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Abstract—A key requirement for supervised learning is the
availability of sufficient amount of labeled data to build an
accurate prediction model. However, obtaining labeled data can
be manually tedious and expensive. This paper examines the
use of crowdsourcing technology to acquire labeled examples
for classifying network data. Unfortunately, creating human
intelligence tasks (HITs) to enable crowdsourcing is cambersome
for network data and may even be prohibitive for privacy reasons.
To overcome this limitation, we present a novel framework
called surrogate learning to transform the network data into
a new representation (i.e., images) so that the labeling task
can be completed even by non-domain experts. We analyze the
reconstruction error of the transformation and use the theoretical
insights to provide guidance on how to develop an effective
surrogate learning approach for any given network and source
image corpus. We also performed extensive experiments using
Amazon Mechanical Turk to demonstrate the efficacy of our
approach on node classification problems.

I. INTRODUCTION

Labeled data is essential for various supervised network
mining tasks such as node classification and link prediction.
While for the most part the labels can be gleaned from
the raw network itself, they are often incomplete and noisy,
thus requiring alternative approaches to solicit more labels to
augment the initial training data. Domain expertise is typically
needed to manually examine the data instances before assign-
ing them to their appropriate labels. Since this is a tedious
and time consuming process, it may not always generate
enough labeled examples. This paper examines the viability
of using crowdsourcing for obtaining additional labeled data
for network classification tasks.

Crowdsourcing [5] employs a group of human workers,
who might be unskilled, to perform certain laborious tasks
that cannot be reliably solved by computers. This includes
tasks such as image annotation, where humans tend to perform
the task more accurately than computers. The key challenge
for harnessing the power of the crowd lies in converting the
problem at hand into a simpler task that can be handled by
humans with great ease and speed. Such tasks are known as
Human Intelligence Tasks (HITs). For example, in the image
annotation problem, the individual images constitute a HIT,
which are displayed to workers in order to elicit their label
information.

One practical advantage of utilizing the services of crowd-
sourcing is that once the HITs are designed, they can be
solved by human workers with little domain expertise. The
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valuable time of domain experts can therefore be spared from
performing cumbersome data labeling task. Unfortunately, not
all labeling tasks are amenable to crowdsourcing. For example,
designing HITs for network mining is challenging as the raw
network data does not lend itself to be easily annotated by
non-domain experts. This is because the label of a node in
a network often depends on its local attributes (if available)
as well as its relationships to other nodes in the network. In
addition, there may be privacy concerns that prohibit sharing
of the network data to a third party. This makes it difficult
to design HITs that are simple for the average humans to
solve without disclosing potentially sensitive information to
the workers.

This paper presents a novel framework called surrogate
learning to transform the network data into a representa-
tion that can be more easily annotated by the crowd. The
proposed approach does not require the workers to have a
priori knowledge or expertise on how to correctly label the
nodes or links of the network. To illustrate this approach,
consider the toy example shown in Figure 1. Here the nodes
in the target network are assigned to four distinct classes (i.e.,
communities), labeled as A, B,C and D, respectively. The
solid circles correspond to the labeled nodes, whereas the
unfilled ones represent the unlabeled nodes. The surrogate
learning framework selects a surrogate image to represent
each labeled node in the target network. It also learns a
transformation matrix to map the nodes in the network to their
corresponding images. The transformation matrix can then be
applied to any unlabeled nodes to generate their corresponding
images for labeling by the crowd workers.

The source images shown in Figure 1(b) correspond to a set
of handwritten digits 1,2, 3 and 4. To preserve characteristics
of the target network, the surrogate mapping must be done
in such a way that (1) nodes from the same class should be
mapped to images for the same digit. and (2) nodes that are
adjacent to each other should be mapped to similar images.
Figure 1(c) shows the transformed images for the unlabeled
nodes. Since all the labeled nodes from class C had been
mapped to images for digit 3, the images for the unlabeled
nodes C1 and C4 also resemble the digit 3. However, the
images for some unlabeled nodes such as A3 are harder to
discern since they are adjacent to nodes from other classes.
Furthermore, the node D1, which has more links to nodes
from class B than to those from its own class, is transformed
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Fig. 1: A toy example consisting of a target network (a) and its corresponding handwritten digit images (b). There are 12
labeled (solid circles) and 9 unlabeled (unfilled circles) nodes in the network. Each labeled node is initially mapped to one
of the source images. Labeled nodes from class A were mapped to images for digit 1, class B to digit 2, class C to digit 3,
and class D to digit 4. A transformation function is then learned between the labeled nodes and their corresponding images.
After applying the transformation to the unlabeled nodes, the transformed images will be presented to the crowd workers for

labeling.

into an image that resembles digit 2 instead of digit 4.

A key question that must be answered is whether the
proposed framework can be effectively applied to any target
network and source images. To answer this question, we
analyze the reconstruction error of the transformation and use
the theoretical insights to provide guidance on how to develop
an effective approach for any given network and source
image corpus. We also empirically showed the effectiveness
of the framework in providing additional labeled data for node
classification and link prediction tasks.

The main contributions of this paper are as follows:

1) We investigated the problem of applying crowdsourcing

to network data.
We developed a novel framework called surrogate learn-

ing to transform network data into an image representa-
tion to enable labeling by the crowd.
3) We offer practical guide on how to effectively apply the

framework to any network and image data.
4) We demonstrated the efficacy of the framework for

various network classification problems.

2)

II. PRELIMINARIES

Let S and 7 denote the source and target domains. The
source domain corresponds to an image corpus for which
labels can be easily acquired through crowdsourcing whereas
the target is a large network for which obtaining labels is
expensive.

Let X(*) be an n, x d, data matrix for the source images
and Y) be the corresponding n, X ¢, class membership
matrix, where n, is the number of labeled images, ds is
the number of attributes (pixels), and c; is the number of
classes. Each element y;; € Y ) is equal to 1 if the labeled
image ng) belongs to class j and zero otherwise. Similarly,
let X = [X®); X ()] denote an (n; + r) x d; data matrix

for the target network and Y be its corresponding n; x ¢
class membership matrix, where n; is the number of labeled
examples, r is the number of unlabeled examples, d, is the
number of attributes, and ¢; is the number of classes in the
target network. For node classification, each example corre-
sponds to a node in the network, whereas for link prediction,
each example corresponds to a node pair. In addition, let A
denote the adjacency matrix of the network. For brevity, we
focus only on undirected networks in this study.

Source Image Corpus The example shown in Figure 1 uses
images of handwritten digits as the source data. In practice,
there are many other types of image corpus that can potentially
be used to generate the surrogate images for crowdsourcing.
The choice of source data should satisfy several criteria. First,
the images must be clear and easy to label. For instance,
we had investigated transforming the data using principal
component analysis, but found that it does not guarantee the
transformed data can be easily interpreted by humans. Second,
the images for different classes should be well-separated.
Third, the number of classes of images should be at least as
large as the number of classes in the target data to enable label
mapping. Finally, as will be discussed in Section IV-B, the
number of attributes in the target data should be comparable to
the number of pixels in the image data to minimize information
loss.

III. SURROGATE LEARNING FRAMEWORK

Our proposed surrogate learning framework consists of the
following three steps:
I. Surrogate Mapping. Given S = (X, Y(®)) and 7 =
(X Y (#), we need to learn a transformation matrix U

that maps each target example xgtl) e X to its surrogate
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two criteria:

€ X in such a way that satisfies the following

o Label Consistency: Target examples that belong to the
same class should be mapped to images from the same
class.

o Link Similarity: If there is a link between node ¢ and j in
the network, their corresponding surrogate images should
be highly similar.

II. Surrogate Labeling. The transformation matrix U will be
applied to the unlabeled examples of the target network X (**)
to generate their corresponding images X(su) that will be
labeled by the crowd workers. Since each image can be labeled
by more than one worker, a consensus on the class label
must be made for each target example. Let Y () denote the
consensus labels obtained for the unlabeled target examples.

III. Model Building. The newly labeled target examples
(Xt Y*) are augmented to the original training set. A
classifier is then trained on the expanded training set to
generate a new model.

IV. SURROGATE MAPPING

Our goal is to choose a surrogate image for each target
example of the network data and learn the transformation
matrix U. The mapping does not have to be a bijection, i.e.,
multiple target examples can be mapped to the same surrogate
image. However, it should preserve the label consistency and
link similarity requirements. Let P be an n; X ns matrix, where

P;; = 1 if the source image xgs) is the surrogate for the target
()

node x, . The objective function for the surrogate mapping
task is given below
. PX(S) X(tl)U 2 PY(S) T Y(tl) 2
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The first term in the objective function is a measure of
reconstruction error when converting the target examples into
images. The second and third terms in the objective function
enforce the label consistency and link similarity requirements.
The last term is a regularization term for U. The image data is
normalized so that each pixel has a value between 0 and 1. The
constraint on matrix P ensures that its elements are binary-
valued and that each target example is mapped to exactly
one source image. The label matching matrix Q is a ¢ X ¢
binary-valued matrix that represents the mapping between the
class labels of the source images and the target examples of
the network. « is a user-specified parameter that controls the
tradeoff between minimizing reconstruction error and violating
the link similarity constraint.

Although the formulation given in (1) assumes that the
target examples have both node attributes and link information,
it is also applicable to non-relational data by setting o = 0.
For network classification tasks in which we have only link

structure but no node attribute information, we can also set
o = 0 and assume either X) = A (i.e., using the link
information as attributes of the target examples) or derive
link-based features such as betweenness centrality, clustering
coefficient, etc., to represent xX®,

The surrogate selection matrix P allows a many-to-one as-
signment between the target examples and the source images.
This is essential because, for any two target examples that are
similar to each other and belong to the same class, P should
assign them to images that resemble each other. If no such
pair of images can be found, it would be better to map both
target examples to the same surrogate image.

A. Optimization

We employ an alternating least square method to solve
the optimization problem given in (1). Since the classes are
unrelated, we can set Q to be an identity matrix.! The
algorithm would iteratively update the matrices P and U until
convergence. We begin with an initial surrogate selection
matrix P® obtained by randomly assigning images from a
specific class to target examples of its corresponding class
according to Q in order to satisfy the label consistency
criterion, P'Y(®) = Y Let Z = POX(®) denote the matrix
for the selected surrogate images of the target examples. By
fixing P, the transformation matrix can be solved in closed
form as follows

-1
U= (X(tl)Tx(tl) +BI> X(tl)TZ, (2)

The regularizer 3 ensures that the matrix is invertible even if
X ) s not a full-rank matrix.

Next, we fix U and update P using a greedy approach. For
each target example X( ), we first compute its transformed
image X(tl) = (tl)TU Let z/ ! (PF1X(); be the
surrogate image selected for the i-th target example in the
previous iteration. The change in the objective function if the
previous surrogate image zf‘l is replaced by a new surrogate

x§s) is given by

Ai(zf %)
_ H X s) A(tl) HQ Y Z PX S))k H2
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We choose the surrogate z¥ = (S)

decrease in A;:

L=

that leads to the biggest
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We then set Pf,h = 1 and Pﬁj = 0 (Vj # ;). Note
that a new surrogate is selected using Equation (3) only if
Ai(zf_l,xl(f)) < 0. Otherwise, zf = z"~!. We iteratively

' A more careful selection of Q would require considerations of the within-
class and between-class variability of the source and target examples. We plan
to pursue this in future research.



Algorithm 1 Surrogate Mapping Algorithm

Input: X&), X)) y () y(®)
Output: Transformation Matrix U
k =0;
Initialize P, satisfying P°Y(*) = Y(*)
repeat
k=k+1
U* = argminy || PF71X()
fori=1,2,.
N (tl)
Update the row PZ using Equation (3).
end for
until P*~! = p*
. return U*

o X(tl)U ||2

R A A A

n do
(tl)TUk

—_ e
w2

update the matrix P¥, starting from the first row until the
last one Due to the way the surrogates are selected, Vi :
Ai(zi -1 x(e )) < 0, this guarantees that the objective function
is monotomcally non-increasing. A summary of our surrogate
mapping approach is given in Algorithm 1. The proof of

convergence of the algorithm is omitted due to lack of space.

B. Reconstruction Error Analysis

Our proposed framework is designed to transform a target
network into images so that they can be easily annotated by the
crowd. This begs the question, whether it is always possible
to find a transformation that preserves properties of the target
data while producing images that can be easily discerned by
workers. To measure the amount of information loss due to
the transformation, we compute its reconstruction error. By
analyzing the theoretical properties of the error, we provide
guidance on how to develop an effective surrogate learning
procedure for any target network and choice of image corpus.

Let Z = PX(®) be the surrogate images selected to
represent X (). If the reconstruction error ||Z — XU
is small, we expect a minimal loss of information since X (@)
can be reconstructed from Z and U with high accuracy. To
illustrate this, let Z = X" U+e and X(*) = ZUT(UUT)!
Thus,

X = (XU 4 e uT(UUT) ! = X 4 cuT(UUT) !

X p < [leflpy/tr(UUT) L

which decreases as |¢||r — 0. Furthermore, if the recon-
struction error is small, X(*)U ~ Z, which means the digits
depicted in the transformed images should be discernible by
human workers. The applicability of the proposed framework
thus becomes a question of determining whether it is possible
to obtain a low reconstruction error for any network. To
determine the condition under which a low reconstruction error
can be found, we examine the ranks of the data matrices:

— HX(”) —

Proposition 1. Let A be an m x n matrix and B be an n x k
matrix. If r(A), r(B), and r(AB) denote the ranks of matrices

A, B, and AB, respectively, then it can be shown [2] that
r(AB) < min[r(A), r(B)].
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Fig. 2: Transforming iris data into handwritten digit images.
The middle and bottom panels show the transformed images
when the iris data contains 4 and 12 features, respectively.

To understand the implication of Proposition 1, let X =
XU be the transformed images of the target examples.
According to the proposition, r(X (%)) < r(X (). Thus, if
the rank of the target data matrix is considerably lower than
that for the original source image matrix, then r(X(®)) =
r(XHU) << r(X)), which leads to a large reconstruction
error.

We illustrate this in Figure 2 using the well-known Iris
data® containing 150 examples belonging to 3 categories (Iris
versicolor, Iris virginica, and Iris setosa) 3. Each category
contains 50 examples, which are matched against 50 hand-
written images of 28 x 28 dimensions containing the digits
1, 2, or 3. The rank of the data matrix for the handwritten
images is 150, which is considerably higher than the rank of

Zhttps://archive.ics.uci.edu/ml/datasets/Iris
3 Although this is not a network data, the surrogate mapping algorithm is
still applicable by setting o = 0.



Iris data, which is equal to 4. As a result, the reconstruction
error using the handwritten images is high, as shown in the
middle diagram of Figure 2. Even though all the examples
in the Iris versicolor class were mapped to images containing
digit 2, their transformed images (X)) look noisy and do not
resemble digit 2. Instead, they looked like a mixture of digits
2 and 3 since it is hard to distinguish the Iris versicolor class
from Iris virginica. However, if we increase the dimensionality
of the Iris data from 4 to 12 (by adding quadratic and cubic
terms for each of the original features), the reconstruction error
reduces significantly especially for the Iris versicolor class,
as shown in the bottom diagram of Figure 2). Finally, if we
project the Iris data to a 150-dimensional feature space (using
higher order polynomials), the reconstruction error is close to
ZEero.

The key lesson here is that it is preferable to have a source
data whose rank is smaller than that of the target data. There
are two ways to achieve this. First, we can reduce the rank
of the source data by applying singular value decomposition.
The drawback here is that the rank reduction may damage
the visual clarity of the images, which makes them hard to
be labeled by humans. Alternatively, we can increase the rank
of the target data by projecting them to a higher dimensional
space, similar to the approach used in kernel learning. This
leads to the following guide to achieve low reconstruction
error:

Practical Guide: Compare the ranks of the source images
and target network data matrices. If the former is larger than
the latter, increase the rank of the target (e.g., by projecting
the data to a higher-dimensional space) before applying the
surrogate mapping algorithm.

The need for a lower-rank source data matrix, or equiv-
alently, higher-rank target data matrix, can also be justified
based on the following theorem:

Theorem 1. If X" and Z are full-rank matrices and 3 = 0,

then
||Z _ X(tl)UHF < (Nt — dt)dsamaX7

where Ny is the number of target examples, d is the dimen-
sionality of the surrogate images, d; is the dimensionality of
the target data, and o« is the maximum eigenvalue of Z.

Proof. Let P = X(t) (X(tl)TX(“))AX(”)T. From Equation

2), Xy = PZ since B = 0. Therefore,
I1z-X"U |3 = | A-P)Z |3

< 1-PlRIZ %

“4)

It is easy to show that P Is a projection matrix, which satisfies
the following properties: P? = P = P”. Therefore,

IT-P 3 = e(@a-P)a-p)7)
= tr(I-P)
= N, —rank(P)

Ny — dy (&)

where we have assumed d; < N;. Let Z = UXV be the
singular value decomposition on Z. Hence,

I Z = tr(ZZ") = te(£%) = ) 0f < dsopay  (6)

The proof follows by replacing Equations (5) and (6) into the
inequality in (4). O

V. SURROGATE LABELING AND MODEL BUILDING

Our goal is to acquire additional labeled examples for
network data by creating HITs that can be easily solved by
non-expert workers. Once the transformation matrix U has
been estimated, it can be applied to the unlabeled target
examples to generate images for the workers to label. Some
of the generated images can be hard to discern, for which the
workers are allowed to flag them as noise. Noisy examples
will not be augmented to the training set when building
the classifier. Additionally, some images can be assigned to
more than one label. In this case, a consensus label must be
determined based on the labels provided by the workers.

We consider two ways to obtain the consensus label. First,
we take a simple majority vote of the labels. If none of the
labels have a majority vote, then the target example remains
unlabeled and will not be augmented to the training set. The
second way is train a crowd classifier that takes the labels
provided by workers as input features to predict the actual
class. To do this, we first apply the transformation matrix U to
the labeled examples and present their transformed images to
the crowd for labeling. Since the actual class of the images are
known, we use this information to create a data set for training
the crowd classifier. The features of the classifier correspond
to the number of workers who assigned each label to the
image. We termed the first approach using majority vote as
Surrogate-CM and the second approach using crowd classifier
as Surrogate-CC. Once the consensus labels are found, they
are augmented to the original training data and subsequently
provided to a classifier for training.

VI. EXPERIMENTAL EVALUATION

We applied our surrogate learning framework to the node
classification task using the following two data sets.

Wikipedia Biology Corpus: We sampled Wikipedia articles
from 4 sub-categories in biology—genetics, zoology, anatomy
and cell-biology. There are altogether 2128 links in the
Wikipedia biology network. The TRAIN set consists of 2000
articles with 500 articles from each topic and the TEST set
consists of 800 articles with 200 articles from each topic. We
apply principal component analysis to reduce dimensionality
of the data from 6015 words to 550 features.

Cora data set: The Cora data set contains 2708 computer
science articles, categorized into one of seven classes. The
citation network between articles has 5429 links. Each article
is described by a binary-valued vector indicating the absence
or presence of a word. There were altogether 1433 unique
words, which were reduced to 550 features after applying



principal component analysis. 70% of the data were reserved
for training, while the remaining 30% were used for testing.

We use handwritten digit images from [9] as our source
corpus. There are roughly 5000 images for each digit from 0
through 9. Each image is of size 28 x 28 and is represented
as a feature vector of length 784. Although the rank of the
source image X(*) is initially larger than the rank for target
data X9 the surrogate mapping algorithm iteratively reduces
the rank of the selected surrogate image matrix (PX(S)) until
its rank falls below that of X(*) upon convergence.

We employ nonlinear support vector machine (SVM) as our
classifier. We compared the performance of nonlinear SVM
trained on the original training set against the same classifier
trained on the expanded training set, which includes the newly
labeled examples acquired via crowdsourcing. Note that the
expanded training set includes only examples that were not
labeled as noise by the workers.

A. Results for Node Classification

The images generated by the surrogate learning framework
for the unlabeled nodes in the network are presented to a crowd
of five workers for labeling. We set & = 0.2 and 5 = 0.1 as
parameters of the surrogate mapping algorithm. The results do
not appear to change significantly when « and 3 are varied in
the range between 0 and 1.

1) Wikipedia Biology Corpus.: Table 1 shows the node
classification results for the Wikipedia biology corpus. We
first trained a nonlinear SVM model using Gaussian kernel
with parameter o = 0.1 as our baseline. The same parameter
is used to train the SVM models for our surrogate learning
framework. SVM gave a baseline accuracy of 63.50% on
the TEST set. The average classification accuracy of Amazon
MTurk workers on the TEST SET is around 73.37%. This
suggests that the surrogate mapping algorithm was able to
transform the nodes into crisp images that can be easily labeled
by the workers. On average, the workers labeled 111 (14%)
of the TEST examples as noise or having more than one
class. After augmenting the training set with labeled exam-
ples acquired through crowdsourcing, both SURROGATE-CM
and SURROGATE-CC boosted the baseline SVM accuracy
to 77.50% and 77.63%, respectively. The F-measure for all
classes also improved significantly. Furthermore, the accuracy
of Surrogate—-CC is slightly higher than Surrogate-CM,
which suggests that the crowd classifier approach is slightly
more effective than simple majority voting when combining
the labels provided by the crowd.

To understand why the surrogate learning framework can
improve classification accuracy, we examine the images that
were wrongly classified by the baseline SVM model. Figure
3(a) shows images for a sample of test examples that were
misclassified by SVM but labeled correctly by human workers.
The images are sorted into rows based on their true labels (i.e.,
images on the first row correspond to class 1, those in second
row correspond to class 2, and so on). Although the images are
not as crisply clear, they are still distinctive enough for humans

TABLE I: Comparison between baseline SVM, average per-
formance of crowd workers, and surrogate labeling for node
classification on Wikipedia biology corpus.

Class SVM | Workeraye | Surrogate-CM [ Surrogate-CC
F measure

Zoology 0.5639 0.6388 0.6829 0.6848

Cell Biology | 0.7250 0.8406 0.8818 0.8861

Anatomy 0.6267 0.7008 0.7269 0.7284

Genetics 0.6285 0.7333 0.7980 0.7960

All Classes 0.6360 0.7284 0.7724 0.7738
Accuracy

All Classes 0.6350 [ 0.7337 [ 0.7750 [ 0.7763

TABLE II: Comparison between baseline SVM, average per-
formance of crowd workers, and surrogate labeling for node
classification on Cora dataset.

Class SVM [ Workerayg | Surrogate-CM [ Surrogate-CC
F measure
Case Based 0.6269 0.5394 0.6433 0.6622
Genetic Algo. | 0.8333 0.7426 0.7982 0.7982
Neural Nets 0.6734 0.6968 0.6958 0.6981
Probabilistic 0.6794 0.6306 0.7231 0.7231
Reinforcement | 0.6471 0.5469 0.6727 0.6847
Rule Learning | 0.3636 0.3981 0.4865 0.4865
Theory 0.6162 0.4668 0.5990 0.6051
All Classes 0.6638 0.6144 0.6824 0.6864
Accuracy
All Classes 0.6716 | 0.6192 ] 0.6875 [ 0.6912

to identify their correct labels. Out of the 292 test images that
were misclassified by the baseline SVM, human workers were
able to label correctly 144 such images, which explains the
improvement in the classification accuracy. Figure 3(b) shows
examples of test images that were mislabeled by both baseline
SVM and the majority of the workers. Although the images are
quite clear for humans to label, they do not resemble the digits
associated with their true classes. For example, the images
shown in the first row resemble digits 2, 3, and 4 more than
their true class, which is digit 1. This suggests that the feature
vectors of these hard-to-classify examples are more similar to
the feature vectors of other classes than to their own classes,
which is why both SVM and human workers fail to classify
them correctly. Nevertheless, there was a subset of images that
were mislabeled by the baseline SVM and labeled as noise
by one or more workers but were correctly predicted by the
revised SVM after augmented with the expanded training set.
Examples of such images are shown in Figure 3(c). There are
71 such images, which are significant enough to improve the
overall accuracy.

One surprising finding is that the SVM model trained on the
augmented training set is not that sensitive to the choice of
kernel parameter o. This is useful because finding the optimal
kernel parameter for nonlinear SVM is a challenging problem.
Figure 4 compares the accuracy of baseline SVM against both
implementations of the surrogate learning framework when o
is varied. As can be seen from this plot, the performance of
the baseline SVM is highly sensitive to the choice of kernel
parameter unlike surrogate learning.

2) Cora Data Set.: Table II shows the results for the Cora
data set. Unlike the Wikipedia biology corpus, the average
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Fig. 4: Effect of varying kernel parameter on SVM and the
surrogate learning framework.

accuracy for Amazon MTurk workers is less than the accuracy
obtained using the baseline SVM. Nevertheless, there is still
some improvement in the accuracy of SURROGATE-CC and
SURROGATE-CM. More importantly, the F-measure for the
majority of the classes show substantial improvements. For
example, the F-measure for Rule Learning increases from

0.3636 to 0.4865 and for Reinforcement Learning, from
0.6471 to 0.6847. Furthermore, similar to the results for the
Biology article corpus, the performance of SVM trained on
the augmented data set does not change significantly when
the kernel width parameter is varied.

B. Choice of Source Image Corpus

In this section, we investigated how the proposed framework
is affected by the choice of source image corpus.
Separability of Image Classes: As noted in Section II,
separability of the image classes is an important factor to
consider when choosing the source image corpus. If the
classes are well-separated, it would be easier (1) for the
surrogate mapping procedure to select the appropriate images
to represent the target examples and (2) for the crowd workers
to label the images.

In this experiment, we examined each of the 126 possible
combinations of 4 digit images from the handwritten im-
age corpus to be used as source images for classifying the
Wikipedia biology corpus. Specifically, for each combination
of classes, we randomly chose 1000 examples from each class
to form its training set. We applied the 1-nearest neighbor (1-
NN) classifier to each image and check whether its nearest
neighbor has the same label as the image itself. We use the
accuracy of 1-NN to estimate the separability of the classes.
If the classes are well-separated, then the accuracy of its
I-NN classifier should be high. Conversely, if the classes
of images are harder to distinguish, the 1-NN classification
accuracy should be low. We computed the class separability
for all combinations of 4-digit classes in the handwritten image
corpus and plot the results in Figure 5. The class separability
values were found to be in a range between 0.95 to 0.99. The
combination of classes {1,2,3,4} appears to be more well-
separated compared to the combination of classes {4,5,8,9}.
This is because, upon examining the confusion matrix for the
latter combination, digits 4 and 9 as well as 5 and 8 are harder
to be distinguished from each other.
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Fig. 5: Class separability values for all combinations of 4
classes chosen from the handwritten digit corpus.
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Fig. 6: Distortion of images using Gaussian noise.
TABLE III: Node classification results for the Biology article
corpus using digits {4,5,8,9} and perturbed images of digits
{1,2,3,4} as source image corpus.

Images for {4589} | Noisy images for {1234}
Class SVM | Workera, [ Surrogate-CM | Workeray,, | Surrogate-CM
F measure
Zoology 0.5639 0.6065 0.5906 0.5642 0.6103
Cell Biology | 0.7250 0.8165 0.8592 0.7519 0.7701
Anatomy 0.6267 0.6772 0.6951 0.6441 0.6640
Genetics 0.6285 0.6425 0.6937 0.6608 0.7457
All Classes 0.6360 0.6857 0.7097 0.6553 0.6975
Accuracy
All Classes 0.6350 | 0.6919 ] 0.7175 [ 0.6580 ] 0.6975

Next, we repeated the node classification experiment on the

Wikipedia biology corpus using source images from digits
{4,5,8,9}. The results are shown in Table III. The average
accuracy of the workers is 69.19% while SURROGATE-CM
increases the accuracy to 71.75%. Both values are lower than
the previous results using digits {1,2,3,4} as source images,
though they are still higher than the accuracy for baseline
SVM. This result shows that class separability is an important
criterion for choosing the source image corpus.
Clarity of Source Images Another criteria for choosing the
source corpus is clarity of the individual images. To validate
this, we repeated the node classification experiment on the
Wikipedia biology corpus using perturbed images of digits
{1,2,3,4}, as shown in Figure 6. The class separability value
decreases from 0.9818 to 0.8113 after adding Gaussian noise
to the source images. We presented the perturbed images
selected by surrogate mapping to the workers for labeling.
The results shown in Table III suggest that, although the
classification accuracy is still higher than the baseline SVM, it
is much lower than the original accuracy when the images were
not distorted. This shows the importance of using images that
are clear as the source domain for surrogate learning. Another
point worth noting is that as the noise level increases, the
images become harder for humans to label. In the worst case
scenario, all images will be classified as noise by the workers,
which means no new labeled examples will be augmented to
the training set. In this case, the performance of surrogate
learning should be equivalent to the baseline SVM.

VII. RELATED WORK

Crowdsourcing is a distributed problem-solving model that
aims to outsource costly or time consuming tasks to an
undefined large group of individuals known as the crowd.
The group of individuals who execute the task provided their
services in exchange for micro-payments, social recognition,
or for their own personal satisfaction. Crowdsourcing has
been successfully employed to annotate data from Twitter

streams [1], news stories [10], [11], and videos [13]. Crowd-
sourcing has also been adapted to active learning [8] and inter-
active learning [3] frameworks. However, there has been very
little work on applying crowdsourcing to annotate network
data for node classification and link prediction tasks.

The surrogate learning framework proposed in this study is
an out-of-domain feature transformation approach, involving
two distinct domains (source and target). Our target domain
corresponds to a network whereas the source domain is an
image corpus. This work departs from previous research on
transfer learning [12] and domain adaptation [6], [4], which
assume that the source and target domains share some com-
monalities in terms of their attributes, classes, or underlying
structures. Instead, we consider the situation where each
domain has a unique set of attributes, classes, and probability
distributions.

VIII. CONCLUSIONS

This paper presents a novel framework to convert network
data into images to enable the use of crowdsourcing tech-
nology. Experimental results demonstrate its effectiveness in
producing visual images that can be easily annotated by the
crowd. Despite its promise, the framework can still be im-
proved in several ways. First, a more sophisticated algorithm
[7] can be used to generate the consensus labels. The effect
of noisy labels provided by unreliable workers also need to
be investigated. Finally, the framework can be extended to
consider a nonlinear transformation between the source and

target domains.
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