of ARM and Thumb

Instructions. In ACM SIGPLAN conference on Languages, Compilers, and Tools

for Embedded Systems, pages 56–64, 2002.

[48] A. Krishnaswamy and R. Gupta. Enhancing the Performance of 16-bit Code Using

Augmenting Instructions. In Proceedings of the 2003 SIGPLAN Conference on

Language, Compiler, and Tools for Embedded Systems, pages 254–264, 2003.

[49] G. Kucuk, O. Ergin, D. Ponomarev, and K. Ghose. Energy efficient register

renaming. Lecture Notes in Computer Science, 2799/2003:219–228, September 2003.

[50] Y. Kwon, X. Ma, and H. J. Lee. Pare: instruction set architecture for efficient code

size reduction. Electronics Letters, pages 2098–2099, 1999.

BIBLIOGRAPHY 141

[51] lcc, A Retargetable Compiler for ANSI C, http://www.cs.princeton.edu/software/lcc/.

[52] C. Lee, M. Potkonjak, and W. Mangione-Smith. MediaBench: a tool for

evaluating and synthesizing multimedia and communications systems. In 30th

Annual International Symposium on Microarchitecture (Micro ’97), page 330, 1997.

[53] W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb, V. Sarkar, and S. Amarasinghe.

Space-time scheduling of instruction-level parallelism on a raw machine. SIGOPS

Oper. Syst. Rev., 32(5):46–57, 1998.

[54] S. Y. Liao, S. Devadas, and K. Keutzer. Code density optimization for embedded

DSP processors using data compression techniques. In Proceedings of the 16th

Conference on Advanced Research in VLSI (ARVLSI’95), page 272, 1995.

[55] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Sun

Microsystems, 1999.

[56] J. Llosa, E. Ayguade, and M. Valero. Quantitative Evaluation of Register Pressure

on Software Pipelined Loops. International Journal of Parallel Programming,

26(2):121–142, April 1998.

[57] The LLVM Compiler Infrastructure, http://llvm.org/.

[58] A. Maeda and M. Nakanishi. A Queue-Machine-Based Implementation of Parallel

Functionalk Programming Language. In Proceedings of the Fifteenth IASTED

International Conference on Applied Informatics, pages 67–70, 1997.

[59] S. A. Mahlke, W. Y. Chen, P. P. Chang, and W. mei W. Hwu. Scalar Program

Performance on Muliple-Instruction-Issue Processors with a Limited Number of

Registers. In Proceedings of the 25th Annual Hawaii Int’l Conference on System

Sciences, pages 34–44, 1992.

[60] S. A. Mahlke, N. J. Warter, W. Y. Chen, P. P. Chang, and W. mei W. Hwu.

The effect of compiler optimizations on available parallelism in scalar programs.

In Proceedings of the 1991 International Conference on Parallel Processing, pages

142–145, 1991.

BIBLIOGRAPHY 142

[61] M. Maierhofer and M. A. Ertl. Local Stack Allocation. In Proceedings of the 7th

International Conference on Compiler Construction, pages 189–203, 1998.

[62] H. McGhan and M. O’Connor. Picojava: A direct execution engine for java

bytecode. Computer, 31(10):22–30, 1998.

[63] W. mei Hwu, S. Ryoo, S.-Z. Ueng, J. H. Kelm, I. Gelado, S. S. Stone, R. E. Kidd,

S. S. Baghsorkhi, A. A. Mahesri, S. C. Tsao, N. Navarro, S. S. Lumetta, M. I.

Frank, and S. J. Patel. Implicitly parallel programming models for thousand-core

microprocessors. In DAC ’07: Proceedings of the 44th annual conference on Design

automation, pages 754–759, New York, NY, USA, 2007. ACM.

[64] J. Merrill. GENERIC and GIMPLE: A New Tree Representation for Entire

Functions. In Proceedings of GCC Developers Summit, pages 171–180, 2003.

[65] S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufman,

1997.

[66] D. Novillo. Design and Implementation of Tree SSA. In Proceedings of GCC

Developers Summit, pages 119–130, 2004.

[67] S. Okamoto, H. Suzuki, A. Maeda, and M. Sowa. Design of a superscalar processor

based on queue machine computation model. Communications, Computers and

Signal Processing, 1999 IEEE Pacific Rim Conference on, pages 151–154, 1999.

[68] Y. Okumura, T. Yoshinaga, and M. Sowa. Parallel C Compiler for Queue Machine.

In Joho Shori Gakkai Kenkyu Hokoku, pages 127–132, 2002.

[69] V. Patankar, A. Jain, and R. Bryant. Formal verification of an ARM processor. In

Twelfth International Conference On VLSI Design, pages 282–287, 1999.

[70] M. Postiff, D. Greene, and T. Mudge. The Need for Large Register File in Integer

Codes. Technical Report CSE-TR-434-00, University of Michigan, 2000.

[71] B. Preiss and C. Hamacher. Data Flow on Queue Machines. In 12th Int. IEEE

Symposium on computer Architecture, pages 342–351, 1985.

BIBLIOGRAPHY 143

[72] R. Ravindran, R. Senger, E. Marsman, G. Dasika, M. Guthaus, S. Mahlke, and

R. Brown. Partitioning Variables across Register Windows to Reduce Spill Code in

a Low-Power Processor. IEEE Transactions on Computers, 54(8):998–1012, August

2005.

[73] K. Sankaralingam and K. Agaram. Evaluating the instruction folding mechanism

of the picojava processor.

[74] V. Santhanam and D. Odnert. Register allocation across procedure and module

boundaries. SIGPLAN Not., 25(6):28–39, 1990.

[75] V. Sarkar. Code optimization of parallel programs: evolutionary vs. revolutionary

approaches. In CGO ’08: Proceedings of the sixth annual IEEE/ACM international

symposium on Code generation and optimization, pages 1–1, New York, NY, USA,

2008. ACM.

[76] H. Schmit, B. Levine, and B. Ylvisaker. Queue Machines: Hardware Compilation

in Hardware. In 10th Annual IEEE Symposium on Field-Programmable Custom

Computing Machines, page 152, 2002.

[77] M. Shannon and C. Bailey. Global Stack Allocation - Register Allocation for Stack

Machines. In EuroForth 2006, pages 13–20, 2006.

[78] L. Sheayun, L. Jaejin, and S. Min. Code Generation for a Dual Instruction Processor

Based on Selective Code Transformation. In Lectures in Computer Science, pages

33–48, 2003.

[79] H. Shi and C. Bailey. Investigating available instruction level parallelism for stack

based machine architectures. dsd, 0:112–120, 2004.

[80] S. Shigeta, B. Abderazek, T. Yoshinaga, and M. Sowa. Proposal of High

Parallelism QJava Bytecode. In Proceedings of the Advanced Computing Systems

and Infrastructures, 1999.

[81] S. Shigeta, L. Wang, N. Yagishita, B. Abderazek, S. Shigeta, T. Yoshinaga, and

M. Sowa. QJava: Integrate Queue Computation Model into Java. In Proceedings

BIBLIOGRAPHY 144

of the Joint Japan-Tunisia Workshop on Computer Systems and Information

Technology, pages 60–65, 2004.

[82] D. Sima. The design space of register renaming techniques. IEEE Micro, 20(5):70–

83, October 2000.

[83] A. Smith, J. Gibson, B. Maher, N. Nethercote, B. Yoder, D. Burger, K. S. McKinle,

and J. Burrill. Compiling for edge architectures. In CGO ’06: Proceedings of the

International Symposium on Code Generation and Optimization, pages 185–195,

Washington, DC, USA, 2006. IEEE Computer Society.

[84] J. E. Smith, G. E. Dermer, B. D. Vanderwarn, S. D. Klinger, C. M. Rozewski,

D. L. Fowler, K. R. Scidmore, and J. P. Laudon. The ZS-1 central processor.

In Proceedings of the 2nd International Conference on Architectural Support for

Programming Languages and Operating System (ASPLOS), volume 22, pages 199–

204, New York, NY, 1987. ACM Press.

[85] Sowa Laboratory, http://www.sowa.is.uec.ac.jp.

[86] M. Sowa. Summary of Parallel Queue Machine. Technical Report Sowa Laboratory

SLL973002, University of Electro-Communications, 1999.

[87] M. Sowa, B. Abderazek, and T. Yoshinaga. Parallel Queue Processor Architecture

Based on Produced Order Computation Model. Journal of Supercomputing,

32(3):217–229, June 2005.

[88] Trimaran, An Infrastructure for Research in Backend Compilation and Architecture

Exploration, http://www.trimaran.org/.

[89] G. Tyson, M. Smelyanskiy, and E. Davidson. Evaluating the Use of Register Queues

in Software Pipelined Loops. IEEE Transactions on Computers, 50(8):769–783,

August 2001.

[90] V. z̆ivojnović, J. M. Velarde, C. Schläger, and H. Meyr. DSPSTONE: A DSP-

oriented benchmarking methodology. In Proceedings of the International Conference

on Signal Processing and Technology (ICSPAT’94), 1994.

BIBLIOGRAPHY 145

[91] N. Vijaykrishnan. Issues in the Design of a Java Processor Architecture. PhD thesis,

University of South Florida, 1998.

[92] D. Wall. Available instruction-level parallelism for superscalar and superpipelined

machines. ACM SIGARCH Computer Architecture News, 17(2):272–282, April 1989.

[93] D. Wall. Limits of instruction-level parallelism. ACM SIGARCH Computer

Architecture News, 19(2):176–188, April 1991.

[94] D. W. Wall. Global register allocation at link time. SIGPLAN Not., 21(7):264–275,

1986.

[95] A. Wolfe and A. Chanin. Executing compressed programs on an embedded

RISC architecture. In Proceedings of the 25th annual international symposium on

Microarchitecture, pages 81–91, 1992.

[96] W. Wulf. Evaluation of the WM Architecture. In Proceedings of the 19th annual

international symposium on Computer architecture, pages 382–390, 1992.

[97] W. A. Wulf and S. A. McKee. Hitting the Memory Wall: Implications of the

Obvious. Computer Architecture News, 23(1):20–24, 1995.

[98] J. Zalamea, J. Llosa, E. Ayguade, and M. Valero. Software and Hardware

Techniques to Optimize Register File Utilization in VLIW Architectures.

International Journal of Parallel Programming, 32(6):447–474, December 2004.

[99] H. Zhou and T. M. Conte. Code Size Efficiency in Global Scheduling for ILP

Processors. In The 6th Annual Workshop on Interaction between Compilers and

Computer Architectures, pages 79–90, 2002.

[100] H. Zhou and T. M. Conte. Using Performance Bounds to Guide Pre-scheduling

Code Optimizations. Technical report, N.C State University, 2002.

List of Publications

Journals (Refereed)

1. Arquimedes Canedo, Ben A. Abderazek, Masahiro Sowa, “A New Code Generation
Algorithm for 2-offset Producer Order Queue Computation Model”, Journal of
Computer Languages Systems & Structures, Vol. 34, Number 4, pages 184-194,
2007, (Chapter 2, 3)

2. Arquimedes Canedo, Ben Abderazek, and Masahiro Sowa, “Natural Instruction
Level Parallelism-aware Compiler for High-Performance Embedded QueueCore”.
Journal of Embedded Computing, To appear in 2008, (Chapter 3, 4.4, 6).

3. Ben A. Abderazek, Arquimedes Canedo, Tsutomu Yoshinaga, Masahiro Sowa, “The
QC-2 Parallel Queue Processor Architecture”, Journal of Parallel and Distributed
Computing, Volume 68, Issue 3, pp. 235-245, 2008, (Chapter 2, 3, 6)

4. Arquimedes Canedo, Ben Abderazek, and Masahiro Sowa, “Compiler Support for
Code Size Reduction using a Queue-based Processor”. Transactions on High-
Performance Embedded Architectures and Compilers, Volume 2, Issue 3, pp. 153-
169, 2007, (Chapter 4.1).

Books (Chapters)

1. Ben Abderazek, Arquimedes Canedo, “Processor for Mobile Applications”, Hand-
book of Research on Mobile Multimedia, 1st Edition, Information Science Reference,
To appear 2008, (Chapter 3)

International Conferences (Refereed)

1. Arquimedes Canedo, Ben Abderazek, Masahiro Sowa, “Queue Register File Opti-
mization Algorithm for QueueCore Processor”, In Proceedings of 19th International
Symposium on Computer Architecture and High Performance Computing (SBAC-
PAD’07), Gramado, Brazil, pp. 169-176, 2007, (Chapter 4.2)

2. Arquimedes Canedo, Ben Abderazek, Masahiro Sowa, “New Code Generation
Algorithm for QueueCore - An Embedded Processor with High ILP” Best
Paper Award, In Proceedings of the Eight International Conference on Parallel

146

List of Publications 147

and Distributed Computing Applications and Technologies (PDCAT’07), Adelaide,
Australia, pp. 185-192, 2007, (Chapter 3, 4.4, 6)

3. Arquimedes Canedo, Ben Abderazek, Masahiro Sowa, “Quantitative Evaluation of
Common Subexpression Elimination on Queue Machines”, In Proceedings of the
International Symposium on Parallel Architectures, Algorithms, and Networks (I-
SPAN 2008), Sydney, Australia, pp. 25-30, 2008, (Chapter 4.3)

4. Arquimedes Canedo, Ben Abderazek, Masahiro Sowa, “An Efficient Code Genera-
tion Algorithm for Code Size Reduction using 1-offset P-Code Queue Computation
Model”, In Proceedings of the IFIP International Conference on Embedded and
Ubiquitous Computing (EUC07), Taipei, Taiwan, pp. 196-208, 2007, (Chapter 4.1)

5. Yuki Nakanishi, Arquimedes Canedo, Ben Abderazek, Masahiro Sowa, “Optimizing
Reaching Definitions Overhead in Queue Processors”, Journal of Convergence
Information Technology, Vol. 2, Number 4, December, pp. 36-39, 2007, (Chapter
4.3)

6. Arquimedes Canedo, Ben Abderazek, Masahiro Sowa, “Compiler Framework for an
Embedded 32-bit Queue Processor”, In proceedings of the International Conference
on Convergence Information Technology (ICCIT07), Gyeongju, South Korea, pp.
877-884, 2007, (Chapter 3)

7. Teruhisa Yuki, Arquimedes Canedo, Ben Abderazek, Masahiro Sowa, “Novel
Addressing Method for Aggregate Types in Queue Processors”, In proceedings of
the International Conference on Convergence Information Technology (ICCIT07),
Gyeongju, South Korea, pp. 1793-1796, 2007, (Chapter 3)

Others

1. Arquimedes Canedo, Ben Abderazek, Masahiro Sowa, “Queue Compiler Develop-
ment”, In Proceedings of the Summer United Workshops on Parallel Distributed and
Cooperative Processing (SWoPP’07), Asahikawa, Japan, 2007, (Chapter 2, 3)

2. Arquimedes Canedo, Ben Abderazek, Masahiro Sowa, “A GCC-based Compiler for
the Queue Register Processor (QRP-GCC)”, In proceedings of the International
Workshop on Modern Science and Technology (IWMST06), Wuhan, China, 2006

3. Arquimedes Canedo, Ben A. Abderazek, Masahiro Sowa, “Queue Assembler”,
Proceedings of the 67th IPSJ conference, Tokyo, Japan, 2005

Currently Under Review

1. Arquimedes Canedo, Sayaka Akioka, Masahiro Sowa, “Compilation Techniques
for Reducing Memory Traffic in Queue Processors”, IEEE/ACM International
Symposium on Microarchitecture MICRO-41, Submitted on May 2008, (Chapter
5)

List of Publications 148

2. Arquimedes Canedo, Ben A. Abderazek, Masahiro Sowa, “Compiling for Reduced
Bit-Width Queue Processors”, Journal of Signal Processing Systems, Springer,
Submitted on April 2008, (Chapter 4.1, 6)

3. Arquimedes Canedo, Ben Abderazek, Masahiro Sowa, “Design and Implementation
of a Queue Compiler”, Journal of Microprocessors and Microsystems, Elsevier,
Submitted on November 2007, (Chapter 3, 6)

4. Arquimedes Canedo, Ben Abderazek, Masahiro Sowa, “Efficient Compilation for
Queue Size Constrained Queue Processors”, Journal of Parallel Computing, Else-
vier, Submitted on August 2007, (Chapter 4.2)

Author Biography

Arquimedes Canedo received his B.Eng. degree with honors of excellence in computer

engineering from the National Polytechnic Institute (IPN) of Mexico in 2004. In 2006

he received his M.Eng. degree from the Graduate School of Information Systems of the

University of Electro-Communications, Tokyo, where he is currently pursuing his doctor

degree with the investigation of code generation, compilation, and optimization techniques

for queue processors. His research interests include optimizing compilers, algorithms and

data structures, computer languages, non-conventional computer architectures, embedded

systems, and queue computing. He is member of IEEE and ACM.

149

Acknowledgments

First and foremost, I would like to thank my main advisor Prof. Masahiro Sowa for his

guidance during the course of my doctoral research, for many hours invested in technical

and philosophical discussions, for all the motivation and inspiration to become a better

researcher and person, and for his faithful belief in queue computing. The pride of being

his student and scholar will last forever. I would also like to extend my appreciation to my

advisors, Professor Masanori Idesawa, Professor Toshihiko Kato, Professor Hiroki Honda,

and Professor Tsutomu Yoshinaga.

I am grateful to all the members of the thesis supervisory committee for their

valuable comments and suggestions during my doctoral defense: Professor Masahiro Sowa,

Professor Masanori Idesawa, Professor Toshihiko Kato, Professor Hiroki Honda, Professor

Tsutomu Yoshinaga, Professor Tsuneyasu Komiya, and Professor Masaaki Kondo.

My special thanks to Professor Ben Abderazek who, for the first half of my doctoral

studies, supervised my research progress and gave me valuable comments and offered me

his trust and friendship. And also to Professor Sayaka Akioka for helping me reviewing

my thesis and papers.

To all the members of the Queue Compiler Group: Teruhisa Yuki, Akihiro Nagai,

Yuki Nakanishi, and Keisuke Takaki, for pointing out technical issues and improvements

for the queue compiler, for finding and fixing bugs, and for having the strong will to learn

and discover new things.

I would like to thank, from the very core of me, to my parents, my brother, and

my motherland México. Toinkins, gracias por todos los sacrificios hechos para darme

educación.

Finally, all the cosmic propagation to my wife Petty Sukarsaatmadja. Thank you for

all the encouragement, support, and very unique love.

150

	9000000330.pdfから挿入したしおり
	Introduction
	Main Objectives
	Related Work to Queue Machines
	Organization of this Dissertation

	Queue Computation Model
	Differences with Conventional Computation Models
	Code Generation for Queue Machines
	Consumers-Producers Data Ordering Problem

	Queue Computation Model Taxonomy
	Producer-Consumer Order Queue Computation Model (PC-QCM)
	Consumer Order Queue Computation Model (C-QCM)
	Producer Order Queue Computation Model (P-QCM)

	Producer Order Queue Compiler Framework
	Target Queue-based Architecture
	Offset Referenced Instructions Classification

	Compiler Framework Design and Implementation
	QTree Generation
	Queue Code Generation
	Offset Calculation
	Instruction Scheduling
	Assembly Generation
	Application Binary Interface (ABI)

	Functionality
	Self-Hosted Compiler
	Lower Bound Execution Time (LBET)

	Framework Complexity Evaluation
	Lines of Code Complexity
	Compile-time Complexity

	Constraint-Driven Compilation
	Code Size-aware Compilation
	1-offset P-Code
	Code Size Reduction-aware Code Generation
	Code Size Reduction Evaluation
	Effect of dup instructions on Code Size
	Discussion on Variable-length Instruction Set
	Conclusion

	Queue Register File Optimization
	Related Work
	Target Architecture: QueueCore processor
	Algorithm for Queue Register File Constrained Compilation
	Evaluation of Queue Register File Constrained Compilation
	QueueCore Processor Evaluation
	Conclusion

	Classic Optimization: Common Subexpression Elimination
	Implementation of CSE in Queue Compiler
	Effects of CSE on Queue Programs
	Evaluation
	Conclusion

	ILP Optimization: Statement Merging Transformation
	Algorithm
	Evaluation
	Conclusion

	Queue Allocation: reducing memory traffic in producer order queue machines
	Shared Main Memory Communication Method
	Intra-block Communication
	Inter-block Communication

	Operand Queue for Reducing Memory Traffic in Queue Programs
	Semantics of dup instruction
	Algorithm for inserting dup instructions
	Using queue for inter-block passed variables
	Enabling Compiler Support

	Evaluation
	Memory Traffic Reduction
	Expense of dup instructions for offset constrain

	Conclusion

	Queue Computing Evaluation
	Code Size Comparison
	Compile-time Extracted ILP Comparison

	Conclusion
	P-Code Instruction Set Architecture
	Notation
	Arithmetic & Logic Instructions
	Memory Instructions
	Efficient Addressing Method for Queue Processors

	Comparison Instructions
	Control Flow Instructions
	Data Type Conversion Instructions
	Special Instructions
	Queue Control Instructions

	Bibliography
	List of Publications
	Author Biography
	Acknowledgments

