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Abstract. We give generic constructions of several fundamental cryptographic primitives based on a
new encryption primitive that combines circular security for bit encryption with the so-called repro-
ducibility property (Bellare et al. PKC 2003). At the heart of our constructions is a novel technique
which gives a way of de-randomizing reproducible public-key bit-encryption schemes and also a way of
reducing one-wayness conditions of a constructed trapdoor-function family (TDF) to circular security
of the base scheme. The main primitives that we build from our encryption primitive include k-wise
one-way TDFs (Rosen and Segev TCC 2009), chosen-ciphertext-attack (CCA) secure encryption and
deterministic encryption. Our results demonstrate a new set of applications of circularly-secure encryp-
tion beyond fully-homomorphic encryption and symbolic soundness. Finally, we show the plausibility of
our assumptions by showing that the decisional Diffie-Hellman (DDH) based circularly-secure scheme
of Boneh et al. (Crypto 2008) and the subgroup indistinguishability based scheme of Brakerski and
Goldwasser (Crypto 2010) are both reproducible.
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1 Introduction

A central problem in cryptography is delineating the assumptions required for the existence of
cryptographic primitives. One way to differentiate assumptions is by whether they refer to the
hardness of a specific computational problem (e.g., factoring products of large primes), or refer to
the hardness of some general problem (e.g., the existence of one-way functions). Assumptions of
the former sort often lead to primitives which are more practical, e.g., in terms of efficiency or levels
of security achieved. Those of the latter sort are useful for gaining deeper insights into the security
requirements of a primitive, and also as a means of unifying specific assumptions. However, these
approaches are not mutually exclusive. In particular, in cases where we have not been able to obtain
constructions based on generic assumptions, we may consider strengthening an assumption with
some more specific properties. This is the approach we take in this paper. By adding a syntactic
property to circularly-secure bit encryption, we are able to obtain constructions of several powerful
cryptographic primitives.

More precisely, we give constructions of various cryptographic primitives based on a general
encryption primitive, which combines circular security with a property called reproducibility [6].
The latter gives a way of functionally reusing randomness across independent public keys. We show
the following results.

1. We give a novel generic construction of TDFs from reproducible bit encryption, and under this
construction we show that successively stronger circular-security conditions result in successively
stronger one-wayness conditions: we give a hierarchy of circular security notions, called k-rec
circular security, all of which are weaker than those of [12,13,3], and show if the base scheme is
k-rec circularly secure, the constructed TDF is k-wise one-way, in the sense of [37].



2. We show how to extract many hardcore bits for our constructed TDFs, and by applying the
results of [37] we obtain a blackbox construction of CCA2-secure encryption from our assump-
tions. Our CCA2 construction is non-shielding in the sense of [24]. We partially justify this fact
by showing with respect to a weaker encryption primitive than ours, a non-shielding blackbox
CCA2 construction is possible, while a shielding CCA2 construction is blackbox impossible.

3. By slightly extending our base primitive, we show how to obtain deterministic encryption
schemes secure under block-source inputs, as defined by [10].

4. We realize our base encryption primitive by showing the circularly-secure schemes of [12,13] are
reproducible.

In what follows, we provide some background, give a more detailed exposition of our results
and describe our constructions and proof techniques. First of all, we assume the following notation
and conventions throughout the introduction. Unless otherwise stated, an encryption scheme is
bit encryption with randomness space (for encryption) {0, 1}ρ and secret-key space {0, 1}l, where
l = l(n) and ρ = ρ(n); by Epk(m), for m ∈ {0, 1}∗, we mean bitwise encryption of m. Also, we use
Epk(b; r) to denote encryption of bit b under randomness r.

Trapdoor functions. Central to public-key cryptography is the notion of injective trapdoor one-
way functions, which refers to a family of functions, where each function in the family is easy to
compute, but a randomly chosen function is hard to invert without a trapdoor key. A related notion
is witness-recovering CPA-secure encryption: CPA-secure public-key encryption (PKE) where the
decryption algorithm also recovers the randomness used for encryption. It is well-known that these
two primitives are equivalent. However, as shown by Gertner et al. [25], there is a blackbox separa-
tion between CPA-secure PKE and TDFs. An interpretation of this result is that a construction of
a TDF from PKE should either be non-blackbox, or should rely on specific properties of the PKE.
Indeed, under specific assumptions, TDFs may be constructed “directly” (e.g., under the factoring
assumption), or may be constructed by using the specifics of a particular PKE scheme (e.g., the
strong homomorphisms, among other properties, of ElGamal encryption [35]).

A folklore attempt to build a TDF from PKE is to encrypt a message x under a randomness
string derived deterministically from x. However, by [25], such a methodology is in general not
sound. A naturally arising question is what properties of PKE enable sound realizations of this
approach. The starting point of our work is a related question, namely: when does a PKE scheme
allow “secure” encryption of r, using r itself as randomness? By security we mean it be hard to
recover a random r = r1 . . . rρ ∈ {0, 1}ρ from

(Epk1(r1; r), . . . , Epkρ(rρ; r)),

where all pki’s are chosen at random. Note that this immediately yields a TDF.
To address this question we first review a property of PKE schemes, called reproducibility [6]:

E = (Gen,E,D) is reproducible if there exists an efficient deterministic function R, which given a
ciphertext c = Epk(m; r), a message m1, and public/secret keys (pk1, sk1), computes Epk1(m1; r),
which we denote R(c,m1, sk1). Namely, there is an efficient way to transfer the randomness under-
lying a given encryption to another, provided the secret key for the second encryption is known.
Although this notion may seem overly strong, natural cryptosystems (e.g., ElGamal, hash-proof-
system-based cryptosystems) do satisfy this property. Indeed, under ElGamal a group element q is
encrypted as (gr, gr·sk · q), allowing the (encoded) randomness gr be reused under a new secret key.
Let E = (Gen,E,D,R) be a reproducible PKE scheme. Define E ′ = (Gen′, E′, D′) as follows:
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– Gen′ samples (pk′, sk′), where

sk′ = r and pk′ = c = Epk(0; r)

That is, the secret key is a (random) randomness string r and the public key is a dummy
E-ciphertext formed under randomness r;

– E′c(b) samples (pk1, sk1)← Gen, computes

c′ = R(c, b, sk1)

and returns (pk1, c
′) (i.e., E′c encrypts b by reusing the randomness underlying c); and

– D′r(pk1, c
′) returns the bit b for which Epk1(b; r) = c′.

Intuitively, CPA security of E ′ follows from reproducibility and CPA security of E . Moreover,
the construction swaps the key and randomness spaces of E , and so the task of securely encrypting
randomness in E ′ reduces to that of securely self-encrypting the secret key in E ; this latter problem is
exactly that of circular security, a special case of the well-studied problem of key-dependent-message
security [9,12,4,3,13,30,2,15]. The discussion above suggests a general technique for de-randomizing
reproducible bit-encryption schemes, sketched below, which is the basis for all our subsequent
constructions.

For E = (Gen,E,D,R) define a trapdoor function F = C(E) = (G,F, F−1), where G, F
and F−1, are respectively the key-generation, evaluation and inversion algorithms as follows. (See
Section 2.2 for formal definitions and notation.) The domain space of F is the set of all pairs of
public/secret keys generated under Gen(1n).

– G: To produce index/trapdoor keys (ik, tk), generate (pk, sk)← Gen(1n), set

ik = (pk,Epk(0; r1), . . . , Epk(0; rl)),

for random ri’s, and set tk = (r1, . . . , rl).
– F (·, ·): On key ik = (pk, c1, . . . , cl) and domain input (pk′, sk′), return (pk′, c′1, . . . , c

′
l), where

c′i = R(ci, sk
′
i, sk

′). (Here, sk′i denotes the ith bit of sk′.)
– F−1(·, ·): given trapdoor key tk = (r1, . . . , rl) and image point (pk′, c′1, . . . , c

′
l), form the output

as (pk′, b1 . . . bl), where bi is the bit satisfying c′i = Epk′(bi; ri).

Correctness of F follows by the reproduction property of R. Also, since R is deterministic, so
is the evaluation algorithm F . Finally, we take advantage of the fact that E is bit encryption to
ensure efficient inversion for F .

To discuss one-wayness we need the following definitions. For (pk, sk) output by Gen we refer
to Epk(sk) as an sk-self-encryption. We call E k-rec circularly secure if no adversary can recover
(with a non-negligible chance) a random sk from k independent sk-self-encryptions, and call E k-
ind circularly secure if no adversary can distinguish between k independent sk-self-encryptions and
encryptions of, say, zero. The notion of circular security in the literature is that of k-ind circular
security, for unbounded k. For the construction above we show the following tight reduction.

Theorem 1. If E is reproducible and 1-rec circularly secure then C(E) is one-way.

The reduction above is “security preserving” in the following sense: assuming E is reproducible,
then E is 1-rec circularly secure iff C(E) is one-way. Indeed, as we show next, by strengthening the
condition of 1-rec circular security we achieve stronger forms of one-wayness.
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A family of TDFs is called k-wise one-way [37] if one-wayness holds even if the given input is
evaluated under k independently chosen functions.1 More formally, we say that F = (G,F, F−1) is
k-wise one-way, if F ’s k-wise product, defined as Fik1,...,ikk(x) = (Fik1(x), . . . , Fikk(x)) is one-way.
Rosen and Segev [37] showed the utility of this notion by giving a blackbox construction of CCA2-
secure encryption based on k-wise one-way TDFs, for a sufficiently large k, generalizing a prior
construction [35] based on lossy TDFs (LTDFs). Despite their utility, k-wise one-way TDFs (even
for k = 2) are very strong primitives, whose only generic constructions have so far been based on
LTDFs. Indeed, as shown by Vahlis [39], even 2-wise one-way TDFs cannot be constructed in a
blackbox way from trapdoor permutations (TDPs).

Our TDF construction provides an easy means of obtaining k-wise one-way TDFs: we can
generalize Theorem 1 to show the following result.

If E is reproducible and k-rec circularly secure then C(E) is k-wise one-way.

To put our construction of k-wise one-way TDFs in context, we compare it to the LTDF-based
construction [37]: the security reduction of [37] involves both statistical and computational argu-
ments, allowing one to obtain only k-wise one-way TDFs for an a priori fixed but arbitrarily large
value of k (which does suffice for CCA2 encryption) from sufficiently lossy TDFs. Our reduction
argument, on the other hand, is entirely computational, allowing us to obtain unbounded k-wise
one-way TDFs (i.e., a TDF that is k-wise one-way for any value of k) from the full circular security
assumption.

As for the base assumptions, the relationships among the circular-security notions we described
are not well-understood (beyond the trivial ones). Under certain assumptions these notions become
equivalent. For example, any re-randomizable 1-rec circularly-secure scheme is poly-ind circularly
secure: this follows by considering that a 1-rec circularly-secure scheme is already poly-rec circularly
secure (because of re-randomizability), and that any poly-rec circularly-secure scheme is also poly-
ind circularly secure [38, Theorem 8]. For the rest of the introduction, however, for ease of exposition,
we describe the results with respect to full circular security.

We extend Construction C to the case in which the base scheme is t-circularly secure (i.e.,
circularly-secure with respect to t keys): the input of each TDF is t pairs of public/secret keys, the in-
dex key contains l·t dummy ciphertexts, and the evaluation algorithm on (pk0, sk0, . . . , pkt−1, skt−1)
returns (pk0, . . . , pkt−1) along with t · l ciphertexts formed by encrypting each bit of ski under
pk(i+1 mod t) (deterministically) by reusing the randomness of the corresponding ciphertext of the
index key.

Extracting hardcore bits. Given the TDFs built above, we may apply the general Goldreich-
Levin (GL) theorem [26] to extract a hardcore bit. We would like to, however, avoid the use of the
GL theorem for several reasons. First, the GL reduction, due to its generality, is not tight, while we
would like to achieve CCA security with tight reductions. Second, for our deterministic encryption
results we need to be able to extract many hardcore bits. Finally, since our base assumptions
are strictly blackbox-stronger (by Vahlis’ result) than one-way TDFs, we should look for more
specialized methods. We sketch below two deterministic methods for extracting many hardcore bits
with tight security reductions for variants of our basic constructed TDFs. The first method applies
to t-circular security and allows us to extract log((t − 1)!) bits, with the advantage that it only
increases the domain size of the basic TDF. The second method allows us to extract any, a priori
fixed, number of bits, but it enlarges other spaces as well.

1 Actually, [37] chose another name for this particular notion, but we refer to it as k-wise one-wayness for simplicity.
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First method: a cycle hides its ordering. For simplicity, we describe the idea for 3-circular se-
curity, showing how to extract a single hardcore bit. The idea is that 3-circular security implies that
no adversary can distinguish between the sequences (pk1, pk2, pk3, Epk1(sk2), Epk2(sk3), Epk3(sk1))
and (pk1, pk2, pk3, Epk1(sk3), Epk2(sk1), Epk3(sk2)). Now we augment our TDF construction de-
scribed above (for the t-circular security case), so that the evaluation algorithm, besides the input
(pk1, sk1), (pk2, sk2), (pk3, sk3), also receives an additional bit b, used to dictate the ordering used
to form the cycle. The inversion algorithm can open the ciphertexts, as before, and recover the bit
b, by checking, say, whether the key encrypted under pk1 is a secret key for pk2 or for pk3.2 This
technique extends to the t-circular security case for any t > 3, allowing us to “hide” a random
ordering, providing log((t− 1)!) hardcore bits.

Second method. We describe the idea for 1-circular security. We extend construction C above
to be parameterized over an integer m = m(n) and to result in a TDF whose input now consists
of triples (pk, sk, x), as opposed to (pk, sk) alone, where x ∈ {0, 1}m. Moreover, we augment the
index key to contain m added ciphertexts and let the trapdoor key contain their underlying ran-
domness strings. Now F (ik, (pk, sk, x)) proceeds as before, but it also “encrypts” x in the process
by again reusing randomness. For this TDF, we show that x remains pseudorandom even knowing
F (ik, (pk, sk, x)). Finally, assuming the property that public keys under the base scheme are com-
puted deterministically from their secret keys (plus perhaps some public parameters), we show how
to obtain TDFs that hide a (1− o(1)) fraction of their input bits.

CCA-secure encryption. Using results on k-wise one-way TDFs with many hardcore bits,3 we
may now use the blackbox construction of Rosen and Segev [37] to build a many-bit CCA2-secure
PKE from a reproducible, circularly secure bit-encryption scheme. Specifically, [37] gives a blackbox
construction of CCA2-secure encryption from k-wise one-way TDFs, for k ∈ Ω(n); they also show
that k ∈ ω(log n) suffices for CCA1 encryption. Our CCA constructions, by relying on that of [37],
result in schemes whose decryption functions query the encryption function of the base scheme.
Gertner, Malkin and Myers [24] refer to such constructions as non-shielding, and show that there
exists no shielding blackbox construction of CCA-secure from CPA-secure encryption. Since our
base assumptions are blackbox-stronger than CPA security, it is natural to ask whether the non-
shielding nature of our CCA2 construction is just an artifact of the construction of [37], or whether
it is inherent. We were not able to answer this question for our encryption primitive, mainly be-
cause of the presence of the reproduction function. However, we are able to answer this with respect
to a weaker primitive than ours, which is a special case of randomness-dependent-message-secure
(RDMS) encryption [8], which allows secure multiple bitwise-encryptions of a randomness string r
under r itself as randomness (Formalized in Definition 7). Calling this new primitive RDMS encryp-
tion, we show that RDMS encryption is implied by our base assumptions, and also that it enables
a non-shielding construction of CCA-secure encryption. We prove the latter by directly construct-
ing k-wise one-way TDFs using RDMS encryption. Next we observe that the shielding blackbox
impossibility result of [24] extends even if the base scheme is an RDMS encryption primitive (The-
orem 6). Indeed, it seems that this latter statement is true for most encryption primitives whose
security requirements are defined with respect to passive indistinguishability (i.e., no decryption
oracles); see Section 5.1 for more details. Thus, we obtain an encryption primitive, with respect to

2 This, however, imposes a negligible inversion error.
3 We note that our hardcore-security results hold not only for F = C(E), but also for F ’s k-wise products, under

the corresponding assumptions. See Section 4.
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which a non-shielding blackbox CCA-secure construction is possible, but under which a shielding
CCA-secure construction is blackbox impossible.

Deterministic encryption (DE). Following [10], a deterministic l-bit-encryption scheme is called
(λ, l)-IND secure if encryptions of any two (efficient) λ-sources (i.e., distributions with min-entropy
λ) result in computationally indistinguishable ciphertexts. We formulate two extended notions of
circular security, called (λ, l)-entropy circular security and strong-(λ, l)-entropy circular security,
both of which require that circular security hold even if the secret key sk ∈ {0, 1}l is sampled from
a λ-source distribution, while the strong-entropy version requires one more assumption, related to
the public-key distribution.4

We show our TDF construction immediately gives us a (λ, l)-IND-secure DE scheme if the base
scheme satisfies strong (λ, l)-entropy circular security. We also show that, by appropriately choosing
the parameters, the schemes of [12,13] provide strong-entropy circular security, meaning that our
generic transformation applies to these two schemes to obtain secure DE schemes, which explains
the striking similarities between (especially) the DDH-based DE scheme of [10] and the scheme of
Boneh et al. [12]. We also note that the extra condition of strong-entropy circular security may
be satisfied if, informally, the key-generation algorithm acts as a strong extractor, producing the
public key from the secret key (taken as the source) based on a public parameter (taken as the
seed). Similar structural assumptions are made in other settings, e.g., [41], to obtain DE schemes.

For weak-entropy circular security we also show how to obtain a secure DE scheme, but with
looser parameters, i.e., the (λ, l)-parameters of the base scheme are not maintained. We follow the
so-called encrypt-with-hardcore technique, implicitly used in [7,5,10] and formalized in [23]. A high-
level description of the idea is as follows. Assume F = (G,F, F−1) is a TDF with an associated
hardcore function h producing Ω(n) hardcore bits, and we want to make F a secure DE scheme.
Suppose we have the bonus that h preserves hardcore security even if x is sampled from a biased,
high min-entropy distribution. Now we can build a DE scheme by encrypting the output of F
using its own associated hardcore bitstring under a randomized encryption scheme E ′: that is,
Eik,pk(x) = E′pk(F (ik, x), h(x)); decryption can be done using ik’s trapdoor key and pk’s secret
key. Security of E comes from the fact that (F (ik, x), h(x)) is computationally indistinguishable
from (F (ik, x), r), so h(x) is as good as a fresh randomness string. The only remaining issue is
that E may require a longer randomness string, which, however, can be handled by applying a
pseudorandom generator to h(x).

1.1 Further discussion

The possibility of obtaining lossy trapdoor functions. Since LTDFs [35] are the only generic
assumption (to the best of our knowledge) that imply k-wise one-way TDFs, it is natural to ask
about the relationship between LTDFs and our base primitive. We believe these notions are incom-
parable. First, under our encryption primitive, we are able to obtain a TDF that is k-wise one-way
for unbounded k’s; LTDFs are known to achieve bounded k-wise one-way TDFs, but this does not
seem to generalize to the unbounded case, mainly due to the nature of LTDF-based proof tech-
niques that also rely on statistical arguments. (See [37, Theorem 3.3].) On the other hand, LTDFs
have powerful statistical properties (i.e., losing information in lossy mode) which do not seem to
be realizable under our assumptions. In particular, we were not able to define “lossy” keys (in the
sense of [35]) under our constructions; those lossy keys should be vectors of encryptions under the

4 The notion of weak-entropy circular security was also considered by [15] in the context of KDM amplification.
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base scheme (as in injective keys) in such a way that when one applies the reproduction function to
them (as in the evaluation algorithm) this results in loss of information. This idea does not seem to
be implementable without making additional assumptions. The work of Hemenway and Ostrovsky
[28] shows how to build LTDFs from a form of lossy encryption. It might be possible to obtain
LTDFs by formulating and assuming an appropriate form of lossy encryption in our setting; we
have not, however, investigated this direction.

Comparison with [19]. Choi and Wee [19], by abstracting the DDH-based TDF construction
of Peikert and Waters [35], show how to obtain LTDFs from reproducible encryption that is ho-
momorphic with respect to both messages and randomness. In what comes below we first compare
our construction to that of Choi and Wee and then compare our underlying assumptions.

The construction of [19] results in (a) public keys that consist of (log |Rand| + ω(log n))2

base-ciphertexts (i.e., ciphertexts under the base scheme) and (b) ciphertexts that consist of
(log |Rand| + ω(log n)) base-ciphertexts. (Here Rand is the randomness space of the base encryp-
tion function.) Assuming log |Rand| ∈ Θ(n) this translates into quadratically large public keys and
linearly large ciphertexts. Under our basic TDF construction both constructed public keys and ci-
phertexts consist of log |SK| base-ciphertexts, where SK is the secret-key space of the base scheme.
For a concrete comparison, DDH-based instantiations of [35,19,22] give us schemes whose public
keys and ciphertexts contain, respectively, Θ(n2) and Θ(n) group elements. On the other hand, the
DDH-based circularly-secure scheme of Boneh et al. has ciphertexts with Θ(n) group elements and
secret keys with Θ(n) bits. Thus, we obtain a DDH-based TDF with public keys and ciphertexts
both consisting of Θ(n2) group elements. (The size of ciphertexts can be cut down to Θ(n) by re-
moving redundancies; see Construction 4.) Thus, we obtain no improvements in efficiency, despite
the fact that our generic construction offers public keys and ciphertexts each containing a linear (in
log |SK|) number of base-ciphertexts. The same phenomenon also holds for concrete deterministic
encryption schemes. However, our work shows that progress in improving the efficiency of BHHO
might lead to improvements in efficiency of existing DDH-based TDFs or DE schemes.

Homomorphism versus circular security. The notions of homomorphism (in the sense of
[19]) and circular security for an encryption scheme are qualitatively different as they concern struc-
tural versus security properties. Interestingly though, all constructions of circularly-secure schemes
in the literature rely on certain homomorphic properties of their underlying algebraic assumptions
[12,13,3]. However, it is not clear whether the existence of reproducible circularly-secure encryption
implies that of reproducible, homomorphic encryption. (If such an implication is proved then all
our results will be subsumed by [19], since LTDFs imply all primitives we build in this paper.)
For one thing, a circularly-secure scheme by itself does not necessarily provide the homomorphic
property of [19] (or even weaker forms thereof). For example, under widely-believed assumptions
one may construct a CCA2-secure, circularly-secure scheme [17,29], but homomorphic properties
for such a scheme violate CCA2-security. Moreover, it seems hard to construct a homomorphic
encryption scheme starting from a reproducible, circularly-secure scheme that does not provide any
homomorphic properties by itself.

Finally, as noted by Rosen and Segev [37], in light of their blackbox impossibility result sepa-
rating LTDFs from k-wise TDFs, there may be generic assumptions that yield k-wise TDFs, but
not LTDFs; we believe that our encryption primitive is an example of those.

Shielding versus non-shielding constructions. We note that almost all blackbox CCA2
constructions are non-shielding, e.g., [31,37,35], except for a few cases which rely on very powerful
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(and structurally different) primitives, e.g., [11].5 Intuitively, the non-shielding property of those
constructions is used to do consistency checks on ciphertexts, i.e., it allows a simulator, that typically
does not have the entire decryption key, to ensure that a given ciphertext is indeed generated by the
encryption algorithm. It would be interesting to explore if there exist weaker encryption primitives
(than those we consider) for which the blackbox separation of [24] is the best possible.

Non-bit encryption case. We informally discuss adaptations of Construction C(E) to the case
in which the secret-key space of E is a subset of its plaintext space Msg (which allows the secret
key to be encrypted as a whole) and that reproducibility holds with respect to Msg. Let SK be the
secret key space of E . For this case we may substantially improve efficiency by having each index
key contain only one E-ciphertext, whose underlying randomness will be reused to self-encrypt the
secret key sk ∈ SK given as input to the evaluation algorithm. To perform inversion, however, we
would need to rely on one more assumption: it is efficiently possible to recover m from pk, Epk(m; r)
and r, for all pk,m and r. This last property by itself is satisfied by natural cryptosystems, e.g.,
ElGamal. Moreover, there is a standard (and straightforward) way to make any CPA-secure scheme
(for which SK ⊆ M) circularly secure (again when the entire secret key is encrypted at once).
This transformation, however, does not (necessarily) maintain this last, inversion-needed property.
Thus, our results suggest that the CPA-to-one-shot-circular transformation may be non-trivial (and
interesting) if it is to maintain this last mentioned property.

2 Preliminaries

2.1 Notation and basic definitions

For a finite set S we use x ← S to denote sampling x uniformly at random from S and denote
by UnifS the uniform distribution on S. If D is a distribution then x ← D denotes choosing
x according to D. We use the word PPT in this paper in the standard sense. We use A(. . . ; r)
to denote the deterministic output of PPT function A when the randomness is fixed to r, and
use x ← A(a1, a2, . . . ) to denote the distribution formed by outputting A(a1, a2, . . . ; r) for a
uniformly-random r. If A(x1, . . . , xm; r) outputs a tuple of strings, we let Ai(x1, . . . , xm) be the
distribution formed by outputting the ith component of A(x1, . . . , xm). We denote the support set
of a distribution D by Sup(D), and write x ∈ D to indicate x ∈ Sup(D). We call f : N → R
negligible if f(n) < 1/P (n), for any polynomial P and sufficiently large n. We write negl to de-
note unspecified negligible functions. We denote by f−1 the inverse of an injective function f .
For two ensembles X = {Xi}i∈N and {Yi}i∈N of random variables we say X is computationally
indistinguishable from Y , denoted X ≡c Y , if for any bit-valued, PPT algorithm D, we have
|Pr[D(Xn) = 1] − Pr[D(Yn) = 1]| = negl(n). We write X ≡ Y to mean X and Y are identically
distributed. All functions, adversaries, distributions, etc., that appear in this paper, if not otherwise
stated, are assumed to be efficiently computable/samplable. For x ∈ {0, 1}∗ we use |x| to denote
the bit length of x and use xi, for 1 ≤ i ≤ |x|, to denote the ith bit of x.

2.2 Trapdoor functions and various one-wayness conditions

In this subsection we review the standard notion of injective trapdoor functions, the notion of
hardcore functions and various one-wayness conditions.

5 The concepts of shielding/non-shielding only apply to encryption or TDF based constructions; see Definition 6.
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In the following definitions, let D = {Dn} be an ensemble of sets, Dn be a distribution over Dn

and D = {Dn}.

Definition 1. (one-way injective trapdoor functions) A D-domain collection of injective trapdoor
functions (TDFs)6 is given by three algorithms F = (G,F, F−1) as follows. The probabilistic al-
gorithm G(1n) randomly produces a pair (ik, tk) of injective/trapdoor keys; the deterministic al-
gorithm F (ik, ·) given x ∈ Dn produces an image y = F (ik, x); and F−1(tk, ·) given an image y
returns a pre-image x. We require F satisfy the correctness condition stating

Pr
[
F−1(tk, F (ik, x)) = x

]
= 1,

where the probability is taken over the choices of (ik, tk) ← G(1n) and x ← Dn. We stress that
the input domain of F (ik, ·) only depends on the security parameter 1n. We use the notation
Domain(F ) to refer to D = {Dn}.

We call F D-one-way if if for any adversary A,

Pr [A(ik, F (ik, x)) = x] = negl(n),

where the probability is taken over the choices of (ik, tk)← G(1n), x← Dn and A’s coins.

Definition 2. (k-wise TDF products and k-wise one-wayness [37]) The k-wise product of a D-

domain TDF F = (G,F, F−1) is a D-domain TDF F (k) = (G(k), F (k), F−1(k)
) constructed as

follows. The algorithm G(k)(1n) first samples

(ik1, tk1), . . . , (ikk, tkk)← G(1n),

and lets (ik1, . . . , ikk) be the index key and (tk1, . . . , tkk) be the trapdoor key. On input x ∈ Dn,

F (k) ((ik1, . . . , ikk), ·) returns (F (ik1, x), . . . , F (ikk, x)). Finally, F−1(k)
is defined as

F−1(k)
((tk1, . . . , tkk), y) = F−1(tk1, y).

We say that F is k-wise D-one-way if F (k) is D-one-way.

Note that 1-wise D-one-wayness is the standard notion of D-one-wayness defined in Definition 1.

Definition 3. Let F = (G,F, F−1) be a D-domain TDF and h = {hn} be an ensemble of de-
terministic functions where hn : Dn → {0, 1}p(n) (for some polynomial p). We say that h is a
D-hardcore function for F if for any adversary A,∣∣∣Pr [A(ik, F (ik, x), h(x)) = 1]− Pr

[
A(ik, F (ik, x), Unif{0,1}p(n)) = 1

]∣∣∣ = negl(n),

where (ik, tk)← G(1n) and x← Dn.

6 We use TDF to refer to a collection of injective trapdoor functions henceforth.
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2.3 Definitions related to encryption schemes

All encryption schemes that appear throughout, unless otherwise stated, are bit-encryption schemes.
In our applications we need to work with a more general notion of encryption schemes involving
public parameters, as formalized next.

A bit-encryption scheme E = (Param,Gen,E,Dec) is defined as follows. The parameter-
generation algorithm Param on input 1n outputs a random parameter, par. The key-generation
algorithm Gen on inputs 1n and par generates a public/secret key (pk, sk) ← Gen(1n, par); we
assume pk includes par, so we do not include par as an input to other algorithms. The encryption
algorithm E on inputs 1n, public key pk, bit b and randomness r ∈ Randn, outputs a ciphertext
c = Epk(b; r). The decryption algorithm Dec takes a secret key sk and ciphertext c, and determin-
istically outputs a bit b = Decsk(c). For correctness, we require

Pr [Decsk(Epk(b)) = b] = 1,

where par ← Param(1n), (pk, sk) ← Gen(1n, par) and b ← {0, 1}. We will typically use Rand =
{Randn} to denote the underlying randomness space of the encryption algorithm of a scheme under
consideration.

Assumption 1 Throughout this paper we make the following two assumptions about any encryp-
tion scheme E = (Param,Gen,E,Dec) under consideration.

1. For any n and any par ∈ Param(1n), all secret keys output by Gen(1n) are bitstrings of the
same length. Thus, we have an associated secret-key-length function, usually denoted by l, which
is a function of the security parameter.

2. In all security definitions that involve generating many public keys (e.g., multiple-key based
security definitions) we assume all the underlying keys are sampled with respect to a fixed,
random par sampled once and for all at the beginning of the underlying game.

Given the assumptions above, henceforth we typically omit the inclusion of Param.
We now review the definition of chosen-plaintext-attack security and introduce different flavors

of the notion of circular security [18,12]. As notation, for m ∈ {0, 1}∗ we extend E to define
Epk(m) = (Epk(m1), . . . , Epk(m|m|)). Also, for r = (r1, . . . , rt) and m ∈ {0, 1}t we write

Epk(m; r) = (Epk(m1; r1), . . . , Epk(mt; rt)).

Definition 4. For an encryption scheme E = (Gen,E,Dec) we define the following notions.

1. We say E = (Gen,E,Dec) is chosen-plaintext-attack (CPA) secure if

(pk,Epk(0)) ≡c (pk,Epk(1)),

where (pk, sk)← Gen(1n).
2. We say E = (Gen,E,Dec) is k-rec t-circularly secure if for every adversary A,

Pr [A(pk1, . . . , pkt, c1, . . . , ck) = sk1] = negl(n),

where
(pk1, sk1), . . . , (pkt, skt)← Gen(1n)

and for every 1 ≤ i ≤ k

ci ←
(
Epk1(sk2), . . . , Epkt−1(skt), Epkt(sk1)

)
.
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3. We say E is k-ind t-circularly secure if E is CPA secure and also it holds that

(pk1, . . . , pkt, c1, . . . , ck) ≡c (pk1, . . . , pkt, c
′
1, . . . , c

′
k),

where ci’s are generated as above and for 1 ≤ i ≤ k,

c′i ←
(
Epk1(0l), . . . , Epkt(0

l)
)
,

where l = |sk1|. Note that we add CPA security as a separate condition because otherwise the
definition may be satisfied trivially, e.g., consider an encryption scheme under which the secret
key is always the all-zero string and the encryption function is the identity function. Also, we
stress that in Cases 2 and 3 above all the underlying keys are generated with respect to a fixed,
random parameter. (See Case 2 of Assumption 1.)

We adopt the following terminology convention in the paper.

Convention 1 We use the terminology k-rec circular security (resp., k-ind circular security) as
abbreviations for k-rec 1-circularly security (resp., k-ind 1-circularly security).

We now review the notion of reproducibility of an encryption scheme, as defined in [6].

Definition 5. We call E = (Gen,E,Dec) reproducible if there exists a deterministic function R,
called the reproduction function, such that for any n, any (pk1, sk1), (pk2, sk2) ∈ Gen(1n), any
r ∈ Randn and any b1, b2 ∈ {0, 1},

R (pk1, Epk1(b1; r), b2, pk2, sk2) = Epk2(b2; r).

For simplicity, we omit the inclusion of pk1 and pk2 as inputs to R.

3 TDFs from reproducible encryption

We begin by giving a construction that takes as input a reproducible bit-encryption scheme and
produces a TDF. We then show how to achieve increasingly stronger guarantees of one-wayness
for the constructed TDF from corresponding assumptions about the base encryption primitive. We
tailor our construction to the t-circular security case (i.e., circular security with respect to t pairs
of public/secret keys), meaning that we will obtain guarantees of one-wayness for the constructed
TDF from t-circular security assumptions.

We first introduce the following pieces of notation. We use Dt to denote the t’th Cartesian power
of a set D. If D is a distribution, Dt denotes the t-tuple formed by sampling t times independently
from D.

Construction 1 The following construction, that we call C1, takes as input a reproducible bit-
encryption scheme E = (Gen,E,Dec,R) and integer t = t(n), and generates a TDF, F =
(G,F, F−1), with domain space Dt, where D = Sup(Gen(1n)). Let l = l(n) be the length of a
secret key output by Gen(1n), which is well-defined by Case 1 of Assumption 1. Also, we denote
the randomness space of E by Rand = {Randn}.

11



– G(1n): Sample an injective/trapdoor key (ik, tk) as follows. Choose (pk, sk) ← Gen(1n), and
for 1 ≤ i ≤ l and 0 ≤ j ≤ t− 1 choose rji ← Randn. Now let

tk = (r0
1, . . . , r

0
l , . . . , r

t−1
1 , . . . , rt−1

l ), and

ik = (pk, c0
1, . . . , c

0
l , . . . , c

t−1
1 , . . . , ct−1

l ),

where for 1 ≤ i ≤ l and 0 ≤ j ≤ t− 1, we set cji = Epk(0; rji ).

– F : On an injective key

ik = (pk, c0
1, . . . , c

0
l , . . . , c

t−1
1 , . . . , ct−1

l )

and domain point

x = (pk0, sk0, . . . , pkt−1, skt−1)

return

F (ik, x) = (pk0, . . . , pkt−1, c
′0
1, . . . , c

′0
l , . . . , c

′t−1
1 , . . . , c′

t−1
l ),

where, denoting by bji the ith bit of skj+1 mod t, we define

c′
j
i = R(cji , b

j
i , skj). (1)

– F−1: On a trapdoor key

(r0
1, . . . , r

0
l , . . . , r

t−1
1 , . . . , rt−1

l )

and image point

(pk0, . . . , pkt−1, c
′0
1, . . . , c

′0
l , . . . , c

′t−1
1 , . . . , c′

t−1
l )

retrieve the corresponding pre-image

(pk0, sk0, . . . , pkt−1, skt−1)

as follows: For 0 ≤ j ≤ t − 1 recover skj bit-by-bit by encrypting back both 0 and 1 with the
“corresponding” provided randomness (and under the corresponding public key) and finding the
matching bit.

Completeness of the constructed TDF follows by reproducibility. We point out a few remarks.
First, the efficiency of the search performed by the inversion algorithm relies on the fact that
each ciphertext is hiding a single bit, encrypted under randomness known to the inverter. Second,
the construction is entirely blackbox, also accessing (during evaluation) the reproduction function.
Third, the construction extends to the non-bit-encryption case (i.e., when the base scheme is a
reproducible scheme but not a bit-encryption scheme), by fixing a mapping from bits to two fixed
plaintext messages and still continuing to encrypt the input secret key bit-by-bit using the repro-
duction function during the evaluation algorithm, but actually encrypting the plaintext message
each bit is mapped to. For this case, the one-wayness of the constructed TDF reduces to bit-wise
circular security of the base scheme (with respect to the fixed mapping).

Theorem 1. Assume E is a reproducible bit-encryption scheme and F is the TDF built from E in
Construction 1 based on integer t = t(n). Then, E is k-rec t-circularly secure if and only if F is
k-wise D-one-way, where D = (Gen(1n))t. Moreover, the reductions are tight.
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Proof. We give the proof for the case in which the base encryption scheme is k-rec 1-circularly
secure, i.e., with respect to a single pair of public/secret keys. The proof for the general case follows
similarly. Thus, in the following we have D = Gen(1n).

Recall that we use l = l(n) to denote the length of a secret key outout by Gen(1n). Also, recall
the following notation defined earlier. For r = (r1, . . . , rl) and m ∈ {0, 1}l, we define Epk(m; r) =
(Epk(m1; r1), . . . , Epk(ml; rl)).

(⇒) Assume that E is k-rec 1-circularly secure and A is an adversary against the k-wise D-one-
wayness of F , achieving advantage ε, namely

Pr

A
pk′, Epk′(sk′; r1), . . . , Epk′(sk

′; rk)︸ ︷︷ ︸
image

, pk1, Epk1(0l; r1), . . . , pkk, Epkk(0l; rk)︸ ︷︷ ︸
ik

 = (pk′, sk′)


= ε(n), (2)

where (pk′, sk′), (pk1, sk1), . . . , (pkk, skk) ← Gen(1n) and r1, . . . , rk ← Randln. Notice that ik con-
tains concatenations of k independent injective keys under F and image contains concatenations
of the images of a random domain input, (pk′, sk′), under the k injective keys. We first note that
if A were only given image, it could perfectly generate ik by itself, by sampling

(pk1, sk1), . . . , (pkk, skk)← Gen(1n)

and appropriately using the reproduction function R to build ik. Thus,A’s ability to invert the TDF
with advantage ε reduces to a new adversary, B, recovering sk′ from

(
pk′, Epk′(sk

′; r1), . . . , Epk′(sk
′; rk)

)
with the same advantage, ε.

(⇐) This direction follows trivially. That is, any adversary that recovers sk′ from

(pk′, Epk′(sk
′; r1), . . . , Epk′(sk

′; rk))

with probability γ can also trivially recover sk′ from(
pk′, Epk′(sk

′; r1), . . . , Epk′(sk
′; rk), pk1, Epk1(0l; r1), . . . , pkk, Epkk(0l; rk)

)
,

with the same probability, by simply discarding the second half of the sequence. ut

We conclude this subsection with the following observation about the structure of the TDF
given in Construction 1.

Remark 1. We call a D-domain TDF certifiable if membership in D is efficiently decidable. A
drawback of Our TDF in Construction 1 (and all those that appear henceforth) is that the TDF
is not in general certifiable, since for a given encryption scheme (Gen,E,Dec) checking whether
(pk, sk) ∈ Gen(1n) is not necessarily efficiently decidable. (Doing the standard test of encrypting
many bits under pk and decrypting them back under sk and looking for matches only gives us a
necessary condition.) It remains open to determine whether under our assumptions a certifiable
TDF can be built.
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4 Extracting many hardcore bits

We present two deterministic methods for extracting many hardcore bits from variants of the TDF
presented in Construction 1, with tight reductions to the indistinguishability variants of circular
security assumptions. The first method applies to t-circular security for t ≥ 3, allowing us to directly
extract log ((t− 1)!) bits, by expanding only the domain space (of the TDF of Construction 1) by
the same number of bits (but without affecting the sizes of the system’s other parameters). The
second method is less restrictive, allowing us to extract (from t-circular security, for any t ≥ 1) m(n)
hardcore bits, where m is an arbitrary but a priori fixed poly function; this results in increasing
the domain space by m(n) bits and the image, index-key and trapdoor-key spaces by poly factors
of m(n). In particular, by choosing the parameter m appropriately we obtain TDFs that hide a
1− o(1) fraction of their input bits.

4.1 First hardcore extraction method

We begin with some notation. For integer t > 0 define [t] = {0, . . . , t − 1}. Also, for a set X we
define

f(X) = {f(x) : x ∈ X}.

Let S contain all permutations f on [t] where f induces only one cycle: X ⊆ [t] is called a cycle
under f if X 6= ∅ and f(X) = X. Note that [t] is always a cycle under any permutation f over [t],
and thus a one-cycle permutation is one that has only the trivial cycle. Formally,

S = {f : [t]→ [t] | f is injective and ∀X ( [t], X is not a cycle under f
}
.

Note that

|S| = (t− 1)!.

Intuitively, each f ∈ S defines a possible circular ordering of encrypting a sequence of t pairs of
public/secret keys, by having pki encrypt skf(i). The one-cycle property guarantees that we have
a single, full cycle. For example, it is not the case that pk1 encrypts sk2, pk2 encrypts sk1 and the
remaining keys encrypt each other in a circular manner. Fix

O : [(t− 1)!]→ S

to be an efficient index function defined using a canonical ordering of the elements of S. We assume
the following notation about O.

Notation 1 We write O(i, x) to denote fi(x), where fi is the ith permutation according to the
ordering fixed on S. We also require that, for any f ∈ S, given

sq = {(0, f(0)) , . . . , (t− 1, f(t− 1))} ,

it is possible to efficiently compute the index of f according to the ordering, which we (by slightly
abusing the notation) denote by O−1(sq).

We now proceed to describe the modified TDF construction and the associated hardcore func-
tion.
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Construction 2 Let E = (Gen,E,Dec,R), t and Dt be as in Construction 1. The domain space
of the TDF, F = (G,F, F−1), we build is now (Dt, [(t− 1)!]). Again, let l = l(n) be the secret-key-
length function of E and Rand = {Randn} be the randomness space of E.

– G(1n): As in Construction 1.
– F : On an injective key

ik = (pk, c0
1, . . . , c

0
l , . . . , c

t−1
1 , . . . , ct−1

l )

and domain point

x = (pk0, sk0, . . . , pkt−1, skt−1, u)

do the following. First, set the indices

(ind0, . . . , indt−1) = (O(u, 0), . . . ,O(u, t− 1)).

Informally, the output will be pk0, . . . , pkt−1 together with a chain of encryptions, where pkj
encrypts the bits of skindj . Formally, return the tuple

(pk0, . . . , pkt−1, c
′0
1, . . . , c

′0
l , . . . , c

′t−1
1 , . . . , c′

t−1
l ),

where, for 0 ≤ j ≤ t− 1 and 1 ≤ i ≤ l, denoting by bji the ith bit of skindj , we set

c′
j
i = R(cji , b

j
i , skj).

– F−1 : On a trapdoor key

(r0
1, . . . , r

0
l , . . . , r

t−1
1 , . . . , rt−1

l )

and image point

(pk0, . . . , pkt−1, c
′0
1, . . . , c

′0
l , . . . , c

′t−1
1 , . . . , c′

t−1
l )

do the following steps:

• recover (x0, . . . , xt−1), where xj ∈ {0, 1}l for all j, as follows: to retrieve the ith bit of xj for

1 ≤ i ≤ l, encrypt both 0 and 1 under pkj using randomness rji and check the result against

c′ji ;
• for each 0 ≤ j ≤ t − 1 let indj be the index for which it holds that pkindj is the matching

public key of xj,
7 and let skindj = xj. Form sq = {(0, ind0), . . . , (t− 1, indt−1)}; return

(pk0, sk0, . . . , pkt−1, skt−1,O−1(sq)).

Hardcore function: For F given above we define h :
(
Dt, [(t− 1)!]

)
→ [(t− 1)!] as

h(pk0, sk0, . . . , pkt−1, skt−1, u) = u.

Correctness of the new TDF follows immediately. Note that Construction 1 is a special case of
Construction 2, by forming the encrypted cycle with respect to the fixed permutation f defined as

f(j) = (j + 1 mod t).

7 This can be done by encrypting many bits under the public key and decrypting them under a candidate secret
key. This, however, results in a negligible inversion error.
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In contrast, Construction 2 forms the encrypted cycle according to a permutation f ∈ S provided
as input to the evaluation algorithm, where, as we show below, a random choice of f is what is
computationally hidden by the output of the evaluation algorithm.

As a main step toward proving that h is a hardcore function for F (k) we show that the following
two distributions are computationally indistinguishable:

D =

(
pk0, . . . , pkt−1, Epk0(skf(0)), . . . , Epkt−1(skf(t−1))︸ ︷︷ ︸

1st

, . . . , Epk0(skf(0)), . . . , Epkt−1(skf(t−1))︸ ︷︷ ︸
kth

)
,

D′ =
(
pk0, . . . , pkt−1, Epk0(0l), . . . , Epkt−1(0l)︸ ︷︷ ︸

1st

, . . . , Epk0(0l), . . . , Epkt−1(0l)︸ ︷︷ ︸
kth

)
,

where f ← S and all (pki, ski) are random pairs of public/secret keys. Here we use 1st, . . . ,kth to
denote copies of the underlying distribution. If f : [t] 7→ [t] is fixed to f(i) = (i + 1 mod t) then
D ≡c D′ is exactly the notion of k-ind t-circular security. In what follows we show a tight reduction
from distinguishing between D and D′, for a random f ∈ S, to breaking the notion of k-ind t-
circular security. The reduction itself, a more generalized version of that described in Lemma 2, is
relatively easy, but its proof of correctness is quite tedious. We first need to establish the following
lemma.

Lemma 1. Let Compose denote a transformation taking a function f : [t] 7→ [t] to another function
g =def Compose(f) : [t] 7→ [t], defined as

g(i) = f (i)(0),

where we define f (0)(n) = n and

f (i)(n) = f(f(. . . f︸ ︷︷ ︸
i

(n) . . . )).

Letting + denote addition modulo t, we then have:

1. If f ∈ S, then g = Compose(f) is one-to-one.
2. For distinct f1, f2 ∈ S, defining g1 = Compose(f1) and g2 = Compose(f2), we have g1 6= g2.
3. Define a transformation Permute(·) that transforms f ∈ S to h : [t] 7→ [t] as

h(i) = g−1(g(i) + 1),

where g = Compose(f). For any f ∈ S we have Permute(f) ∈ S. Moreover, for any distinct
f1, f2 ∈ S we have Permute(f1) 6= Permute(f2).

4. The two distributions Permute(UnifS) and UnifS are identically distributed.

Proof. Note that Item 4 follows from Item 3, so we prove Items 1, 2 and 3.

Item 1 Suppose for some f ∈ S, g = Compose(f) is not one-to-one, namely for some 0 ≤ i <
j ≤ t− 1,

f (i)(0) = f (j)(0).
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Define
X = {f (i)(0), f (i+1)(0), . . . , f (j−1)(0)}.

Note that |X| = j − i < t and so X ( [t]. However, it is easy to see that f(X) = X, which is a
contradiction to the assumption that f ∈ S.

Item 2 Suppose f1, f2 ∈ S, f1 6= f2 and g1 = Compose(f1) and g2 = Compose(f2). Suppose
toward a contradiction that g1 = g2, namely

f
(i)
1 (0) = f

(i)
2 (0) for all i ∈ [t]. (3)

Since f1 6= f2 for some x ∈ [t] we have f1(x) 6= f2(x). Since g1 : [t] 7→ [t] is one-to-one (proved in
the previous item), we have for some i that g1(i) = x or equivalently

f
(i)
1 (0) = x.

Now by Equation 3 we have f
(i)
2 (0) = x. Thus,

f1(x) = f1(f
(i)
1 (0)) = f

(i+1)
1 (0) = f

(i+1)
2 (0) = f2(f

(i)
2 (0)) = f2(x),

which is a contradiction to the earlier assumption that f1(x) 6= f2(x).
Item 3 Let f ∈ S, g = Compose(f) and h be defined as

h(i) = g−1(g(i) + 1).

We first show h ∈ S. Suppose toward a contradiction that for X = {x1, . . . , xm} it holds that
h(X) = X, where m < t. Again we recall that + below denotes addition modulo t. We have

{x1, . . . , xm} = h({x1, . . . , xm})⇔ {x1, . . . , xm} = {g−1(g(x1) + 1), . . . , g−1(g(xm) + 1)}
⇔ {g(x1), . . . , g(xm)} = {g(x1) + 1, . . . , g(xm) + 1} =def X ′.

Assume without loss of generality that 0 ≤ g(x1) < · · · < g(xm) ≤ t − 1. Since, g(xm) + 1 ∈ X ′
and g(xm) is the maximum element of X ′ we obtain g(xm) = t− 1 and as a result g(x1) = 0. Also,
since g(x1) + 1 ∈ X ′ we have 1 ∈ X ′ and so g(x2) = 1. Continuing using this argument we obtain
g(xm) = m−1 < t−1. However, this contradicts the previously established fact that g(xm) = t−1.

We now show that for any two distinct f1, f2 ∈ S, Permute(f1) 6= Permute(f2). Let g1 =
Compose(f1), g2 = Compose(f2), h1 = Permute(f1) and h2 = Permute(f2). From the statement
we just proved we deduce h1, h2 ∈ S. Also, since f1 6= f2 by Item 2 we have g1 6= g2 and as a result

g−1
1 6= g−1

2 . (4)

Suppose to the contrary that h1 = h2. Thus,

h
(i)
1 (0) = h

(i)
2 (0), for all i ∈ [t].

On the other hand, we claim

h
(i)
1 (0) = g−1

1 (i)

h
(i)
2 (0) = g−1

2 (i),
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which imply

g−1
1 (i) = h

(i)
1 (0) = h

(i)
2 (0) = g−1

2 (i), for all i ∈ [t]

which is a contradiction to Equation 4. We prove our claim for h1 and the proof for h2 is exactly
the same. As the base case we have

h
(0)
1 (0)

by definition
= 0 = g−1

1 (0),

as desired. Now assume h
(i)
1 (0) = g−1

1 (i) for some i < t− 1; we have

h
(i+1)
1 (0) = h1(h

(i)
1 (0)) = h1(g−1

1 (i)) = g−1
1 (g1(g−1

1 (i)) + 1) = g−1
1 (i+ 1), (5)

as claimed. ut

Lemma 2. Let E = (Gen,E,Dec) be an arbitrary encryption scheme with the secret-key-length
function l = l(n), and let t = t(n) and k = k(n) be two arbitrary polynomials. Consider the
following distributions:

Dis1 =
(
pk0, . . . , pkt−1, Epk0(sk1; r1

0), . . . , Epkt−1(sk0; r1
t−1), . . . , Epk0(sk1; rk0), . . . , Epkt−1(sk0; rkt−1)

)
(6)

Dis2 =

(
pk0, . . . , pkt−1,Epk0(skf(0); r

1
0), . . . , Epkt−1(skf(t−1); r

1
t−1), . . . ,

Epk0(skf(0); r
k
0), . . . , Epkt−1(skf(t−1); r

k
t−1), f

)
,

Dis3 =

(
pk0, . . . , pkt−1, Epk0(0l; r1

0), . . . , Epkt−1(0l; r1
t−1), . . . , Epk0(0l; rk0), . . . , Epkt−1(0l; rkt−1)

)
,

Dis4 =

(
pk0, . . . , pkt−1, Epk0(0l; r1

0), . . . , Epkt−1(0l; r1
t−1), . . . , Epk0(0l; rk0), . . . , Epkt−1(0l; rkt−1), f

)
,

where

(pk0, sk0), . . . , (pkt−1, skt−1)← Gen(1n) (7)

f ← S

r1
0, . . . , r

1
t−1, . . . , r

k
0, . . . , r

k
t−1 ← Randln.

There exists a randomized algorithm Convert satisfying the following two properties:

Convert(Dis1) ≡ Dis2

Convert(Dis3) ≡ Dis4

Moreover, if E is k-ind t-circularly secure then

Dis2 ≡c Dis4,

and the reduction is tight.
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Proof. Note that the “moreover” part follows from the existence of Convert with the stated prop-
erties, and thus in what follows we show how to construct Convert with the stated properties.

For an arbitrary

out = (pk0, . . . , pkt−1, c
1
0, . . . , c

1
t−1, . . . , c

k
0, . . . , c

k
t−1)

we show how Convert(out) works.
Below we use the operator + to mean addition modulo t.

– Sample f ← S, and define g = Compose(f) and h = Permute(f) (recall that these two
transformations were defined in Lemma 1.) That is,

g(i) = f (i)(0)

h(i) = g−1(g(i) + 1).

– return
(pkg(0), . . . , pkg(t−1), c

1
g(0), . . . , c

1
g(t−1), . . . , c

k
g(0), . . . , c

k
g(t−1), h).

We now prove that Convert provides the desired properties. In the following let

(pk0, sk0), . . . , (pkt−1, skt−1)← Gen(1n)

f ← S

g(i) = f (i)(0)

h(i) = g−1(g(i) + 1).

We have

Convert(Dis1) ≡ Convert(pk0, . . . , pkt−1, Epk0(sk1), . . . , Epkt−1(sk0)︸ ︷︷ ︸
1st

, . . . , Epk0(sk1), . . . , Epkt−1(sk0)︸ ︷︷ ︸
kth

)

≡
(
pkg(0), . . . , pkg(t−1), Epkg(0)(skg(0)+1), . . . , Epkg(t−1)

(skg(t−1)+1)︸ ︷︷ ︸
1st

, (8)

. . . , Epkg(0)(skg(0)+1), . . . , Epkg(t−1)
(skg(t−1)+1︸ ︷︷ ︸

kth

), h

)

Now for i ∈ [t] defining

(pk′i, sk
′
i) = (pkg(i), skg(i))

we may rewrite the distribution in Equation 8 as

(pk′0, . . . , pk
′
t−1, Epk′0(sk′h(0)), . . . , Epk′t−1

(sk′h(t−1))︸ ︷︷ ︸
1st

, . . . , Epk′0(sk′h(0)), . . . , Epk′t−1
(sk′h(t−1))︸ ︷︷ ︸

kth

, h)

︸ ︷︷ ︸
out1

. (9)

In Equation 9 we used the fact that

sk′h(i) = skg(h(i)) = skg(i)+1.
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Now since f is chosen uniformly at random from S, by Part 4 of Lemma 1 we have h is also
uniformly distributed over S, and so out1 is a random element according to distribution Dis2.

To show Convert(Dis3) ≡ Dis4 note that

Convert(Dis3) ≡
(
pkg(0), . . . , pkg(t−1), Epkg(0)(0

l), . . . , Epkg(t−1)
(0l)︸ ︷︷ ︸

1st

, . . . , Epkg(0)(0
l), . . . , Epkg(t−1)

(0l)︸ ︷︷ ︸
kth

, h

)
,

where all the variables are sampled as above. By Lemma 1 g is one-to-one and h is distributed
uniformly over S, and so we obtain Convert(Dis3) ≡ Dis4, and the proof is complete. ut

The following lemma is standard. We give a sketch of the proof for completeness.

Lemma 3. Let F = (G,F, F−1) be a D-domain TDF and hn : Dn → {0, 1}p(n) define an ensemble
of deterministic functions (for some poly function p). Let Dn be a distribution over Dn, and let
D = {Dn}. For any adversasry A achieving advantage ε = ε(n) against the D-one-wayness of F ,
there exists an adversary B that∣∣∣Pr [B(ik, F (ik, x), h(x)) = 1]− Pr

[
B(ik, F (ik, x), Unif{0,1}p(n)) = 1

]∣∣∣ ≥ ε

2
,

where (ik, tk)← G(1n), x← Dn and B’s random coins.

Proof. The adversary B(ik, y, u) works as follows: it runs A(ik, y) to receive x. If F (ik, x) 6= y then
B returns b← {0, 1}. If F (ik, x) = y, B returns 1 if u = h(x), and returns 0 otherwise. The desired
bound follows. ut

We now prove the following theorem.

Theorem 2. Let F and h be the TDF and hardcore function constructed according to Construction
2 based on E = (Gen,E,Dec,Rep) and t = t(n). Assuming E is k-ind t-circularly-secure, F is k-
wise one-way and h is a hardcore function for F (k).

Proof. By Lemma 3 it suffices to show that h is a hardcore function for F (k). Proving that h is a
hardcore function for F (k) boils down to showing that D′1 ≡c D′2, where

D′1 =

(
pk′1, Epk′1(0l; r1

0), . . . , Epk′1(0l; r1
t−1)︸ ︷︷ ︸

ik1

, . . . , pk′k, Epk′k(0l; rk0), . . . , Epk′k(0l; rkt−1)︸ ︷︷ ︸
ikk

pk0, . . . , pkt−1, Epk0(skf(0); r
1
0), . . . , Epkt−1(skf(t−1); r

1
t−1)︸ ︷︷ ︸

im1

, . . . ,

pk0, . . . , pkt−1, Epk0(skf(0); r
k
0), . . . , Epkt−1(skf(t−1); r

k
t−1)︸ ︷︷ ︸

imk

, f

)
,
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D′2 =

(
Epk′1(0l; r1

0), . . . , Epk′1(0l; r1
t−1)︸ ︷︷ ︸

ik1

, . . . , Epk′k(0l; rk0), . . . , Epk′k(0l; rkt−1)︸ ︷︷ ︸
ikk

pk0, . . . , pkt−1, Epk0(skf(0); r
1
0), . . . , Epkt−1(skf(t−1); r

1
t−1)︸ ︷︷ ︸

im1

, . . . ,

pk0, . . . , pkt−1, Epk0(skf(0); r
k
0), . . . , Epkt−1(skf(t−1); r

k
t−1)︸ ︷︷ ︸

imk

, f ′
)
,

where

(pk′1, sk
′
1), . . . , (pk′k, sk

′
k), (pk0, sk0), . . . , (pkt−1, skt−1)← Gen(1n) (10)

f, f ′ ← S

r1
0, . . . , r

1
t−1, . . . , r

k
0, . . . , r

k
t−1 ← Randln.

Fix the above way of sampling variables in the following. Note that since E is reproducible, given only
(im1, . . . , imk) one can perfectly simulate the rest, namely (ik1, . . . , ikk) is obtained by sampling
(pk′1, sk

′
1), . . . , (pk′k, sk

′
k) and using the reproduction function. Thus, to prove D′1 ≡c D′2, it suffices

to show
D1 ≡c D2, (11)

where

D1 =

(
pk0, . . . , pkt−1,Epk0(skf(0); r

1
0), . . . , Epkt−1(skf(t−1); r

1
t−1), . . . ,

Epk0(skf(0); r
k
0), . . . , Epkt−1(skf(t−1); r

k
t−1), f

)
,

D2 =

(
pk0, . . . , pkt−1,Epk0(skf(0); r

1
0), . . . , Epkt−1(skf(t−1); r

1
t−1), . . . ,

Epk0(skf(0); r
k
0), . . . , Epkt−1(skf(t−1); r

k
t−1), f ′

)
,

From Lemma 2 we have
D1 ≡c D3, (12)

D3 =

(
pk0, . . . , pkt−1, Epk0(0l; r1

0), . . . , Epkt−1(0l; r1
t−1), . . . , Epk0(0l; rk0), . . . , Epkt−1(0l; rkt−1), f

)
.

Applying Lemma 2 again we obtain D2 ≡c D3. Thus, we have

D1 ≡c D3 ≡c D2,

as desired. ut
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4.2 Second hardcore extraction method

The second construction allows us to extract any (a priori fixed) number of pseudorandom bits,
where these bits are the last input block of the TDF.

Construction 3 Let E = (Gen,E,Dec,R), t and Dt be as in Construction 1, and let m = m(n)
be an integer. The domain space of the TDF F = (G,F, F−1) we build is (Dt, {0, 1}m). Let l = l(n)
be the secret-key-length function of E and Rand = {Randn} be the randomness space of E.

– G(1n): Sample an injective/trapdoor key (ik, tk) as follows. Choose (pk, sk)← Gen(1n), and for
1 ≤ i ≤ l and 0 ≤ j ≤ t− 1 choose rji ← Randn. Also, for every 1 ≤ i ≤ m choose ri ← Randn.
Now let

tk = (r0
1, . . . , r

0
l , . . . , r

t−1
1 , . . . , rt−1

l , r1, . . . , rm), and

ik = (pk, c0
1, . . . , c

0
l , . . . , c

t−1
1 , . . . , ct−1

l , c1, . . . , cm),

where for 1 ≤ i ≤ l and 0 ≤ j ≤ t − 1, we set cji = Epk(0; rji ), and for 1 ≤ i ≤ m we set
ci = Epk(0; ri).

– On an injective key

ik = (pk, c0
1, . . . , c

0
l , . . . , c

t−1
1 , . . . , ct−1

l , c1, . . . , cm)

and domain point

x = (pk0, sk0, . . . , pkt−1, skt−1, u)

return

F (ik, x) = (pk0, . . . , pkt−1, c
′0
1, . . . , c

′0
l , . . . , c

′t−1
1 , . . . , c′

t−1
l , c′1, . . . , c

′
m),

where, denoting by bji the ith bit of sk(j+1 mod t), we define

c′
j
i = R(cji , b

j
i , skj). (13)

Also, for 1 ≤ h ≤ m we define

c′h = R(ch, uh, sk0).

– F−1: as in prior constructions.

Hardcore function: For F given above, we let h : (Dt, {0, 1}m)→ {0, 1}m be defined as

h(pk1, sk1, . . . , pkt, skt, u) = u.

Correctness of inversion is again clear and we have security as follows.

Theorem 3. Let F and h be the TDF and hardcore function constructed according to Construction
3 based on E = (Gen,E,Dec,Rep), m = m(n) and t = t(n). Assuming E is k-ind t-circularly-
secure, F is k-wise one-way and h is a hardcore function for F (k).
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Proof. By Lemma 3 it suffices to show that h is a hardcore function for F (k). To prove this we need
to show D′1 ≡c D′2, where

D′1 =

(
pk′1, Epk′1(0l; r1

0), . . . , Epk′1(0l; r1
t−1), Epk′1(0m; r1

t )︸ ︷︷ ︸
ik1

, . . . ,

pk′k, Epk′k(0l; rk0), . . . , Epk′k(0l; rkt−1), Epk′k(0m; rkt )︸ ︷︷ ︸
ikk

,

pk0, . . . , pkt−1, Epk0(sk1; r1
0), . . . , Epkt−1(sk0; r1

t−1), Epk0(u; r1
t )︸ ︷︷ ︸

im1

, . . . ,

pk0, . . . , pkt−1, Epk0(sk1; rk0), . . . , Epkt−1(sk0; rkt−1), Epk0(u; rkt )︸ ︷︷ ︸
imk

, u

)
,

D′2 =

(
pk′1, Epk′1(0l; r1

0), . . . , Epk′1(0l; r1
t−1), Epk′1(0m; r1

t )︸ ︷︷ ︸
ik1

, . . . ,

pk′k, Epk′k(0l; rk0), . . . , Epk′k(0l; rkt−1), Epk′k(0m; rkt )︸ ︷︷ ︸
ikk

,

pk0, . . . , pkt−1, Epk0(sk1; r1
0), . . . , Epkt−1(sk0; r1

t−1), Epk0(u; r1
t )︸ ︷︷ ︸

im1

, . . . ,

pk0, . . . , pkt−1, Epk0(sk1; rk0), . . . , Epkt−1(sk0; rkt−1), Epk0(u; rkt )︸ ︷︷ ︸
imk

, u′
)
,

where

(pk′1, sk
′
1), . . . , (pk′k, sk

′
k), (pk0, sk0), . . . , (pkt−1, skt−1)← Gen(1n) (14)

u, u′ ← {0, 1}m

r1
0, . . . , r

1
t−1, . . . , r

k
0, . . . , r

k
t−1 ← Randln and r1

t , . . . , r
k
t ← Randmn .

Fix the above way of sampling variables in the following. Note that since E is reproducible, given only
(im1, . . . , imk) one can perfectly simulate the rest, namely (ik1, . . . , ikk) is obtained by sampling
(pk′1, sk

′
1), . . . , (pk′k, sk

′
k) and using the reproduction function. Thus, to prove D′1 ≡c D′2, it suffices

to show D1 ≡c D4, where

D1 =

(
pk0, . . . , pkt−1, Epk0(sk1), . . . , Epkt−1(sk0), Epk0(u)︸ ︷︷ ︸

1st

, . . . , Epk0(sk1), . . . , Epkt−1(sk0), Epk0(u)︸ ︷︷ ︸
kth

, u

)
,

D4 =

(
pk0, . . . , pkt−1, Epk0(sk1), . . . , Epkt−1(sk0), Epk0(u)︸ ︷︷ ︸

1st

, . . . , Epk0(sk1), . . . , Epkt−1(sk0), Epk0(u)︸ ︷︷ ︸
kth

, u′
)
.
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We now introduce D2 and D3 and show

D1 ≡c D2 ≡c D3 ≡c D4,

which will conclude the proof:

D2 =

(
pk0, . . . , pkt−1, Epk0(0l), . . . , Epkt−1(0l), Epk0(u)︸ ︷︷ ︸

1st

, . . . , Epk0(0l), . . . , Epkt−1(0l), Epk0(u)︸ ︷︷ ︸
kth

, u

)
,

D3 =

(
pk0, . . . , pkt−1, Epk0(0l), . . . , Epkt−1(0l), Epk0(u)︸ ︷︷ ︸

1st

, . . . , Epk0(0l), . . . , Epkt−1(0l), Epk0(u)︸ ︷︷ ︸
kth

, u′
)
.

Now, D1 ≡c D2 follows by k-ind t-circular security of E ; D2 ≡c D3 follows by CPA-security of E ;
and D3 ≡c D4 follows by k-ind t-circular security of E . ut

Remark 2. In many concrete settings, for a public-key encryption scheme E = (Param,Gen,E,Dec)
with public parameters, we have that

(par, pk, sk) ≡ (par, Pub(sku, par), sku),

where par ← Param(1n), (pk, sk)← G(1n, par), sku ← {0, 1}l and Pub is a deterministic function.
That is, the secret key is chosen uniformly at random and the public key is obtained determin-
istically from the secret key and the public parameters. For such schemes we may easily modify
Construction 3 so that, following the notation used in Construction 3, the index key ik is augmented
with par ← Param(1n) and that the evaluation function F no longer takes pki’s as input (so its
entire input is a bitstring), by computing pki = Pub(ski, par) on its own for 0 ≤ i ≤ t − 1. Now
by taking m ∈ ω(t · l) we obtain a TDF (from the assumptions stated in Theorem 3) that hides a
(1− o(1))-fraction of its input bits. Note that if one-wayness (as opposed to k-wise one-wayness) is
desired we can have TDFs without public parameters as described above, i.e., by incorporating the
parameter-generation algorithm of E into the key-generation algorithm of the constructed TDF.
However, in order to have k-wise one-wayness the constructed TDF should also have a separate
public-parameter generation algorithm.

5 CCA-secure encryption

5.1 Constructions of CCA secure encryption from our assumptions

Rosen and Segev [37, Theorem 1] give a construction of a CCA1-secure encryption scheme from any
ω(log n)-wise one-way TDF and of a CCA2-secure encryption from any Ω(n)-wise one-way TDFs.
Their constructions are fully-blackbox and non-shielding, in the sense described below.

Recall the notion of fully-blackbox reductions [36]; we use (C,R) to denote a fully-blackbox
reduction, where C denotes the construction and R denotes the reduction algorithm. In the defi-
nition below we review what it means for an encryption-based or TDF-based construction C to be
shielding/non-shielding [24].

24



Definition 6. An encryption-based blackbox construction C = (G,E,D) is called shielding if D
never calls the encryption function of the oracle scheme. Formally, for any µ = (g, e, d) that imple-
ments an encryption scheme, Dµ never calls e. Similarly, a TDF-based construction C = (G,E,D)
is called non-shielding if D never calls the evaluation algorithm of the oracle scheme. A construction
is called non-shielding if it is not shielding.

We call (C,R) a shielding (resp., non-shielding) fully-blackbox reduction if (1) (C,R) is a fully-
blackbox reduction and (2) C is a shielding (resp., non-shielding) construction. We simply use
the terms non-shielding/shielding blackbox constructions to refer to non-shielding/shielding fully-
blackbox reductions.

The following result is from [37].

Theorem 4. [37] There exists a non-shielding blackbox construction of CCA1-secure (resp., CCA2-
secure) encryption schemes from ω(log n)-wise one-way (resp., Ω(n)-wise one-way) TDFs. In par-
ticular, the constructed decryption algorithm (for both CCA1 and CCA2 cases) D calls F and F−1,
the evaluation and inversion algorithms, of the base TDF.

We may now use Theorem 4 and our results from the previous section to obtain CCA1 and
CCA2 secure encryption schemes from our assumptions. Note that all TDF constructions we have
presented have the property that the constructed inversion algorithm, F−1, calls the encryption
algorithm of the base reproducible encryption scheme. Thus, we have the following corollary.

Corollary 1. There exists a non-shielding blackbox construction of CCA1-secure (resp., CCA2-
secure) encryption schemes from reproducible, ω(log n)-wise (resp., Ω(n)-wise) t-circularly-secure
encryption schemes, for any t.

5.2 Shielding versus non-sheilding CCA-secure constructions

Gertner, Malkin and Myers [24] show that there are no shielding blackbox construction of CCA1-
secure encryption from CPA-secure encryption. In Corollary 1 we showed our assumptions (for
appropriately chosen parameters) result in a non-shielding CCA1-secure encryption construction.
Since our base assumptions are strictly stronger than CPA security (at least in a blackbox sense),
a natural question is whether or not it is possible to give a shielding construction based on our
assumptions. We do not currently know the answer to this question, but as we show below, there
exists an encryption primitive, which is implied by our assumptions, based on which a non-shielding
blackbox CCA1-construction is possible, but from which no shielding blackbox CCA1-construction
is possible.

Our new encryption primitive is an extension of CPA-secure encryption, requiring that security
holds even when encrypting certain randomness-dependent messages. The following definition is
basically an adaptation of variants of those of [27,8] to the bit-encryption case.

Definition 7. A bit-encryption scheme E = (Gen,E,Dec) with randomness space {0, 1}ρ is q-
randomness-dependent-message (RDM) secure if((

Epk11(r1; r), . . . , Epk1ρ(rρ; r)
)
, . . . ,

(
Epkq1(r1; r), . . . , Epkqρ(rρ; r)

))
≡c
((
Epk11(0; r), . . . , Epk1ρ(0; r)

)
, . . . ,

(
Epkq1(0; r), . . . , Epkqρ(0; r)

))
,

where r ← {0, 1}ρ and all public keys are chosen at random according to Gen. For better readability,
we made the inclusion of the public keys implicit.
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In the definition above, since we are encrypting the randomness string bit-by-bit, we should
form each encryption under a fresh and independent public key. Otherwise, an adversary can easily
distinguish between the two distributions. The reason is that an adversary given c1 and c2 for
c1 = Epk(b1, r) and c2 = Epk(b2; r) can check whether b1 = b2.

q-RDM-secure encryption from our assumptions. We first show below that the notion defined
above is implied by our assumptions. For simplicity, we show the implication from 1-circular security
assumptions (i.e., circular security with respect to one pair of public/secret keys), although this
generalizes to get implications from t-circular security assumptions.

Lemma 4. Assume E = (Gen,E,Dec,R) is a reproducible, q-ind 1-circularly-secure bit encryption
scheme with public key space {0, 1}l1(n), secret-key space {0, 1}l2(n) and randomness space Randn,
for any security parameter n. There exists a q-RDM secure encryption scheme based on E.

Proof. Let l1 = l1(n), l2 = l2(n) and Rand = Randn. Given E = (Gen,E,Dec,R) we define below
a bit encryption scheme E ′ = (Gen′, E′, Dec′) whose randomness space, Rand′, is the public/secret
key space of E , i.e., Rand′ = {0, 1}l1+l2 .

– Gen′(1n): sample (pk, sk)← Gen(1n) and r ← Rand; form the public key as pkconst = Epk(0; r)
and the secret key as skconst = r.

– E′: given public key pkconst = c, bit b and randomness (pk′, sk′) return

cconst = (pk′, R(c, b, sk′)).

– D′: given secret key skconst = r and ciphertext (pk′, c′) return the bit b such that Epk′(b; r) = c′.

To prove q-RDM security of E ′ it suffices to show (by reproducibility of E) that(
pk′, Epk′(pk

′; r11), Epk′(sk
′; r12), . . . , Epk′(pk

′; rq1), Epk′(sk
′; rq2)

)
≡c
(
pk′, Epk′(0

l1 ; r11), Epk′(0
l2 ; r12), . . . , Epk′(0

l1 ; rq1), Epk′(0
l2 ; rq2)

)
,

where (pk′, sk′) ← Gen(1n), r1
1, . . . , r

q
1 ← {0, 1}l1 and r1

2, . . . , r
q
2 ← {0, 1}l2 . The above indistin-

guishability follows easily from q-ind 1-circular security of E . ut

Non-shielding CCA1 construction from q-RDM-secure encryption. Next, we show q-
RDM-secure encryption easily implies q-wise one-way TDFs, which we will use to show the exis-
tence of a non-shielding CCA1 construction. We sketch the construction based on a q-RDM-secure
encryption scheme E . Let E ’s randomness space be {0, 1}ρ, and define TDF F = (G,F, F−1) as
follows. The algorithm G(1n) runs Gen(1n) ρ times to obtain (pk1, sk1), . . . , (pkρ, skρ), and re-
turns ik = (pk1, . . . , pkρ) and tk = (sk1, . . . , skρ). The algorithm F has domain space {0, 1}ρ and
Fpk1,...,pkρ(r) returns (Epk1(r1; r), . . . , Epkρ(rρ, r)). The inversion algorithm F−1 works in the obvious
way.

Now it is not hard to show if E is q-RDM secure, then F is q-wise one-way. Specifically, note
that the view of an adversary against q-wise one-wayness of F is as(

Epk11(r1; r), . . . , Epk1ρ(rρ, r), . . . , Epk
q
1
(r1; r), . . . , Epkqρ(rρ, r)

)
,

and also recall the definition of q-RDM security. (For better readability, we have removed the
inclusion of pkji ’s in the above equation.) Thus, by applying Theorem 4 we obtain the following.
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Corollary 2. For any q ∈ ω(log n) there exists a non-shielding blackbox construction of CCA1-
secure encryption from q-RDM-secure bit-encryption.

Impossibility of shielding CCA1-construction from q-RDM-secure encryption. We now
show the blackbox separation of [24], stating that there are no shielding blackbox constructions of
CCA1-secure encryption from CPA-secure encryption, extends even if the base scheme is q-RDM-
secure, for any poly-bounded q. Combined with Corollary 2 this gives us an encryption primitive
which permits a non-shielding blackbox CCA1-secure construction, but from which no shielding
blackbox CCA1-secure construction is possible. We first start with an informal description of the
separation model of [24] and then give the formal definitions.

Specifically, [24] introduces a tuple of oracles O = (g, e,d,w,u), where O1 = (g, e,d) model
an idealized encryption scheme (when the oracle is chosen at random), and O2 = (d,w) are two
security-weakening components, which are defined based on O1. For any candidate construction
E = (GenO1 , EncO1 , Decg,d) Gertner et al. prove that

1. there exists an oracle-adversary AO, which is unbounded in time but poly-bounded in the
number of oracle calls, that breaks the CCA1 security of E with very high probability, where
the probability is taken over a random choice of (g, e,d,w,u) and all internal random coins of
the CCA1 game (Formalized in Theorem 5 below);

2. no adversary AO that makes at most a polynomial number of queries can win against the
CPA-security of (g, e,d) with better 1/2 + poly/2n probability, where the probability is taken
over the random choice of O = (g, e,d,w,u) and those of the adversary and the CPA-game
[24, Theorem 1]. That is, a random (g, e,d) is CPA-secure in a very strong sense against any
query-bounded oracle-adversary AO.

Therefore, to rule out shielding fully-blackbox constructions of CCA1-secure encryption from a
new encryption primitive, it suffices to prove Item 2 above with respect to the new primitive. This
is what we do below with respect to RDM secure encryption (Theorem 6). We first give the formal
description of the oracles as used in [24].

Definition 8. ([24]) Define ψ, a distribution on oracles (g, e,d,w,u), defined for each n ∈ N, as
follows.

– g : {0, 1}n 7→ {0, 1}3n is a random one-to-one function. Function g is considered as a key
generator, with sk being the secret key and pk = g(sk) as the public key.

– e : {0, 1}3n × {0, 1} × {0, 1}n 7→ {0, 1}3n is a random one-to-one function.
– d : {0, 1}n × {0, 1}3n 7→ {0, 1,⊥} is the unique function specified based on (g, e), for which it

holds d(sk, c) = b if there exists r ∈ {0, 1}n s.t. e(g(sk), b, r) = c; otherwise, d(sk, c) = ⊥.
– w : {0, 1}3n → {0, 1}3n×n ∪{⊥} is a random function sampled as follows. For w(pk), if it holds

that g−1(pk) = ∅ then w(pk) = ⊥; otherwise, sample the strings r1, . . . , rn ← {0, 1}n and return

(e(pk, sk1, r1), . . . , e(pk, skn, rn)),

where sk = g−1(pk).
– u :{0, 1}3n×{0, 1}3n 7→ {>,⊥} is a deterministic function which returns > if there exists sk, b

and r such that g(sk) = pk and e(pk, b, r) = c, and returns ⊥, otherwise.

For consistency, we may sometimes write e(pk, b, r) and d(sk, c), respectively, as epk(b; r) and
dsk(c).
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The following theorem, which is from [24], shows that, informally speaking, for any candidate
shielding construction, there exists an inefficient adversary (which, however, makes a polynomial
number of queries) that almost always breaks the CCA1 security of the constructed scheme.

Theorem 5. ([24]) Fix a shielding bit-encryption construction (Gen,E,Dec). There exists a CCA1
adversary A = (A1,A2), where A is poly-bounded in the number of queries but unbounded otherwise,
for which it holds that

Pr
[
(m0,m1, σ)← ADec

g,d(SK),O
1 (PK) ; AO2 (c, σ) = b

]
≥ 1− 1

n
, (15)

where O = (g, e,d,w,u) ← ψ, b ← {0, 1}, (PK,SK) ← Geng,e,d(1n) and c ← Eg,e,d(mb). Note
that σ is the state information that A1 passes on to A2. Also, Decg,d(SK) denotes the decryption
oracle to which A1 has access. Note that since A is a CCA1 adversary only A1 has access to
Decg,d(SK).

We give and prove the following theorem, a CPA version of which was proved in [24].

Theorem 6. For any (possibly) inefficient adversary A that makes at most p = p(n) queries (for
some p), it holds that

Pr
O=(g,e,d,w,u)←ψ, b←{0,1}, dsb←DSb

[
AO(dsb) = b

]
≤ 1

2
+
poly(p)

2n
(16)

where

DS0 ≡
(

(pk1
1, epk11(r1; r)), . . . , (pk1

n, epk1n(rn; r)), . . . , (pkq1, epkq1(r1; r)), . . . , (pkqn, epkqn(rn; r))
)

(17)

DS1 ≡
(

(pk1
1, epk11(0; r)), . . . , (pk1

n, epk1n(0; r)), . . . , (pkq1, epkq1(0; r)), . . . , (pkqn, epkqn(0; r))
)
, (18)

in which r ← {0, 1}n and pkji , for 1 ≤ i ≤ n and 1 ≤ j ≤ q, is formed by sampling skji ← {0, 1}n

and setting pkji = g(skji ).

Proof. We first fix some notation. Let Pubchal be the set of public keys given to A as part of its
input dsb. (chal stands for challenge.) To be consistent with the above notation assume

Pubchal = {pk1
1, . . . , pk

1
n, . . . , pk

q
1, . . . , pk

q
n}.

Let Pub be the set of public keys that A obtains by querying g. Let PubCiphchal be the set of
pairs of public keys/ciphertexts which A can retrieve as part of its input dsb. Finally, let PubCiph
contains all elements of PubCiphchal plus those pairs of public keys/ciphertexts that A obtains by
querying e and by querying w.

First, we may assume that (1) A only calls its oracles on the security parameter n, (2) A never
queries u, (3) A only queries w on inputs pk ∈ Pubchal and (4) A never queries d. We explain
below why we can make these assumptions.

For (1), note that by Definition 8 the outputs of functions (g, e,d,u,u) on different security
parameters are independent of each other. Thus, calling these functions on security parameters
other than n gives no knowledge to the adversary as the adversary can sample those answers by
itself.
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For (2), for any (pk, c) /∈ PubCiph, the query u(pk, c) is answered with ⊥ except with an
inverse-exponential probability (since g is length tripling and also e is “almost” length-tripling for
fixed pk). If (pk, c) ∈ PubCiph, however, then A already knows the answer and there is no point
in calling u.

For (3), first note that for any pk /∈ Pubchal ∪Pub, the query w(pk) is answered with ⊥ except
with an inverse-exponential probability (using the same reasoning as above). Also, if pk ∈ Pub,
then A itself can sample the answer by querying e, since A knows g−1(pk).

Using similar reasoning, we can show that any query d(sk, c) that A trivially does not know
the answer to is replied to with ⊥ except with an inverse-exponential probability.

Now assuming A makes at most p = poly(n) queries, by observation (3) we may assume that
A never queries w, but instead A’s input includes p × n2 × q = poly(p) more ciphertexts, where
for each public key pkji ∈ Pubchal, we include p bit-by-bit encryptions of skji = g−1(pkji ) (so p× n
encryptions for each public key and since we have nq public keys this gives us the above number).

Now since A only queries g and e, we consider the following events.

– (a) PubHit: at least one of g queries results in some pk ∈ Pubchal;
– (b) CiphHit: A makes a query e(pk, b, r), to get c, and it holds that (pk, c) ∈ Cchal.

If neither PubHit nor CiphHit holds, then we can show that the probability that A can de-
termine b is at most 1/2 + poly(n)/2n. Moreover, both PubHit and CiphHit can easily be shown
that occur with at most poly(n)/2n probability. ut

Using standard techniques in blackbox separations (especially applying the Borel-Cantelli lemma)
Theorems 5 and 6 can be combined to obtain the following corollary.

Corollary 3. For any poly-bounded q, there exists no shielding blackbox construction of CCA1-
secure encryption from q-RDM-secure encryption.

We note that it seems that one can generalize Corollary 3 to rule out the existence of shielding
blackbox CCA1 constructions from a large class of encryption primitives whose security is defined
in terms of indistinguishability against passive attacks (i.e., no decryption oracles). In other words,
the blackbox separation generalizes to any (base) security requirement that is “realized” by an ideal
encryption scheme (g, e,d) in the presence of (w,u). For example, Corollary 3 still holds true if
RDM security is replaced with circular security.

6 Constructions for Deterministic encryption

6.1 Preliminaries

We start by reviewing a few basic facts relating to entropy. The min-entropy of a distribution (or
a random variable) D is defined as

H∞(D) = min
d∈D

log(1/Pr[D = d]).

If l ≤ H∞(D) we call D an l-source. We also recall the notion of average min entropy, formalized
by Dodis et al. [21], defined as

H̃∞(X|Y ) = − log
(
Ey←Y (2−H∞(X|Y=y))

)
,

where (X,Y ) are two random variables.
The following is a well-known fact about average min entropy.
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Lemma 5. ([21]) For any random variables (X,Y ) it holds that H̃∞(X|Y ) ≥ H̃∞(X,Y )−log |Sup(Y )|.

Let S be a set of function indices. Recall that a family of functions H = {hashi : {0, 1}k 7→ R |
i ∈ S} is called universal if for all x1, x2 ∈ {0, 1}k with x1 6= x2 it holds that

Pr
hash←H

[hash(x1) = hash(x2)] ≤ 1

|R|
.

The following lemma, from [21], shows that universal hash functions are good average-case
extractors.

Lemma 6. ([21]) Let H = {hashi : {0, 1}k 7→ R | i ∈ S} be a family of universal hash functions.
For any random variables (X,D), where D takes values in {0, 1}k, it holds that

∆ (hash(D), hash,X), (UnifR, hash,X)) ≤ 1/2

√
2−H̃∞(D|X)|R|,

where hash← H.

6.2 Deterministic encryption: syntax and security

Since a deterministic encryption scheme is syntactically the same as a TDF, we denote a deterministic-
encryption scheme as DE = (G,F, F−1). For a function l we call DE an l-bit scheme if the plaintext
space of DE on any security parameter n is {0, 1}l(n). We start by giving a notion of security for
deterministic encryption schemes, which is essentially the single-message, indistinguishability-based
notion of [10]. See [10] for definitional equivalences.

Definition 9. We say that a deterministic l-bit encryption scheme DE = (G,F, F−1) is secure with
respect to indistinguishability of λ-source inputs (shortly, (λ, l)-IND secure) if for any λ-sourcesM0

and M1 over {0, 1}l, it holds that

(ik, Fik(M0)) ≡c (ik, Fik(M1)),

where (ik, tk)← G(1n).

6.3 Tools for obtaining deterministic encryption

In definitions below, we explicitly include the parameter-generation algorithm, since the definitions
delicately depend on the presence of public parameters. Throughout this section we work with
randomized encryption schemes (as base schemes for obtaining DE schemes) whose key generation
algorithms admit a special form stated in Remark 2 and reviewed below.

Definition 10. We call a randomized encryption scheme E = (Param,Gen,E,Dec) with secret-
key-length function l = l(n) canonical if there exists a deterministic function Pub such that

(par, pk, sk) ≡ (par, Pub(sku, par), sku),

where par ← Param(1n), (pk, sk) ← G(1n, par), sku ← {0, 1}l. That is, the secret key of a
canonical scheme is chosen uniformly at random and the public key is obtained deterministically
from the secret key and the public parameters. Henceforth, we will reserve Pub to denote the stated
function of a canonical form scheme under consideration.
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We start by defining an extended notion of circular security, requiring that circular security
hold even if the secret key is sampled from a non-full-entropy distribution. For technical reasons,
we need to allow some information about the secret key to be leaked, assuming the average min
entropy of the secret key conditioned on the leaked information is high. The following definition
generalizes a similar definition of [15] to the average case. We note it is possible to prove our results
with respect to the weaker definition of [15], but the proofs become more complex.

Definition 11. We say that a canonical bit-encryption scheme E = (Param,Gen,E,Dec) with
secret-key-length function l is (λ, l)-entropy circularly secure if for any joint distribution (SK,X ),
where SK is a distribution over {0, 1}l, satisfying the condition H̃∞(SK|X ) ≥ λ, we have

(par, pk,Epk(sk), Epk(1), x) ≡c (par, pk,Epk(0
l), Epk(0), x),

where (sk, x)← (SK,X ), par ← Param(1n) and pk = Pub(sk, par). We stress that par is chosen
independently of (sk, x).

We should clarify that Definition 11 is different from simply the combination of circular security
and leakage resilience notions [1,32]. Under the leakage-resilience model, the public/secret keys are
chosen as spelled out by the scheme, but the leakage function f (to be evaluated on the secret key)
is chosen by the adversary (after seeing the public key). Under our model, in contrast, the secret
key may be chosen from a non-full-entropy distribution, but the leaked information (x above) is
chosen independently of the random par.

Next we define another strengthening of the notion of [15], which adds the requirement that the
public key distributions formed under high-entropy secret keys be computationally indistinguish-
able. This may be guaranteed if, e.g., Pub is a strong randomness extractor [33], as is the case with
known circularly-secure schemes [12,13].

Definition 12. Let E = (Param,Gen,E,Dec) be a canonical bit-encryption scheme with secret-
key-length function l. We say E is strongly-(λ, l)-entropy circularly secure if

– (a) for any λ-source SK on {0, 1}l,

(par, pk,Epk(sk), Epk(1)) ≡c (par, pk,Epk(0
l), Epk(0)),

where sk ← SK, par ← Param(1n) and pk = Pub(sk, par); and

– (b) for any λ-sources SK1 and SK2 on {0, 1}l, it holds that

(par, Pub(sk1, par)) ≡c (par, Pub(sk2, par)) ,

where sk1 ← SK1, sk2 ← SK2 and par ← Param(1n). Note that par is chosen independently
from both sk1 and sk2.

As mentioned before, Condition (b) above in some sense states that Pub should act closely like a
seeded randomness extractor.
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6.4 Constructions

We first show that starting from a canonical reproducible bit encryption scheme which provides
strong (λ, l)-entropy circular security, a slight variant Construction 1 immediately gives us a (λ, l)-
IND secure deterministic scheme—i.e., it preserves the parameters.

Theorem 7. Let E = (Param,Gen,E,Dec,R) be a canonical reproducible bit-encryption scheme
with secret-key-length function l and DE = C1(E , 1) be the DE scheme built in Construction 1 based
on E and t = 1.8 If E is strongly-(λ, l)-entropy circularly secure F is (λ, l)-IND secure.

Proof. Let D1 and D2 be two arbitrary λ-sources on {0, 1}l. We need to prove that DS1 ≡c DS2,
where

DS1 ≡ (par, pk,Epk(0
l; r)︸ ︷︷ ︸

ik

, pk1, Epk1(sk1; r)︸ ︷︷ ︸
image

), and

DS2 ≡ (par, pk,Epk(0
l; r)︸ ︷︷ ︸

ik

, pk2, Epk2(sk2; r)︸ ︷︷ ︸
image

),

are computationally indistinguishable, where (pk, sk) ← Gen(1n), sk1 ← D1, sk2 ← D2, par ←
Param(1n), pk1 = Pub(sk1, par), pk2 = Pub(sk2, par) and r ← Randln. Fix the described way of
sampling variables in the following. From strong-(λ, l)-entropy circularly security we obtain

(par, pk1, Epk1(sk1; r)) ≡c (par, pk1, Epk1(0l; r)), and (19)

(par, pk2, Epk2(sk2; r)) ≡c (par, pk2, Epk2(0l; r)).

Now from Equation 19 and reproducibility of E , we obtain

DS1 ≡c (par, pk,Epk(0
l; r), pk1, Epk1(0l; r)), and (20)

DS2 ≡c (par, pk,Epk(0
l; r), pk2, Epk2(0l; r)).

Now since
(par, pk1) ≡c (par, pk2),

which is again implied by strong (λ, l)-entropy circularly security of E , we have

(par, pk,Epk(0
l; r), pk1, Epk1(0l; r)) ≡c (par, pk,Epk(0

l; r), pk2, Epk2(0l; r))

and hence DS1 ≡c DS2, as desired. ut

Next we show that the “weaker” entropy circular security assumption also gives rise to DE
schemes, but with looser security bounds and under more inefficient constructions. Our construction
employs the encrypt-with-hardcore (EWH) technique, described in the introduction.

As terminology, we say that a bit encryption scheme E = (Param,Gen,E,Dec,R) has a bit-
string ciphertext space if there exists a polynomial pc such that the ciphertext space of E is a subset
of {0, 1}pc : formally, for all n, all par ∈ Param(1n), all (pk, sk) ∈ Gen(1n, par) and all b it holds
that all Sup(Epk(b)) ⊆ {0, 1}pc(n). Similarly, we may define an encryption scheme with a bitstring
ciphertext space or a TDF with a bitstring image space, etc.

8 Here we are working with a modified version of Construction 1 stated in Remark 2. Note that the constructed
deterministic encryption scheme does not have public parameters.
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Theorem 8. Let E = (Param,Gen,E,Dec,R) be a canonical, reproducible, (λ, l)-entropy circu-
larly secure encryption scheme, with randomness space Randn = {0, 1}pr , secret-key-length function
l = l(n) and with bitstring public-key and ciphertext spaces. There exists an (l+pr +u, 2l+pr−λ)-
IND-secure deterministic encryption scheme, where u ∈ ω(log n) is an arbitrary function.

We give an outline of the proof first, and then proceed with the formal proof. The first step of
the proof is to show that we can use reproducibility of E to encrypt any arbitrarily-long bitstring,
say of length p = p(n), using a pr-bit-long randomness string. (Recall that Randn = {0, 1}pr .) This
can be done (see Lemma 7) by defining a new PKE scheme whose public keys are vectors of p base-
public-keys, (pk1, . . . , pkp), and in which the encryption function reuses randomness r ∈ {0, 1}pr to
encrypt m = m1 . . .mp ∈ {0, 1}p as

(Epk1(m1; r), . . . , Epkp(mp; r)).

Now consider the TDF given by Construction 3, based on t = 1 and m = l + pr − λ. Define

hc(sk, x) = (hash, hash(x)),

where hash : {0, 1}m 7→ {0, 1}pr is chosen from a family of universal hash functions. As the next
step we show that hc is a hardcore function for the TDF. Having proved this, to be able to apply
the EWH method, we need to show that DS1 ≡c DS2, for

DS1 ≡ (hash(x), hash, par, pk,Epk(0
l; r1), Epk(0

|x|; r1), Epk(sk; r1), Epk(x; r2)), and

DS2 ≡ (y, hash, par, pk,Epk(0
l; r1), Epk(0

|x|; r1), Epk(sk; r1), Epk(x; r2)),

where y ← {0, 1}pr , par ← Param(1n), (sk, x) ← (SK,X ), pk = Pub(sk, par) and H∞(SK,X ) ≥
l + pr + u. (Also, r1 and r2 are chosen independently.) Now since by Lemma 5

H̃∞(SK|X ) ≥ H̃∞(SK,X )− log |Sup(X )| ≥ (l + pr + u)− (l + pr − λ) = λ+ u

we may appeal to the (λ, l)-entropy circular security of E to replace Epk(sk; r1), in both DS1 and
DS2, with an all-zero encryption. (That is, we deduce that, say, DS1 is indistinguishable from a
distribution that is exactly the same as DS1 but in which Epk(sk; r1) is replaced with Epk(0

l; r1).)
In the next step we do the same for Epk(x; r1) (i.e., we get rid of the occurrences of x as a plaintext).
Finally, using the facts that

H̃∞(X|SK) ≥ H̃∞(X ,SK)− |Sup(SK)| ≥ (l + pr + u)− l = pr + u,

and that u ∈ ω(log n), we apply Lemma 6 to replace hash(x) with a random string y.
We now give the formal proof of the theorem above. Before giving the proof, we need to establish

some lemmas.
In the following we will introduce variants of the TDFs discussed earlier, with associated hard-

core functions hc, where hc also takes as input the underlying index key ik, besides the domain
input x to produce hc(ik, x), i.e., hc also depends on the underlying index key.

We give the following simple lemma, showing that using reproducibility, one can obtain schemes
with arbitrarily-large plaintexts using relatively short randomness.

Lemma 7. Assuming the existence of a reproducible, CPA-secure bit-encryption scheme E =
(Param,G,E,D) with randomness space {0, 1}pr , for any poly function p there exists a CPA-secure
p-bit encryption scheme E ′ = (Param′, G′, E′, D′) with the same randomness space {0, 1}pr .
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Proof. Define E ′ as follows:

– Param′ = Param;

– G′(1n; par): run G(1n; par) p times to produce (pk1, sk1), . . . , (pkp, skp) and form the public key
as (pk1, . . . , pkp) and the secret key as (sk1, . . . , skp);

– E′: on public key pkext = (pk1, . . . , pkp), message m ∈ {0, 1}p and randomness r ∈ {0, 1}pr
return

(Epk1(m1; r), . . . , Epkp(mp; r)).

– D′: clear.

Using a simple hybrid argument one can prove the CPA-security of E ′ based on the CPA-security
and reproducibility of E . To do this, for 1 ≤ i ≤ p+ 1 define hybrid Di under which an encryption
of m under (pk1, . . . , pkp) and randomness r is produced as

(Epk1(0; r), . . . , Epki−1
(0; r), Epki(mi; r), . . . , Epkp(mp; r)) 1 ≤ i ≤ p

(Epk1(0; r), . . . , Epki−1
(0; r), Epki(0; r), . . . , Epkp(0; r)) i = p+ 1.

Now note that D1 and Dp+1 are identically distributed to, respectively, Epk(m) and Epk(0
p), and

that D1 ≡c · · · ≡c Dp+1. ut

We note that a similar version of Lemma 7 may be proved without assuming reproducibility,
but by applying a pseudorandom generator (PRG) to stretch the randomness for the encryption
algorithm. However, since we need reproducibility for other purposes anyway, we work with the
version of the lemma given above.

As terminology, we say that function f is k-bit-valued if f ’s output is always in {0, 1}k.

Theorem 9. Let E1 be a reproducible, CPA-secure bit-encryption scheme with randomness space
{0, 1}pr . Let F = (G,F, F−1) be a TDF family with an associated pr-bit-valued hardcore function
hc, with a bitstring image space and suppose Domain(F ) = {0, 1}l. Assume that for any λ-source
distribution M on {0, 1}l it holds that

(ik, Fik(x), hc(ik, x)) ≡c (ik, Fik(x), s), (21)

where (ik, tk)← G(1n), x←M and s← {0, 1}pr . Then, there exists a (λ, l)-IND-secure determin-

istic encryption scheme D̃E = (G̃, F̃ , F̃−1).

Proof. Since F has a bitstring image space, let the image space of F be a subset of {0, 1}po .
Given E1, by Lemma 7, we may assume the existence of a CPA-secure encryption scheme E =
(Param,Gen,E,Dec), whose randomness space is {0, 1}pr and whose plaintext space is {0, 1}po .
We define D̃E = (G̃, F̃ , F̃−1) as follows.

– G̃(1n): return (ik, pk) as the injective key and (tk, sk) as the trapdoor key, by sampling

par ← Param(1n); (pk, sk)← Gen(1n, par) and (ik, tk)← G(1n);

– F̃ : define

F̂(ik,pk)(m) = Epk (Fik(m);hik(m)) ;
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– F̃−1: define
F̂−1

(tk,sk)(c) = F−1
tk (Decsk(c)).

The completeness of D̃E is clear. Now toward (λ, l)-IND-security of D̃E , we need to prove that
for arbitrary λ-source distributions M1 and M2, it holds that DS1 ≡c DS4, where

DS1 = (ik, pk,Epk(Fik(m);hc(ik,m)))

DS4 =
(
ik, pk,Epk(Fik(m

′);hc(ik,m′))
)
.

where (ik, tk)← G(1n), par ← Param(1n), (pk, sk)← Gen(1n, par), m←M1 and m′ ←M2.
Fix this way of sampling variables in what comes below.

To prove DS1 ≡c DS4 we introduce DS2 and DS3 and show

DS1 ≡c DS2 ≡c DS3 ≡c DS4.

Define

DS2 = (ik, pk,Epk(Fik(m); s))

DS3 =
(
ik, pk,Epk(Fik(m

′); s)
)
,

where s← {0, 1}pr .
Recall that by the assumption on F we have

(ik, Fik(m), hc(ik,m)) ≡c (ik, Fik(m), s) ; (22)(
ik, Fik(m

′), hc(ik,m′)
)
≡c
(
ik, Fik(m

′), s
)
. (23)

Now DS1 ≡c DS2 follows by Equation 22; DS2 ≡c DS3 follows by CPA security of E ; DS3 ≡c DS4

follows by Equation 22. ut

We are now ready to give the proof of Theorem 8.

Theorem 8. (restated) Let E = (Param,Gen,E,Dec,R) be a canonical, reproducible, (λ, l)-
entropy circularly secure encryption scheme, with randomness space Randn = {0, 1}pr , secret-
key-length function l = l(n) and with bitstring public-key and ciphertext spaces. There exists an
(l + pr + u, 2l + pr − λ)-IND-secure deterministic encryption scheme, where u ∈ ω(log n) is an
arbitrary function.

Proof. Fix u ∈ ω(log n) and let li = l+pr+u and lo = 2l+pr−λ. Our goal is to build an (li, lo)-IND-
secure deterministic encryption scheme. To do so, since we already have E , which is reproducible
with randomness space {0, 1}pr , by Theorem 9 it suffices to construct a TDF F = (G,F, F−1) with
a bitstring image space and with an associated pr-bit-valued hardcore function hc, which satisfies
the following properties:

1. Domain(F ) = {0, 1}lo ; and
2. For any li-source M over {0, 1}lo ,

(ik, Fikext(xext), hc(ikext, xext) ≡c (ikext, Fikext(xext), s),

where xext ←M, (ikext, tkext)← G(1n) and s← {0, 1}pr .
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Thus, we focus on building (F , hc) with the properties above. To this end, we need a universal
family H of hash functions from {0, 1}l+pr−λ to {0, 1}pr .

We build F = (G,F, F−1) by instantiating Construction 3 with E , integer t = 1 and integer
m = l+pr−λ, with the only difference that we augment the injective key with hash← H.9 (Recall
that for Construction 3 t denotes the number of public/secret key pairs and m is the number of
bits added to the input of the TDF.)

Note that

Domain(F ) = {0, 1}l+l+pr−λ = {0, 1}lo

so Property 1 above is satisfied. To define the associated hardcore function hc, for an injective key
ikext = (ik, hash) and domain point xext = (sk, x) ∈ {0, 1}l × {0, 1}l+pr−λ, we simply define

hc(ikext, xext) = hash(x).

For property 2 we need to show that for any arbitrary li-sourceM, it holds that DS ≡c DS ′, where

DS ≡ (par, pk,Epk(0
l; r1), Epk(0

m; r2), hash︸ ︷︷ ︸
ik

, pk′, Epk′(sk
′; r1), Epk′(x; r2)︸ ︷︷ ︸
image

, hash(x)︸ ︷︷ ︸
hc

), and (24)

DS ′ ≡ (par, pk,Epk(0
l; r1), Epk(0

m; r2), hash︸ ︷︷ ︸
ik

, pk′, Epk′(sk
′; r1), Epk′(x; r2)︸ ︷︷ ︸
image

, s︸︷︷︸
hc

),

in which par ← Param(1n), (pk, sk) ← Gen(1n, par), r1 ← Randln, r2 ← Randmn , hash ← H,
(sk′, x)←M, pk′ = Pub(sk′, par) and s← {0, 1}pr . Since E is reproducible, for each of the above
two distributions, given

(par, hash, image,hc)

one can perfectly simulate the rest. Thus, to show DS ≡c DS ′ it suffices to prove DS1 ≡c DS4,
where

DS1 ≡ (par, hash, pk′, Epk′(sk
′; r1), Epk′(x; r2)︸ ︷︷ ︸
image

, hash(x)︸ ︷︷ ︸
hc

), and (25)

DS4 ≡ (par, hash, pk′, Epk′(sk
′; r1), Epk′(x; r2)︸ ︷︷ ︸
image

, s︸︷︷︸
hc

),

We introduce two more distributions, DS2 and DS3, and will show that DS1 ≡c DS2 ≡c DS3 ≡c
DS4, which will conclude the proof.

Fix the above way of sampling variables. Define

DS2 ≡ (par, hash, pk′, Epk′(0
l; r1), Epk′(0

m; r2), hash(x)), (26)

DS3 ≡ (par, hash, pk′, Epk′(0
l; r1), Epk′(0

m; r2), s).

Before proving the desired indistinguishability relations we give the following two facts, obtained
from Lemma 5.

9 We are again working with the modified version of Construction 1 stated in Remark 2.
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H̃∞(sk′|x) ≥ H∞(sk′, x)− (l + pr − λ) = li − (l + pr − λ) = λ+ u (27)

H̃∞(x|sk′) ≥ H∞(x, sk′)− l = pr + u. (28)

We now proceed with the rest of the proof.
To prove DS1 ≡c DS2, note that by Equation 27 and the (λ, l)-entropy circular security (Defini-
tion 11) we have(

par, pk′, Epk′(sk
′; r1), Epk′(x; r2), x

)
≡c
(
par, pk′, Epk′(0

l; r1), Epk′(0
m; r2), x

)
, (29)

which imply DS1 ≡c DS2.
To prove DS2 ≡c DS3 it suffices to show

DS ′2 = (hash, hash(x), sk′) and DS ′3 = (hash, s, sk′)

are (statistically) indistinguishable: this is because we can define a randomized algorithm A such
that A(DS ′2) ≡ DS2 and A(DS ′3) = DS3: A samples par at random and lets pk′ = Pub(sk′, par)
and also samples the rest of the variables appropriately. By Lemma 6 we have

∆
(
DS ′2,DS ′3

)
≤ 1

2

√
2pr

2H̃∞(x|sk′)
≤ 1

2

√
2pr

2(pr+u)
≤ 1

2u/2
= negl(n), (30)

where the second inequality follows from Equation 28.
To prove DS3 ≡c DS4 note that by Equation 29 we have(

par, pk′, Epk′(sk
′; r1), Epk′(x; r2)

)
≡c
(
par, pk′, Epk′(0

l; r1), Epk′(0
m; r2)

)
, (31)

which implies DS3 ≡c DS4. ut

7 Realizations

In this section we show how to build, based on concrete assumption, encryption schemes that
provide reproducibility and also strong forms of circular security, i.e., (λ, l)-strong circular security
for an appropriate setting of parameters.

Throughout this section we will be working with multiplicative notation for groups. For a group
element g we denote the inverse of g by g−1 and define g1/g2 = g1 ·g−1

2 . We also denote the identity
element by 1, and we define g0 = 1, and for integer x > 1, gx = g · gx−1. For an integer x we define
g−x = (gx)−1. If g = (g1, . . . , gl) and r is an integer we define gr = (gr1, . . . , g

r
l ). Finally, we define

(b1, . . . , bl)� (g1, . . . , gl) =
∏

1≤i≤l g
bi
i .

7.1 From the decisional Diffie -Hellman (DDH) assumption

Let G be a group scheme, that is, a PPT algorithm that on input 1n, outputs (G, g, o), where G is
the description of a group, g ∈ G and o = |G| is a prime number. We say that G is DDH hard if{

G, |G|, g1, g2, g
d
1 , g

d
2

}
n∈N
≡c {G, |G|, g1, g2, g3, g4}n∈N ,

where G is chosen by running G(1n), g1, . . . , g4 ← G and d← Z|G|.
We present the encryption scheme of [12], which we refer to as the BHHO scheme, below.
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Definition 13. (From [12]) Define E = (Param,Gen,E,Dec), which is parameterized over an
integer l = l(n) (which we instantiate later), as follows.

– Param(1n): Produce (G, g, o)← G(1n) and return par = (G, g,g), where g← Gl;
– Gen(1n): Sample the secret key as sk ← {0, 1}l and set the public key pk = sk � g;
– Epk(g1; r)): Sample r ← Zq and return (gr, pkr · g1); and
– Dsk ((g′, g′)): Clear from the encryption algorithm.

Reproducibility. We now verify the reproducibility property with respect to every fixed choice
of par. To do this, we need to show that fromG, g,g︸ ︷︷ ︸

par

, sk1 � g︸ ︷︷ ︸
pk1

, (gr, pkr1 · g1)︸ ︷︷ ︸
Epk1 (g1;r)

, g2︸︷︷︸
target message

, sk2︸︷︷︸
target secret key

 ,

one can compute (gr, (sk2�g)r · g2); this is easy to see considering that the last quantity is indeed
(gr, (sk2 � gr) · g2), and that all of gr, sk2 and g2 are provided in the input tuple.

We show below the optimized version of the instantiation of our general TDF construction using
the BHHO scheme. By optimized we mean we have removed all redundancies created under the
“raw” instantiation.

Construction 4 The TDF is parameterized over l = l(n). See Theorem 10 on how to instantiate
l.

– G: sample (G, g, o)← G(1n) and sample the trapdoor key as

tk = (r1, . . . , rl)← Zl|G|

and the injective key as

ik =


g

gr1

...
grl

 (32)

where g← Gl.
– F : on injective key

ik =


g′

g′1
...

g′l

 (33)

and domain point x ∈ {0, 1}l return

Fik(x) =


x� g′

(x� g′1) · gx1
...

(x� g′1) · gxl

 (34)
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– F−1: on trapdoor key (r1, . . . , rl) ∈ Zl|G| and image

ik =


g′

g′1
...
g′l

 (35)

return x = x1x2 . . . xl ∈ {0, 1}l where xi is the bit such that

g′i = (g′)
ri · gxi

Next, we show that the proof of circular security of [12] easily extends to yield strong-(λ, l)-entropy
circular security, where the ratio λ

l can get as inverse-polynomially-small as one desires. (Formally,
for any a priori fixed polynomial p = p(n) we can have an instantiation of the BHHO scheme which
is ( lp , l)-entropy circularly secure.) The proof of entropy circular security (Theorem 10 below) is,
however, implicit in [12] and we include it here only for self-containment purposes. See also [14,
Lemma 5.1, Corollary 5.2] for similar statements. We first recall the following proposition, a more
general version of which was proved in [12] and then give the main theorem.

Proposition 1. (From [12]) Let G be a DDH-hard group scheme. For any polynomials l = l(n) and
v = v(n) and (any efficiently computable) sequence of group elements, (g1,1, . . . , g1,l, . . . , gv,1, . . . , gv,l),
it holds that DS1 ≡c DS2, for

DS1 =


g1 g2 . . . gl

gr11 · g1,1 g
r1
2 · g1,2 . . . g

r1
l · g1,l

...
...

. . .
...

grv1 · gv,1 g
rv
2 · gv,2 . . . g

rv
l · gv,l

 (36)

DS2 =


g1 g2 . . . gl
gr11 gr12 . . . gr1l
...

...
. . .

...
grv1 grv2 . . . grvl

 (37)

where G is chosen by running G(1n), g1, . . . , gl ← G and r1, . . . , rv ← Z|G|.

Theorem 10. (Implicit in [12]) Let v = v(n) be an upper-bound on the size of any group output by
G(1n). Letting λ = log v+ h, where h ∈ ω(log n) is an arbitrary function, and l > λ be an arbitrary
value, the scheme of Definition 13, when parameterized with l, is strongly-(λ, l)-entropy circularly
secure.

Proof. We first show Condition (a) of Definition 12 for the BHHO scheme. To encrypt the bits of the
secret key, we encrypt b ∈ {0, 1} by encrypting gb. Let (SK,X ) be an arbitrary joint distribution
where SK is a distribution over {0, 1}l and H̃∞(SK|X ) ≥ λ. Below we show a more general
statement than Condition (a) of Definition 12, showing

(par, pk,Epk(sk), Epk(1), x) ≡c
(
par, pk,Epk(0

l), Epk(0), x
)
,
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where (sk, x)← (SK,X ), par ← Param(1n) and pk = Pub(sk, par). Note that this also shows the
(λ, l)-entropy circular security condition of the scheme (Definition 11) and that it implies Condition
(a) of Definition 12, since for Condition (a) of Definition 12 we may simply set X to be independent
of SK, so we have

H∞(SK) = H̃∞(SK|X ).

For the rest of the proof fix (SK,X ), where H̃∞(SK|X ) ≥ λ = log v + h. To prove the desired
indistinguishability we introduce the following distributions, where in all of them, G is chosen by
running G(1n), g1, . . . , gl, gl+1 ← G, r1, . . . , rl, r ← Z|G|, (sk, x)← (SK,X ).

DS1 =
(
{g1, . . . , gl, sk � g}, {gri1 , . . . , g

ri
l , (sk � g)ri · gski}1≤i≤l,

{gr1, . . . , grl , (sk � g)r · g}, x
)

DS2 =
(
{g1, . . . , gl, sk � g}, {gri1 , . . . , g

ri
i−1,

grii
g
, grii+1, . . . , g

ri
l , (sk � g)ri}1≤i≤l,

{gr1, . . . , grl , (sk � g)r · g}, x
)

DS3 =
(
{g1, . . . , gl, gl+1}, {gri1 , . . . , g

ri
i−1,

grii
g
, grii+1, . . . , g

ri
l , g

ri
l+1}1≤i≤l,

{gr1, . . . , grl , grl+1 · g}, x
)

DS4 =
(
{g1, . . . , gl, gl+1}, {gri1 , . . . , g

ri
i−1, g

ri
i , g

ri
i+1, . . . , g

ri
l , g

ri
l+1}1≤i≤l,

{gr1, . . . , grl , grl+1}, x
)

DS5 =
(
{g1, . . . , gl, sk � g}, {gri1 , . . . , g

ri
l , (sk � g)ri}1≤i≤l,

{gr1, . . . , grl , (sk � g)r}, x
)

We now briefly show that each two adjacent distributions are indistinguishable. The facts that
DS1 ≡c DS2 and DS3 ≡c DS4 follow by Proposition 1, considering that each two respective
distributions have the same “pattern.” The facts that DS2 ≡c DS3 and DS4 ≡c DS5 follow by
considering that each two respective distributions have the same pattern, that the inner product is
a universal hash function and that H̃∞(sk|x) ≥ log v + h. (See Lemma 6.)

Finally, it is easy to verify the second condition of strong-(λ, l)-circular security (i.e., Condition
(b), Definition 12), by considering the fact that the inner product, used in the key-generation
algorithm, acts as a universal hash function.

ut
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7.2 From the quadratic residuosity (QR) and related assumptions

Brakerski and Goldwasser [13] construct a circularly-secure encryption scheme (to which we refer
as the BG scheme) from a general assumption that they call the subgroup indistinguishability
assumption, which is in particular implied by the QR and Paillier’s decisional composite residuosity
(DCR) [34] assumptions. We show that the QR-based circularly-secure bit-encryption scheme of
Brakerski and Goldwasser satisfies the reproducibility property; the analyses for the other schemes
follow similarly.

For an RSA number N (i.e., N = pq, where p and q are distinct odd primes) we use QRN to
denote the subset of Z∗N consisting of quadratic residues modulo N , and let JN denote the set of
elements in Z∗N with Jacobi symbol one. Finally, we define QNRN = JN \ QRN .

Assume that RSAGen(1n) is a PPT algorithm that on input 1n generates a Blum integer N ,
i.e., N = pq with p and q being distinct primes satisfying the condition p, q ≡ 3 (mod 4). We
say that the quadratic residuosity (QR) problem is hard under RSAGen if {N,U(QRN )}n∈N is
computationally indistinguishable from {N,U(QNRN )}n∈N, where N is generated according to
RSAGen(1n).

We now describe the BG scheme.

Definition 14. (From [13])

– Param(1n): returns (N,g), where N ← RSAGen(1n) and g← QRlN ;

– Gen(1n): samples the secret key as sk ← {0, 1}l and sets the public key pk = (sk � g)−1;

– Epk(b)): samples r ∈ ZN2 and returns (gr, pkr · (−1)b); and

– Dsk((g
r, pkr · (−1)b): clear.

The proof of reproducibility of the scheme above follows exactly as in the proof of the BHHO
scheme. We also note that a similar statement to that of Theorem 10 may be given for the BG
scheme, showing strong-entropy-circular-security properties of the BG scheme. We omit the details.

8 Conclusions and open problems

We gave generic constructions of several cryptographic primitives based on a general technique for
de-randomizing reproducible bit-encryption schemes. For all the primitives we built it is already
known that a blackbox construction from CPA-secure encryption alone is either impossible, or very
difficult to find. We mention a few open problems that arise from our work. First, it would be
interesting to see if the blackbox result of [25] already separates TDFs from circularly-secure en-
cryption; showing this would imply that our reliance on an additional property, i.e., reproducibility,
is unavoidable. Second, we would like to see whether the LWE-based circularly-secure scheme of
Applebaum et al. [3] can be used to instantiate our base assumptions. Finally, as mentioned earlier,
our techniques allow us to understand better the relations between certain circularly-secure schemes
and DE-secure schemes. It would be interesting to see if similar connections could be proved in other
settings. For example, DDH-based constructions of DE schemes satisfying auxiliary-input security
[16] share certain design principles with those of randomized schemes satisfying auxiliary-input
leakage resilience [20]; however, a generic connection is still not known.
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