
A Guided Tour to Approximate String MatchingGonzalo Navarro �Dept. of Computer Science, University of ChileBlanco Encalada 2120 - Santiago - Chilegnavarro@dcc.uchile.cl, http://www.dcc.uchile.cl/�gnavarroAbstractWe survey the current techniques to cope with the problem of string matching allowingerrors. This is becoming a more and more relevant issue for many fast growing areas suchas information retrieval and computational biology. We focus on online searching and mostlyon edit distance, explaining the problem and its relevance, its statistical behavior, its historyand current developments, and the central ideas of the algorithms and their complexities. Wepresent a number of experiments to compare the performance of the di�erent algorithms andshow which are the best choices according to each case. We conclude with some future workdirections and open problems.1 IntroductionThis work focuses on the problem of string matching allowing errors, also called approximate stringmatching. The general goal is to perform string matching of a pattern in a text where one orboth of them have su�ered some kind of (undesirable) corruption. Some examples are recoveringthe original signals after their transmission over noisy channels, �nding DNA subsequences afterpossible mutations, and text searching under the presence of typing or spelling errors.The problem, in its most general form, is to �nd the positions of a text where a given patternoccurs, allowing a limited number of \errors" in the matches. Each application uses a di�erent errormodel, which de�nes how di�erent two strings are. The idea for this \distance" between strings isto make it small when one of the strings is likely to be an erroneous variant of the other under theerror model in use.The goal of this survey is to present an overview of the state of the art in approximate stringmatching. We focus on online searching (that is, when the text cannot be preprocessed to build anindex on it), explaining the problem and its relevance, its statistical behavior, its history and currentdevelopments, and the central ideas of the algorithms and their complexities. We also consider somevariants of the problem which are of interest. We present a number of experiments to compare theperformance of the di�erent algorithms and show which are the best choices according to each case.We conclude with some future work directions and open problems.Unfortunately, the algorithmic nature of the problem strongly depends on the type of \errors"considered, and the solutions range from linear time to NP-complete. The scope of our subject isso broad that we are forced to specialize our focus on a subset of the possible error models. Weconsider only those de�ned in terms of replacing some substrings by others at varying costs. Under�Partially supported by Fondecyt grant 1-990627. 1

this light, the problem becomes minimizing the total cost to transform the pattern and its textoccurrence to make them equal, and reporting the text positions where this cost is low enough.One of the best studied particular cases of this error model is the so-called edit distance, whichallows to delete, insert and replace simple characters (by a di�erent one) in both strings. If thedi�erent operations have di�erent costs or the costs depend on the characters involved, we speakof general edit distance. Otherwise, if all the operations cost 1, we speak of simple edit distanceor just edit distance (ed). In this last case we simply seek for the minimum number of insertions,deletions and replacement to make both strings equal. For instance ed("survey","surgery") = 2.The edit distance has received a lot of attention because its generalized version is powerful enoughfor a wide range of applications. Despite that most existing algorithms concentrate on the simpleedit distance, many of them can be easily adapted to the generalized edit distance, and we payattention to this issue throughout this work. Moreover, the few algorithms that exist for the generalerror model we consider are generalizations of edit distance algorithms.On the other hand, most of the algorithms designed for the edit distance are easily specializedto other cases of interest. For instance, by allowing only insertions and deletions at cost 1 we cancompute the longest common subsequence (LCS) between two strings. Another simpli�cation thathas received a lot of attention is the variant that allows only replacements (Hamming distance).An extension of the edit distance enrichs it with transpositions (i.e. a replacement of the formab! ba at cost 1). Transpositions are very important in text searching applications because theyare typical typing errors, but few algorithms exist to handle them. However, many algorithms foredit distance can be easily extended to include transpositions, and we keep track of this fact in thiswork.Since the edit distance is by far the best studied case, this survey focuses basically on the simpleedit distance. However, we also pay attention to extensions such as generalized edit distance,transpositions and general substring replacement, as well as to simpli�cations such as LCS andHamming distance. In addition, we also pay attention to some extensions of the type of pattern tosearch: when the algorithms allow it, we mention the possibility to search some extended patternsand regular expression allowing errors. We point out now what are we not covering in this work.� First, we do not cover other distance functions that do not �t in the model of substringreplacement. This is because they are too di�erent from our focus and the paper wouldloose cohesion. Some of these are: Hamming distance (short survey in [Nav98]), reversals[KS95] (which allows reversing substrings), block distance [Tic84, EH88, Ukk92, LT97] (whichallows rearranging and permuting the substrings), q-gram distance [Ukk92] (based in �ndingcommon substrings of �xed length q), allowing swaps [AAL+97, LKPC97], etc. Hammingdistance, despite being a simpli�cation of the edit distance, is not covered because specializedalgorithms exist for it that go beyond the simpli�cation of an existing algorithm for editdistance.� Second, we consider pattern matching over sequences of symbols, and at most generalizethe pattern to a regular expression. Extensions such as approximate searching in multi-dimensional texts (short survey in [NBY99a]), in graphs [ALL97, Nav00] or multipatternapproximate searching [MM96, BYN97b, Nav97a, BYN98] are not considered. None of theseareas are very developed and the algorithms should be easy to grasp once approximate pattern2

matching under the simple model is well understood. Many existing algorithms for theseproblems borrow from those we present here.� Third, we leave aside non-standard algorithms, such as approximate1, probabilistic or parallelalgorithms [TU88, Kar93, AJS93, AGM+90, LL85, LV89].� Finally, an important area that we leave aside in this survey is indexed searching, i.e. theprocess of building a persistent data structure (an index) on the text to speed up the searchlater. Typical reasons that prevent keeping indices on the text are: extra space requirements(as the indices for approximate searching tend to take many times the text size), volatility ofthe text (as building the indices is quite costly and needs be amortized over many searches)and simply inadequacy (as the �eld of indexed approximate string matching is quite immatureand the speedup that the indices provide is not always satisfactory).Indexed approximate searching is a di�cult problem, and the area is quite new and active[JU91, Gon92, Ukk93, Mye94a, HS94, MW94, Cob95, ST96, BYN97a, ANZ97, NBY98b,NBY99b, NMN+00]. The problem is very important because the texts to handle are so largein some applications that no online algorithm can provide adequate performance. However,virtually all the indexed algorithms are strongly based on online algorithms, and therefore un-derstanding and improving the current online solutions is of interest for indexed approximatesearching as well.These issues have been left aside to keep a reasonable scope in the present work. They certainlydeserve separate surveys. Our goal in this survey is to explain the basic tools of approximate stringmatching, as many of the extensions we are leaving aside are built on the basic algorithms designedfor online approximate string matching.This work is organized as follows. In Section 2 we present in detail some of the most importantapplication areas for approximate string matching. In Section 3 we formally introduce the problemand the basic concepts necessary to follow the rest of the paper. In Section 4 we show someanalytical and empirical results about the statistical behavior of the problem.Sections 5 to 8 cover all the work of interest we could trace on approximate string matchingunder the edit distance. We divided it in four sections that correspond to di�erent approachesto the problem: dynamic programming, automata, bit-parallelism and �ltering algorithms. Eachsection is presented as a historical tour, so that we do not only explain the work done but also showhow it was developed.Section 9 presents experimental results comparing the most e�cient algorithms presented. Fi-nally, we give our conclusions and discuss open questions and future work directions in Section10. There exist other surveys on approximate string matching, which are however too old for thisfast moving area [HD80, SK83, AG85, GG88, JTU96] (the last one was in its de�nitive form in1991). So all previous surveys lack coverage of the latest developments. Our aim is to provide a1Please do not confuse an approximate algorithm (which delivers a suboptimal solution with some suboptimalityguarantee) with an algorithm for approximate string matching. Indeed approximate string matching algorithms canbe regarded as approximation algorithms for exact string matching (where the maximum distance gives the guaranteeof optimality), but in this case it is harder to �nd the approximate matches, and of course the motivation is di�erent.3

long awaited update. This work is partially based in [Nav98], but the coverage of previous work ismuch more detailed here. The subject is also covered, albeit with less depth, in some textbooks onalgorithms [CR94, BYRN99].2 Main Application AreasThe �rst references to this problem we could trace are from the sixties and seventies, where theproblem appeared in a number of di�erent �elds. In those times, the main motivation for thiskind of search came from computational biology, signal processing, and text retrieval. These arestill the largest application areas, and we cover each one here. See also [SK83], which has a lot ofinformation on the birth of this subject.2.1 Computational BiologyDNA and protein sequences can be seen as long texts over speci�c alphabets (e.g. fA,C,G,Tg inDNA). Those sequences represent the genetic code of living beings. Searching speci�c sequencesover those texts appeared as a fundamental operation for problems such as assembling the DNAchain from the pieces obtained by the experiments, looking for given features in DNA chains, ordetermining how di�erent two genetic sequences were. This was modeled as searching for given\patterns" in a \text". However, exact searching was of little use for this application, since thepatterns rarely matched the text exactly: the experimental measures have errors of di�erent kindsand even the correct chains may have small di�erences, some of them signi�cant due to mutationsand evolutionary alterations and others unimportant. Finding DNA chains very similar to thosesought represent signi�cant results as well. Moreover, establishing how di�erent two sequencesare is important to reconstruct the tree of the evolution (phylogenetic trees). All these problemsrequired a concept of \similarity", as well as an algorithm to compute it.This gave a motivation to \search allowing errors". The errors were those operations thatbiologists knew were common to occur in genetic sequences. The \distance" between two sequenceswas de�ned as the minimum (i.e. more likely) sequence of operations to transform one into theother. With regard to likelihood, the operations were assigned a \cost", such that the more likelyoperations were cheaper. The goal was then to minimize the total cost.Computational biology has since then evolved and developed a lot, with a special push inrecent years due to the \genome" projects that aim at the complete decoding of the DNA andits potential applications. There are other, more exotic problems, such as structure matching orsearching for unknown patterns. Even the simple problem where the pattern is known is believedto be NP-complete under some distance functions (e.g. reversals).Some good references for the applications of approximate pattern matching to computationalbiology are [Sel74, NW70, SK83, AGM+90, Mye91, Mye94b, Wat95, YFM96, Gus97].2.2 Signal ProcessingAnother early motivation came from signal processing. One of the largest areas deals with speechrecognition, where the general problem is to determine, given an audio signal, a textual messagewhich is being transmitted. Even simpli�ed problems such as discerning a word from a small set4

of alternatives is complex, since parts of the the signal may be compressed in time, parts of thespeech may not be pronounced, etc. A perfect match is practically impossible.Another problem of this �eld is error correction. The physical transmission of signals is error-prone. To ensure correct transmission over a physical channel, it is necessary to be able to recoverthe correct message after a possible modi�cation (error) introduced during the transmission. Theprobability of such errors is obtained from the signal processing theory and used to assign a cost tothem. In this case we may even not know what we are searching for, we just want a text which iscorrect (according to the error correcting code used) and closest to the received message. Althoughthis area has not developed too much with respect to approximate searching, it has generated themost important measure of similarity, known as the Levenshtein distance [Lev65, Lev66] (also called\edit distance").Signal processing is a very active area today. The rapidly evolving �eld of multimedia databasesdemands the ability to search by content in image, audio and video data, which are potentialapplications for approximate string matching. We expect in the next years a lot of pressure on non-written human-machine communication, which involves speech recognition. Strong error correctingcodes are also sought given the current interest in wireless networks, as the air is a low qualitytransmission medium.Good references for the relations of approximate pattern matching with signal processing are[Lev65, Vin68, DM79].2.3 Text RetrievalThe problem of correctingmisspelled words in written text is rather old, perhaps the oldest potentialapplication for approximate string matching. We could �nd references from the twenties [Mas27],and perhaps there are older ones. Since the sixties, approximate string matching is one of the mostpopular tools to deal with this problem. For instance, 80% of these errors are corrected allowingjust one insertion, deletion, replacement or transposition [Dam64].There are many areas where this problem appears, and Information Retrieval (IR) is one of themost demanding. IR is about �nding the relevant information in a large text collection, and stringmatching is one of its basic tools.However, classical string matching is normally not enough, because the text collections arebecoming larger (e.g. the Web text has surpassed 6 terabytes [LG99]), more heterogeneous (di�erentlanguages, for instance) and more error prone. Many are so large and grow so fast that it isimpossible to control their quality (e.g. in the Web). A word which is entered incorrectly in thedatabase cannot be retrieved anymore. Moreover, the pattern itself may have errors, for instance incross-lingual scenarios where a foreign name sought is incorrectly spelled, or in ancient texts thatuse outdated versions of the language.For instance, text collections digitalized via optical character recognition (OCR) contain a non-negligible percentage of errors (7% to 16%). The same happens with typing (1% to 3.2%) andspelling (1.5% to 2.5%) errors. Experiments for typing Dutch surname (by Dutchs) reached 38%of spelling errors. All these percentages were obtained from [Kuk92]. Our own experiments withthe name \Levenshtein" in Altavista gave more than 30% of errors allowing just one deletion ortransposition.Nowadays, there is virtually no text retrieval product that does not allow some extended search5

facility to recover from errors in the text of pattern. Other text processing applications are spellingcheckers, natural language interfaces, command language interfaces, computer aided tutoring andlanguage learning, to name a few.A very recent extension which became possible thanks to word-oriented text compression meth-ods is the possibility to perform approximate string matching at the word level [NMN+00]. Thatis, the user supplies a phrase to search and the system searches the text positions where the phraseappears with a limited number of word insertions, deletions and replacements. It is also possibleto disregard the order of the words in the phrases. This allows the query to survive from di�erentwordings of the same idea, which extends the applications of approximate pattern matching wellbeyond the recovery of syntactic mistakes.Good references about the relation of approximate string matching and information retrievalare [WF74, LW75, Nes86, OM88, Kuk92, ZD96, FPS97, BYRN99].2.4 Other AreasThe number of applications for approximate string matching grows every day. We have foundsolutions to the most diverse problems based on approximate string matching, for instance hand-writing recognition [LT94], virus and intrusion detection [KS94], image compression [LS97], datamining [DFG+97], pattern recognition [GT78], optical character recognition [EL90], �le comparison[Hec78] and screen updating [Gos91], to name a few. Many more applications are mentioned in[SK83, Kuk92].3 Basic ConceptsWe present in this section the important concepts needed to understand all the development thatfollows. Basic knowledge is assumed on design and analysis of algorithms and data structures, basictext algorithms, and formal languages. If this is not the case we refer the reader to good books inthese subjects, such as [AHU74, CLR90, Knu73] (for algorithms), [GBY91, CR94, AG97] (for textalgorithms) and [HU79] (for formal languages).We start with some formal de�nitions related to the problem. Then we cover some data struc-tures not widely known which are relevant for this survey (they are also explained in [GBY91,CR94]). Finally, we make some comments about the tour itself.3.1 Approximate String MatchingIn the discussion that follows, we use s; x; y; z; v;w to represent arbitrary strings, and a; b; c::: torepresent letters. Writing a sequence of strings and/or letters represents their concatenation. Weassume that concepts such as pre�x, su�x and substring are known. For any string s 2 �� wedenote its length as jsj. We also denote si the i-th character of s, for an integer i 2 f1::jsjg. Wedenote si::j = sisi+1:::sj (which is the empty string if i > j). The empty string is denoted as ".In the Introduction we have de�ned the problem of approximate string matching as that of�nding the text positions that match a pattern with up to k errors. We give now a more formalde�nition. 6

Let � be a �nite2 alphabet of size j�j = �.Let T 2 �� be a text of length n = jT j.Let P 2 �� be a pattern of length m = jP j.Let k 2 R be the maximum error allowed.Let d : �� � �� ! R be a distance function.The problem is: given T , P , k and d(), return the set of all the text positions j suchthat there exists i such that d(P; Ti::j) � k.Note that endpoints of occurrences are reported to ensure that the output is of linear size. Byreversing all strings we can obtain start points.In this work we restrict our attention to a subset of the possible distance functions. We consideronly those de�ned in the following form:The distance d(x; y) between two strings x and y is the minimal cost of a sequenceof operations that transform x into y (and 1 if no such sequence exists). The costof a sequence of operations is the sum of the costs of the individual operations. Theoperations are a �nite set of rules of the form �(z; w) = t, where z and w are di�erentstrings and t is a nonnegative real number. Once the operation has converted a substringz into w, no further operations can be done on w.Note especially the restriction that forbids acting many times over the same string. Freeing thede�nition from this condition would allow any rewriting system to be represented, and thereforedetermining the distance between two strings would not be computable in general.If for each operation of the form �(z; w) there exists the respective operation �(w; z) at thesame cost, then the distance is symmetric (i.e. d(x; y) = d(y; x)). Note also that d(x; y) � 0 for allstrings x and y, that d(x; x) = 0, and that it always holds d(x; z) � d(x; y) + d(y; z). Hence, if thedistance is symmetric, the space of strings forms a metric space.General substring replacement has been used to correct phonetic errors [ZD96]. In most appli-cations, however, the set of possible operations is restricted to:� Insertion: �("; a), i.e. inserting the letter a.� Deletion: �(a; "), i.e. deleting the letter a.� Replacement or Substitution: �(a; b) for a 6= b, i.e. replacing a by b.� Transposition: �(ab; ba) for a 6= b, i.e. swap the adjacent letters a and b.We are now in position to de�ne the most commonly used distance functions (although thereare many others).� Levenshtein or Edit distance [Lev65]: allows insertions, deletions and replacements.In the simpli�ed de�nition, all the operations cost 1. This can be rephrased as \the2However, many algorithms can be adapted to in�nite alphabets with an extra O(logm) factor in their cost. Thisis because the pattern can have at most m di�erent letters and all the rest can be considered equal for our purposes.A table of size � could be replaced by a search structure over at most m+ 1 di�erent letters.7

minimal number of insertions, deletions and replacements to make two strings equal".In the literature the search problem is in many cases called \string matching with kdi�erences". The distance is symmetric, and it holds 0 � d(x; y) � max(jxj; jyj).� Hamming distance [SK83]: allows only replacements, which cost 1 in the simpli�edde�nition. In the literature the search problem is in many cases called \string matchingwith k mismatches". The distance is symmetric, and it is �nite whenever jxj = jyj. Inthis case it holds 0 � d(x; y)� jxj.� Episode distance [DFG+97]: allows only insertions, which cost 1. In the literaturethe search problem is in many cases called \episode matching", since it models the casewhere a sequence of events is sought, where all them must occur within a short period.This distance is not symmetric, and it may not be possible to convert x into y in thiscase. Hence, d(x; y) is either jyj � jxj or 1.� Longest Common Subsequence distance [NW70, AG87]: allows only insertions anddeletions, all costing 1. The name of this distance refers to the fact that it measuresthe length of the longest pairing of characters that can be made between both strings,so that the pairings respect the order of the letters. The distance is the number ofunpaired characters. The distance is symmetric, and it holds 0 � d(x; y) � jxj+ jyj.In all cases, except the episode distance, one can think that the changes can be made over x ory. Insertions on x are the same as deletions in y and vice versa, and replacements can be made inany of the two strings to match the other.This paper is most concerned with the simple edit distance, which we denote ed(). Althoughtranspositions are of interest (especially in case of typing errors), there are few algorithms to dealwith them. However, we will consider them at some points of this work (note that a transpositioncan be simulated with an insertion plus a deletion, but the cost is di�erent). We also will point outwhen the algorithms can be extended to have di�erent costs of the operations (which is of specialinterest in computational biology), including the extreme case of not allowing some operations.This includes the other distances mentioned.Note that if the Hamming or edit distance are used, then the problemmakes sense for 0 < k < m,since if we can performm operations we can make the pattern match at any text position by meansof m replacements. The case k = 0 corresponds to exact string matching and is therefore excludedfrom this work. Under these distances, we call � = k=m the error level, which given the aboveconditions satis�es 0 < � < 1. This value gives an idea of the \error ratio" allowed in the match(i.e. the fraction of the pattern that can be wrong).We �nish this section with some notes about the algorithmswe are going to consider. Like stringmatching, this area is suitable for very theoretical and for very practical contributions. There exista number of algorithms with important improvements in their theoretical complexity but very slowin practice. Of course, for carefully built scenarios (say, m = 100; 000 and k = 2) these algorithmscould be a practical alternative, but these cases do not appear in applications. Therefore, wepoint out now which are the parameters of the problem that we consider \practical", i.e. likely tobe of use in some application, and when we say later \in practice" we mean under the followingassumptions. 8

� The pattern length can be as short as 5 letters (e.g. text retrieval) and as long as afew hundred letters (e.g. computational biology).� The number of errors allowed k satis�es that k=m is a moderately low value. Rea-sonable values range from 1=m to 1=2.� The text length can be as short as a few thousand letters (e.g. computational biology)and as long as megabytes or gigabytes (e.g. text retrieval).� The alphabet size � can be as low as four letters (e.g. DNA) and a high as 256 letters(e.g. compression applications). It is also reasonable to think in even larger alphabets(e.g. oriental languages or word oriented text compression). The alphabet may or maynot be random.3.2 Su�x Trees and Su�x AutomataSu�x trees [Wei73, Knu73, AG85] are widely used data structures for text processing [Apo85]. Anyposition i in a string S de�nes automatically a su�x of S, namely Si:::jSj. In essence, a su�x treeis a trie data structure built over all the su�xes of S. At the leaf nodes the pointers to the su�xesare stored. Each leaf represents a su�x and each internal node represents a unique substring of S.Every substring of S can be found by traversing a path from the root. Each node representing thesubstring ax has a su�x link that leads to the node representing the substring x.To improve space utilization, this trie is compacted into a Patricia tree [Mor68]. This involvescompressing unary paths. At the nodes which root a compressed path, an indication of how manycharacters to skip is stored. Once unary paths are not present the tree has O(jSj) nodes insteadof the worst-case O(jSj2) of the trie (see Figure 1). The structure can be built in time O(jSj)[McC76, Ukk95].A DAWG (deterministic acyclic word graph) [Cro86, BBH+85] built on a string S is a determin-istic automaton able to recognize all the substrings of S. As each node in the su�x tree correspondsto a substring, the DAWG is no more than the su�x tree augmented with failure links for the lettersnot present in the tree. Since �nal nodes are not distinguished, the DAWG is smaller. DAWGshave similar applications to those of su�x trees, and also need O(jSj) space and construction time.Figure 2 illustrates.A su�x automaton on S is an automaton that recognizes all the su�xes of S. The non-deterministic version of this automaton has a very regular structure and is shown in Figure 3 (thedeterministic version can be seen in Figure 2).3.3 The TourSections 5 to 8 present a historical tour across the four main approaches to online approximatestring matching (see Figure 4). In those historical discussions, keep in mind that there may bea long gap between the time when a result is discovered and when it gets �nally published in itsde�nitive form. Some apparent inconsistencies can be explained in this way (e.g. algorithms whichare \�nally" analyzed before they appear). We did our best in the bibliography to trace the earliestversion of the works, although the full reference corresponds generally to the �nal version.9

rba a c a d a b r a

1 2 3 4 65 7 8 9 10 11

6
4

"b"
"r" "a"

"r"

"a"
"c"

"d" 7

"c"
5

2

9
"$"

"c"

"a"

"a""r"
8

1
"c"

"$"

11

"b"

"d"

10

3
"$"

"$"

"c" 6
4

3

10

8

1

"b"

"r"

"d" 7

"c"
5

"a"

11

"b"

"d"

"$"

"c"

1

3

"c"

"$"

4 2

9
"$"

"c"

2 5
"c"

"$"

Suffix Trie

Suffix Tree

String

Figure 1: The su�x trie and su�x tree for a sample string. The \$" is a special marker to denotethe end of the text. Two su�x links are exempli�ed in the trie: from "abra" to "bra" and then to"ra". The internal nodes of the su�x tree show the character position to inspect in the string.
"r" "a""d" "a" "b""a" "c" "a""a" "b" "r"

"b"

"r"

"c"

"c"

"d"

"d"Figure 2: The DAWG or the su�x automaton for the sample string. If all the states are �nal, it isa DAWG. If only the 2nd, 5th and rightmost states are �nal then it is a su�x automaton.
b ra a aa b ad rcFigure 3: A non-deterministic su�x automaton to recognize any su�x of "abracadabra". Dashedlines represent "-transitions (i.e. they occur without consuming any input).10

Based on DP matrix Worst case
Bit-parallelismFilters For very long patternsBased on DPmatrixAutomaton Average caseFor moderatepatternsBased on automataFigure 4: Taxonomy of the types of solutions for online searching.At the beginning of each of these sections we give a taxonomy to help guide the tour. Thetaxonomy is an acyclic graph where the nodes are the algorithms and the edges mean that thelower work can be seen as an evolution of the upper work (although sometimes the developmentsare in fact independent).Finally, we specify some notation regarding time and space complexity. When we say that analgorithm is O(x) time we refer to its worst case (although sometimes we say that explicitly). Ifthe cost is on average, we say so explicitly. We also say sometimes that the algorithm is O(x) cost,meaning time. When we refer to space complexity we say so explicitly. The average case analysisnormally assumes a random text, where each character is selected uniformly and independentlyfrom the alphabet. The pattern is not normally assumed to be random.4 The Statistics of the ProblemA natural question about approximate searching is: which is the probability of a match? Thisquestion is not only interesting by itself, but also essential for the average case analysis of manysearch algorithms, as seen later. We present now the existing results and an empirical validation.In this section we consider the edit distance only. Some variants can be adapted to these results.The e�ort towards analyzing the probabilistic behavior of the edit distance has not given goodresults in general [KM97]. An exact analysis of the probability of the occurrence of a �xed patternallowing k replacement errors (i.e. Hamming distance) can be found in [RS97], although the resultis not easy to average over all the possible patterns. The results we present here apply to the editdistance model and, despite not being exact, are easier to use in general.The result of [RS97] holds under the assumption that the characters of the text are indepen-dently generated with �xed probabilities, i.e. a Bernoulli model. In the rest of this paper weconsider a simpler model, the \uniform Bernoulli model", where all the characters occur with thesame probability 1=�. Although this is a gross simpli�cation of the real processes that generate the11

texts used in most applications, the results obtained are quite reliable in practice. In particular,all the analyses apply quite well to biased texts if we replace � by 1=p, where p is the probabilitythat two random text characters are equal.Although the problem of the average edit distance between two strings is closely related to thebetter studied LCS, the well known results of [CS75, Dek79] can hardly be applied to this case. Itcan be shown that the average edit distance between two random strings of length m tends to aconstant fraction of m as m grows, but the fraction is not known. It holds that for any two stringsof length m, m� lcs � ed � 2(m� lcs), where ed is their edit distance and lcs is the length of theirlongest common subsequence. As proved in [CS75], the average LCS is between m=p� and me=p�for large �, and therefore the average edit distance is between m(1 � e=p�) and 2m(1 � 1=p�).For large � it is conjectured that the true value is m(1� 1=p�) in [SM83].For our purposes, bounding the probability of a match allowing errors is more important thanthe average edit distance. Let f(m; k) be the probability of a random pattern of lengthm matchinga given text position with k errors or less under the edit distance (i.e. that the text position isreported as the end of a match). In [BYN99, Nav98, NBY99b] upper and lower bounds on themaximum error level �� for which f(m; k) is exponentially decreasing on m are found. This isimportant because many algorithms search for potential matches that have to be veri�ed later, andthe cost of such veri�cations is polynomial in m, typically O(m2). Therefore, if that event occurswith probability O(
m) for some
 < 1 then the total cost of veri�cations is O(m2
m) = o(1),which makes the veri�cations cost negligible.We �rst show the analytical bounds for f(m; k), then give a new result on average edit distance,and �nally present an experimental veri�cation.4.1 An Upper BoundThe upper bound for �� comes from the proof that the matching probability is f(m; k) = O(
m)for
 = 1�� 2�1�� (1� �)2!1�� � � e2�(1� �)2�1�� (1)where we note that
 is 1=� for � = 0 and grows to 1 as � grows. This matching probability isexponentially decreasing on m as long as
 < 1, which is equivalent to� < 1� ep� � O(1=�) � 1� ep� (2)Therefore, � < 1 � e=p� is a conservative condition on the error level that ensures \few"matches. Therefore, the maximum level �� satis�es �� > 1� e=p�.The proof is obtained using a combinatorial model. Based on the observation that m � kcommon characters must appear in the same order in two strings that match with k errors, allthe possible alternatives to select the matching characters from both strings are enumerated. Thismodel, however, does not take full advantage of the properties of the edit distance: even if m� kcharacters match, the distance can be larger than k. For example, in ed(abc; bcd) = 2, i.e. althoughtwo characters match, the distance is not 1. 12

4.2 A Lower BoundOn the other hand, the only optimistic bound we know of is based on considering that only replace-ments are allowed (i.e. Hamming distance). This distance is simpler to analyze but its matchingprobability is much lower. Using again a combinatorial model it is shown that the matching prob-ability is f(m; k) � �m m�1=2, where � = � 1(1� �)��1��Therefore an upper bound for the maximum �� value is �� � 1� 1=�, since otherwise it can beproved that f(m; k) is not exponentially decreasing on m (i.e. it is
(m�1=2)).4.3 A New Result on Average Edit DistanceWe can now prove that the average edit distance is larger than m(1� e=p�) for any � (recall thatthe result of [CS75] holds for large �). We de�ne p(m; k) as the probability that the edit distancebetween two strings of length m is at most k. Note that p(m; k) � f(m; k) because in the lattercase we can match with any text su�x of length from m � k to m + k. Then the average editdistance ismXk=0 k Pr(ed = k) = mXk=0 Pr(ed > k) = mXk=0 1� p(m; k) = m� mXk=0 p(m; k)which, since p(m; k) increases with k, is larger thanm � (Kp(m;K) + (m�K)) = K(1� p(m;K))for any K of our choice. In particular, for K=m < 1 � e=p� we have that p(m;K) � f(m;K) =O(
m) for
 < 1. Therefore choosing K = m(1� e=p�)� 1 yields that the edit distance is at leastm(1�e=p�)+O(1), for any �. As we see later, this proofs converts a conjecture about the averagerunning time of an algorithm [CL92] into a fact.4.4 Empirical Veri�cationWe verify the analysis experimentally in this section (this is also taken from [BYN99, Nav98]).The experiment consists of generating a large random text (n = 10 Mb) and running the searchof a random pattern on that text, allowing k = m errors. At each text character, we record theminimum allowed error k for which that text position would match the pattern. We repeat theexperiment with 1,000 random patterns.Finally, we build the cumulative histogram, �nding how many text positions have matched withup to k errors, for each k value. We consider that k is \low enough" up to where the histogramvalues become signi�cant, that is, as long as few text positions have matched. The threshold is setto n=m2, since m2 is the normal cost of verifying a match. However, the selection of this thresholdis not very important, since the histogram is extremely concentrated. For example, for m in thehundreds, it moves from almost zero to almost n in just �ve or six increments of k.13

Figure 5 shows the results for � = 32. On the left we show the histogram we have built, wherethe matching probability undergoes a sharp increase at ��. On the right we show the �� value asm grows. It is clear that �� is essentially independent on m, although it is a bit lower for shortpatterns. The increase in the left plot at �� is so sharp that the right plot would be the same if weplotted the value of the average edit distance divided by m.
0.0 1.00.0 0.2 0.4 0.6 0.8 1.00.0

1.0
0.00.10.20.30.40.50.60.70.8
0.9

�f(m;�m)
200 1000200 400 600 800 10000.0

1.0
0.00.10.20.30.40.50.60.70.8
0.9

m��
Figure 5: On the left, probability of an approximatematch as a function of the error level (m = 300).On the right, the observed �� error level as a function of the pattern length. Both cases correspondto random text with � = 32.Figure 6 uses a stablem = 300 to show the �� value as a function of �. The curve � = 1�1=p�is included to show its closeness to the experimental data. Least squares give the approximation�� = 1�1:09=p�, with a relative error smaller than 1%. This shows that the upper bound analysis(Eq. (2)) matches reality better, provided we replace e by 1:09 in the formulas.

++ + + + + +��� � � � �
� � � � � �2 10 20 30 40 50 60 �0.20.40.60.8

1.0�� � Upper bound 1� 1=�The curve 1� 1=p�Experimental data+ Exact lower bound with
 = 1, Eq. (1)� Conservative lower bound, Eq. (2)Figure 6: Theoretical and practical values for ��, for m = 300 and di�erent � values.14

Therefore, we have shown that the matching probability has a sharp behavior: for low � it isvery low, not as low as 1=�m like exact string matching, but still exponentially decreasing in m,with an exponent base larger than 1=�. At some � value (that we called ��) it sharply increasesand quickly becomes almost 1. This point is close to �� = 1� 1=p� in practice.This is why the problem has interest only up to a given error level, since for higher errors almostall text positions match. This is also the reason that makes some algorithms to have good averagebehavior only for low enough error levels. The point �� = 1 � 1=p� matches the conjecture of[SM83].5 Dynamic Programming AlgorithmsWe start our tour with the oldest among the four areas, which inherits directly from the earliestwork. Most of the theoretical breakthroughs in the worst case algorithms belong to this category,although only a few of them are really competitive in practice. The latest practical work in this areadates back to 1992, although there are recent theoretical improvements. The major achievementsare O(kn) worst-case algorithms and O(kn=p�) average-case algorithms, as well as other recenttheoretical improvements on the worst-case.We start by presenting the �rst algorithm that solved the problem and then give a historicaltour on the improvements over the initial solution. Figure 7 helps guide the tour.5.1 The First AlgorithmWe present now the �rst algorithm to solve the problem. It has been rediscovered many times inthe past, in di�erent areas, e.g. [Vin68, NW70, San72, Sel74, WF74, LW75] (there are more in[Ull77, SK83, Kuk92]). However, this algorithm computed the edit distance, and it was convertedinto a search algorithm only in 1980 by Sellers [Sel80]. Although the algorithm is not very e�cient,it is among the most
exible ones to adapt to di�erent distance functions.We �rst show how to compute the edit distance between two strings x and y. Later, we extendthat algorithm to search a pattern in a text allowing errors. Finally, we show how to handle moregeneral distance functions.5.1.1 Computing Edit DistanceThe algorithm is based on dynamic programming. Imagine that we need to compute ed(x; y).A matrix C0::jxj;0::jyj is �lled, where Ci;j represents the minimum number of operations needed tomatch x1::i to y1::j . This is computed as followsCi;0 = iC0;j = jCi;j = if (xi = yj) then Ci�1;j�1else 1 +min(Ci�1;j; Ci;j�1; Ci�1;j�1)where at the end Cjxj;jyj = ed(x; y). The rationale of the above formula is as follows. First, Ci;0 andC0;j represent the edit distance between a string of length i or j and the empty string. Clearly i15

[CL92] [SV97]timeText Searching Edit Distance
O(m) spaceO(k2n) time

TheoreticalPractical[Sel80]FirstO(mn) search algorithmO(m) space

nk8(� log� n) 1log 3
O(k2) spaceO(k2) edit distance[Ukk85a, Mye86b]Analysis [CL92, BYN99] O(m) spaceO(m2) edit distance[Sel74, WF74, LW75][Vin68, NW70, San72]

O(kn) expected timeO(m) space
[Mye86a, GP90] [GP90] [UW93] [GG88]O(kn) timeO(m) spaceO(kn) timeO(m) spaceO(kn) timeO(m2) spaceO(kn) expectedO(k) spaceO(kn=p�) expectedO(m�) space
Cut-o� heuristic[Ukk85b] [MP80]O(n) extra spaceO(nm= log2� n) timeFour russians[LV88] O(kn) timeO(n) space[LV89]

Su�. tree of patt.O(m) spaceO(km) time[GP90, CL94]Pre�xmatrixColumnpartitioning time (c=3 or 4)O(n(1+kc=m))[CH98]
Brute force Diagonal transitionPartial s. tree

Patt. period.
O(kn) time[Mye86a]All matchesO(n) space Suf. aut. of patt

Figure 7: Taxonomy of algorithms based on the dynamic programming matrix.16

(respectively j) deletions are needed on the nonempty string. For two non-empty strings of lengthi and j, we assume inductively that all the edit distances between shorter strings have already beencomputed, and try to convert x1::i into y1::j .Consider the last characters xi and yj . If they are equal, then we do not need to consider themand we proceed in the best possible way to convert x1::i�1 into y1::j�1. On the other hand, if theyare not equal, we must deal with them in some way. Following the three allowed operations, wecan delete xi and convert in the best way x1::i�1 into y1::j , insert yj at the end of x1::i and convertin the best way x1::i into y1::j�1, or replace xi by yj and convert in the best way x1::i�1 into y1::j�1.In all cases, the cost is 1 plus the cost for the rest of the process (already computed). Notice thatthe insertions in one string are equivalent to deletions in the other.An equivalent formula which is also widely used isC0i = min(Ci�1;j�1 + �(xi; yj); Ci�1;j + 1; Ci;j�1 + 1)where �(a; b) = 0 if a = b and 1 otherwise. It is easy to see that both formulas are equivalentbecause neighboring cells di�er in at most one (just recall the meaning of Ci;j), and therefore when�(xi; yj) = 0 we have that Ci�1;j�1 cannot be larger than Ci�1;j + 1 or Ci;j�1 + 1.The dynamic programming algorithm must �ll the matrix in such a way that the upper, left,and upper-left neighbors of a cell are computed prior to computing that cell. This is easily achievedby either a row-wise left-to-right traversal or a column-wise top-to-bottom traversal, but we will seelater that, using a di�erence recurrence, the matrix can also be �lled by (upper-left to lower-right)diagonals or \secondary" (upper-right to lower-left) diagonals. Figure 8 illustrates the algorithmto compute ed("survey", "surgery"). s u r g e r y0 1 2 3 4 5 6 7s 1 0 1 2 3 4 5 6u 2 1 0 1 2 3 4 5r 3 2 1 0 1 2 3 4v 4 3 2 1 1 2 3 4e 5 4 3 2 2 1 2 3y 6 5 4 3 3 2 2 2Figure 8: The dynamic programming algorithm to compute the edit distance between "survey"and "surgery". The bold entries show the path to the �nal result.Therefore, the algorithm is O(jxjjyj) time in the worst and average case. However, the spacerequired is only O(min(jxj; jyj)). This is because, in the case of a column-wise processing, onlythe previous column must be stored in order to compute the new one, and therefore we just keepone column and update it. We can process the matrix row-wise or column-wise so that the spacerequirement is minimized.On the other hand, the sequences of operations performed to transform x into y can be easilyrecovered from the matrix, simply by proceeding from the cell Cjxj;jyj to the cell C0;0 following the17

path (i.e. sequence of operations) that matches the update formula (multiple paths may exist).In this case, however, we need to store the complete matrix or at least an area around the maindiagonal.This matrix has some properties which can be easily proved by induction (see, e.g. [Ukk85a])and which make it possible to design better algorithms. Some of the most used are that thevalues of neighboring cells di�er in at most one, and that upper-left to lower-right diagonals arenondecreasing.5.1.2 Text SearchingWe show now how to adapt this algorithm to search a short pattern P in a long text T . Thealgorithm is basically the same, with x = P and y = T (proceeding column-wise so that O(m)space is required). The only di�erence is that we must allow that any text position is the potentialstart of a match. This is achieved by setting C0;j = 0 for all j 2 0::n. That is, the empty patternmatches with zero errors at any text position (because it matches with a text substring of lengthzero).The algorithm then initializes its column C0::m with the values Ci = i, and processes the textcharacter by character. At each new text character Tj , its column vector is updated to C 00::m. Theupdate formula is C0i = if (Pi = Tj) then Ci�1else 1 + min(C 0i�1; Ci; Ci�1)and the text positions where Cm � k are reported.The search time of this algorithm is O(mn) and its space requirement is O(m). This is a sortof worst case in the analysis of all the algorithms that we consider later. Figure 9 exempli�es thisalgorithm applied to search the pattern "survey" in the text "surgery" (a very short text indeed)with at most k = 2 errors. In this case there are 3 occurrences.s u r g e r y0 0 0 0 0 0 0 0s 1 0 1 1 1 1 1 1u 2 1 0 1 2 2 2 2r 3 2 1 0 1 2 2 3v 4 3 2 1 1 2 3 3e 5 4 3 2 2 1 2 3y 6 5 4 3 3 2 2 2Figure 9: The dynamic programming algorithm to search "survey" in the text "surgery" withtwo errors. Each column of this matrix is a value of the C vector. Bold entries indicate matchingtext positions. 18

5.1.3 Other Distance FunctionsIt is easy to adapt this algorithm for the other distance functions mentioned. If the operations havedi�erent costs, we add the cost instead of adding 1 when computing Ci;j , i.e.C0;0 = 0Ci;j = min(Ci�1;j�1 + �(xi; yj); Ci�1;j + �(xi; "); Ci;j�1+ �("; yj))where we assume �(a; a) = 0 for any a 2 � and that C�1;j = Ci;�1 =1 for all i; j.For distances that do not allow some operations, we just take them out of the minimizationformula, or which is the same, we assign 1 to their � cost. For transpositions, we allow a fourthrule that says that Ci;j can be Ci�2;j�2 + 1 if xi�1xi = yjyj�1 [LW75].The most complex case is to allow general substring replacements, in the form of a �nite set Rof rules. The formula is given in [Ukk85a].C0;0 = 0Ci;j = min(Ci�1;j�1 if xi = yj ;Ci�js1j;j�js2j + �(s1; s2) for each (s1; s2) 2 R; x1::i = x0s1; y1::j = y0s2)An interesting problem is how to compute this recurrence e�ciently. A naive approach takesO(jRjmn), where jRj is the sum of all the lengths of the strings in R. A better solution is to buildtwo Aho-Corasick automata [AC75] with the left and right hand sides of the rules, respectively.The automata are run as we advance in both strings (left hand sides in x and right hand sidesin y). For each pair of states (i1; i2) of the automata we precompute the set of replacements thatcan be tried (i.e. those �'s whose left and right hand match the su�xes of x and y, respectively,represented by the automata states). Hence, we know in constant time (per cell) the set of possiblereplacements. The complexity is now much lower, in the worst case it is O(cmn) where c is themaximum number of rules applicable to a single text position.As said, the dynamic programming approach is unbeaten in
exibility, but its time requirementsare indeed high. A number of improved solutions have been proposed along the years. Some ofthem work only for the edit distance, while others can still be adapted to other distance functions.Before considering the improvements, we mention that there exists a way to see the problem as ashortest path problem on a graph built on the pattern and the text [Ukk85a]. This reformulationhas been conceptually useful for more complex variants of the problem.5.2 Improving the Worst CaseMasek and Paterson 1980 It is interesting that one important worst-case theoretical resulton this area is as old as the Sellers [Sel80] algorithm itself. In 1980, Masek and Paterson [MP80]found an algorithm whose worst case cost is O(mn= log2� n) and requires O(n) extra space. This isan improvement over the O(mn) classical complexity.The algorithm is based on the Four-Russians technique [ADKF75]. Basically, it replaces thealphabet � by r-tuples (i.e. �r) for a small r. Considered algorithmically, it �rst builds a table ofsolutions of all the possible problems (i.e. portions of the matrix) of size r � r, and then uses thetable to solve the original problem in blocks of size r. Figure 10 illustrates.19

The values inside the r � r size cells depend on the corresponding letters in the pattern andthe text, which gives �2r possibilities. They also depend on the values in the last column and rowof the upper and left cells, as well as the bottom-right state of the upper left cell (see Figure 10).Since neighboring cells di�er in at most one, there are only three choices for adjacent cells once thecurrent cell is known. Therefore, this adds only m(32r) possibilities. In total, there are m(3�)2rdi�erent cells to precompute. Using O(n) memory we have enough space for r = log3� n, and sincewe �nally compute mn=r2 cells, the �nal complexity follows.
text

pattern
r

e y

v

e

y

s ru g r ,...

u

sFigure 10: The Masek and Paterson algorithm partitions the dynamic programming matrix in cells(r = 2 in this example). On the right, we shaded the entries of adjacent cells that in
uence thecurrent one.The algorithm is only of theoretical interest, since as the same authors estimate, it will not beatthe classical algorithm for texts below 40 Gb size (and it would need that extra space!). Adaptingit to other distance functions seems not di�cult, but the dependencies among di�erent cells maybecome more complex.Ukkonen 1983 In 1983, Ukkonen [Ukk85a] presented an algorithm able to compute the editdistance between two strings x and y in O(ed(x; y)2) time, or to check in time O(k2) whether thatdistance was � k or not. This is the �rst member of what has been called \diagonal transitionalgorithms", since it is based in the fact that the diagonals of the dynamic programming matrix(running from the upper-left to the lower-right cells) are monotonically increasing (more than that,Ci+1;j+1 2 fCi;j; Ci;j + 1g). The algorithm is based on computing in constant time the positionswhere the values along the diagonals are incremented. Only O(k2) such positions are computed toreach the lower-right decisive cell.Figure 11 illustrates the idea. Each diagonal stroke represents a number of errors, and is asequence where both strings match. When a stroke of e errors starts, it continues until the adjacente� 1 strokes continue or until it keeps matching the text. To compute each stroke in constant timewe need to know until where it matches the text. The way to do this in constant time is explainedshortly.Landau and Vishkin 1985 In 1985 and 1986, Landau and Vishkin found the �rst worst-casetime improvements for the search problem. All of them and the thread that followed were diagonaltransition algorithms. In 1985 [LV88] they show an algorithm which is O(k2n) time and O(m)space, and in 1986 [LV89] they obtain O(kn) time and O(n) space.The main idea of Landau and Vishkin was to adapt to text searching the Ukkonen's diagonaltransition algorithm for edit distance [Ukk85a]. Basically, the dynamic programming matrix was20

0

1

2

3

1

3

1

2

3

2

3

3

32

2

3

e-1

e-1e-1

eFigure 11: On the left, the O(k2) algorithm to compute the edit distance. On the right, the wayto compute the strokes in diagonal transition algorithms. The solid bold line is guaranteed to bepart of the new stroke of e errors, while the dashed part continues as long as both strings match.computed diagonal-wise (i.e. stroke by stroke) instead of column-wise. They wanted to computein constant time the length of each stroke (i.e. the point where the values along a diagonal were tobe incremented). Since a text position was to be reported when matrix row m was reached beforeincrementing more than k times the values along the diagonal, this gave immediately the O(kn)algorithm. Another way to see it is that each diagonal is abandoned as soon as the k-th strokeends, there are n diagonals and hence nk strokes, each of them computed in constant time (recallFigure 11).A recurrence on diagonals (d) and number of errors (e), instead of rows (i) and columns (j), isset up in the following wayLd;�1 = Ln+1;e = �1; for all e; dLd;jdj�2 = jdj � 2; for � (k + 1) � d � �1Ld;jdj�1 = jdj � 1; for � (k + 1) � d � �1Ld;e = i + max` (Pi+1::i+` = Td+i+1::d+i+`)where i = max(Ld;e�1 + 1; Ld�1;e�1; Ld+1;e�1 + 1)where the external loop updates e from 0 to k and the internal one updates d from �e to n.Negative numbered diagonals are those virtually starting before the �rst text position. Figure 12shows our search example using this recurrence.Note that the L matrix has to be �lled by diagonals, e.g. L0;3; L1;2; L2;1; L0;4; L1;3; L2;2; L0;5; :::.The di�cult part is how to compute the strokes in constant time (i.e. the max`(� � �)). The problemis equivalent to knowing which is the longest pre�x of Pi:::m that matches Tj:::n. This data has bencalled thereafter \matching statistics". The algorithms of this section di�er basically in how theymanage to compute the matching statistics fast.We defer the explanation of [LV88] for later (together with Galil and Park 1989). In [LV89], thelongest match is obtained by building the su�x tree (see Section 3.2) of T ;P (text concatenatedwith pattern), where the huge O(n) extra space comes from. The longest pre�x common to bothsu�xes Pi:::m and Tj:::n can be visualized in the su�x tree as follows: imagine the root to leafpaths that end in each of the two su�xes. Both parts share the beginning of the path (at least21

-3 -2 -1 0 1 2 3 4 5 6 70 0 3 0 0 0 0 0 0 0 01 1 1 4 5 3 1 1 1 1 1 12 2 5 6 6 6 3 2 3 2 2 2Figure 12: The diagonal transition matrix to search "survey" in the text "surgery" with twoerrors. Bold entries indicate matching diagonals. The rows are e values and the columns are the dvalues.they share the root). The last su�x tree node common to both paths represents a substring whichis precisely the longest common pre�x. In the literature, this last common node is called lowestcommon ancestor (LCA) of two nodes.Despite being conceptually clear, it is not easy to �nd this node in constant time. In 1986,the only existing LCA algorithm was [HT84], which had constant amortized time, i.e. it answeredn0 > n LCA queries in O(n0) time. In our case we have kn queries, so each one �nally costed O(1).The resulting algorithm, however, is quite slow in practice.Myers 1986 In 1986, Myers found also an algorithm with O(kn) worst-case behavior [Mye86a].It needed O(n) extra space, and shared the idea of computing the k new strokes using the previousones, as well as the use of a su�x tree on the text for the LCA algorithm. Unlike other algorithms,this one is able to report the O(kn) matching substrings of the text (not only the endpoints) inO(kn) time. This makes the algorithm suitable for more complex applications, for instance incomputational biology. The original reference is a technical report and never went to press, but ithas been recently included in a larger work [LMS98].Galil and Giancarlo 1988 In 1988, Galil and Giancarlo [GG88] obtained the same time com-plexity of Landau and Vishkin using O(m) space. Basically, the su�x tree of the text is built byoverlapping pieces of size O(m). The algorithm scans the text four times, being even slower than[LV89]. Therefore, the result was of theoretical interest.Galil and Park 1989 One year later, in 1989, Galil and Park [GP90] obtained O(kn) worst-casetime and O(m2) space, worse in theory than [GG88] but much better in practice. Their idea isrooted in the work of [LV88] (which had obtained O(k2n) time). In both cases, the idea is tobuild the matching statistics of the pattern against itself (longest match between Pi:::m and Pj:::m),resembling in some sense the basic ideas of [KMP77]. This algorithm is still slow in practice anyway.Consider again Figure 11, and in particular the new stroke with e errors at the right. Thebeginning of the stroke is dictated by the three neighboring strokes of e � 1 errors, but after thelongest of the three ceases to a�ect the new stroke, how long it continues (dashed line) dependsonly on the similarity between pattern and text. More speci�cally, if the dotted line (su�x of astroke) at diagonal d spans rows i1 to i1+ `, this means that the longest match between Td+i1:: andPi1:: has length `. Therefore, the strokes computed by the algorithm give some information about22

longest matches between text and pattern. The di�cult part is how to use that information.Figure 13 illustrates the algorithm. As explained, the algorithm progresses by strokes, �llingdiagonally the matrix of Figure 12, so that when a stroke is computed its three neighbors are alreadycomputed. We have enclosed in a dotted triangle the strokes that may contain the information onlongest matches relevant to the new strokes that are being computed. The algorithm of [LV88]basically searches the relevant information in this triangle and hence it is O(k2n) time.
000

1

1

1 2

2
2

0

1

2

3

0

1

2
3

0

1

2

3

1

2

3

1

2

3

00

1
2

3

0

P

T

Figure 13: On the left, the way in which the stroke-wise algorithm progresses. The relevant strokesare enclosed in a dotted triangle and the last k strokes computed are in bold. On the right, theselection of the k relevant strokes to cover the last text area. We put in bold the parts of the strokesthat are used.This is improved in [GP90] to O(kn) by considering carefully the relevant strokes. Let us call e-stroke a stroke with e errors. First consider a 0-stroke. This full stroke (not only a su�x) representsa longest match between pattern and text. So, from the k previous 0-strokes we can keep the onethat lasts more in the text, and up to that text position we have all the information we need aboutlongest matches. We consider now all the 1-strokes. Despite that only a su�x of those strokesreally represent a longest match between pattern and text, we know that this is de�nitely trueafter the last text position reached by a 0-stroke (since by then no 0-stroke can \help" a 1-stroketo last more). Therefore, we can keep the 1-stroke that lasts more in the text and use it to de�nelongest matches between pattern and text when there are no more active 0-strokes. This argumentcontinues for all the k errors, showing that in fact the complete text area that is relevant can becovered with just k strokes. Figure 13 (right) illustrates this idea.The algorithm of [GP90] basically keeps this list of k relevant strokes3 up to date all the time.Each time a new e-stroke is produced, it is compared against the current relevant e-stroke, and ifthe new one lasts more in the text than the old one, it replaces the old stroke. Since the algorithmprogresses in the text, old strokes are naturally eliminated with this procedure.A last problem is how to use the indirect information given by the relevant strokes to computethe longest matches between pattern and text. What we have is a set of longest matches coveringthe text area of interest, plus the precomputed longest matches of the pattern against itself (startingat any position). We now know where the dashed line of Figure 11 starts (say it is Pi1 and Td+i1)and want to compute its length. To know where the longest match between pattern and text ends,3Called \reference triples" in there. 23

we �nd the relevant stroke where the beginning of the dashed line falls. That stroke represents amaximal match between Td+i1:: and some Pj1::. As we know by the preprocessing the longest matchbetween Pi1 :: and Pj1::, we can derive the longest match between Pi1:: and Td+i1::. There are someextra complications to take care of when both longest matches end at the same position or one haslength zero, but all them can be sorted out in O(k) time per diagonal of the L matrix.Finally, Galil and Park show that the O(m2) extra space needed to store the matrix of longestmatches can be reduced to O(m) by using a su�x tree of the pattern (not the text as in previouswork) and LCA algorithms, so we add di�erent entries in Figure 7 (note that [LV88] had alreadyO(m) space). Galil and Park also show how to add transpositions to the edit operations at thesame complexity. This technique can be extended to all these diagonal transition algorithms. Webelieve that allowing di�erent integral costs for the operations or forbidding some of them can beachieved with simple modi�cations of the algorithms.Ukkonen and Wood 1990 An idea similar to that of using the su�x tree of the pattern (andsimilarly slow in practice) was independently discovered by Ukkonen and Wood in 1990 [UW93].They use a su�x automaton (described in Section 3.2) on the pattern to �nd the matching statistics,instead of the table. As the algorithm progresses over the text, the su�x automaton keeps count ofthe pattern substrings that match the text at any moment. Despite that they report O(m2) spacefor the su�x automaton, it can take O(m) space.Chang and Lawler 1990 Also in 1990, Chang and Lawler [CL94] repeated the idea that wasbrie
y mentioned in [GP90]: the matching statistics can be computed using the su�x tree of thepattern and LCA algorithms. However, they used a newer and faster LCA algorithm [SV88], trulyO(1), and reported the best time among algorithms with guaranteed O(kn) performance. However,the algorithm is still not competitive in practice.Cole and Hariharan 1998 In 1998, Cole and Hariharan [CH98] presented an algorithm withworst case O(n(1+ kc=m)), where c = 3 if the pattern is \mostly aperiodic" and c = 4 otherwise4.The idea is that, unless a pattern has a lot of self-repetition, only a few diagonals of a diagonaltransition algorithm need to be computed.This algorithm can be thought of as a �lter (see next sections) with worst case guarantee usefulfor very small k. It resembles some ideas of the �lters developed in [CL94]. Probably other �lterscan be proved to have good worst cases under some periodicity assumptions on the pattern, butthis thread has not been explored up to now. This algorithm is an evolution over a previous one[SV97], which is more complex and has a worse complexity, namely O(nk8(� log� n)1= log 3). In anycase, the interest of this work is theoretical too.5.3 Improving the Average CaseUkkonen 1985 The �rst improvement to the average case is due to Ukkonen in 1985. Thealgorithm, a short note at the end of [Ukk85b], improved the dynamic programming algorithm4The de�nition of \mostly aperiodic" is rather technical and related to the number of auto-repetition that occursin the pattern. Most patterns are \mostly aperiodic". 24

to O(kn) average time and and O(m) space. This algorithm has been called later the \cut-o�heuristic". The main idea is that, since a pattern does not normally match in the text, the valuesat each column (from top to bottom) quickly reach k + 1 (i.e. mismatch), and that if a cell has avalue larger than k+ 1, the result of the search does not depend on its exact value. A cell is calledactive if its value is at most k. The algorithm simply keeps count of which is the last active celland avoids working on the rest of the cells.To keep the last active cell, we must be able to recompute it for each new column. At each newcolumn, the last active cell can be incremented in at most one, so we check if we have activatedthe next cell at O(1) cost. However, it is also possible that which was the last active cell becomesinactive now. In this case we have to search upwards which is the new last active cell. Despitethat we can work O(m) in a given column, we cannot work more than O(n) overall, because thereare at most n increments of this value in the whole process, and hence there are no more than ndecrements. Hence, the last active cell is maintained at O(1) amortized cost per column.Ukkonen conjectured that this algorithm was O(kn) on average, but this was proven only in1992 by Chang and Lampe [CL92]. The proof was re�ned in 1996 by Baeza-Yates and Navarro[BYN99]. The result can probably be extended to more complex distance functions, although withsubstrings the last active cell must exceed k by enough to ensure that it can never return to a valuesmaller than k. In particular, it must have the value k + 2 if transpositions are allowed.Myers 1986 An algorithm in [Mye86a] is based on diagonal transitions as those of the previoussections, but the strokes are simply computed by brute force. Myers showed that the resultingalgorithm was O(kn) on average. This is clear because the length of the strokes is �=(��1) = O(1)on average. The same algorithm was proposed again in 1989 by Galil and Park [GP90]. Since onlythe k strokes need to be stored, the space is O(k).Chang and Lampe 1992 In 1992, Chang and Lampe [CL92] gave a new algorithm called \col-umn partitioning", based on exploiting a di�erent property of the dynamic programming matrix.They consider again the fact that, along each column, the numbers are normally increasing. Theywork on \runs" of consecutive increasing cells (a run ends when Ci+1 6= Ci + 1). They manage towork O(1) per run in the column actualization process.To update each run in constant time, they precompute loc(j; x) = minj0�j Pj0 = x for all patternpositions j and all characters x (hence it needs O(m�) space). At each column of the matrix, theyconsider the current text character x and the current row j, and know in constant time where therun is going to end (i.e. next character match). The run can end before, namely where the parallelrun of the previous column ends.Based on empirical observations, they conjecture that the average length of the runs is O(p�).Notice that this matches our result that the average edit distance is m(1� e=p�), since this is thenumber of increments along columns, and therefore there are O(m=p�) non-increments (i.e. runs).From there it is clear that each run has average length O(p�). Therefore, we have just provedChang and Lampe's conjecture.Since the paper uses the cut-o� heuristic of Ukkonen, their average search time is O(kn=p�).This is, in practice, the fastest algorithm of this class.Unlike the other algorithms of this section, it seems di�cult to adapt [CL92] to other distance25

functions, since the idea strongly relies on the unitary costs. It is mentioned that the algorithmcould run in average time O(kn log log(m)=�) but it would not be practical.6 Algorithms Based on AutomataThis area is also rather old. It is interesting because it gives the best worst-case time algorithm(O(n), which matches the lower bound of the problem). However, there is a time and spaceexponential dependence on m and k that limits its practicality.We �rst present the basic solution and then discuss the improvements. Figure 14 shows thehistorical map of this area. [MP80]Four Russians technique[Ukk85b]De�nitionof DFAmin(3m;m(2m�)k) statesLazy automaton[Kur96, Nav97b][Mel96]Improvedanalysis(k+2)m�k(k+1)! statesreplaces� bymin(�;m) [WMM96]O(s) spaceO(mn= log s) timeFigure 14: Taxonomy of algorithms based on deterministic automata.6.1 An Automaton for Approximate SearchAn alternative and very useful way to consider the problem is to model the search with a non-deterministic automaton (NFA). This automaton (in its deterministic form) was �rstly proposed in[Ukk85b], and �rstly used in non-deterministic form (although implicitly) in [WM92a]. It is shownexplicitly in [BY91, BY96, BYN99].Consider the NFA for k = 2 errors under edit distance shown in Figure 15. Every row denotesthe number of errors seen (the �rst row zero, the second row one, etc.). Every column representsmatching a pattern pre�x. Horizontal arrows represent matching a character (i.e. if the patternand text characters match, we advance in the pattern and in the text). All the others incrementthe number of errors (move to the next row): vertical arrows insert a character in the pattern (weadvance in the text but not in the pattern), solid diagonal arrows replace a character (we advancein the text and pattern), and dashed diagonal arrows delete a character of the pattern (they are"-transitions, since we advance in the pattern without advancing in the text). The initial self-loopallows a match to start anywhere in the text. The automaton signals (the end of) a match whenevera rightmost state is active. If we do not care about the number of errors of the occurrences, we canconsider �nal states those of the last full diagonal.26

It is not hard to see that once a state in the automaton is active, all the states of the samecolumn and higher rows are active too. Moreover, at a given text character, if we collect thesmallest active rows at each column, we obtain the vertical vector of the dynamic programmingalgorithm (in this case [0; 1; 2; 3; 3; 3; 2], compare to Figure 9).
Σ Σ Σ Σ Σ Σ Σ

Σ Σ Σ Σ Σ Σ Σ

εεεεεε

εεεεεε

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

s u

s

s u

u

v

v

v

r

r

r

e

e

no errors

2 errors

1 error

y

y

y

e

Σ Σ Σ Σ Σ Σ

Σ Σ Σ Σ Σ Σ

Figure 15: An NFA for approximate string matching of the pattern "survey" with two errors. Theshaded states are those active after reading the text "surgery".Other types of distances (Hamming, LCS and Episode) are obtained by deleting some arrowsof the automaton. Di�erent integer costs for the operations can also be modeled by changing thearrows. For instance, if insertions cost 2 instead of 1, we make the vertical arrows to move fromrows i to rows i+ 2. Transpositions are modeled by adding an extra state Si;j between each pairof states at position (i; j) and (i + 1; j + 2), and arrows labeled Pi+2 from state (i; j) to Sij andPi+1 between Si;j and (i+1; j+2) [Mel96]. Adapting to general substring replacement needs morecomplex setups but it is always possible.This automaton can be simply made deterministic to obtain O(n) worst case search time.However, as we see next, the main problem becomes the construction of the DFA (deterministic�nite automaton). An alternative solution is based on simulating the NFA instead of making itdeterministic.6.2 Implementing the AutomatonUkkonen 1985 In 1985, Ukkonen proposed the idea of a deterministic automaton for this problem[Ukk85b]. However, an automaton as that of Figure 15 was not explicitly considered. Rather, eachpossible set of values for the columns of the dynamic programming matrix was a state of theautomaton. Once the set of all possible columns and the transitions among them were built, thetext was scanned with the resulting automaton, performing exactly one transition per characterread.The big problem with this scheme was that the automaton had a potentially huge number ofstates, which had to be built and stored. To improve space usage, Ukkonen proved that all theelements in the columns that were larger than k + 1 could be replaced by k + 1 without a�ecting27

the output of the search (the lemma was used in the same paper to design the cut-o� heuristicdescribed in Section 5.3). This reduced the potential number of di�erent columns. He also showedthat adjacent cells in a column di�ered in at most one. Hence, the column states could be de�nedas a vector of m incremental values in the set f�1; 0; 1g.All this made possible to obtain in [Ukk85b] a nontrivial bound to the number of states ofthe automaton, namely O(min(3m; m(2m�)k)). This size, although much better than the obviousO((k + 1)m), is still very large except for short patterns or very low error levels. The resultingspace complexity of the algorithm is m times the above value. This exponential space complexityhas to be added to the O(n) time complexity, as the preprocessing time to build the automaton.As a �nal comment, Ukkonen suggested that the columns could be only partially computed upto, say, 3k=2 entries. Since he conjectured (and later was proved in [CL92]) that the columns ofinterest were O(k) on average, this would normally not a�ect the algorithm, though it will reducethe number of possible states. If at some point the states not computed were really needed, thealgorithm would compute them by dynamic programming.Notice that to incorporate transpositions and substring replacements into this conception weneed to consider that each state is the set of the j last columns of the dynamic programmingmatrix,where j is the longest left hand side of a rule. In this case it is better to build the automaton ofFigure 15 explicitly and make it deterministic.Wu, Manber and Myers 1992 It was not until 1992 that Wu, Manber and Myers looked againinto this problem [WMM96]. The idea was to trade time for space using a Four Russians technique[ADKF75]. Since the cells could be expressed using only values in f�1; 0; 1g, the columns werepartitioned into blocks of r cells (called \regions") which took 2r bits each. Instead of precomputingthe transitions from a whole column to the next, the transitions from a region to the next regionin the column were precomputed, although the current region could now depend on three previousregions (see Figure 16). Since the regions were smaller than the columns, much less space wasnecessary. The total amount of work was O(m=r) per column in the worst case, and O(k=r) onaverage. The space requirement was exponential in r. By using O(n) extra space, the algorithmwas O(kn= logn) on average and O(mn= logn) in the worst case. Notice that this shares with[MP80] the Four Russians approach, but there is an important di�erence: the states in this casedo not depend on the letters of the pattern and text. The states of the \automaton" of [MP80], onthe other hand, depend on the text and pattern.This Four Russians approach is so
exible that this work was extended to handle regular expres-sions allowing errors [WMM95]. The technique for exact regular expression searching is to packportions of the deterministic automaton in bits and compute transition tables for each portion.The few transitions among portions are left nondeterministic and simulated one by one. To allowerrors, each state is not anymore active or inactive, but they keep count of the minimum numberof errors that makes it active, in O(logk) bits.Melichar 1995 In 1995, Melichar [Mel96] studied again the size of the deterministic automa-ton. By considering the properties of the NFA of Figure 15, he re�ned the bound of [Ukk85b] toO(min(3m; m(2mt)k; (k + 2)m�k(k + 1)!)), where t = min(m + 1; �). The space complexity andpreprocessing time of the automaton is t times the number of states. Melichar also conjectured28

Figure 16: On the left, the automaton of [Ukk85b] where each column is a state. On the right, theautomaton of [WMM96] where each region is a state. Both compute the columns of the dynamicprogramming matrix.that this automaton is bigger when there are periodicities in the pattern, which matches with theresults of [CH98] (Section 5.2), in the sense that periodic patterns are more problematic. This isin fact a property shared with other problems in string matching.Kurtz 1996 In 1996, Kurtz [Kur96] proposed another way to reduce the space requirements toat most O(mn). It is an adaptation of [BYG94], which �rst proposed it for the Hamming distance.The idea was to build the automaton in lazy form, i.e. build only the states and transitions actuallyreached in the processing of the text. The automaton starts as just one initial state and the statesand transitions are built as needed. By doing this, all those transitions that Ukkonen [Ukk85b]considered that were not necessary were not built in fact, without need to guess. The price was theextra overhead of a lazy construction versus a direct construction, but the idea pays o�. Kurtz alsoproposed to have built only the initial part of the automaton (which should be the most commonlytraversed states) to save space.Navarro studied in [Nav97b, Nav98] the growth of the complete and lazy automata as a functionof m, k and n (this last value for the lazy automaton only). The empirical results show that thelazy automaton grows with the text at a rate of O(n�), for 0 < � < 1 dependent on �, m and k.Some replacement policies designed to work with bounded memory are proposed in [Nav98].7 Bit-ParallelismThese algorithms are based on exploiting the parallelism of the computer when it works on bits.This is also a new (after 1990) and very active area. The basic idea is to \parallelize" anotheralgorithm using bits. The results are interesting from the practical point of view, and are especiallysigni�cative when short patterns are involved (typical in text retrieval). They may work e�ectivelyfor any error level.In this section we �nd elements which strictly could belong to other sections, since we paral-lelize other algorithms. There are two main trends: parallelize the work of the non-deterministicautomaton that solves the problem (Figure 15), and parallelize the work of the dynamic program-29

ming matrix.We �rst explain the technique and then the results achieved using it. Figure 17 shows thehistorical development of this area.[BY89]Birth of bit-parallelism ParallelizedDP matrix[Wri94]O(mn log(�)=w) time
Parallelize matrix[WM92a]Bit-parallelNFAO(kdm=wen) time [Mye98]Optimal parall. DPmatrixO(mn=w) worst-caseO(kn=w) on average[BYN99]NFA parallelizedby diagonalsO(dkm=wen) worst-caseO(k2n=w) average

Parallelize automaton
Figure 17: Taxonomy of bit-parallel algorithms.7.1 The Technique of Bit-ParallelismThis technique, of common use in string matching [BY91, BY92], was born in the PhD. Thesis ofBaeza-Yates [BY89]. It consists in taking advantage of the intrinsic parallelism of the bit operationsinside a computer word. By using cleverly this fact, the number of operations that an algorithmperforms can be cut down by a factor of at most w, where w is the number of bits in the computerword. Since in current architectures w is 32 or 64, the speedup is very signi�cative in practiceand improves with technological progress. In order to relate the behavior of bit-parallel algorithmsto other works, it is normally assumed that w = �(logn), as dictated by the RAM model ofcomputation. We prefer, however, to keep w as an independent value. We introduce now somenotation we use for bit-parallel algorithms.� The length of the computer word (in bits) is w.� We denote as b`:::b1 the bits of a mask of length `. This mask is stored somewhereinside the computer word. Since the length w of the computer word is �xed, we arehiding the details on where we store the ` bits inside it.� We use exponentiation to denote bit repetition (e.g. 031 = 0001).�We use C-like syntax for operations on the bits of computer words: \j" is the bitwise-or, \&" is the bitwise-and, \ b " is the bitwise-xor and \�" complements all the bits.30

The shift-left operation, \<<", moves the bits to the left and enters zeros from theright, i.e. bmbm�1:::b2b1 << r = bm�r:::b2b10r. The shift-right, \>>" moves the bitsin the other direction. Finally, we can perform arithmetic operations on the bits, suchas addition and subtraction, which operate the bits as if they formed a number. Forinstance, b`:::bx10000� 1 = b`:::bx01111.We explain now the �rst bit-parallel algorithm, Shift-Or [BYG92], since it is the basis of muchof which follows. The algorithm searches a pattern in a text (without errors) by parallelizing theoperation of a non-deterministic �nite automaton that looks for the pattern. Figure 18 illustratesthis automaton.
rs u v e y

60 1 2 3 4 5Figure 18: Nondeterministic automaton that searches "survey" exactly.This automaton has m+1 states, and can be simulated in its non-deterministic form in O(mn)time. The Shift-Or algorithm achieves O(mn=w) worst-case time (i.e. optimal speedup). Noticethat if we convert the non-deterministic automaton to a deterministic one to have O(n) searchtime, we get an improved version of the KMP algorithm [KMP77]. However KMP is twice as slowfor m � w.The algorithm �rst builds a table B which for each character c stores a bit mask B[c] = bm:::b1.The mask in B[c] has the bit bi in one if and only if Pi = c. The state of the search is kept in amachine word D = dm:::d1, where di is one whenever P1::i matches the end of the text read up tonow (i.e. the state numbered i in Figure 18 is active). Therefore, a match is reported wheneverdm = 1.D is set to 1m originally, and for each new text character Tj , D is updated using the formula5D0 ((D >> 1) j 10m�1) & B[Tj]The formula is correct because the i-th bit is set if and only if the (i � 1)-th bit was set forthe previous text character and the new text character matches the pattern at position i. In otherwords, Tj�i+1::j = P1::i if and only if Tj�i+1::j�1 = P1::i�1 and Tj = Pi. It is possible to relatethis formula to the movement that occurs in the non-deterministic automaton for each new textcharacter: each state gets the value of the previous state, but this happens only if the text charactermatches the corresponding arrow.For patterns longer than the computer word (i.e. m > w), the algorithm uses dm=we computerwords for the simulation (not all them are active all the time). The algorithm is O(n) on average.It is easy to extend Shift-Or to handle classes of characters. In this extension, each positionin the pattern matches with a set of characters rather than with a single character. The classical5The real algorithm uses the bits with the inverse meaning and therefore the operation \j 10m�1" is not necessary.It also shifts in the other direction to ensure that a fresh zero �lls the hole left by the shift, which is more machinedependent for the right shift. We have preferred to explain this more didactic version.31

string matching algorithms are not so easily extended. In Shift-Or, it is enough to set the i-th bitof B[c] for every c 2 Pi (Pi is a set now). For instance, to search for "survey" in case-insensitiveform, we just set to 1 the �rst bit of B["s"] and of B["S"], and the same with the rest. Shift-Orcan also search for multiple patterns (where the complexity is O(mn=w) if we consider that m isthe total length of all the patterns), and it was later enhanced [WM92a] to support a larger set ofextended patterns and even regular expressions.Many online text algorithms can be seen as implementations of an automaton (classically, in itsdeterministic form). Bit-parallelism has since its invention became a general way to simulate simplenon-deterministic automata instead of converting them to deterministic. It has the advantage ofbeing much simpler, in many cases faster (since it makes better usage of the registers of the computerword), and easier to extend to handle complex patterns than its classical counterparts. Its maindisadvantage is the limitation it imposes with regard to the size of the computer word. In manycases its adaptations to cope with longer patterns are not so e�cient.7.2 Parallelizing Non-deterministic AutomataWu and Manber 1992 In 1992, Wu and Manber [WM92a] published a number of ideas thathad a great impact in the future of practical text searching. They �rst extended the Shift-Oralgorithm to handle wild cards (i.e. allow an arbitrary number of characters between two givenpositions in the pattern), and regular expressions (the most
exible pattern that can be e�cientlysearched). What is of more interest to us is that they presented a simple scheme to combine anyof the preceding extensions with approximate string matching.The idea is to simulate the NFA of Figure 15 using bit-parallelism, so that each row i of theautomaton �ts in a computer word Ri (each state is represented by a bit). For each new textcharacter, all the transitions of the automaton are simulated using bit operations among the k+ 1computer words. Notice that all the k + 1 computer words have the same structure (i.e. the samebit is aligned to the same text position). The update formula to obtain the new R0i values at textposition j from the current Ri values isR00 = ((R0 >> 1) j 10m�1) & B[Tj]R0i+1 = ((Ri+1 >> 1) & B[Tj]) j Ri j (Ri >> 1) j (R0i >> 1)and we start the search with Ri = 1i0m�i. As expected, R0 undergoes a simple Shift-Or process,while the other rows receive ones (i.e. active states) from previous rows as well. In the formula forR0i+1 are expressed, in that order, horizontal, vertical, diagonal and dashed diagonal arrows.The cost of this simulation is O(kdm=wen) in the worst and average case, which is O(kn) forpatterns typical in text searching (i.e. m � w). This is a perfect speedup over the serial simulationof the automaton, which would costO(mkn) time. Notice that for short patterns, this is competitiveto the best worst-case algorithms.Thanks to the simplicity of the construction, the rows of the pattern can be changed by adi�erent automaton. As long as one is able to solve a problem for exact string matching, one makesk+1 copies of the resulting computer word, performs the same operations in the k+1 words (plusthe arrows that connect the words) and one has an algorithm to �nd the same pattern allowingerrors. Hence, they are able to perform approximate string matching with sets of characters, wild32

cards, and regular expressions. They also allow some extensions unique of approximate searching:a part of the pattern can be searched with errors and another may be forced to match exactly, anddi�erent integer costs of the edit operations can be accommodated (including not allowing some ofthem). Finally, they are able to search a set of patterns at the same time, but this capability isvery limited (since all the patterns must �t in a computer word).The great
exibility obtained encouraged the authors to build a software calledAgrep [WM92b]6,where all these capabilities are implemented (although some particular cases are solved in a di�erentmanner). This software has been taken as a reference in all the subsequent research.Baeza-Yates and Navarro 1996 In 1996, Baeza-Yates and Navarro presented a new bit-parallelalgorithm able to parallelize the computation of the automaton even more [BYN99]. The classi-cal dynamic programming algorithm can be thought of as a column-wise \parallelization" of theautomaton [BY96], and Wu and Manber [WM92a] proposed a row-wise parallelization. Neitheralgorithm was able to increase the parallelism (even if all the NFA states �t in a computer word)because of the "-transitions of the automaton, which caused what we call zero-time dependencies.That is, the current values of two rows or two columns depend on each other, and hence cannot becomputed in parallel.In [BYN99] the bit-parallel formula for a diagonal parallelization was found. They packed thestates of the automaton along diagonals instead of rows or columns, which run in the same directionof the diagonal arrows (notice that this is totally di�erent from the diagonals of the dynamicprogramming matrix). This idea had been mentioned much earlier by Baeza-Yates [BY91] but nobit-parallel formula was found. There are m � k + 1 complete diagonals (the others are not reallynecessary) which are numbered from 0 to m�k. The number Di is the row of the �rst active statein diagonal i (all the subsequent states in the diagonal are active because of the "-transitions). Thenew D0i values after reading text position j are computed asD0i = min(Di + 1; Di+1 + 1; g(Di�1; Tj))where the �rst term represents the insertions, the second term the replacements and the last termthe matches (deletions are implicit since we represent only the lowest active state of each diagonal).The main problem is how to compute the function g, de�ned asg(Di; Tj) = min(fk + 1g [f r = r � Di ^ Pi+r = Tj g)Notice that an active state that crosses a horizontal edge has to propagate all the way downby the diagonal. This was �nally solved in 1996 [BYN99, Nav98] by representing the Di valuesin unary and using arithmetic operations on the bits, which have the desired propagation e�ects.The formula can be understood either numerically (operating the Di's) or logically (simulating thearrows of the automaton).The resulting algorithm is O(n) worst case time and very fast in practice if all the bits of theautomaton �t in the computer word (while [WM92a] keeps O(kn)). In general, it is O(dk(m �k)=wen) worst case time, and O(dk2=wen) on average since the Ukkonen cut-o� heuristic is used(see Section 5.3). The scheme can handle classes of characters, wild cards and di�erent integralcosts in the edit operations.6Available at ftp.cs.arizona.edu. 33

7.3 Parallelizing the Dynamic Programming MatrixWright 1994 In 1994, Wright [Wri94] presented the �rst work using bit-parallelism on the dy-namic programming matrix. The idea was to consider secondary diagonals (i.e. those that runfrom the upper-right to the bottom-left) of the matrix. The main observation is that the elementsof the matrix follow the recurrence7Ci;j = Ci�1;j�1 if Pi = Tj or Ci�1;j = Ci�1;j�1 � 1 or Ci;j�1 = Ci�1;j�1 � 1Ci�1;j�1 + 1 otherwisewhich shows that the new secondary diagonal can be computed using the two previous ones. Thealgorithm stores the di�erences between Ci;j and Ci�1;j�1 and represents the recurrence usingmodulo 4 arithmetic. The algorithm packs many pattern and text characters in a computer wordand performs in parallel a number of pattern versus text comparisons, then using the vector of theresults of the comparisons to update many cells of the diagonal in parallel. Since it has to storecharacters of the alphabet in the bits, the algorithm is O(nm log(�)=w) in the worst and averagecase. This was competitive at that time for very small alphabets (e.g. DNA). As the authorrecognizes, it seems quite di�cult to adapt this algorithm for other distance functions.Myers 1998 In 1998, Myers [Mye98] found a better way to parallelize the computation ofthe dynamic programming matrix. He represented the di�erences along columns instead of thecolumns themselves, so that two bits per cell were enough (in fact this algorithm can be seen asthe bit-parallel implementation of the automaton which is made deterministic in [WMM96], seeSection 6.2). A new recurrence is found where the cells of the dynamic programmingmatrix are ex-pressed using horizontal and vertical di�erences, i.e. �vi;j = Ci;j�Ci�1;j and �hi;j = Ci;j�Ci;j�1:�vi;j = min(�Eqi;j ;�vi;j�1;�hi�1;j) + (1��hi�1;j)�hi;j = min(�Eqi;j ;�vi;j�1;�hi�1;j) + (1��vi;j�1)where Eqi;j is 1 if Pi = Tj and zero otherwise. The idea is to keep packed binary vectors representingthe current (i.e. j-th) values of the di�erences, and �nding the way to update the vectors in a singleoperation. Each cell Ci;j is seen as a small processor that receives inputs �vi;j�1, �hi�1;j and Eqi;jand produces outputs �vi;j and �hi;j . There are 3�3�2 = 18 possible inputs and a simple formulais found to express the cell logic (unlike [Wri94], the approach is logical rather than arithmetical).The hard part is to parallelize the work along the column, because of the zero-time dependencyproblem. The author �nds a solution which, despite that a very di�erent model is used, is verysimilar to that of [BYN99].The result is an algorithm that uses better the bits of the computer word, with a worst caseof O(dm=wen) and an average case of O(dk=wen) since it uses the Ukkonen cut-o� (Section 5.3).The update formula is a little more complex than that of [BYN99] and hence the algorithm is a bitslower, but it adapts better to longer patterns because less computer words are needed.As it is di�cult to improve over O(kn) algorithms, this algorithm may be the last word withrespect to asymptotic e�ciency of parallelization, except for the possibility to parallelize an O(kn)7The original one in [Wri94] has errors. 34

worst case algorithm. As it is now common to expect in bit-parallel algorithms, this scheme isable to search some extended patterns as well, but it seems di�cult to adapt it to other distancefunctions.8 Filtering AlgorithmsOur last category is quite young, starting in 1990 and still very active. It is formed by algorithmsthat �lter the text, quickly discarding text areas which cannot match. Filtering algorithms addressonly the average case, and their major interest is the potential for algorithms that do not inspectall text characters. The major theoretical achievement is an algorithm with average cost O(n(k +log�m)=m), which has been proven optimal. In practice, �ltering algorithms are the fastest too.All of them, however, are limited in their applicability by the error level �. Moreover, they need anon-�lter algorithm to check the potential matches.We �rst explain the general concept and then consider the developments that have occurred inthis area. See Figure 19.8.1 The Concept of FilteringFiltering is based on the fact that it may be much easier to tell that a text position does not matchthan to tell that it matches. For instance, if neither "sur" nor "vey" appear in a text area, then"survey" cannot be found there with one error under the edit distance. This is because a singleedit operation cannot alter both halves of the pattern.Most �ltering algorithms take advantage of this fact by searching pieces of the pattern withouterrors. Since the exact searching algorithms can be much faster than approximate searching ones,�ltering algorithms can be very competitive (in fact, they dominate on a large range of parameters).It is important to notice that a �ltering algorithm is normally unable to discover the matchingtext positions by itself. Rather, it is used to discard (hopefully large) areas of the text which cannotcontain a match. For instance, in our example, it is necessary that either "sur" or "vey" appearsin an approximate occurrence, but it is not su�cient. Any �ltering algorithmmust be coupled witha process that veri�es all those text positions that could not be discarded by the �lter.Virtually any non-�ltering algorithm can be used for this veri�cation, and in many cases thedevelopers of a �ltering algorithm do not care in looking for the best veri�cation algorithm, butthey just use the dynamic programming algorithm. That selection is normally independent, but theveri�cation algorithm must behave well on short texts because it can be started at many di�erenttext positions to work on small text areas. By careful programming it is almost always possible tokeep the worst-case behavior of the verifying algorithm (i.e. avoid verifying overlapping areas).Finally, the performance of �ltering algorithms is very sensitive to the error level �. Most �lterswork very well on low error levels and very bad otherwise. This is related to the amount of textthat the �lter is able to discard. When evaluating �ltering algorithms, it is important not onlyto consider their time e�ciency but also their tolerance to errors. One possible measure for this�ltration e�ciency is the total amount of matches found divided by the total amount of potentialmatches pointed out by the �ltration algorithm [Sut98].A term normally used when referring to �lters is \sublinearity". It is said that a �lter is sublinearwhen it does not inspect all the characters of the text (like the Boyer-Moore [BM77] algorithms35

[GKHO97]Dynamic �ltering

Moderate patterns Long patterns[CL94, Ukk92] [CL94]SET
[NBY98a]Hierarchical verif.for �<1�e=p�npmk=�w timeSuperimposition[BYN99]npmk=�w time
Horspool-like�lter[TU93]for �<e�(2k+1)=�

[NR98b]Su�x automatafor �< 1�e=p�2�e=p�n(�+�� log�(m)=m(1��)����)[NBY99c]for �<1= log�mHierarchical verif.
[WM92a, BYP96, BYN99]Partition in k+1 piecesfor �<1=(3 log�m) [Ukk92]Generaliz. to q-grams [CM94]Opt. algor. & lower boundfor �<1�e=p�

LETn for �<O(1=(log�m))for �<1= log�m+O(1)
[Tak94]Text h-samplesfor �<O(1= log�m)�n log�(m) time n(k+log�m)=m) time[ST95]Many h-samplesfor �<O(1= log�m)�n log�(m) time

e(2k+1)=�kn time [JTU96, Nav97a]Counting �ltern time for �<e�m=� n time �n log�(m) timekn log�(m)=� timePart. into less errors[BYN99] (1996)npmk=w timefor �<1�em 1pw =p�for �<1�em 1pw =p� kn log�(m)=� time for �<O(1= log�m)�n log�(m) timek+s pieces[Shi96]
Figure 19: Taxonomy of �ltering algorithms. Complexities are all on average.for exact searching, which can be at best O(n=m)). However, no online algorithm can be trulysublinear, i.e. o(n), if m is independent of n. This is only achievable with indexing algorithms.We divide this area in two parts: moderate and very long patterns. The algorithms for the twoareas are normally di�erent, since more complex �lters are worthwhile only for longer patterns.8.2 Moderate PatternsTarhio and Ukkonen 1990 Tarhio and Ukkonen [TU93]8 launched this area in 1990, publishingan algorithm that used Boyer-Moore-Horspool techniques [BM77, Hor80] to �lter the text. Theidea is to align the pattern with a text window and scan the text backwards. The scanning endswhere more than k \bad" text characters are found. A \bad" character is one that not only doesnot match the pattern position it is aligned with, but it also does not match any pattern character8See also [JTU96], which has a correction to the algorithm.36

at a distance of k characters or less. More formally, assume that the window starts at text positionj + 1, and therefore Tj+i is aligned with Pi. Then Tj+i is bad when Bad(i; Tj+i), where Bad(i; c)has been precomputed as c 62 fPi�k; Pi�k+1; :::; Pi; :::Pi+kg.The idea of the bad characters is that we know for sure that we have to make an error to matchthem, i.e. they will not match as a byproduct of inserting or deleting other characters. When morethan k characters that are errors for sure are found, the current text window can be abandoned andshifted forward. If, on the other hand, the beginning of the window is reached, the area Tj+1�k::j+mmust be checked with a classical algorithm.To know how much can we shift the window, the authors show that there is no point in shifting Pto a new position j 0 where none of the k+1 text characters that are at the end of the current window(Tj+m�k ; :::Tj+m) match the corresponding character of P , i.e. where Tj+m�r 6= Pm�r�(j0�j). Ifthose di�erences are �xed with replacements we make k + 1 errors, and if they can be �xed withless than k + 1 operations, then it is because we aligned some of the involved pattern and textcharacters using insertions and deletions. In this case, we would have obtained the same e�ectaligning the matching characters from start.So for each pattern position i 2 fm� k::mg and each text character a that could be aligned toposition i (i.e. for all a 2 �) the shift to align a in the pattern is precomputed, i.e. Shift(i; a) =mins>0fPi�s = ag (or m if no such s exists). Later, the shift for the window is computed asmini2m�k::m Shift(i; Tj+i). This last minimum is computed together with the backward windowtraversal.The analysis in [TU93] shows that the search time is O(kn(k=� + 1=(m � k))), without con-sidering veri�cations. In the Appendix we show that the amount of veri�cation is negligible for� < e�(2k+1)=�. The analysis is valid for m >> � > k, so we can simplify the search time toO(k2n=�). The algorithm is competitive in practice for low error levels. Interestingly, the versionk = 0 corresponds exactly to Horspool algorithm [Hor80]. Like Horspool, it does not take properadvantage of very long patterns. The algorithm can probably be adapted to other simple distancefunctions if we de�ne k as the minimum number of errors needed to reject a string.Jokinen, Tarhio and Ukkonen 1991 In 1991, Jokinen, Tarhio and Ukkonen [JTU96] adapteda previous �lter for the k-mismatches problem [GL89]. The �lter is based on the simple fact thatinside any match with at most k errors there must be at leastm�k letters belonging to the pattern.The �lter does not care about the order of those letters. This is a simple version of [CL94] (seeSection 8.3), with less �ltering e�ciency but simpler implementation.The search algorithm slides a window of length m over the text9 and keeps count of the numberof window characters that belong to the pattern. This is easily done with a table that for eachcharacter a stores a counter of a's in the pattern that have not yet been seen in the text window. Thecounter is incremented when an a enters the window and decremented when it leaves the window.Each time a positive counter is decremented, the window character is considered as belonging tothe pattern. When there are m� k such characters, the area is veri�ed with a classical algorithm.The algorithm was analyzed by Navarro in 1997 [Nav97a] using a model of urns and balls. Heshows that the algorithm is O(n) time for � < e�m=� . Some possible extensions are studied in[Nav98].9The original version used a variable size window. This simpli�cation is from [Nav97a].37

The resulting algorithm is competitive in practice for short patterns, but it worsens for longones. It is simple to adapt to other distance functions, just by determining how many charactersmust match in an approximate occurrence.Wu and Manber 1992 In 1992, a very simple �lter was proposed by Wu and Manber [WM92a](among many other ideas of that work). The basic idea is in fact very old [Riv76]: if a pattern is cutin k+1 pieces, then at least one of the pieces must appear unchanged in an approximate occurrence.This is evident, since k errors cannot alter the k + 1 pieces. The proposal was then to split thepattern in k + 1 approximately equal length pieces, search the pieces in the text, and check theneighborhood of their matches (of length m+2k). They used an extension of Shift-Or [BYG92] tosearch all the pieces simultaneously in O(mn=w) time. In the same 1992, Baeza-Yates and Perleberg[BYP96] suggested better algorithms for the multipattern search: an Aho-Corasick machine [AC75]to guarantee O(n) search time (excluding veri�cations), or Commentz-Walter [CW79].Only in 1996 the improvement was really implemented [BYN99], by adapting the Boyer-Moore-Sunday algorithm [Sun90] to multipattern search (using a trie of patterns and a pessimistic shifttable). The resulting algorithm is surprisingly fast in practice for low error levels.There is no closed expression for the average case cost of this algorithm [BYR90], but weshow in the Appendix that a gross approximation is O(kn log�(m)=�). Two independent proofs in[BYN99, BYP96] show that the cost of the search dominates for � < 1=(3 log�m). A simple way tosee it is to consider that checking a text area costs O(m2) and is done when any of the k+1 piecesof length m=(k+1) matches, which happens with probability near k=�1=�. The result follows fromrequiring the average veri�cation cost to be O(1).This �lter can be adapted, with some care, to other distance functions. The main issue is todetermine how many pieces can an edit operation destroy and how many edit operations can bemade before surpassing the error threshold. For example, a transposition can destroy two pieces inone operation, so we would need to split the pattern in 2k+1 pieces to ensure that one is unaltered.A more clever solution for this case is to leave a hole of one character between each pair of pieces,so the transposition cannot alter both.Baeza-Yates and Navarro 1996 The bit-parallel algorithms presented in Section 7 [BYN99]were also the basis for novel �ltering techniques. As the basic algorithm is limited to short patterns,they split longer patterns in j parts, making them short enough to be searchable with the basicbit-parallel automaton (using one computer word).The method is based on a more general version of the partition into k + 1 pieces [Mye94a,BYN99]. For any j, if we cut the pattern in j pieces, then at least one of them appears with bk=jcerrors in any occurrence of the pattern. This is clear because if each piece needs more than k=jerrors to match, then the complete match needs more than k errors.Hence, the pattern was split in j pieces (of length m=j) which were searched with k=j errorsusing the basic algorithm. Each time a piece was found, the neighborhood was veri�ed to check forthe complete pattern. Notice that the error level � for the pieces is kept unchanged.The resulting algorithm is O(npmk=w) on average. Its maximum� value is 1�emO(1=pw)=p�,smaller than 1 � e=p� and worsening as m grows. This may be surprising since the error level� is the same for the subproblems. The reason is that the veri�cation cost keeps O(m2) but the38

matching probability is O(
m=j), larger than O(
m) (see Section 4).In 1997, the technique was enriched with \superimposition" [BYN99]. The idea is to avoidperforming one separate search for each piece of the pattern. A multipattern approximate searchingis designed using the ability of bit-parallelism to search for classes of characters. Assume that wewant to search "survey" and "secret". We search the pattern "s[ue][rc][vr]e[yt]", where[ab] means fa; bg. In the NFA of Figure 15, the horizontal arrows are traversable by more thanone letter. Clearly any match of each of the two patterns is also a match of the superimposedpattern, but not vice-versa (e.g. "servet" matches with zero errors). So the �lter is weakenedbut the search is made faster. Superimposition allowed to lower the average search time to O(n)for � < 1� emO(1=pw)pm=�pw and to O(npmk=(�w)) for the maximum � of the 1996 version.By using a j value smaller than the necessary to put the automata in single machine words, anintermediate scheme was obtained that softly adapted to higher error levels. The algorithm wasO(kn log(m)=w) for � < 1� e=p�.Navarro and Baeza-Yates 1998 The �nal twist to the previous scheme was the introduction of\hierarchical veri�cation" in 1998 [NBY98a]. For simplicity assume that the pattern is partitionedin j = 2r pieces, although the technique is general. The pattern is split in two halves, each one tobe searched with bk=2c errors. Each half is recursively split in two and so on, until the pattern isshort enough to make its NFA �t in a computer word (see Figure 20). The leaves of this tree arethe pieces actually searched. When a leaf �nds a match, instead of checking the whole pattern asin the previous technique, its parent is checked (in a small area around the piece that matched).If the parent is not found, the veri�cation stops, otherwise it continues with the grandparent untilthe root (i.e. the whole pattern) is found. This is correct because the partitioning scheme appliesto each level of the tree: the grandparent cannot appear if none of its children appear, even if agrandchild appeared.Figure 20 shows an example. If one searches the pattern "aaabbbcccddd" with four errors inthe text "xxxbbxxxxxxx", and split the pattern in four pieces to be searched with one error, thepiece "bbb" will be found in the text. In the original approach, one would verify the completepattern in the text area, while with the new approach one veri�es only its parent "aaabbb" andimmediately determine that there cannot be a complete match.An orthogonal hierarchical veri�cation technique is also presented in [NBY98a] to include su-perimposition in this scheme. If the superimposition of 4 patterns matches, the set is split in twosets of two patterns each, and it is checked whether some of them match instead of verifying allthe 4 patterns one by one.The analysis in [Nav98, NBY98a] shows that the average veri�cation cost drops to O((m=j)2).Only now the problem scales well (i.e. O(
m=j) veri�cation probability and O((m=j)2) veri�cationcost). With hierarchical veri�cation, the veri�cation cost keeps negligible for � < 1 � e=p�. Allthe simple extensions of bit-parallel algorithms apply, although the partition into j pieces mayneed some redesign for other distances. Notice that it is very di�cult to break the barrier of�� = 1� e=p� for any �lter because, as shown in Section 4, there are too many real matches, andeven the best �lters must check real matches.In the same 1998, the same authors [NBY99c, Nav98] added hierarchical veri�cation to the �lterthat splits the pattern in k+ 1 pieces and searches them with zero errors. The analysis shows that39

aaabbbcccdddaaabbb cccdddccc dddbbbaaaFigure 20: The hierarchical veri�cation method for a pattern split in 4 parts. The boxes (leaves)are the elements which are really searched, and the root represents the whole pattern. At leastone pattern at each level must match in any occurrence of the complete pattern. If the bold box isfound, all the bold lines may be veri�ed.with this technique the veri�cation cost does not dominate the search time for � < 1= log�m. Theresulting �lter is the fastest for most cases of interest.Navarro and Ra�not 1998 In 1998 Navarro and Ra�not [NR98b, Nav98] presented a novelapproach based on su�x automata (see Section 3.2). They adapted an exact string matchingalgorithm, BDM, to allow errors.The idea of the original BDM algorithm is as follows [CCG+94, CR94]. The deterministicsu�x automaton of the reverse pattern is built, so it recognizes the reverse pre�xes of the pattern.Then the pattern is aligned with a text window, and the window is scanned backwards with theautomaton (this is why the pattern is reversed). The automaton is active as long as what it hasread is a substring of the pattern. Each time the automaton reaches a �nal state, it has seen apattern pre�x, so we remember the last time it happened. If the automaton arrives with activestates to the beginning of the window then the pattern has been found, otherwise what is there isnot a substring of the pattern and hence the pattern cannot be in the window. In any case the lastwindow position that matched a pattern pre�x gives the next initial window position. The algorithmBNDM [NR98a] is a bit-parallel implementation (using the nondeterministic su�x automaton, seeFigure 3) which is much faster in practice and allows searching for classes of characters, etc.The modi�cation of [NR98b, Nav98] is to build a NFA to search the reversed pattern allowingerrors, modify it to match any pattern su�x, and apply essentially the same algorithm BNDMusing this automaton. Figure 21 shows the resulting automaton.This automaton recognizes any reverse pre�x of P allowing k errors. The window will beabandoned when no pattern substring matches with k errors what was read. The window is shiftedto the next pattern pre�x found with k errors. The matches must start exactly at the initial windowposition. The window length is m� k, not m, to ensure that if there is an occurrence starting atthe window position then a substring of the pattern occurs in any su�x of the window (so we donot abandon the window before reaching the occurrence). Reaching the beginning of the windowdoes not guarantee a match, however, so we have to check the area by computing edit distancefrom the beginning of the window (at most m+ k text characters).In the Appendix it is shown that the average complexity10 is O(n(� + �� log�(m)=m)=((1��)�� � �)) and the �lter works well for � < (1 � e=p�)=(2 � e=p�), which for large alphabets10The original analysis of [Nav98] is inaccurate. 40

Σ Σ Σ Σ Σ Σ Σ

Σ Σ Σ Σ Σ Σ Σ

εεεεεε

εεεεεε

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

ε ε ε ε ε εε

y e

y

y e

e

r

r

r

v

v

v

u

u

no errors

2 errors

1 error

s

s

s

u

Σ Σ Σ Σ Σ Σ

Σ Σ Σ Σ Σ Σ

Figure 21: The construction to search any reverse pre�x of "survey" allowing 2 errors.tends to 1=2. The result is competitive for low error levels, but the pattern cannot be very longbecause of the bit-parallel implementation. Notice that trying to do this with the deterministicBDM would have generated a very complex construction, while the algorithm is simple with thenondeterministic automaton. Moreover, a deterministic automaton would have too many states,just as in Section 6.2. All the simple extensions of bit-parallelism apply, provided the windowlength m� k is carefully reconsidered.8.3 Very Long PatternsChang and Lawler 1990 In 1990, Chang and Lawler [CL94] presented two algorithms (betteranalyzed in [GKHO97]). A �rst one, called LET (for \linear expected time"), works as follows: thetext is traversed linearly, and at each time the longest pattern substring that matches the text ismaintained. When the substring cannot be further extended, it starts again from the current textposition. Figure 22 illustrates.
P P

TT

SETLETFigure 22: Algorithms LET and SET. LET covers all the text with pattern substrings, while SETworks only at block beginnings and stop when it �nds k di�erences.The crucial observation is that, if less than m�k text characters have been covered by concate-41

nating k longest substrings, then the text area does not match the pattern. This is evident since amatch is formed by k + 1 correct strokes (recall Section 5.2) separated by k errors. Moreover, thestrokes need to be ordered, which is not required by the �lter.The algorithm uses a su�x tree on the pattern to determine in a linear pass the longest patternsubstring matching the text seen up to now. Notice that the article is from 1990, the same year whenUkkonen and Wood did the same with a su�x automaton [UW93] (see Section 5.2). Therefore, the�ltering is O(n) time. The authors use [LV89] as the verifying algorithm and therefore the worstcase is O(kn). The authors show that the �ltering time dominates for � < 1= log�m+ O(1). Theconstants are involved, but practical �gures are � � 0:35 for � = 64 or � � 0:15 for � = 4.The second algorithm presented was called SET (for \sublinear expected time"). The idea issimilar to LET, except because the text is split in �xed blocks of size (m� k)=2, and the check fork contiguous strokes starts only at block boundaries. Since the shortest match is of length m� k,at least one of these blocks is always contained completely in a match. If one is able to discard theblock, no occurrence can contain it. This is also illustrated in Figure 22.The sublinearity is clear once it is proven that in O(k log�m) comparisons a block is discardedon average. Since 2n=(m�k) blocks are considered, the average time is O(�n log�(m)=(1��)). Themaximum � level keeps the same as in LET, so the complexity can be simpli�ed to O(�n log�m).Although the proof that limits the comparisons per block is quite involved, it is not hard to seeintuitively why it is true: the probability of �nding in the pattern a stroke of length ` is limited bym=�`, and the detailed proof shows that ` = log�m is on average the longest stroke found. Thiscontrast with the result of [Mye86a] (Section 5.3), that shows that k strokes add up O(k) length.The di�erence is that here we can take the strokes from anywhere in the pattern.Both LET and SET are e�ective for very long patterns only, since their overhead does not payo� on short patterns. Di�erent distance functions can be accommodated after re-reasoning theadequate k values.Ukkonen 1992 In 1992, Ukkonen [Ukk92] independently rediscovered some of the ideas of Changand Lampe. He presented two �ltering algorithms, one of which (based on what he called \maximalmatches") is similar to LET of [CL94] (in fact Ukkonen presents it as a new \block distance"computable in linear time and shows that it serves as a �lter for the edit distance). The other�lter is the �rst reference to \q-grams" for online searching (there are much older ones in indexedsearching [Ull77]).A q-gram is a substring of length q. A �lter was proposed based on counting the number ofq-grams shared between the pattern and a text window (this is presented in terms of a new \q-gramdistance" which may be of interest by its own). A pattern of length m has (m� q+1) overlappingq-grams. Each error can alter q q-grams of the pattern, and therefore (m � q + 1 � kq) patternq-grams must appear in any occurrence. Figure 23 illustrates.Notice that this is a generalization of the counting �lter of [JTU96] (Section 8.2), which wouldcorrespond to q = 1. The search algorithm is similar as well, although of course keeping a tablewith a counter for each of the �q q-grams is impractical (especially because only m� q+1 of themare present). Ukkonen uses a su�x tree to keep count in linear time of the last q-gram seen (therelevant information can be attached to the m � q + 1 important nodes at depth q in the su�xtree). 42

text window text samples

[Ukk92] [ST95]

TT

q-grams

P

q-grams

PFigure 23: Q-gram algorithm. The left one [Ukk92] counts the number of pattern q-grams in a textwindow. The right one [ST95] �nds sequences of pattern q-grams in approximately the same textpositions (we have put in bold a text sample and the possible q-grams to match it).The �lter takes therefore linear time. There is no analysis to show which is the maximum errorlevel tolerated by the �lter, so we attempt a gross analysis in the Appendix, valid for large m.The result is that the �lter works well for � < O(1= log�m), and that the optimal q to obtain it isq = log�m. The search algorithm is more complicated than that of [JTU96]. Therefore, using largerq values only pays o� for larger patterns. Di�erent distance functions are easily accommodated byrecomputing the number of q-grams that must be preserved in any occurrence.Takaoka 1994 In 1994, Takaoka [Tak94] presented a simpli�cation of [CL94]. He consideredh-samples of the text (which are non-overlapping q-grams of the text taken each h characters, forh � q). The idea was that if one h-sample was found in the pattern, then a neighborhood of thearea was veri�ed.By using h = b(m� k� q+ 1)=(k+ 1)c one cannot miss a match. The easiest way to see this isto start with k = 0. Clearly we need h = m� q + 1 to not loose any matches. For larger k, recallthat if the pattern is split in k + 1 pieces some of them must appear with no errors. The �lterdivides h by k + 1 to ensure that any occurrence of those pieces will be found (we are assumingq < m=(k + 1)).Using a su�x tree of the pattern the h-sample can be found in O(q) time, and therefore the�ltering time is O(qn=h), which is O(�n log�(m)=(1� �)) if the optimal q = log�m is used. Theerror level is again � < O(1= log�m), which makes the time O(�n log�m).Chang and Marr 1994 It looks like O(�n log�m) is the best complexity achievable by using�lters, and that it will work only for � = O(1= log�m), but in 1994 Chang and Marr obtained analgorithm which was O�k + log�mm n�for � < ��, where �� depends only on � and it tends to 1� e=p� for very large �. At the sametime, they proved that this was a lower bound for the average complexity of the problem (andtherefore their algorithm was optimal on average). This is a major theoretical breakthrough.43

The lower bound is obtained by taking the maximum (or sum) of two simple facts: the �rstone is the O(n log�(m)=m) bound of [Yao79] for exact string matching, and the second one is theobvious fact that in order to discard a block of m text characters, at least k characters shouldbe examined to �nd the k errors (and hence O(kn=m) is a lower bound). Also, the maximumerror level is optimal according to Section 4. What is impressive is that an algorithm with suchcomplexity was found.The algorithm is a variation of SET [CL94]. It is of polynomial space in m, i.e. O(mt) spacefor some constant t which depends on �. It is based on splitting the text in contiguous substringsof length ` = t log�m. Instead of �nding in the pattern the longest exact matches starting at thebeginning of blocks of size (m � k)=2, it searches the text substrings of length ` in the patternallowing errors.The algorithm proceeds as follows. The best matches allowing errors inside P are precomputedfor every `-tuple (hence the O(mt) space). Starting at the beginning of the block, it searchesconsecutive `-tuples in the pattern (each in O(`) time), until the total number of errors madeexceeds k. If by that time it has not yet covered m � k text characters, the block can be safelyskipped.The reason why this works is a simple extension of that for SET. We have found an areacontained in the possible occurrence which cannot be covered with k errors (even allowing the useof unordered portions of the pattern for the match). The algorithm is only practical for very longpatterns, and can be extended for other distances with the same ideas of the other �ltration andq-gram methods.It is interesting to notice that � � 1� e=p� is the limit we have discussed in Section 4, whichis a �rm barrier for any �ltering mechanism. Chang and Lawler proved an asymptotic result, whilea general bound is proved in [BYN99]. The �lters of [CM94, NBY98a] reduce the problem to lesserrors instead of to zero errors. An interesting observation is that it seems that all the �lters thatpartition the problem into exact search can be applied for � = O(1= log�m), and that in orderto improve this to 1� e=p� we must partition the problem into (smaller) approximate searchingsubproblems.Sutinen and Tarhio 1995 Sutinen and Tarhio generalized the Takaoka �lter in 1995 [ST95],improving its �ltering e�ciency. This is the �rst �lter that takes into account the relative positionsof the pattern pieces that match in the text (all the previous matched pieces of the pattern in anyorder). The generalization is to force that s q-grams of the pattern match (not just one). Thepieces must conserve their relative ordering in the pattern and must not be more than k charactersaway from their correct position (otherwise we need to make more than k errors to use them). Thismethod is also illustrated in Figure 23.In this case, the sampling step is reduced to h = b(m � k � q + 1)=(k + s)c. The reason forthis reduction is that, to ensure that s pieces of the pattern match, we need to cut the patternin k + s pieces. To search the pieces forcing that they are not too far away from their correctpositions, the pattern is divided in k + s pieces and a hashed set is created for each piece. Theset contains the q-grams of the piece and some neighboring ones too (because the sample can beslightly misaligned). At search time, instead of a single h-sample, they consider text windows ofcontiguous sequences of k+s h-samples. Each of these h-samples are searched in the corresponding44

set, and if at least s are found the area is veri�ed. This is a sort of Hamming distance, and theauthors resort to an e�cient algorithm for that distance [BYG92] to process the text.The resulting algorithm is O(�n log�m) on average using optimal q = log�m, and works wellfor � < 1= log�m. The algorithm is better suited for long patterns, although with s = 2 it can bereasonably applied to short ones as well. In fact the analysis is done for s = 2 only in [ST95].Shi 1996 In 1996 Shi [Shi96] proposed to extend the idea of the k + 1 pieces (explained inSection 8.2) to k+s pieces, so that at least s pieces must match. This idea is implicit in the �lter ofSutinen and Tarhio but had not been explicitly written down. Shi compared his �lter against thesimple one, �nding that the �ltering e�ciency was improved. However, this improvement will benoticeable only for long patterns. Moreover, the online searching e�ciency is degraded because thepieces are shorter (which a�ects any Boyer-Moore-like search), and because the veri�cation logicis more complex. No analysis is presented in the paper, but we conjecture that the optimum s isO(1) and therefore the same complexity and tolerance to errors is maintained.Giegerich, Kurtz, Hischke and Ohlebusch 1996 Also in 1996, a general method to improve�lters was developed [GKHO97]. The idea is to mix the phases of �ltering and checking, so that theveri�cation of a text area is abandoned as soon as the combined information from the �lter (numberof guaranteed di�erences left) and the veri�cation in progress (number of actual di�erences seen)shows that a match is not possible. As they show, however, the improvement occurs in a verynarrow area of �. This is a consequence of the statistics of this problem that we have discussed inSection 4.9 ExperimentsWe perform in this section an empirical comparison among the algorithms described along thiswork. Our goal is to show which are the best options at hand depending on the case. Nearly 40algorithms have been surveyed, some of them without existing implementation and many of themalready known to be impractical. To avoid an excessively lengthly comparison among algorithmsknown to be not competitive, we have left aside many of them.9.1 Included and Excluded AlgorithmsA large group of excluded algorithms is from those theoretical ones based on the dynamic pro-gramming matrix. We remark that all these algorithm, despite not being competitive in practice,represent (or represented at their time) a valuable contribution to the development of the algorith-mic aspect of the problem. The dynamic programming algorithm [Sel80] is excluded because thecut-o� heuristic of Ukkonen [Ukk85b] is well known to be faster (e.g. in [CL92] and in our internaltests); the algorithm of [MP80] is argued in the same paper to be worse than dynamic programming(which is quite bad) for n < 40 Gb; [LV88] has bad complexity and was improved later by manyothers in theory and practice; [LV89] is implemented with a better LCA algorithm in [CL92] andfound too slow; [Mye86a] is considered slow in practice by the same author in [WMM96]; [GG88]is clearly slower than [LV89]; [GP90], one of the fastest among the O(kn) worst case algorithms, is45

shown to be extremely slow in [UW93, CL92, Wri94] and in internal tests done by ourselves; [UW93]is shown to be slow in [JTU96]; the O(kn) algorithm implemented in [CL94] is in the same paperargued to be the fastest of the group and shown to be not competitive in practice; [SV97, CH98]are clearly theoretical, their complexities show that the patterns have to be very long and the errorlevel too low to be of practical application. To give an idea of how slow is \slow", we found [GP90]10 times slower than Ukkonen's cut-o� heuristic (a similar result is reported by Chang and Lampe[CL92]). Finally, other O(kn) average time algorithms are proposed in [Mye86a, GP90], and theyare shown to be very similar to Ukkonen's cut-o� [Ukk85b] in [CL92]. Since the cut-o� heuristicis already not very competitive we leave aside the other similar algorithms. Therefore, from thegroup based on dynamic programming we consider only cut-o� heuristic (mainly as a reference)and [CL92], which is the only one competitive in practice.From the algorithms based on automata we consider the DFA algorithm [Ukk85b], but prefer itslazy version implemented in [Nav97b], which is equally fast for small automata and much faster forlarge automata. We also consider the four Russians algorithm of [WMM96]. From the bit-parallelalgorithms we consider [WM92a, BYN99, Mye98], leaving aside [Wri94]. As shown in the 1996version of [BYN99], the algorithm of [Wri94] was competitive only on binary text, and this wasshown to not hold anymore in [Mye98].From the �ltering algorithms, we have included [TU93]; the counting �lter proposed in [JTU96](as simpli�ed in [Nav97a]); the algorithm of [NR98b, Nav98]; and those of [ST95] and [Tak94] (thislast one seen as the case s = 1 of [ST95], since this implementation worked better). We havealso included the �lters proposed in [BYN99, NBY98a, Nav98], preferring to present only the lastversion which incorporates all the twists of superimposition, hierarchical veri�cation and mixedpartitioning. Many previous versions are outperformed by this one. We have also included thebest version of the �lters that partition the pattern in k + 1 pieces, namely the one incorporatinghierarchical veri�cation [NBY99c, Nav98]. In those publications it is shown that this version clearlyoutperforms the previous ones proposed in [WM92a, BYP96, BYN99]. Finally, we are discardingsome �lters [CL94, Ukk92, CM94, Shi96] which are applicable only to very long patterns, since thiscase is excluded from our experiments as explained shortly. Some comparisons among them werecarried out by Chang and Lampe [CL92], showing that LET is equivalent to the cut-o� algorithmwith k = 20, and that the time for SET is 2� times that of LET. LET was shown to be the fastestwith patterns of hundred letters long and a few errors in [JTU96], but we recall that many modern�lters were not included in that comparison.We list now the algorithms included and the relevant comments on them. All the algorithmsimplemented by ourselves represent our best coding e�ort and have been found similar or fasterthan other implementations found elsewhere. The implementations coming from other authors werechecked with the same standards and in some cases their code was improved with better registerusage and I/O management. The number in parenthesis following the name of each algorithm isthe number of lines of the C implementation we use. This gives a rough idea of how complex is theimplementation of each algorithm.CTF (239) The cut-o� heuristic of [Ukk85b] implemented by ourselves.CLP (429) The column partitioning algorithm of [CL92], implemented by them. We replaced theirI/O by ours, which is faster.DFA (291) The lazy deterministic automaton of [Nav97b], implemented by ourselves.46

RUS (304) The four Russians algorithm of [WMM96], implemented by them. We tried di�erentr values (related to the time/space tradeo�) and found that the best option is always r = 5in our machine.BPR (229) The NFA bit-parallelized by rows [WM92a], implemented by ourselves and restrictedto m � w. Separate code is used for k = 1, 2, 3 and k > 3. We could continue writingseparate versions but have considered that this is reasonable up to k = 3, as at that pointthe algorithm is not competitive anyway.BPD (249 { 1,224) The NFA bit-parallelized by diagonals [BYN99], implemented by ourselves.Here we do not include any �ltering technique. The �rst number (249) corresponds to theplain technique and the second one (1,224) to handling partitioned automata.BPM (283 { 722) The bit-parallel implementation of the dynamic programming matrix [Mye98],implemented by that author. The two numbers have the same meaning as in the previousitem.BMH (213) The adaptation of Horspool to allow errors [TU93], implemented by them. We usetheir algorithm 2 (which is faster), improve some register usage and replace their I/O by ours,which is faster.CNT (387) The counting �lter of [JTU96], as simpli�ed in [Nav97a] and implemented by ourselves.EXP (877) Partitioning in k+1 pieces plus hierarchical veri�cation [NBY99c, Nav98], implementedby ourselves.BPP (3,466) The bit-parallel algorithms of [BYN99, NBY98a, Nav98] using pattern partitioning,superimposition and hierarchical veri�cation. The implementation is ours and is a packagedsoftware that can be downloaded from the Web page of the author.BND (375) The BNDM algorithm adapted to allow errors in [NR98b, Nav98], implemented byourselves and restricted to m � w. Separate code is used for k = 1, 2, 3 and k > 3. We couldcontinue writing separate versions but have considered that this is reasonable up to k = 3.QG2 (191) The q-gram �lter of [ST95], implemented by them and used with s = 2 (since s = 1is the algorithm [Tak94], see next item; and s > 2 worked well only for very long patterns).The code is restricted to k � w=2� 3, and it is also not run when q is found to be 1 since theperformance is very poor. We improved register usage and replaced the I/O management byour faster versions.QG1 (191) The q-gram algorithm of [Tak94], run as the special case s = 1 of the previous item.The same restrictions on the code apply.We made our best e�ort to uniformize the algorithms. The I/O is the same in all cases: thetext is read in chunks of 64 Kb to improve locality (this is the optimum in our machine) and care istaken to not lose or repeat matches in the borders; open is used instead of fopen because this lastone is slower. We also uniformize internal conventions: only a �nal special character (zero) is usedat the end of the bu�er to help algorithms recognize it; and only the number of matches found isreported.We separate in the experiments the �ltering and non-�ltering algorithms. This is because the�lters can in general use any non-�lter to check for potential matches, so the best algorithm isformed by a combination of both. All the �ltering algorithms in the experiments use the cut-o�47

algorithm [Ukk85b] as their veri�cation engine, except for BPP (whose very essence is to switchsmoothly to BPD) and BND (that uses a reverse BPR to search in the window and a forward BPRfor the veri�cations).9.2 Experimental SetupApart from the algorithms to be included and their details, we describe our experimental setup.We measure CPU times and show the results in tenths of seconds per megabyte. Our machine is aSun UltraSparc-1 of 167 MHz and 64 Mb of main memory, we run Solaris 2.5.1 and the texts arein a local disk of 2 Gb. Our experiments were run on texts of 10 Mb of size and repeated 20 times(with di�erent search patterns). The same patterns are used for all the algorithms.Considering the applications, we have selected three types of texts.DNA This �le is formed by concatenating the 1.34 Mb DNA chain of h.influenzae with itselfuntil obtaining 10 Mb. Lines are cut at 60 characters. The patterns are selected randomlyfrom the text avoiding line breaks if possible. The alphabet size is 4 save a few exceptionsalong the �le, and the results are similar to a random four-letter text.Natural language This �le is formed by 1.29 Mb of writings of B. Franklin �ltered to lower caseand separators converted to a space (except line breaks which are respected). This mimicscommon Information Retrieval scenarios. The text is replicated to obtain 10 Mb and searchpatterns are randomly selected from the same text at word beginnings. The results on thistext are roughly equivalent to a random text over 15 characters.Speech We obtained speech �les from discussions on the U.S. Law from Indiana University, inPCM format with 8 bits per sample. Of course the standard edit distance is of no use here,since it has to take into account the absolute values of the di�erences between two characters.We simpli�ed the problem to use edit distance: we reduced the range of values to 64 byquantization, therefore considering equal two samples that lie in the same range. We usedthe �rst 10 Mb of the resulting �le. The results are similar to those on a random text of 50letters, although the �le shows smooth changes from a letter to the next.We present results using di�erent pattern lengths and error levels, in two
avors: we �x m andshow the e�ect of increasing k, or we �x � and show the e�ect of increasing m. A given algorithmmay not appear at all in a plot when its times are above the y range of interest or its restrictionson m and k do not intersect with the x range of interest. In particular, �lters are shown only for� � 1=2. We remind that in most applications the error levels of interest are low.9.3 ResultsFigure 24 shows the results for short patterns (m = 10) and varying k. In non-�ltering algorithmsBPD is normally the fastest, up to 30% faster than the next one, BPM. The DFA is also quiteclose in most cases. For k = 1, a specialized version of BPR is slightly faster than BPD (recall thatfor k > 3 BPR starts to use a nonspecialized algorithm, hence the jump). An exception to thissituation occurs in DNA text, where for k = 4 and k = 5 BPD shows a nonmonotonic behavior and48

BPM becomes the fastest. This behavior comes from its O(k(m� k)n=w) complexity11, which intexts with larger alphabets is not noticeable because the cut-o� heuristic keeps the cost unchanged.Indeed, the behavior of BPD would have been totally stable if we chose m = 9 instead of m = 10,because the problem would �t in a computer word all the time. BPM, on the other hand, handlesmuch longer patterns keeping such stability, although it takes up to 50% more time than BPD.With respect to �lters, we see that EXP is the fastest for low error levels. The value of \low"increases for larger alphabets. At some point, BPP starts to dominate. BPP adapts smoothly tohigher error levels by slowly switching to BPD, so BPP is a good alternative for intermediate errorlevels, from where EXP ceases to work until it should switch to BPD. However, this range is voidon DNA and English text for m = 10. Other �lters competitive with EXP are BND and BMH. Infact, BND is the fastest for k = 1 on DNA, although really no �lter works very well in that case.Finally, QG2 does not appear because it only worked for k = 1 and it was worse than QG1.The best choice for short patterns seems to be using EXP while it works and switching to thebest bit-parallel algorithm for higher errors. Moreover, the veri�cation algorithm for EXP shouldbe BPR or BPD (which are the fastest where EXP dominates).Figure 25 shows the case of longer patterns (m = 30). Many of the observations are still validin this case. However, the algorithm BPM shows in this case its advantage over BPD, since still allthe problem �ts in a computer word for BPM and it does not for BPD. Hence in the left plots thebest algorithm is BPM except for low k, where BPR or BPD are better. With respect to �lters,EXP or BND are the fastest depending on the alphabet, until a certain error level is reached. Atthat point BPP becomes the fastest, in some cases still faster than BPM. Notice that for DNA aspecialized version of BND for k = 4 and even 5 could be the fastest choice.In Figure 26 we consider the case of �xed � = 0:1 and growingm. The results repeat somewhatwith regard to non-�ltering algorithms: BPR is the best for k = 1 (i.e. m = 10), then BPD is thebest until certain pattern length (which varies from 30 on DNA to 80 on speech) and �nally BPMbecomes the fastest. Note that for so low error level the number of active columns is quite small,which permits algorithms like BPD and BPM keeping their good behavior for patterns much longerthan what they can handle in a single machine word. The DFA is also quite competitive until itsmemory requirements become unreasonable.The real change, however, is in the �lters. In this case PEX becomes the star �lter in Englishand speech texts, by far unbeaten. The situation on DNA, on the other hand, is quite complex. Form � 30 BND is the fastest, and indeed an extended implementation of it allowing longer patternscould keep being the fastest for a few more points. However, that case would have to handle fourerrors, and only a specialized implementation for �xed k = 4, 5, etc. could keep a competitiveperformance. We have determined that such specialized code is worthwhile up to k = 3 only.When BND ceases to be applicable, PEX becomes the fastest algorithm and �nally QG2 beats it(for m � 60). However, notice that for m > 30 all the �lters are beaten by BPM and thereforemake little sense (on DNA).There is a �nal phenomenon that deserves mention with respect to �lters. The algorithms QG1and QG2 improve as m grows. These algorithms are the most practical and the only ones wetested among the family of algorithms suitable for very long patterns. This shows that, despitethat all these algorithms would not be competitive in our tests (where m � 100), they should be11Another reason for this behavior is that there are integer round-o� e�ects that produce nonmonotonic results.49

� � � � � � � � �+ + + + + + + + +� � � � �� � � � � � � � �� � � � � � � � �1 91 2 3 4 5 6 7 8 90
6
012345
6

kt �+ +� �� � � � �� �1 51 2 3 4 50
6
012345
6

kt
� � � � � � � � �+ + + + + + + + +� � � � �� � � � � � � � �� � � � � � � � �1 91 2 3 4 5 6 7 8 90

6
012345
6

kt � � �+ + + +� � � �� � � � �� � �1 51 2 3 4 50
6
012345
6

kt
� � � � � � � � �+ + + + + + + + +� � � � �� � � � � � � � �� � � � � � � � �1 91 2 3 4 5 6 7 8 90

6
012345
6

kt � � � � �+ + + + +� � � � �� � � � �� � �1 51 2 3 4 50
6
012345
6

kt
CTFCLP � DFA+ RUS � BPR� BPD� BPM QG2QG1 � BPP+ CNT � BMH� EXP� BNDFigure 24: Results for m = 10 and varying k. The left plots show non-�ltering and the right plotsshow �ltering algorithms. Rows 1 to 3 show DNA, English and speech �les, respectively.50

� �+ + + + + + +� �� � � �� � � � � � �1 291 5 9 13 17 21 25 290
10
02468
10

kt � + �� ��1 151 3 5 7 9 11 13 150
10
02468
10

kt
� � � �+ + + + + + +� �� � � � � �� � � � � � � �1 291 5 9 13 17 21 25 290

10
02468
10

kt � �+ +� � �� � � �� �
1 151 3 5 7 9 11 13 150

10
02468
10

kt
� � � � �+ + + + + + + +� � �� � � � � � �� � � � � � �1 291 5 9 13 17 21 25 290

10
02468
10

kt � � �+ + +� � � �� � � �� �1 151 3 5 7 9 11 13 150
10
02468
10

kt
CTFCLP � DFA+ RUS � BPR� BPD� BPM QG2QG1 � BPP+ CNT � BMH� EXP� BNDFigure 25: Results for m = 30 and varying k. The left plots show non-�ltering and the right plotsshow �ltering algorithms. Rows 1 to 3 show DNA, English and speech �les, respectively.51

considered in scenarios where the patterns are much longer and the error level keeps very low. Insuch a scenario, those algorithms would �nally beat all the algorithms we are considering here.The situation becomes worse for the �lters when we consider � = 0:3 and varyingm (Figure 27).On DNA, no �lter can beat the non-�ltering algorithms, and among these the tricks to keep fewactive columns do not work well. This favors the algorithms that pack more information per bit,which makes BPM the best in all cases except for m = 10 (where BPD is better). The situationis almost the same on English text, except because BPP works reasonably well and becomes quitesimilar to BPM (the periods where each one dominates are interleaved). On speech, on the otherhand, the scenario is similar for non-�ltering algorithms, but the PEX �lter still beats all them, as30% of errors is low enough on the speech �les. Note in passing that the error level is too high forQG1 and QG2, which can only be applied in a short range and yield bad results.To give an idea of which are the areas where each algorithm dominates, Figure 28 shows the caseof English text. There is more information in Figure 28 that what can be inferred from previousplots, such as the area where RUS is better than BPM. We have shown the non-�ltering algorithmsand superimposed in gray the area where the �lters dominate. Therefore, in the grayed area thebest choice is to use the corresponding �lter using the dominating non-�lter as its veri�cationengine. In the non grayed area it is better to use the dominating non-�ltering algorithm directly,with no �lter.A code implementing such a heuristic (including only EXP, BPD and BPP) is publicly availablefrom the Web page of the author12. This combined code is faster than each isolated algorithm,although of course it is not really a single algorithm but the combination of the best choices.10 ConclusionsWe reach the end of this tour on approximate string matching. Our goal has been to present andexplain the main ideas that exist behind the existing algorithms, to classify them according to thetype of approach proposed, and to show how they perform in practice in a subset of the possiblepractical scenarios. We have shown that the oldest approaches, based on the dynamic programmingmatrix, yielded the most important theoretical developments, but in general the algorithms havebeen improved by modern developments based on �ltering and bit-parallelism. In particular, thefastest algorithms combine a fast �lter to discard most of the text with a fastest non-�lter algorithmto check the potential matches.We show some plots summarizing the contents of the survey. Figure 29 shows the historical orderin which the algorithms appeared in the di�erent areas. Figure 30 shows a worst case time/spacecomplexity plot for the non-�ltering algorithms. Figure 31 considers �ltration algorithms, showingtheir average case complexity and the maximum error level � for which they work. Some practicalassumptions have been made to order the di�erent functions of k, m, �, w and n.Approximate string matching is a very active research area and it should continue in thatstatus in the foreseeable future: strong genome projects in computational biology, the pressure fororal human-machine communication and the heterogeneity and spelling errors present in textualdatabases are just a sample of the reasons that are driving researchers to look for faster and more
exible algorithms for approximate pattern matching.12http://www.dcc.uchile.cl/�gnavarro/pubcode. To apply EXP the option -ep must be used.52

� � � � � � � �+ + + + + + + + + +� � �� � � �� � � � � � � � � �10 10010 20 30 40 50 60 70 80 90 1000
8
0123456
78 mt � �+ + + +� � � � � � � � � �� � � � � � � � � �� � �10 10010 20 30 40 50 60 70 80 90 1000

8
0123456
78 mt

� � � � � � � � � �+ + + + + + + + + +� � �� � � � � � � � �� � � � � � � � � �10 10010 20 30 40 50 60 70 80 90 1000
6
012345
6

mt � � � � � � � � � �+ + + + + + + + + +� � � � � � � � � �� � � � � � � � � �� � �10 10010 20 30 40 50 60 70 80 90 1000
6
012345
6

mt
� � � � � � � � � �+ + + + + + + + + +� � �� � � � � � � � � �� � � � � � � � � �10 10010 20 30 40 50 60 70 80 90 1000

4
0123
4

mt � � � � � � � � � �+ + + + + + + + + +� � � � � � � � � �� � � � � � � � � �� � �10 10010 20 30 40 50 60 70 80 90 1000
4
0123
4

mt
CTFCLP � DFA+ RUS � BPR� BPD� BPM QG2QG1 � BPP+ CNT � BMH� EXP� BNDFigure 26: Results for � = 0:1 and varying m. The left plots show non-�ltering and the right plotsshow �ltering algorithms. Rows 1 to 3 show DNA, English and speech �les, respectively.53

� � �+ + + + + + + + + +� � �� � � �� � � � � � � � � �10 10010 20 30 40 50 60 70 80 90 1000
16
024681012
1416 mt � �+ +� �

� � � � � ��10 10010 20 30 40 50 60 70 80 90 1000
16
024681012
1416 mt

� � � � �+ + + + + + + + + +� � �� � � � � � � �� � � � � � � � � �10 10010 20 30 40 50 60 70 80 90 1000
12
0246810
12

mt � �+ + +� � � � � � � � � �� � � � � � � � � �� �
10 10010 20 30 40 50 60 70 80 90 1000

12
0246810
12

mt
� � � � � �+ + + + + + + + + +� �� � � � � � � � � �� � � � � � � � � �10 10010 20 30 40 50 60 70 80 90 1000

8
0246
8

mt � � � � � � �+ + + + + + + + + +� � � � � � � � � �� � � � � � � � � �� � �
10 10010 20 30 40 50 60 70 80 90 1000

8
0246
8

mt
CTFCLP � DFA+ RUS � BPR� BPD� BPM QG2QG1 � BPP+ CNT � BMH� EXP� BNDFigure 27: Results for � = 0:3 and varying m. The left plots show non-�ltering and the right plotsshow �ltering algorithms. Rows 1 to 3 show DNA, English and speech �les, respectively.54

0
m

0.5

1

0.3

0.7

100

BPD

RUS

BPM

0.1

α

BPR
BPD

703010 50

BPP
PEXFigure 28: The areas where each algorithm is the best, graying that of �ltering algorithms.It is interesting to point out which theoretical and practical questions are still open in the area.� A di�cult open question is about the exact matching probability and average edit distancebetween two random strings. We found a new bound in this survey, but the problem is stillopen.� A worst case lower bound of the problem is clearly O(n), but the only algorithms achievingit have space and preprocessing cost exponential in m or k. The only improvements to theworst case with polynomial space complexity are the O(kn) algorithms and, for very small k,O(n(1 + k4=m)). Is it possible to improve the algorithms or to �nd a better lower bound forthis case?� The previous question has also a practical side: is it possible to �nd an algorithm whichis O(kn) in the worst case and e�cient in practice? Using bit-parallelism there are goodpractical algorithms that achieve O(kn=w) on average and O(mn=w) in the worst case.� The lower bound of the problem for the average case is known to be O(n(k+log�m)=m) andthere exists an algorithm achieving it, so from the theoretical point of view that problem isclosed. However, from the practical side we have that the algorithms approaching those limitswork well only for very long patterns, while a much simpler algorithm (EXP) is the best formoderate and short patterns. Is is possible to �nd a uni�ed approach, good in practice andwith that theoretical complexity?� Another practical question on �ltering algorithms is: is it possible in practice to improve overthe current best existing algorithms?� Finally, there are many other open questions related to o�ine approximate searching, whichis a much less mature area needing more research.55

80 [Sel80] [MP80]�rst algorithm [LV88] [Ukk85b] [Ukk85b]85best worst cases [LV89] [Mye86a]8687 [GG88]88 [GP90]89 [CL94] [UW93] [TU93] [CL94]90�rst �lter [JTU96]91 [CL92] [WMM96] [WM92a] [WM92a] [BYP96] [Ukk92]92�rst bit-parallel 93 [Wri94] [CM94] [Tak94]94avg. lower bound [Mel96] [ST95]95 [Kur96] [BYN99] [BYN99] [Shi96] [GKHO97]96 [SV97] [Nav97a]97 [CH98] [Mye98] [NBY98a] [NBY99c] [NR98b]98fastest practical Dyn.Prog. Automata Bit Par. FiltersFigure 29: Historical development of the di�erent areas.AcknowledgementsThe author wishes to thank the many top researchers in this area for their willingness to exchangeideas and/or share their implementations: Amihood Amir, Ricardo Baeza-Yates, William Chang,Udi Manber, Gene Myers, Erkki Sutinen, Tadao Takaoka, Jorma Tarhio, Esko Ukkonen and AldenWright.References[AAL+97] A. Amir, Y. Aumann, G. Landau, M. Lewenstein, and N. Lewenstein. Pattern matchingwith swaps. In Proc. FOCS'97, pages 144{153, 1997.[AC75] A. Aho and M. Corasick. E�cient string matching: an aid to bibliographic search.Comm. of the ACM, 18(6):333{340, 1975.[ADKF75] V. Arlazarov, E. Dinic, M. Konrod, and I. Faradzev. On economic construction of thetransitive closure of a directed graph. Soviet Mathematics Doklady, 11:1209{1210, 1975.Original in Russian in Doklady Akademi Nauk SSSR, v. 194, 1970.56

m2m n
[Sel80][LV88][CL94][GG88][UW93][GP90] [GP90] [MP80][LV89]

exp (m)[Ukk85a] [WMM96]�[Mye98][BYN99][WM92a]knmnk2n
nmn= log2� n [Mye86a]

space
timekndm= lognemn= lognndkm= lognen(1+k4=m) [CH98]Figure 30: Worst case time and space complexity of non-�ltering algorithms. We replaced w by�(logn).[AG85] A. Apostolico and Z. Galil. Combinatorial Algorithms on Words. NATO ISI Series.Springer-Verlag, 1985.[AG87] A. Apostolico and C. Guerra. The Longest Common Subsequence problem revisited.Algorithmica, 2:315{336, 1987.[AG97] A. Apostolico and Z. Galil. Pattern Matching Algorithms. Oxford University Press,Oxford, UK, 1997.[AGM+90] S. Altschul, W. Gish, W. Miller, G. Myers, and D. Lipman. Basic local alignment searchtool. Journal of Molecular Biology, 215:403{410, 1990.[AHU74] A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of Computer Algorithms.Addison-Wesley, 1974.[AJS93] M. Atallah, P. Jacquet, and W. Szpankowski. A probabilistic approach to patternmatching with mismatches. Random Structures and Algorithms, 4:191{213, 1993.[ALL97] A. Amir, M. Lewenstein, and N. Lewenstein. Pattern matching in hypertext. In Proc.WADS'97, LNCS 1272, pages 160{173. Springer-Verlag, 1997.[ANZ97] M. Ara�ujo, G. Navarro, and N. Ziviani. Large text searching allowing errors. In Proc.WSP'97, pages 2{20. Carleton University Press, 1997.57

nk2n=�
e�m=� e�(2k+1)=� 1�e=p�[CM94][NR98b][CL94][ST95][Shi96][Tak94][NBY98a][BYN99][TU93][JTU96] [WM92a][CL94][Ukk92] [NBY98a][BYN99]kn log�(m)=�n(k+log�m)=mn(�+�� log�(m)=m(1��)����)

kn log(m)=w [BYN99][BYN99] (96)
1� emO(1=pw)p�

npkm=wnpkm=(w�)
max �

time
1�e=p�2�e=p��n log�m O(1= log�m)Figure 31: Average time and maximum tolerated error level for the �ltration algorithms.[Apo85] A. Apostolico. The myriad virtues of subword trees. In Combinatorial Algorithms onWords, pages 85{96. Springer-Verlag, 1985.[BBH+85] A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M. Chen, and J. Seiferas. Thesamllest automaton recognizing the subwords of a text. Theoretical Computer Science,40:31{55, 1985.[BM77] R. Boyer and J. Moore. A fast string searching algorithm. Comm. of the ACM,20(10):762{772, 1977.[BY89] R. Baeza-Yates. E�cient Text Searching. PhD thesis, Dept. of Computer Science,University of Waterloo, May 1989. Also as Research Report CS-89-17.[BY91] R. Baeza-Yates. Some new results on approximate string matching. In Workshop onData Structures, Dagstuhl, Germany, 1991. Abstract.[BY92] R. Baeza-Yates. Text retrieval: Theory and practice. In 12th IFIP World ComputerCongress, volume I, pages 465{476. Elsevier Science, 1992.[BY96] R. Baeza-Yates. A uni�ed view of string matching algorithms. In SOFSEM'96: Theoryand Practice of Informatics, LNCS 1175, pages 1{15. Springer-Verlag, 1996.58

[BYG92] R. Baeza-Yates and G. Gonnet. A new approach to text searching. Comm. of the ACM,35(10):74{82, 1992. Preliminary version in ACM SIGIR'89, 1989.[BYG94] R. Baeza-Yates and G. Gonnet. Fast string matching with mismatches. Informationand Computation, 108(2):187{199, 1994. Preliminary version as Tech. Report CS-88-36,Data Structuring Group, University of Waterloo, Sept. 1988.[BYN97a] R. Baeza-Yates and G. Navarro. Block-addressing indices for approximate text retrieval.In Proc. ACM CIKM'97, pages 1{8, 1997. Extended version to appear in JASIS.[BYN97b] R. Baeza-Yates and G. Navarro. Multiple approximate string matching. In Proc.WADS'97, LNCS 1272, pages 174{184. Springer-Verlag, 1997.[BYN98] R. Baeza-Yates and G. Navarro. New and faster �lters for multiple approximate stringmatching. Technical ReportTR/DCC-98-10, Dept. of Computer Science, University of Chile, 1998. Submitted.ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/multi.ps.gz.[BYN99] R. Baeza-Yates and G. Navarro. Faster approximate string matching. Algorithmica,23(2):127{158, 1999. Preliminary versions in Proc. CPM'96, LNCS 1075, 1996, and inProc. WSP'96, Carleton University Press, 1996.[BYP96] R. Baeza-Yates and C. Perleberg. Fast and practical approximate pattern matching.Information Processing Letters, 59:21{27, 1996. Preliminary version in CPM'92, LNCS644, 1992.[BYR90] R. Baeza-Yates and M. R�egnier. Fast algorithms for two dimensional and multiplepattern matching. In Proc. SWAT'90, LNCS 447, pages 332{347. Springer-Verlag,1990.[BYRN99] R. Baeza-Yates and B. Ribeiro-Neto, editors. Modern Information Retrieval. Addison-Wesley, 1999.[CCG+94] M. Crochemore, A. Czumaj, L. Gasieniec, S. Jarominek, T. Lecroq, W. Plandowski,and W. Rytter. Speeding up two string-matching algorithms. Algorithmica, 12:247{267,1994.[CH98] R. Cole and R. Hariharan. Approximate string matching: a simpler faster algorithm.In Proc. ACM-SIAM SODA'98, pages 463{472, 1998.[CL92] W. Chang and J. Lampe. Theoretical and empirical comparisons of approximate stringmatching algorithms. In Proc. CPM'92, LNCS 644, pages 172{181. Springer-Verlag,1992.[CL94] W. Chang and E. Lawler. Sublinear approximate string matching and biological appli-cations. Algorithmica, 12(4/5):327{344, 1994. Preliminary version in FOCS'90, 1990.[CLR90] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT Press, 1990.59

[CM94] W. Chang and T. Marr. Approximate string matching and local similarity. In Proc.CPM'94, LNCS 807, pages 259{273. Springer-Verlag, 1994.[Cob95] A. Cobbs. Fast approximate matching using su�x trees. In Proc. CPM'95, pages 41{54,1995.[CR94] M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, Oxford,UK, 1994.[Cro86] M. Crochemore. Transducers and repetitions. Theoretical Computer Science, 45:63{86,1986.[CS75] V. Chv�atal and D. Sanko�. Longest common subsequences of two random sequences.Journal of Applied Probability, 12:306{315, 1975.[CW79] B. Commentz-Walter. A string matching algorithm fast on the average. In Proc.ICALP'79, LNCS 6, pages 118{132. Springer-Verlag, 1979.[Dam64] F. Damerau. A technique for computer detection and correction of spelling errors.Comm. of the ACM, 7(3):171{176, 1964.[Dek79] J. Deken. Some limit results for longest common subsequences. Discrete Mathematics,26:17{31, 1979.[DFG+97] G. Das, R. Fleisher, L. Gasieniek, D. Gunopulos, and J. K�ark�ainen. Episode matching.In Proc. CPM'97, LNCS 1264, pages 12{27. Springer-Verlag, 1997.[DM79] R. Dixon and T. Martin, editors. Automatic speech and speaker recognition. IEEEPress, 1979.[EH88] A. Ehrenfeucht and D. Haussler. A new distance metric on strings computable in lineartime. Discrete Applied Mathematics, 20:191{203, 1988.[EL90] D. Elliman and I. Lancaster. A review of segmentation and contextual analysis tech-niques for text recognition. Pattern Recognition, 23(3/4):337{346, 1990.[FPS97] J. French, A. Powell, and E. Schulman. Applications of approximate word matching ininformation retrieval. In Proc. ACM CIKM'97, pages 9{15, 1997.[GBY91] G. Gonnet and R. Baeza-Yates. Handbook of Algorithms and Data Structures. Addison-Wesley, 2nd edition, 1991.[GG88] Z. Galil and R. Giancarlo. Data structures and algorithms for approximate stringmatching. Journal of Complexity, 4:33{72, 1988.[GKHO97] R. Giegerich, S. Kurtz, F. Hischke, and E. Ohlebusch. A general technique to improve�lter algorithms for approximate string matching. In Proc. WSP'97, pages 38{52. Car-leton University Press, 1997. Preliminary version as Technical Report 96-01, Universit�atBielefeld, Germany, 1996. 60

[GL89] R. Grossi and F. Luccio. Simple and e�cient string matching with k mismatches.Information Processing Letters, 33(3):113{120, 1989.[Gon92] G. Gonnet. A tutorial introduction to Computational Biochemistry using Darwin.Technical report, Informatik E.T.H., Zuerich, Switzerland, 1992.[Gos91] J. Gosling. A redisplay algorithm. In Proc. ACM SIGPLAN/SIGOA Symp. on TextManipulation, pages 123{129, 1991.[GP90] Z. Galil and K. Park. An improved algorithm for approximate string matching. SIAMJournal on Computing, 19(6):989{999, 1990. Preliminary version in ICALP'89, LNCS372, 1989.[GT78] R. Gonz�alez and M. Thomason. Syntactic pattern recognition. Addison-Wesley, 1978.[Gus97] D. Gus�eld. Algorithms on Strings, Trees and Sequences. Cambridge University Press,1997.[HD80] P. Hall and G. Dowling. Approximate string matching. ACM Computing Surveys,12(4):381{402, 1980.[Hec78] P. Heckel. A technique for isolating di�erences between �les. Comm. of the ACM,21(4):264{268, 1978.[Hor80] R. Horspool. Practical fast searching in strings. Software Practice and Experience,10:501{506, 1980.[HS94] N. Holsti and E. Sutinen. Approximate string matching using q-gram places. In Proc.7th Finnish Symposium on Computer Science, pages 23{32. University of Joensuu, 1994.[HT84] D. Harel and E. Tarjan. Fast algorithms for �nding nearest common ancestors. SIAMJournal on Computing, 13(2):338{355, 1984.[HU79] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages and Compu-tation. Addison-Wesley, 1979.[JTU96] P. Jokinen, J. Tarhio, and E. Ukkonen. A comparison of approximate string matchingalgorithms. Software Practice and Experience, 26(12):1439{1458, 1996. Preliminary ver-sion in Technical Report A-1991-7, Dept. of Computer Science, University of Helsinki,1991.[JU91] P. Jokinen and E. Ukkonen. Two algorithms for approximate string matching in statictexts. In Proc. MFCS'91, volume 16, pages 240{248. Springer-Verlag, 1991.[Kar93] H. Karlo�. Fast algorithms for approximately counting mismatches. InformationProcessing Letters, 48:53{60, 1993.[KM97] S. Kurtz and G. Myers. Estimating the probability of approximate matches. In Proc.CPM'97, LNCS 1264, pages 52{64. Springer-Verlag, 1997.61

[KMP77] D. Knuth, J. Morris, Jr, and V. Pratt. Fast pattern matching in strings. SIAM Journalon Computing, 6(1):323{350, 1977.[Knu73] D. Knuth. The Art of Computer Programming, volume 3: Sorting and Searching.Addison-Wesley, 1973.[KS94] S. Kumar and E. Spa�ord. A pattern-matching model for intrusion detection. In Proc.National Computer Security Conference, pages 11{21, 1994.[KS95] J. Kececioglu and D. Sanko�. Exact and approximation algorithms for the inversiondistance between two permutations. Algorithmica, 13:180{210, 1995.[Kuk92] K. Kukich. Techniques for automatically correcting words in text. ACM ComputingSurveys, 24(4):377{439, 1992.[Kur96] S. Kurtz. Approximate string searching under weighted edit distance. In Proc. WSP'96,pages 156{170. Carleton University Press, 1996.[Lev65] V. Levenshtein. Binary codes capable of correcting spurious insertions and deletions ofones. Problems of Information Transmission, 1:8{17, 1965.[Lev66] V. Levenshtein. Binary codes capable of correcting deletions, insertions and reversals.Soviet Physics Doklady, 10(8):707{710, 1966. Original in Russian in Doklady AkademiiNauk SSSR, 163(4):845{848, 1965.[LG99] S. Lawrence and C. Lee Giles. Accessibility of information on the web. Nature, 400:107{109, July 1999.[LKPC97] J. Lee, D. Kim, K. Park, and Y. Cho. E�cient algorithms for approximate stringmatching with swaps. In Proc. CPM'97, LNCS 1264, pages 28{39. Springer-Verlag,1997.[LL85] R. Lipton and D. Lopresti. A systolic array for rapid string comparison. In Proc. ChapelHill Conference on VLSI, pages 363{376, 1985.[LMS98] G. Landau, E. Myers, and J. Schmidt. Incremental string comparison. SIAM Journalon Computing, 27(2):557{582, 1998.[LS97] T. Luczak and W. Szpankowski. A suboptimal lossy data compression based on ap-proximate pattern matching. IEEE Trans. on Information Theory, 43:1439{1451, 1997.[LT94] D. Lopresti and A. Tomkins. On the searchability of electronic ink. In Proc. 4thInternational Workshop on Frontiers in Handwriting Recognition, pages 156{165, 1994.[LT97] D. Lopresti and A. Tomkins. Block edit models for approximate string matching.Theoretical Computer Science, 181(1):159{179, 1997.[LV88] G. Landau and U. Vishkin. Fast string matching with k di�erences. Journal of Com-puter and Systems Science, 37:63{78, 1988. Preliminary version in FOCS'85, 1985.62

[LV89] G. Landau and U. Vishkin. Fast parallel and serial approximate string matching.Journal of Algorithms, 10:157{169, 1989. Preliminary version in ACM STOC'86, 1986.[LW75] R. Lowrance and R. Wagner. An extension of the string-to-string correction problem.Journal of the ACM, 22:177{183, 1975.[Mas27] H. Masters. A study of spelling errors. University of Iowa Studies in Education, 4(4),1927.[McC76] E. McCreight. A space-economical su�x tree construction algorithm. Journal of theACM, 23(2):262{272, 1976.[Mel96] B. Melichar. String matching with k di�erences by �nite automata. In Proc. ICPR'96,pages 256{260. IEEE CS Press, 1996. Preliminary version in Computer Analysis ofImages and Patterns, LNCS 970, 1995.[MM96] R. Muth and U. Manber. Approximate multiple string search. In Proc. CPM'96, LNCS1075, pages 75{86. Springer-Verlag, 1996.[Mor68] D. Morrison. PATRICIA { Practical Algorithm To Retrieve Information Coded InAlphanumeric. Journal of the ACM, 15(4):514{534, 1968.[MP80] W. Masek and M. Paterson. A faster algorithm for computing string edit distances.Journal of Computer and System Sciences, 20:18{31, 1980.[MW94] U. Manber and S. Wu. glimpse: A tool to search through entire �le systems. InProc. USENIX Technical Conference, pages 23{32. USENIX Association, Berkeley, CA,USA, Winter 1994. Preliminary version as Technical Report 93-34, Dept. of ComputerScience, University of Arizona, Oct. 1993.[Mye86a] G. Myers. Incremental alignment algorithms and their applications. Technical Report86{22, Dept. of Computer Science, University of Arizona, 1986.[Mye86b] G. Myers. An O(ND) di�erence algorithm and its variations. Algorithmica, 1:251{266,1986.[Mye91] G. Myers. An overview of sequence comparison algorithms in molecular biology. Tech-nical Report TR-91-29, Dept. of Computer Science, University of Arizona, 1991.[Mye94a] E. Myers. A sublinear algorithm for approximate keyword searching. Algorithmica,12(4/5):345{374, 1994. Perliminary version in Technical Report TR90-25, ComputerScience Dept., University of Arizona, Sept. 1991.[Mye94b] G. Myers. Algorithmic Advances for Searching Biosequence Databases, pages 121{135.Plenum Press, 1994.[Mye98] G. Myers. A fast bit-vector algorithm for approximate pattern matching based ondynamic progamming. In Proc. CPM'98, LNCS 1448, pages 1{13. Springer-Verlag,1998. 63

[Nav97a] G. Navarro. Multiple approximate string matching by counting. In Proc. WSP'97,pages 125{139. Carleton University Press, 1997.[Nav97b] G. Navarro. A partial deterministic automaton for approximate string matching. InProc. WSP'97, pages 112{124. Carleton University Press, 1997.[Nav98] G. Navarro. Approximate Text Searching. PhD thesis, Dept. of Computer Sci-ence, University of Chile, December 1998. Technical Report TR/DCC-98-14.ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/thesis98.ps.gz.[Nav00] G. Navarro. Improved approximate pattern matching on hypertext. Theoretical Com-puter Science, 2000. To appear. Previous version in Proc. of LATIN'98, LNCS 1380.[NBY98a] G. Navarro and R. Baeza-Yates. Improving an algorithm for approximate patternmatching. Tech-nical Report TR/DCC-98-5, Dept. of Computer Science, University of Chile, 1998.Submitted. ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/dexp.ps.gz.[NBY98b] G. Navarro and R. Baeza-Yates. A practical q-gram index for text retrieval allowingerrors. CLEI Electronic Journal, 1(2), 1998. http://www.clei.cl.[NBY99a] G. Navarro and R. Baeza-Yates. Fast multi-dimensional approximate pattern matching.In Proc. CPM'99, LNCS 1645, pages 243{257, 1999.[NBY99b] G. Navarro and R. Baeza-Yates. A new indexing method for approximate string match-ing. In Proc. of the 10th Annual Symposium on Combinatorial Pattern Matching(CPM'99), LNCS 1645, pages 163{185, 1999.[NBY99c] G. Navarro and R. Baeza-Yates. Very fast and simple approximate string matching.Information Processing Letters, 72:65{70, 1999.[Nes86] J. Nesbit. The accuracy of approximate string matching algorithms. Journal ofComputer-Based Instruction, 13(3):80{83, 1986.[NMN+00] G. Navarro, E. Moura, M. Neubert, N. Ziviani, and R. Baeza-Yates. Adding compres-sion to block addressing inverted indexes. Kluwer Information Retrieval Journal, 2000.To appear.[NR98a] G. Navarro and M. Ra�not. A bit-parallel approach to su�x automata: Fast extendedstring matching. In Proc. CPM'98, LNCS 1448, pages 14{33. Springer-Verlag, 1998.[NR98b] G. Navarro and M. Ra�not. Fast and
exible string matching by com-bining bit-parallelism and su�x automata. Technical Report TR/DCC-98-4, Dept. of Computer Science, University of Chile, 1998. Submitted.ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/bndm2.ps.gz.[NW70] S. Needleman and C. Wunsch. A general method applicable to the search for similaritiesin the amino acid sequences of two proteins. Journal of Molecular Biology, 48:444{453,1970. 64

[OM88] O. Owolabi and R. McGregor. Fast approximate string matching. Software Practiceand Experience, 18(4):387{393, 1988.[Riv76] R. Rivest. Partial-match retrieval algorithms. SIAM Journal on Computing, 5(1), 1976.[RS97] M. R�egnier and W. Szpankowski. On the approximate pattern occurrence in a text. InProc. Compression and Complexity of SEQUENCES'97. IEEE Press, 1997.[San72] D. Sanko�. Matching sequences under deletion/insertion constraints. In Proc. of theNational Academy of Sciences of the USA, volume 69, pages 4{6, 1972.[Sel74] P. Sellers. On the theory and computation of evolutionary distances. SIAM Journal ofApplied Mathematics, 26:787{793, 1974.[Sel80] P. Sellers. The theory and computation of evolutionary distances: pattern recognition.Journal of Algorithms, 1:359{373, 1980.[Shi96] F. Shi. Fast approximate string matching with q-blocks sequences. In Proc. WSP'96,pages 257{271. Carleton University Press, 1996.[SK83] D. Sanko� and J. Kruskal, editors. Time Warps, String Edits, and Macromolecules:The Theory and Practice of Sequence Comparison. Addison-Wesley, 1983.[SM83] D. Sanko� and S. Mainville. Common subsequences and monotone subsequences, pages363{365. Addison-Wesley, 1983.[ST95] E. Sutinen and J. Tarhio. On using q-gram locations in approximate string matching.In Proc. ESA'95, LNCS 979, pages 327{340. Springer-Verlag, 1995.[ST96] E. Sutinen and J. Tarhio. Filtration with q-samples in approximate string matching.In Proc. CPM'96, LNCS 1075, pages 50{61. Springer-Verlag, 1996.[Sun90] D. Sunday. A very fast substring search algorithm. Comm. of the ACM, 33(8):132{142,1990.[Sut98] E. Sutinen. Approximate Pattern Matching with the q-Gram Family. PhD thesis, Dept.of Computer Science, University of Helsinki, Finland, 1998. Tech. Report A-1998-3.[SV88] B. Schieber and U. Vishkin. On �nding lowest common ancestors: simpli�cation andparallelization. SIAM Journal on Computing, 17(6):1253{1262, 1988.[SV97] S. Sahinalp and U. Vishkin. Approximate pattern matching using locally consistentparsing. Manuscript, University of Maryland Institute for Advanced Computer Studies(UMIACS), 1997.[Tak94] T. Takaoka. Approximate pattern matching with samples. In Proc. ISAAC'94, LNCS834, pages 234{242. Springer-Verlag, 1994.[Tic84] W. Tichy. The string-to-string correction problem with block moves. ACM Transactionson Computer Systems, 2(4):309{321, 1984.65

[TU88] J. Tarhio and E. Ukkonen. A greedy approximation algorithm for constructing shortestcommon superstrings. Theoretical Computer Science, 57:131{145, 1988.[TU93] J. Tarhio and E. Ukkonen. Approximate Boyer-Moore string matching. SIAM Journalon Computing, 22(2):243{260, 1993. Preliminary version in SWAT'90, LNCS 447, 1990.[Ukk85a] E. Ukkonen. Algorithms for approximate string matching. Information and Control,64:100{118, 1985. Preliminary version in Proc. Int. Conf. Found. Comp. Theory, LNCS158, 1983.[Ukk85b] E. Ukkonen. Finding approximate patterns in strings. Journal of Algorithms, 6:132{137,1985.[Ukk92] E. Ukkonen. Approximate string matching with q-grams and maximal matches. Theo-retical Computer Science, 1:191{211, 1992.[Ukk93] E. Ukkonen. Approximate string matching over su�x trees. In Proc. CPM'93, pages228{242, 1993.[Ukk95] E. Ukkonen. Constructing su�x trees on-line in linear time. Algorithmica, 14(3):249{260, 1995.[Ull77] J. Ullman. A binary n-gram technique for automatic correction of substitution, deletion,insertion and reversal errors in words. The Computer Journal, 10:141{147, 1977.[UW93] E. Ukkonen and D. Wood. Approximate string matching with su�x automata. Algo-rithmica, 10:353{364, 1993. Preliminary version in Report A-1990-4, Dept. of ComputerScience, University of Helsinki, April 1990.[Vin68] T. Vintsyuk. Speech discrimination by dynamic programming. Cybernetics, 4:52{58,1968.[Wat95] M. Waterman. Introduction to Computational Biology. Chapman and Hall, 1995.[Wei73] P. Weiner. Linear pattern matching algorithms. In Proc. IEEE Symp. on Switchingand Automata Theory, pages 1{11, 1973.[WF74] R. Wagner and M. Fisher. The string to string correction problem. Journal of theACM, 21:168{178, 1974.[WM92a] S. Wu and U. Manber. Fast text searching allowing errors. Comm. of the ACM,35(10):83{91, 1992.[WM92b] S. Wu and U. Manber. Agrep { a fast approximate pattern-matching tool. In Proc.USENIX Technical Conference, pages 153{162, Berkeley, CA, USA, Winter 1992.USENIX Association.[WMM95] S. Wu, U. Manber, and E. Myers. A sub-quadratic algorithm for approximate regularexpression matching. Journal of Algorithms, 19(3):346{360, 1995. Submitted in 1992.66

[WMM96] S. Wu, U. Manber, and E. Myers. A sub-quadratic algorithm for approximate limitedexpression matching. Algorithmica, 15(1):50{67, 1996. Preliminary version as TechnicalReport TR29-36, Computer Science Dept., University of Arizona, 1992.[Wri94] A. Wright. Approximate string matching using within-word parallelism. Software Prac-tice and Experience, 24(4):337{362, 1994.[Yao79] A. Yao. The complexity of pattern matching for a random string. SIAM Journal onComputing, 8:368{387, 1979.[YFM96] T. Yap, O. Frieder, and R. Martino. High performance computational methods forbiological sequence analysis. Kluwer Academic Publishers, 1996.[ZD96] J. Zobel and P. Dart. Phonetic string matching: lessons from information retrieval. InProc. SIGIR'96, pages 166{172, 1996.Appendix: Some AnalysesSince some of the source papers lack an analysis or they do not analyze exactly what is of ourinterest, we have provided a simple analysis for them. This is not the purpose of this survey, sowe have contented ourselves with rough �gures. In particular, our analyses are valid for � << m.All refer to �lters and are organized according to the original paragraphs, so the reader should �rstread the algorithm description to understand the terminology of each.Tarhio and Ukkonen 1990 First, the probability of a text character being \bad" is that of notmatching 2k + 1 pattern positions, i.e. Pbad = (1 � 1=�)2k+1 � e�(2k+1)=�, so we try on average1=Pbad characters until �nding a bad one. Since k + 1 bad characters have to be found, we workO(k=Pbad) to abandon the window. On the other hand, the probability of verifying a text windowis that of reaching its beginning. We approximate that probability by equating m to the averageportion of the traversed window (k=Pbad), to obtain � < e�(2k+1)=�.Wu and Manber 1992 The Sunday algorithm can be analyzed as follows. To see how far canwe verify in the current window, consider that the (k + 1) patterns have to fail. Each one fails onaverage in log�(m=(k + 1)) character comparisons, but the time for all them to fail is longer. ByYao's bound [Yao79], this cannot be less than log�m. Otherwise we could split the test of a singlepattern in (k + 1) tests of subpatterns and all them would fail in less than log�m time, breakingthe lower bound. To compute the average shift, consider that k characters must be di�erent fromthe last window character, and therefore the average shift is �=k. The �nal complexity is thereforeO(kn log�(m)=�). This is optimistic but we conjecture that it is the correct complexity. An upperbound is obtained by replacing k by k2 (i.e. adding the times for all the pieces to fail).Navarro and Ra�not 1998 The automatonmatches with the text window with k errors almostsurely until k=�� characters have been inspected (so that the error level becomes lower than ��).From there on, it becomes exponentially decreasing on
, which can be made 1=� in O(k) total67

steps. From that point on we are in a case of exact string matching and then log�m charactersare inspected, for a total of O(k=�� + log�m). When the window is shifted to the last pre�x thatmatched with k errors, this is also at k=�� distance from the end of the window, on average. Thewindow length is m� k, and therefore we shift the window in m� k� k=�� on average. Therefore,the total amount of work is O(n(�+ �� log�(m)=m)=((1� �)�� � �)). The �lter works well unlessthe probability of �nding a pattern pre�x with errors at the beginning of the window is high. Thisis the same to say that k=�� = m� k, which gives � < (1� e=p�)=(2� e=p�).Ukkonen 1992 The probability of �nding a given q-gram in the text window is 1�(1�1=�q)m �1 � e�m=�q . So the probability of verifying the text position is that of �nding (m � q + 1 � kq)q-grams of the pattern, i.e. �m�q+1kq �(1� e�m=�q)m�q+1�kq . This must be O(1=m2) to not interferewith the search time. Taking logarithms and approximating the combinatorials using Stirling'sn! = (n=e)np2�n(1 +O(1=n)) we arrive tokq < 2 log�m+ (m� q + 1) log�(1� e�m=�q)log�(1� e�m=�q) + log�(kq)� log�(m� q + 1)from where by replacing q = log�m we obtain� < 1log�m(log� �+ log� log�m) = O� 1log�m�a quite common result for this type of �lters. The choice q = log�m is because the result improvesas q grows, but it is necessary that q � log�m holds, since otherwise log�(1 � e�m=�q) becomeszero and the result worsens.
68

