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THERORY OF DETONATION WAVES
1
 

By 

J. VON NEUMANN 

 

Summary - The mechanism by which a stationary detonation wave maintains 

itself and progresses through the explosive is investigated. 

Reasons are found which support the following hypothesis: The detonation 

wave initiates the detonation in the neighboring layer of the intact explosive by 

the discontinuity of material velocity which it produces. This acts like a very 

vehement mechanical blow (~ 1,500 m/sec), and is probably mom effective than 

high temperature. 

The velocity of the detonation wave is determined by investigating all 

phases of the reaction. and not only (as usually done heretofore) the completed 

reaction. The result shows when the so called Chapman-Jouguet hypothesis is 

true, and what formulae are to be used when it is not true. 

Detailed computations win follow. 

 

Objectives, Methods and General Principles of this Report 

 

1. The purpose of this report is to give a consequent theory of the mechanism by 

which a stationary detonation wave maintains itself and progresses through an 

explosive. Such a theory must explain how the head of the detonation wave initiates 

the reaction (and the detonation) in the intact explosive, and how a well-determined 

constant velocity of this wave arises. Both aims can be achieved only after 

overcoming certain characteristic difficulties. 

 

2. Regarding the first objective, this ought to be said: We do not undertake to give a 

theory of the initiation of a detonation in general. The viewpoints which we bring up 

may throw some light on that question too, but our primary aim is to understand the 

mechanism of the existing stationary detonation wave. Here the detonation of each 

layer of the intact explosive is initiated by the stationary detonation wave which has 

already engulfed its neighboring layer. 

In gaseous explosions this may be explained by the high temperature of the 

extremely compressed gas in the detonation zone. In solid explosives this 

explanation is hardly available: The detonation wave is very narrow in space and 

moving with very high velocity, so the chemical reaction (which supports the 

detonation) cannot be treated as instantaneous. Hence the head of the detonation 

wave corresponds to the just incipient reaction, and contains accordingly only an 

                                                   
1 A progress report to April, 1942 Division B National Defense Research Committee of the Office of 

Scientific Research and Development Section B-1 OSRD 549 (May 4, 1942). 
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infinitesimal fraction of gas. The not-yet-reacted solid explosive in it is presumably 

cold. At any rate the high gas temperatures in the wave head no longer dominate the 

picture, and therefore cannot detonate the intact explosive. 

We shall see that there is more likelihood in this: There must be a discontinuous 

change of velocity of the bulk of the substance which crosses the wave head. This 

acts as a violent blow, delivered at velocities of ~1,500 m/sec under typical 

conditions - which is probably at least as effective as temperatures of 

~2,500°- 3,000 ℃.
2
 

 

3. As to the second objective, the present literature is dominated by the so, 

called Chapman-Jouguet hypothesis. This hypothesis provides a definite 

value for the velocity of the detonation wave, but its theoretical foundations 

are not satisfactory. The experimental evidence is altogether reasonably 

favorable to this hypothesis, but it is not easy to appraise because of the 

slight information we possess concerning the physical properties of the 

substances involved under the extreme conditions in a detonation. 

All theories on this subject are based on the Rankine-Hugoniot 

equations of a shock wave, which are actually applications of the 

conservation theorems of mass, momentum, and energy. The 

Chapman-Jouguet hypothesis is based on a consideration of these principles 

in the completed reaction only. 

We shall apply them to all intermediate phases of the  This necessitates 

the investigation of the entire family of all so called Rankine-Hoguniot 

curves, corresponding to all phases of the reaction. By doing this we shall 

succeed in determining the velocity of the detonation wave. We find that the 

Chapman-Jouguet hypothesis is true for some forms of the above-mentioned 

family of curves, and not for others. We obtain precise criteria, which 

determine when it is true, and also a general method to compute the velocity 

of the detonation wave which is always valid. 

 

4. All these discussions are made in a general, as far as feasible qualitative, 

way, avoiding detailed computations. Specific computations which determine 

the detonation velocity for definite types of explosives will be made 

subsequently. In this connection the question is of importance whether the 

configuration of the family of curves mentioned above, for which the 

Chapman-Jouguet hypothesis fails to be true, ever occurs for real explosives. 

This question will be considered together with the first-mentioned 

computations. In all these discussions the compressibilities and specific heats 

                                                   
2 We are thus disregarding the possibility that the detonation is propagated by special kinds of 

particles (ions, etc.), moving ahead of the wave head. Indeed, if the views which we propose are 
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of solids and gases under detonation conditions are the decisive factors. 

The properties of a detonation which has not yet reached its stationary 

wave stage will also be investigated later. It is to be hoped that this will 

connect the present theory with the difficult questions of initiating a 

detonation: of “primers” and “boosters”. 

The present work is restricted to plane waves in absolutely confined 

explosives. The effects of spatial expansion on spherical waves and in the 

case of partial confinement will be considered later. 

The author finally wishes to express his thanks to E. Bright Wilson, Jr., 

and to R. H. Kent, for whose valuable suggestions and discussions he is 

greatly indebted. 

 

§§1-3. Formulation of the Problem 

1. In studying the mechanism of a detonation the following approximate 

picture suggests itself. 

Imagine that the detonation wave moves across the explosive in parallel 

planes, i.e., everywhere in the same direction. Choose this direction as the 

negative x-axis. Then conditions are constant in all planes parallel to the y, 

z-plane. The explosive must be confined by some cylindrical boundary, i.e., 

by the same boundary curve in each one of the above parallel planes. Assume 

this confinement to be absolutely unyielding. Assume that all motions 

connected, with the detonation take place in the direction of the x-axis, i.e., 

that there are no transversal components parallel to the y, z-plane. 

The limitations of this picture are obvious, but it is useful for a first 

orientation. It ought to be essentially correct for a heavily confined stick of 

explosive, detonated at one end surface.
3
 

Under these assumptions the process of detonation can be treated 

one-dimensionally; i.e., we may disregard the coordinates y, z and treat 

everything in terms of the coordinate x and of the time t.  

 

2. We restrict ourselves further by assuming also that the detonation wave 

has reached its stationary stage; that is, that it moves along without any 

change of its structural details. 

 

Then, among other things, the wave velocity must be constant in time. 

                                                                                                              
found to be correct, no such special particles will be needed to explain the detonation wave. 
3 It may even be approximately applicable to an unconfined stick of explosive, since the great 

velocity of the detonation wave - i.e., the brevity of the available time interval - makes the 
inertia of a solid explosive itself act as a confinement. 

In a higher approximation, however, lack of confinement causes corrections which must be 
determined. This problem was considered by G. I. Taylor and H. Jones in the British reports RC 

193 and RC 247 (1941). The authors, however, used a picture of the mechanism of detonation 

that differs from the one we shall evolve. It is proposed to take up this subject from our point of 
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We now modify the frame of reference by making it - i.e., the origin of the 

coordinate - move along with the wave. To be specific, let the origin of the 

x-coordinate be at every moment at the head of the wave. The intact 

explosive is to the left of this. In other words: 

(2-A) The intact explosive occupies the space x < 0. 

(2-B) The detonation - i.e., the chemical reaction underlying it-sets in at x = 0. 

This is the head of the detonation wave. 

(2-C) The entire process of detonation - i.e., the chemical reaction mentioned 

above - occurs in successive stages in the space x > 0. The part of this space 

which it occupies is the reaction zone. The remoter parts are occupied by the 

completely reacted (burnt) products of the detonation,
4
 the burnt gases. This 

is the region behind the detonation wave. 

 

3. The detonation wave has a constant velocity with respect to (and directed 

toward) the intact explosive, say D. Since the detonation wave is at rest in 

our frame of reference, this means that the intact explosive has the velocity D 

with respect to (and directed toward) the fixed head of the wave. That is, at 

every point x < 0 (in (2-A)) the velocity of matter is D. (D > 0, in the 

direction of the positive x-axis!) 

At every point x > 0 (in (2-C)) we have a velocity of matter u = u(x) and a 

fraction n = n(x) > 0, ≤ 1 expressing to what extent the chemical reaction has 

been completed there. (That is at x > 0 a unit mass contains n parts of burnt 

gas and 1 - n parts of intact explosive.) During the time dt matter in this 

region moves by dx = udt. So if the reaction velocity (under the physical 

conditions prevailing at x) is )(xαα =  then we have
5
 

u

n

dx

dn α)1( −
= .     (3.1) 

As x increases from 0 toward +∞ , n increases from 0 toward 1. 

According to the details of the situation, n may or may not reach the value 

(completely burnt gas) for a finite x (cf. previous footnote). We assume for 

the sake of simplicity that the former is the case, i.e., that the reaction is 

exactly completed for a finite x. 

To conclude the description of condition in our phenomenon: At every 

point x < 0 (in (2-A)) we have the same physical characteristics - say 

pressure 0p  and specific volume 0v . These describe the intact explosive. 

                                                                                                              
view in a subsequent report. 
4 This may be true exactly, or only asymptotically. 
5 In assuming the existence of a well defined and stationary reaction velocity (i.e., of one which 

is a numerical constant in time), a definite physical hypothesis is being made: That of (at least) 
kinetic quasi equilibrium at every point of the reaction. This hypothesis is, however, a natural 

one to make, unless there is definite evidence to the contrary; And there does not seem to be any 

so far. 
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At every point x > 0 (in (2-C)) we have a pressure p = p(x) and a specific 

volume v = v(x). 

The nature of the chemical reaction is expressed by a functional 

relationship 

   ),,( vpnA=α ,    (3.2) 

where we assume A(n, p, v) to be a known function. The stability of the intact 

explosive requires 

   0),,0( 00 =vpA .    (3-3) 

The nature of the explosive and its mixtures with the burnt gas is 

expressed - as far as it interests us - by its caloric equation for each 0≥n , 

1≤ , i.e., by the functional relationship determining its inner energy, per unit 

mass 

   ),,( vpnEe = ,    (3.4) 

where we assume E(n, p, v) to be a known function. 

 

§§4-7. Discussion of the Equations. The Chapman-Jouguet Hypothesis 

4. The substance which passes from the intact explosive state-the space x < 0 

in (2-A) - through the various phases of the chemical reaction underlying the 

detonation - the space x > 0 in (2-C) - must fulfill the conditions of 

conservation of mass, momentum, and energy. Indeed these are the 

mechanical conditions for the stationarity of the detonation wave.
6
 Denote 

the mass flow - the amount of matter crossing the wave head per second,
7
 

i.e., the amount of matter detonating per second, by µ . Then the conditions 

of conservation become: 

 Mass:  0vD µ= , vu µ= ,   (4.1) 

Momentum: 0)( ppuD −=−µ ,   (4.2) 

Energy: 0
2

00
2

),,(
2

1
),,0(

2

1
DpupvpnEuvpED −=







 −−+µ . 

        (4.3) 

(4.1), (4.2), (4.3) together with (3.1), (3.2), determine everything. 

But (3.1), (3.2) merely establish the scale of conversion of the two 

variables x and n into each other. If we are satisfied to use n - instead of x - as 

the independent variable, then we can rely upon (4.1), (4.2), (4.3) alone. If 

we obtain from them p = p(n), v = v(n) and u = u(n), then (3.1), (3.2) may be 

stated as 

                                                   
6 This is the classical procedure of Rankine and Hugoniot. The application to all intermediate 

phases of the reaction for the purpose of a structural analysis was suggested by G.. I. Taylor and 
H. Jones loc. cit. (footnote 3). 
7 And per unit surface of the y, z-plane. 
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⌡
⌠

−
=

n

vpnAn

udn
x

0 ),,()1(
,   (4.4) 

i.e., as a conversion formula in the above sense. 

This is the procedure which we shall use. 

 

5. The algorithm of solving (4.1), (4.2), (4.3) is well known. 

We consider 0p , 0v  as given, D, µ  as unknown parameters of the 

problem,
8
 and p, v, u as unknown functions of n.

9
 (4.1) expresses D, u in 

terms of µ , v ( 0v  is given!), so that equations (4.2), (4.3) remain. These 

are easily transformed into 

   
2

0

0 µ=
−
−
vv

pp
,    (5.1) 

  ),,(),,0())((
2

1
0000 vpnEvpEvvpp ==−+ . (5.2) 

Thus µ  determines, for every n > 0, 1≤ , p, v by the implicit equations 

(5.1), (5.2). 

The strange thing in all this is that one unknown parameter - say µ  - 

remains undetermined. But the stationary state of the detonation wave of a 

definite chemical reaction ought to possess - if it exists at all - 

unambiguously determined characteristics. Hence it should be possible to 

formulate some further condition which completes the determination of µ . 

Before we consider this question, however, let us return to (5.1), (5.2). 

Their solution can be illustrated by a familiar graphical method (Fig. 1). 

Plot the curve (5.2), the Rankine-Hugoniot curve, in the p, v-plane, 

together with the point ( 0p , 0v ). Denote the angle between the direction of 

the negative v-axis and the direction ( 0p , 0v )→ (p, v) by φ . Then (5.2) 

states that p, v lies on the Rankine-Hugoniot curve, and (5.1) states that 

φµ tan= , φtan0vD = .   (5.3) 

Thus the unknown parameter φ  is substituted for the unknown 

parameter µ  (or D). 

This picture should be drawn for each n > 0, 1≤ , with the same ( 0p , 

0v ) and φ  but varying Rankine-Hugoniot curves, and so the corresponding 

p, v are obtained.
10
 

Observe that all these considerations are also valid for n = 0, in which 

                                                   
8 Not dependent upon x or n! 
9 Instead of x, cf. the end of §4. 
10 And the φtanvu = . 
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case they describe the conditions under which a discontinuity in our 

substance can exist - without making use of any chemical reaction at all. This 

phenomenon is particularly important in gases and in liquids. It is known as 

shock wave, and is actually an essential component of the theory of the 

detonation wave. 

 

6. While φ  is undetermined, it is not entirely arbitrary (Fig. 2). 

To begin with, (5.3) necessitates 0tan >φ , so φ  must lie in the 

Quadrant I or III. We have accordingly: 

Quadrant I: 0pp > , 0vv < ,  hence u < D. 

Quadrant III: 0pp < , 0vv > ,  hence u > D. 

In Quadrant I the burnt gases are carried along with the detonation wave 

(i.e., D - u > 0); their density and pressure are higher than those in the 

explosive. This is detonation proper. 

In Quadrant III the burnt gases are streaming out of the explosive (i.e., D 

- u < 0); their density and pressure are lower than those in the explosive. This 

is the process commonly known as burning. 
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We are interested in the process of detonation only, so we assume φ  in 

Quadrant I. 

Now our treatment of the chemical reaction (cf. in particular footnote, p. 

206) compels us to postulate for each n > 0, 1≤  the existence of a well 

defined physical state, fulfilling the requirements of the theory of §§4-5. 

Therefore φ  must be at least the angle nφ  of the tangent from ( 00 , vp ) to 

the Rankine-Hugoniot curve. For nφφ <  the line on which (p, v) should lie 

does not intersect that curve at all. For nφφ ≥  the situation is usually this: If 

nφφ =  then there exists exactly one value for (p, v) - the tangent point X; if 

nφφ ≥  then there exist exactly two values for (p, v) - the lower intersection 

point Y and the upper intersection point Z. We assume these qualitative 

conditions - as exhibited by Fig. 2 - to hold for the Rankine-Hugoniot curves 

of all n. 

 

7. These considerations were originally applied to n = 1 only. (Cf. however 

footnote, p. 206.) The lower limit for φ  is then 1φφ =  - the direction of the 

tangent to the Rankine-Hugoniot curve n = 1. 

The classical theory of detonation is based on the assumption that the 

actual value of φ : is this lower limit 1φ . This is the so-called hypothesis of 

Chapman and Jouguet.
11

 Various theoretical motivations have been 

proposed for this hypothesis, mostly based on considerations of stability.
12
 

The experimental evidence is not easy to appraise, since the question of the 

validity of this hypothesis is intertwined with uncertainties concerning the 

caloric equations of the substances involved under the extreme conditions in 

a detonation. 

We propose to carry out a theoretical analysis of the Chapman-Jouguet 

hypothesis by a study of the Rankine-Hugoniot curves for all n 0≥ , 1≤ , i.e., 

for all intermediate phases of the reaction. It will be seen that a proper 

understanding of the situation with the help of the curve n = l alone - as 

attempted always heretofore - is impossible. It is necessary to consider the 

family of all curves n 0≥ , 1≤ . By doing this we shall supply the missing 

condition mentioned in §5 (after (5.1), (5.2)), i.e., determine φ  (that is µ , 

D). 

For certain forms of the family of all curves n 0≥ , 1≤  the 

Chapman-Jouguet hypothesis will turn out to be true; for other forms it is 

                                                   
11 For this, and several references in what follows, cf. the report of G. B. Kistiakowsky and E. 

Bright Wilson, Jr., “The Hydrodynamic Theory of Detonation and Shock Waves”, OSRD (I941). 

This report will be quoted as K.W. Concerning the Chapman-Jouguet hypothesis, cf. K.W., Sec. 
5. 
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false and another (higher) value of φ : will be found. 

 

§§8-9. General Remarks 

8. The discussion at the end of 6 showed that we must have nφφ ≥  for all 

n 0≥ , 1≤ . Now the Chapman-Jouguet hypothesis is based on the 

consideration of the Rankine-Hugoniot curve n = 1 alone, and it consists of 

assuming 1φφ = . Hence it is certainly unacceptable unless nφφ ≥1  for all 

n 0≥ , 1≤ . That is: Unless nφ  assumes its maximum (in 10 ≤≤ n ) for n = 

1. Or in a more geometrical form: Unless every line issuing from the point 

( 00 , vp ) which intersects the curve n = 1 also intersects all other curves 

n 0≥ , 1≤ . 

We illustrate this condition by exhibiting two possible forms of the family 

of all curves n 0≥ , 1≤  (Figs. 3, 4). 

The condition is fulfilled in Fig. 3, but not in Fig. 4. 

                                                                                                              
12 For a summary cf. K.W., Sec. 5, pp. 8-11. 
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From a purely geometrical point of view these two forms are not the only 

possible ones for the family of curves n 0≥ , 1≤ . We shall not attempt to give 

here a complete enumeration. The main question in this connection is, 

however, which forms of this family occur for real explosives. We shall take 

up this question in a subsequent investigation. 

 

9. We shall obtain the missing condition for φ  repeatedly mentioned before. 

This derivation will differ essentially from the existing analyses, since those 

make use of the curve n = 1 only. (For this, and for some of the remarks 

which follow, cf. footnote, p. 209.) There is nevertheless one element in these 

discussions which deserves our closer attention. 

The discussions referred to treat the upper intersection points Z and the 

lower intersection points Y separately.
13
 That is, in order to establish the 

Chapman-Jouguet hypothesis - i.e., the tangent point X - the Z and the Y are 

ruled out by two separate arguments. We saw in §8 that the 

Chapman-Jouguet hypothesis cannot be always true; hence the arguments in 

question cannot be conclusive.
14

 Our considerations will prove that the 

exclusion of the Z on the curve n = 1 must be maintained, but not that of the 

Y. 

Thus the first part of our analysis will be restricted to the curve n = l and 

on it to the upper intersection points Z: proving that they cannot occur. In 

doing this we shall use a line of argument which is closely related to the 

traditional one referred to above - even to the detail of being based on a 

comparison of the detonation velocity to the sound velocity in the burnt gas 

behind it.
15
 In spite of this similarity, however, the two argumentations are 

not the same: The traditional one is, as mentioned before, essentially one of 

stability, while ours is purely cinematical. It is actually closer to a viewpoint 

which has been put forward recently by G. I. Taylor.
16
 

In other parts of our analysis we shall have to consider all curves 

n 0≥ , 1≤  and their positions relative to each other. This is essentially 

different from the existing analyses referred to above. 

On one occasion we shall consider the possibility of a shock wave in the 

reaction zone and the change of entropy which it causes. This phenomenon has 

been investigated in connection with the Chapman-Jouguet hypothesis.
17
 but in a 

different arrangement: In a stability consideration, in order to exclude (on the 

                                                   
13 Cf. our Fig. 2, or K.W., Fig. 5-1, p. 8. 
14 Cf. also K.W., bottom of p. 11. 
15 Cf. K. W., pp. 8-9. 
16 British report of G. I. Taylor, “Detonation Waves", RC l78 (1941). This report will be quoted 

as T. 
17 Cf. K.W., pp. 9, 11. 
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curve n = 1) the lower intersection points Y also, to prove the Chapman-Jouguet 

hypothesis. Our procedure again is not one based on stability, and besides we use 

it for a different purpose. Furthermore we shall find that under certain conditions 

the lower intersection points cannot be disregarded. 

 

§§10-12. Conditions in the Completely Burnt Gas 

10. Let us consider the state (p, v) at n = 1, which is a point on the 

Rankine-Hugoniot curve n = 1. This is the back end of the reaction zone, where 

the chemical reaction is just completed (cf. (2-C)). We use the frame of reference 

in which the detonation wave – and hence this particular point too - is at rest. 

Consider now the conditions behind this point P (Fig. 5): 

In order to complete the picture we must remember that the explosive was 

assumed to be completely confined (cf. 1); hence it is logical to assume a back 

wall behind it, say at Q.
18
 This back wall is at rest in the original frame of 

reference in which the intact explosive is at rest; in our present frame of reference 

the intact explosive has the velocity D (cf. the beginning of 3), and therefore the 

same is true of the back wall Q. 

So the burnt gases lie between the points P, Q, which move with the 

velocities 0, D, respectively. The gases stream across P with the velocity 

φtan=u  (cf. footnote, p. 208), while Q is an enclosing wall. 

The phenomenon is certainly not stationary in P, Q, since P and Q recede 

from each other; but we assumed it to be stationary in the reaction zone O, P. In 

P, Q, on the other hand, no chemical reaction is going on : The gases there are 

completely burnt. 

The question is whether the necessity of fitting a gas-dynamically possible 

state of motion between P and Q imposes any restriction on the state at P, i.e., on 

the intersection point on the curve n = 1. 

An answer can be obtained mathematically by integrating the differential 

equations of gas dynamics in P, Q.
19
 But it can also be found by more qualitative 

considerations, which we shall now present. 

                                                   
18 If the explosive were unconfined at Q, the conclusions of these sections would probably be valid a 

fortiori, since they demonstrate the necessity of a rarefaction wave in the burnt gases under certain 
conditions (cf. §12). But we prefer to restrict ourselves to the case of absolute confinement. 
19 This is actually contained in the computations of T, pp. 1-4. 
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11. Consider the stretch O, Q in the original frame of reference, in which the 

intact explosive and the back wall at Q are at rest. Throughout the entire period 

of time in which the detonation progressed from its start at Q to its present head 

at O the explosive to the left  of O remained intact. Hence no substance was 

transferred from one side of O to the other,
20
 and so the total mass in O, Q was 

not changed. Therefore the average density in O, Q was not changed either - i.e., 

it is now, when the wave head is at O, the same as it was when the detonation 

started at Q - i.e., the same as in the intact explosive. 

The specific volumes in O, P are the v on the line of Fig. 2, from ( 00 , vp ) to 

X or Y or Z, as the case may be; hence all smaller than the specific volume 0v  

of the intact explosive. That is the density in O, P is everywhere greater, as in 

the intact explosive. 

Hence the average density in P, Q is lower, as in the intact explosive, and a 

fortiori as at P. Consequently we can assert: 

The density at P is greater than in some places in P, Q. 

Let P' be the place (in P, Q) where the density begins to fall below its value 

at P.
21
 The density, i.e., the specific volume v, is therefore constant in P, P'. 

 

12. We now return to the frame of reference of §§3-5 and 10, where the wave 

front O - and so the geometrical locus of the reaction zone O, P-is at rest. 

v is constant in P, P' hence the same is true of u
22
 and p,

23
 and, along with p, 

v, of the sound velocity c.
24
 

By its definition, P' is the head of a rarefaction wave looked at from O, P, P'. 

Hence moves with sound velocity towards O, P, P'; i.e., the velocity of P' is u - 

c. We know that we may take this u - c at P instead of P', and that u - c taken at  

P is constant in time.
25
 Hence u - c < 0 would imply that P' will reach and enter  

the zone O, P in a finite time, thus disturbing its stationarity. Hence u - c 0≥ , 

i.e., c ≤  u at P. 

Let us now consider Fig. 1, taking n = 1 for its curve. φtan=u  (cf. 

footnote, p. 208), and c too can be expressed in terms of this figure. Denote the 

angle between the direction of the negative v-axis and the direction of the 

tangent of the curve at (p, v) by ψ . We claim that ψtan=c . This can be 

                                                   
20 O is now at rest with respect to the intact explosive! 
21 P’ is P, or to the right of P. 
22 Because of the conservation of mass, i.e., (4.1) or footnote, p. 208. 
23 Because of the adiabatic law, which holds throughout P, Q, since there are no chemical reactions 

or shock waves there. 
24 We measure c with respect to the gas, which itself moves with the velocity u. 
25 The zone O, P is stationary! 
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established by a direct thermodynamical computation,
26
 and also by a more 

qualitative argument which we shall give now. 

The line ( 00 , vp )→ (p, v) represents a detonation wave ending with the 

burnt gas. Therefore a line  ( ',' vp )→ (p, v) where both points (p', v') and (p, v) 

lie on the curve n = 1, represents a discontinuity which begins and ends in the 

burnt gas, i.e., a shock wave in it.
27
 If (p', v') moves very close to (p, v), then 

this direction tends to the tangent at (p, v). And the shock wave tends to a very 

small discontinuity, i.e., it becomes very weak. Now the velocity of a very weak 

disturbance is very nearly sound velocity. Hence c, ψ  are connected in the 

burnt gas in the same way as D, φ  were in the intact explosive. So the 

φtan0vD =  of (4.1) becomes ψtanvc = . 

Thus our uc ≤  becomes φψ tantan vv ≤ , i.e., φψ ≤ : In other 

words: 

The direction ( 00 , vp )→ (p, v) cannot be less steep than the direction of 

the tangent to the Rankine-Hugoniot curve n = l - i.e., the direction of the 

curve itself - at (p, v). 

One look at Fig. 2 suffices to show that this means the exclusion of the 

upper intersection points Z on the curve n = 1.
28
 We restate this: 

The state p(n), v(n) at n = 1, which lies on the curve n = 1, cannot be an 

upper intersection point. 

 

§§13-15. Discontinuities and Continuous Changes in the Reaction Zone. 

Mechanism which Starts the Reaction. 

13. We turn next to the consideration of the Rankine-Hugoniot curves for all n 

0≥ , 1≤ . 

The state at the point of the reaction zone with a given n is characterized by 

the data p(n), v(n) and u(n) (cf. the end of §4). These points p(n), v(n) for n 0≥ , 

1≤  form a line Λ  in the p, v-plane, the line representing the successive states 

across the reaction zone (cf. the end of §l2). 

This line Λ  must intersect the curve of every n 0≥ , 1≤ . If this 

intersection occurs in a (unique) tangent point, then that is p(n), v(n); if it occurs 

in two intersection points - the upper and the lower - then one of those is p(n), 

v(n). Let us now follow the history of p(n), v(n) as n increases from 0 to 1. 

To begin with, there is no absolute reason why p(n), v(n) should vary 

                                                   
26 Cf. K. W. pp. 9-11. 
27 Involving no chemical reaction! 
28 As mentioned in footnote 19, the computations of T, pp. 1-4, prove the same thing. The state in P, 

Q (cf. Fig. 5) for the tangent point X or a lower intersection point Y(cf. Fig. 2) is exhibited by Figs. 1b 

and 1a, respectively, in T. 
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continuously with n. Consider now an 0n  where they are discontinuous. 

Follow the path of matter (in the detonation) which crosses that point of the 

reaction zone. It moves in the direction of the progressing chemical reaction, i.e., 

of an increasing n. The discontinuity of p(n), v(n) necessitates that these 

quantities have different limiting values, as 0n  is approached on the incoming 

side from below, and on the outgoing side from above; Both limiting positions 

of p(n), v(n) must be intersections of Λ  with the curve 0n . So they are the 

upper and the lower intersection point;
29
 the question is only: which is which? 

The two intersection points of Λ  on the curve 0n  represent the two sides 

of a shock wave;
30
 indeed our above description of the situation at n; makes it 

clear that there is a shock wave at the point no of the reaction zone. 

Now it is well known - for thermodynamical reasons, but also intuitively 

plausible - that in a shock wave the high-pressure area always absorbs the 

substance of the low-pressure area, i.e., that matter passes from the low-pressure 

state into the high-pressure state.
31
 

In the present case matter moves in the direction of increasing n (cf. above). 

Therefore the lower intersection point is the limiting position when 0n  is 

approached from below, and the upper intersection point is the limiting position 

when 0n  is approached from above. 

Summing up: 

The point p(n), v(n) varies continuously, except for possible jumps from 

the lower to the upper intersection point which occur - if at all - always in this 

direction with increasing n. 

 

14. Let us consider the conditions at n = 0, i.e., at the head of the wave. The 

state there adjoins the ( 00 , vp ) of the intact explosive which lies on the curve n 

= 0. 

Assume first that the variation of the p(n), v(n) at this point is continuous, 

i.e., that ( 00 , vp ) is the limiting position when n approaches 0 from above. 

In this case there is no agent to start the chemical reaction which supports 

the detonation. This reaction ought to set in, and quite vehemently, at n = 0, i.e., 

for small values of n > 0. Or, if we use the independent variable x: at x = 0, i.e., 

for small values of x > 0. Now the assumed continuity means that the conditions 

in this critical zone - the beginning of the reaction zone - differ only 

insignificantly from those at ( 00 , vp ), i.e., throughout the intact explosive (in x 

                                                   
29 And we do not have the tangent position! 
30 Cf. a similar discussion in §l2. 
31 The thermodynamical reason is that the entropy is higher on the high-pressure side. Cf. K.W., p. 

11. For a discussion of this property of shock waves, cf. e.g. J. W. Rayleigh, “Aerial Plane Waves of 
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< 0). Thus the reaction cannot start in this region. If it did - for any reason 

whatever - it should a fortiori have done so in the intact explosive (in x < 0). 

There was much more time available there, and yet, by assumption, no reaction! 

This argument is qualitative, to be sure, but it is quite easy to amplify it 

mathematically.
32
 

Thus we must have a discontinuity at n = 0. By the result of §l3 this means: 

( 00 , vp ) must be the lower intersection point, and as n increases (from 0 

on), p(n), v(n) immediately jumps to the upper intersection point - say 

( 00 ,vp ) - and goes on continuously from there. 

Thus the reaction zone sets in with a shock wave, an abrupt increase of p, 

and with it an equally abrupt decrease of v (cf. (5.1)) and of u (cf. footnote 10). 

These abrupt changes of (p, v) may start the reaction, particularly because 

they imply usually an increase of the temperature. But the change of u is even 

more remarkable. This decrease from D to 0u  means, of course, that the intact 

explosive (in x < 0) receives a vehement blow, delivered by the wave head with 

the velocity. 

0uDw −= . 

Using (5.1), (5.3) and footnote 10, we see that 

))(()(1
0

00
00

0
0

0
0

vvppvvD
v

v
uDw −−=−=










−=−= µ . 

       (14.1) 

This velocity is smaller than, but in the order of magnitude of, the detonation 

velocity D. It is comparable to the thermic agitation of a very high temperature; 

indeed it may be more effective, since it is delivered with one systematic 

velocity, and not in statistical disorder.
33
 Consequently the discontinuity of the 

velocity provides at any rate the mechanism needed to start the reaction.
34
 

 

15. We know from §13 that p(n), v(n) is immediately after a discontinuity at an 

upper intersection point. We also know from §l2 that the latter cannot be the 

case at n = 1. We have: 

p(n), v(n) is continuous at n = 1, in the position indicated in §l2. 

                                                                                                              
Finite Amplitude". Scientific Papers, Vol. 5, Cambridge 1912, particularly pp. 590-1. 
32 Consider the formula (4.4) which expresses x in terms of n. If we have continuity, i.e., if n→ 0 

implies 
0pp→ , 

0vv→ , then (3.3) yields A(n, p, v) → 0. So we must expect divergence of the 

integral (4.4) (near n = 0), and failure to obtain an acceptable x. 

This is, of course, not essentially different from the text's verbal argument: We cannot make x→ 0 - 

nor even x → finite for n→ 0, i.e., the reaction cannot be started on any finite interval. 
33 For a typical high explosive, like TNT, D ~ 6,000 m/sec, w ~ 1,500 m/sec, so that the 

corresponding temperature would be ~ 2,500°-3,000° C. 
34 This view would necessitate a modification of (4.4), but in a favorable sense: towards even 

smaller changes of x in the neighborhood of n = 0. 



 16 

We are now informed about the behavior of p(n), v(n) at n = 0 and n = 1, and 

also at discontinuities for n >0, <1. There remains only the necessity of 

discussing its behavior when it varies continuously near an n >0, <1. We are 

particularly interested how - if at al1 - it can change under these conditions from 

an upper intersection point to a lower one, or vice versa.
35
 

Let us therefore consider such a change. If p(n), v(n) changes at 0nn =  

( 0n  >0, <1) continuously from an upper intersection point to a lower one, or 

vice versa, then it is necessarily a tangent point at 0n . 

At this juncture it becomes necessary to introduce the envelope of the family 

of all curves ≥n , 1≤ . This envelope may or may not exist (cf. Figs. 4 and 3 

for these two alternatives, respectively). At any rate, if the tangent point which 

we are now considering is not on the envelope,
36
 then the position of the curves 

for the n near to 0n  is this (Fig. 6). 

Thus the curves with 0nn >  are all on one side of the curve and the 

curves with 0nn <  are all on the other side. Consequently the line Λ  does 

not intersect that one of these two curve systems which is on the concave 

side of the curve no. But Λ  must intersect the curves of all n (cf. §6). So we 

have a contradiction. 

Hence the envelope must exist, and our tangent point must lie on it. At 

this point Λ  is tangent to the curve 0n . But the envelope has at each one 

of its points the same tangent as that curve n of the family which touches it 

there. Hence Λ  is also a tangent for the envelope. 

                                                   
35 The first change (for n increasing) actually excludes a discontinuity according to the result of §l3. 
36 This is meant to include the case where the envelope does not exist. 
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Summing up: 

If p(n), v(n) changes at 0nn =  ( 1,00 <>n ) continuously from an 

upper intersection point to a lower one (cf. footnote 35), then: 

(A) The envelope of the family of all curves n exists. 

(B) The point p( 0n ), v( 0n ) lies on the envelope. 

(C) The line Λ  is at this point tangent to both the curve 0n  and to 

the envelope. 

It is easy to visualize that if the point p( 0n ), v( 0n ) fulfills (B), (C), then 

the change from an upper to a lower intersection, or vice versa, can be 

effected continuously (Fig. 7, Cases 1, 2). 

But it is also possible to have (B), (C), and nevertheless no such change 

(Fig. 7, Cases 3, 4). 

 

§16. Conclusions 

16. The results of §§l2, 13, 14 and the two results of §l5 permit us to form a 

complete picture of the variations of p(n), v(n). 

By §l4 p(n), v(n) begins, for small n > 0, as an upper intersection point. If 

it stays one for all n > 0, < 1, then §12 and the first result of §l5 necessitate 

that it terminate at n = 1 as a tangent point. In this case Λ  is a tangent to the 

curve n = 1. 

If the above assumption is not true, then p(n), v(n) must change (as n 
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increases) from an upper intersection point to a lower one, for some n > 0, < 

1. By §13 this must occur continuously (cf. also footnote 35), and by the 

second result of §15 we have (A)-(C) there: The envelope exists, and Λ  is 

tangent to it at the point in question. In this case Λ  is tangent to the 

envelope. 

So we see: 

Λ  is tangent either to the curve n = 1 or to the (then necessarily 

existing) envelope. 

Since the line Λ  comes from the given point ( 00 , vp ) this condition 

leaves only a finite number of alternatives for it, i.e., for its angle φ  with 

the direction of the negative v-axis. So we have obtained essentially the 

missing condition, referred to at the beginning of §9 and before. 

Indeed, when the envelope does not exist (as in Fig. 3), then we see that 

Λ  must be tangent to the curve n = l, proving the Chapman-Jouguet 

hypothesis. We restate this: 

If the envelope does not exist - i.e., if the curves for all n do not intersect 

each other (cf. Fig. 3) - then the Chapman-Jouguet hypothesis is true. 

On the other hand we saw a case in §8 in which the Chapman-Jouguet 

hypothesis cannot be true. Then the envelope must exist, and Λ  must be 

tangent to it. 

We leave it to the reader to discuss the details of the solution in various 

typical cases, e.g., in Fig. 3 (the Chapman-Jouguet hypothesis is true), and in 

Fig. 4 (the Chapman-Jouguet hypothesis is not true). The results referred to at 

the beginning of §16 are all that is needed in all these cases. 


