
The Meta-Object Facility Typed

Iman Poernomo
Department of Computer Science

King’s College London
Strand, London, WC2R2LS, UK

iman.poernomo@kcl.ac.uk

ABSTRACT
The Object Managment Group’s Meta-Object Facility
(MOF) [9] is a semiformal approach to writing models and
metamodels (models of models). The MOF was developed
to enable systematic model/metamodel interchange and in-
tegration. The approach is problematic, unless metamodels
are correctly specified: an error in a metamodel specifica-
tion will propagate throughout instantiating models and fi-
nal model implementations. An important open question is
how to develop provably correct metamodels. This paper
outlines a solution to the question, in which the MOF meta-
modelling approach is formalized within constructive type
theory.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; F.4.1 [Mathematical Logic and Formal Lan-
guages]: Mathematical Logic

Keywords
Model Driven Architecture, Constructive Type Theory

1. INTRODUCTION
This paper concerns formal method support for the Ob-

ject Managment Group’s Meta-Object Facility (MOF) spec-
ification [9]. The MOF is a semiformal approach to writ-
ing metamodels and describing model transformations. It
works according to a 4 level hierarchy, where software is
specified by models, and models are defined as instances of
metamodels, which are, in turn, defined as instances of the
MOF meta-metamodel. By writing models and metamodels
in a common framework, the MOF meta-metamodel, it is
easier to perform systematic model/metamodel interchange
and integration. However, this is only useful if metamodels
are correctly specified: errors in a metamodel specification
have the potential for exponential propagation throughout
instantiating models and final model implementations. An
open question is how to develop provably correct metamod-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’06 April 23-27, 2006, Dijon, France
Copyright 2006 ACM 1-59593-108-2/06/0004 ...$5.00.

els. This question has recently become particularly impor-
tant as the MOF is a central technology behind the Model
Driven Architecture (MDA) initiative.

Our solution is to use constructive type theory (CTT),
a higher-order typed lambda calculus with dependent sum
and product types (see, e.g., [3, 4, 11]). We exploit higher-
order nature of CTT to uniformly treat the semantics of
models, metamodels and the MOF model itself. We pro-
pose to formalize the MOF within constructive type theory.
A well known property of this type theory is that it can
be used both as a language for writing functions and for
writing proofs and logical specifications. This property is
known as the Curry-Howard isomorphism. By utilizing the
Curry-Howard isomorphism, it is possible to define a notion
of metamodel and model correctness in type theoretic terms:
so that, for instance, a metamodel specification (such as the
metamodel for UML or for .NET) is correct only if it can be
represented as a term of the MOF metamodel type, while a
model specification (such as a particular UML model) is cor-
rect only if it can be represented as a term of its metamodel
type.

Our work attempts to maintain interoperability with
MOF-based industrial tools and techniques for metamod-
elling. It is possible to develop a mathematically elegant
form of metamodelling within higher-order type theory sim-
ply by developing types of software models on an ad hoc
basis. For instance, it is possible to manually construct a
type that classifies all UML models, or a type that classifies
all relational database schemata. However, the advantage
of the MOF is that it is generic enough to encode a wide
range of metamodels. Our goal is to preserve this genericity
by encoding the MOF model itself and then by systemati-
cally treating types for metamodels from their MOF encod-
ing. This way, all MOF-based metamodels will automati-
cally have corresponding types in the CTT. This approach
becomes important when developing notions of provably cor-
rect metamodels and models.

The paper proceeds as follows. Section 2 describes the
MOF and explains how it may be used to write metamodels.
Section 3 sketches the principles of constructive type theory
and related notions. Section 4 outlines our type theoretic
encoding of the MOF. Conclusions and a discussion of future
work is provided in Section 5.

This paper assumes the reader is familiar with the UML
representation of classes, class relationships and class ob-
jects and has a partial familiarity with the MOF specifica-
tion document [9]. A detailed study of constructive type
theory can be found in [3] or [11].

2. THE MOF
Metamodelling in the MOF is done according to a 4 level

hierarchy, as depicted in [9, pp. 30–31]. The M0 level con-
sists of model instances. These might be data values, in-
stantiated class objects, instantiated database tables, algo-
rithms, XML code or function definitions. The M1 level
consists of models, which may also be considered as meta-
model instances. This level includes elements such as UML
diagrams, class, module and type declarations, database ta-
ble declarations or XML schema. The M2 level consists of
metamodels, which may also be considered as MOF model
instances. This level consists of metamodel descriptions,
defining the syntax and semantics of M1 elements. This
level includes languages such as the UML, the XML, Java,
the B specification language or Casl algebraic specification
language. The M3 level is the MOF language itself, used to
define M2 level elements.

UML-style classes, class associations or class object can be
defined at any level in the MOF hierarchy, to serve different
purposes. For instance, classes at the M3 are used to type
modelling languages, while classes at the M2 level are used
within modelling languages to type models. The levels are
then related by an object-oriented-style class/object instan-
tiation relationship. Class elements of level Mi+1 provide
type descriptions of level Mi objects. Mi objects instantiate
Mi+1 classes.

An important aspect of the MOF hierarchy is that M1

and M2 level information can be encoded in two separate
ways: as model elements or object instances. This enables
the MOF hierarchy to treat types as classifications and as
forms of data. The principle works as follows. The MOF
language is defined by a set of related model elements at the
M3 level. A metamodel is defined at the M2 level by a set
of MOF objects that instantiate the MOF model elements.
This MOF object representation of a metamodel can also
be rewritten as a M2 metamodel that provides type descrip-
tions via a set of model elements. A model at the M1 level
is understood as a set of elements that instantiate the clas-
sifiers of an M2 level metamodel. Finally, these M1 level
elements can also be rewritten to form M1 level model clas-
sifiers that specify the required form of an M0 level model
instantiation.

2.1 Object-based metamodels
The M3 level MOF model consists of a set of associated

M3 level classes, “meta-metaclasses”, hereafter referred to
as MOF classes. The MOF classes classify the kinds of ele-
ments that make up a M2 level metamodel. Metamodels are
collections of associated M2 instances of these MOF classes,
in the same sense that, for example, a collections of M0 UML
objects represent an instance of a M1 UML class diagram.

The MOF specification [9] defines both the structure of
MOF metamodels, consisting of roles and relationships, to-
gether with a semantics, consisting of constraints that must
apply to any instances of the type structure.

The MOF defines a set of associated M3 level classes, the
most important of which are as follows: MetaClassifier (a
general supertype of all metamodel classifiers), MetaClass

(typing all metamodel classifiers that are not basic data
types), Datatype (a type of datatypes), Attribute (a type
of attributes that may be associated with a metamodel clas-
sifier) and Association and AssociationEnd (typing asso-
ciations that might hold between metamodel classifiers).

For reasons of space, we provide the definition of the
MetaClassifier MOF class only. The other definitions can
be found in the MOF specification document. This MOF
class is a generic supertype of all metamodel classifiers: for
instance, both the definition of a UML class within the UML
metamodel and the definition of an XML schema within
the XML metamodel can be encoded as M2 level object in-
stances of MetaClassifier.

Definition 2.1 (MetaClassifier). The M3 level
class MetaClassifier is an abstract MOF class, used to cat-
egorize a common structure inherited by its subclasses, such
as MetaClass, Attribute and Association. Its structure
includes the following elements: A name attribute of type
string that identifies the name of the classifier instance;
a boolean valued isAbstract attribute, that determines if
the classifier instance is abstract or not within an inheri-
tance hierarchy; an associated collection constraints of el-
ements of type Constraint, defining the required behaviour
of M1 level instances of M2 MetaClassifier metaobjects. A
M2 level MetaClassifier instance must satisfy the follow-
ing constraints: (C1) A classifier cannot be its own direct
or indirect supertype; (C2) the names of the any of the at-
tributes of a classifier should not collide with the names of
the attributes of any direct or indirect supertype.

The MOF permits constraints to be associated with any
of the elements of a metamodel. These can be written in an
informal language, such as English, or a formal language,
such as the Object Constraint Language (OCL). The MOF
model employs constraints in two distinct ways. The MOF
model itself has a set of constraints that are defined for
each of its classes. These constraints define a semantics of
the model that specifies how M2 metamodels must behave.
Also, the model contains a class called Constraint that is
associated with all other classes of the model. Instances of
this class are used to write a semantics for M2 metamodels
that, in turn, is used to specify how M1 instantiating models
must behave.

A metamodel is then represented in the MOF via a col-
lection of associated MOF class object instances. These in-
stances are M2 level objects.

Definition 2.2 (Metamodel). A metamodel M is a
set of MetaClassifier, MetaClass, Datatype, Attribute,
Association, AssociationEnd and Constraint M2 level ob-
jects. Objects within M may only refer to each other.

2.2 Class-based depiction of metamodels
A metamodel specification consists of a set of M2 level

objects. This is a data-centric view of a metamodel. When
considering a metamodel as a model of models, we need to
use this data to classify models. The MOF achieves this by
means of an equivalent representation of a metamodel, as M2

level classes, whose M1 level object instances are models.
Given a metamodel MO represented as a set of M2 level

objects, we can build an equivalent M2 level class-based rep-
resentation MC as follows. Each Metaclass M2 object o in
MO corresponds to a M2 class toClass(o), whose class at-
tributes each correspond to the M2 level Attribute objects
associated with o. Similarly, for each Association object a

in MO that defines a relation between two Metaclass ob-
jects o1 and o2, we add a class association in the metamodel
MC between the classes that correspond to o1 and o2. Each
Constraint object associated with an object o is mapped to

a UML-style note that is associated with toClass(o). The
contents of the note are the same as the contents of the
constraint.

A class-based representation is important as it prescribes
how the metamodel should be used as a typing structure for
M1 level models. It is important to note that, according
to the MOF, not every collection of M2 level classes defines
a metamodel. To be valid, a metamodel must also have
an object-based representation that instantiates the MOF
model.

This dual representation is often left implicit when using
the MOF. Users generally employ the class-based notation,
with the assumption that an object-based representation
is available. However, for the purposes of formalizing the
notion of a MOF metamodel, it is essential that we under-
stand both representations and their relationship.

3. CONSTRUCTIVE TYPE THEORY
This section presents a brief summary of the construc-

tive type theory (CTT) that shall be used to formalize the
MOF and MDA in the next section. We define a version of
Martin-Löf’s predicative type theory with dependent sum
and product types [7], and explain how the CTT provides a
uniform framework for treating functions, types, proofs and
programs.

We work with a lambda calculus whose core set of terms,
P , are given over a denumerable set of variables, V :

P ::= V |λ V. P |(P P)|〈P, P 〉|fst(P)|snd(P)|inl(P)|inr(P)|
match P with inl(V) ⇒ P | inr(V) ⇒ P |

abort(P)|show(V, P)|select (P) in V.V.P

Besides lambda abstraction, the calculus includes pairs, dis-
joint unions and case matching. Evaluation of terms is de-
fined by a standard extension of β reducibility. Evaluation
is lazy – that is, the operational semantics is applied to the
outermost terms, working inwards until a neutral term is
reached.

The terms of our lambda calculus are associated with the
following kinds of types: basic types from a set BT , func-
tional types (A → B), product types (A∗B), disjoint unions
(A|B), dependent product types (

Q
x : t.a) where x is from

V , and dependent sum types (Σx : t.b) where x is from V .
The intuition behind the first four types should be clear. For
example, if a term t has type (A → B), then t is a function
that can accept as input any value of type A to produce
a value of type B. A dependent product type expresses
the dependence of a function’s output types on its input
term arguments. For example, if a function f has dependent
product type

Q
x : T.F (x), then f can input any value of

type T , producing an output value of type F (arg). Thus,
the final output type is parameterized by the input value.
Type inference rules provide a formal system for determin-
ing what the types of lambda terms should be. The core
type inference rules may be found in [11, p. 38] or [10].

It is not permissible to define a totality of the collection
of all types, as this results in an inconsistent theory. In-
stead, we employ a common solution, defining a predicative
hierarchy of type universes of the form:

Type0,Type1,Type2, . . .

The typing rules for the universes, omitted for reasons of
space, may be found in [10]. In these rules, the first universe

Type0 is the type of all types generated by the basic types
and the typing constructors.

To encode objects and classes, we will require record types.
These types have the usual definition – see, for example, [3]
or [10]. A record type is of the form {a1 : T1; . . . ; an : Tn},
where a1, . . . , an are labelling names. An record is a term
{a1 = d1; . . . ; an = dn} of a record type {a1 : T1; . . . ; an :
Tn}, where each term di is of type Ti. The term {a1 =
d1; . . . ; an = dn}.ai evaluates to the value di associated with
the label ai in the left hand side record.

We use corecursive terms, through use of a corecursive µ
fixed point operator and employ mutual recursion. We also
equip our type theory with a notion of subtyping. We omit
the details of how subtyping is treated within the CTT. For
a full treatment, see [2] or [12].

Following a typical encoding, such as that of [13], we
can define the structure of UML-style classes as recursive
record types, with objects taken as terms of these types.
Essentially, the idea is to map a class C with attributes
a1 : T1, . . . , an : Tn to a record type definition

C ≡ {a1 : T1; . . . ; an : Tn}
where each ai is a label corresponding to the attribute name
ai and each Ti a type corresponding to the attribute clas-
sifier Ti. The encoding can be extended to operations and
associations. As a class can reference another class or itself,
the encoding uses mutual recursion between class definition.

The encoding of classes is purely structural and does not
involve a behavioural semantics. A semantics is associated
with a structural class type through a logical specification.
Interestingly, the logical specification can be written solely
through the type constructors we have considered. This
follows from the Curry-Howard isomorphism, an important
theorem that shows how constructive logic can be naturally
embedded within our type theory, so that proofs correspond
to terms, formulae to types, logical rules to type inference,
and proof normalization to term reduction. The importance
of the isomorphism for our work is that it means we can
use constructive type theory as a unifying framework for
representing programs, proofs, higher-order types and pro-
gram specifications. The idea is that dependent products
and sums, function types and disjoint unions correspond
to universal and existential quantification, implication and
disjunction formulae constructors within constructive logic.
See [11, pp. 39–42] for further details.

4. MOF METAMODELS WITHIN CTT
CTT is a natural choice for encoding the MOF. The main

concepts of the MOF have obvious formal counterparts
within the CTT. Classes and objects are treated using
recursive records. The four levels of the MOF are correspond
to the CTT’s predicative hierarchy of type universes. The
CTT’s typing relation allows us to systematically treat MOF
model/metamodel/model/model instantiation relationships
as follows. The M3 level MOF classes are defined through
Type2 class types, M2 level metamodel classifiers are given
a dual representation as objects of the MOF class types and
as Type1 class types. M1 level model entities are given a
dual representation as terms of the metamodel types and
as as Type0 types, M0 level implementations of models are
instantiating terms of Type0 types. This section outlines
how to formalize the MOF classes and metamodels at levels
M3 and M2.

4.1 Encoding of the MOF
The structure of MOF metamodels was defined as a set

of M3 level classes. It is possible to define a set of mutually
recursive Type2 level record types that encode these classes.
A metamodel, considered as a set of M2 level objects that
instantiate the MOF classes, is then formally understood
as a set of mututally recursive Type1 level terms of these
types.

For the purpose of illustration, the type of the MOF clas-
sifier class is as follows.

Definition 4.1 (MOF classifier type). A MOF
classifier is encoded by the following record type,

MetaClassifier ≡ Σx : ClassStruct.MClassCst(x)

where ClassStruct stands for the record

{name : String; isAbstract : Bool;

supertype : MetaClassifier; attributes : [Attribute]}
and MClassCst(x) is the conjunction of the following state-
ments about x : ClassStruct: a formal translation of con-
straint (C1) in Definition 2.1 of classifiers:

∀mL : [MetaClassifier].mL = getParents(x) → x ∈ mL

together with a formal translation of constraint (C2) in Def-
inition 2.1 of classifiers:

∀mL : [MetaClassifier].mL = getParents(x) →
∀m : MetaClassifier.m ∈ mL.

∀a1 : Attribute.a1 ∈ x.attributes →
∀a2 : Attribute.a2 ∈ m.attributes →

a1.name 	= a2.name

where getParents is a corecursive function that obtains a
list of all supertypes of a metaclass x.

A similar encoding is made for the other MOF elements: a
record type, used to define the element’s structure, is paired
with constraints over the structure using a dependent sum,
used to formally specify the element’s semantics.

The MetaClassifer type is the type of all metaclassi-
fiers. That is, a metaclass M can be encoded correctly
within the MOF as an instance of a MOF class if, and only if,
there is a corresponding term representation tM of M , such
that
 tM : MetaClassifier holds. This typing requires
two witnesses: a record that encodes the data associated
with the metaclass, written according to the structure of the
record type MClassStruct, and a propositional function
over MClassStruct records, specifying constraints that
can be proved to hold over any values held by the record.
This reflects the two aspects of an informal metaclass defini-
tion within the MOF: (1) the metaclass contains data in the
relevant fields specified by the MOF class definition, and (2)
the metaclass satisfies the set of constraints that are peculiar
to its nature.

The type of all MOF-based metamodels, Metamodel,
can be defined as a fixed point corresponding to mutually
recursive set of MOF class instances. The definition follows
from the MOF, where a metamodel is understood to consist
of a set of associated metaclasses.

For example, consider the following simple MOF-based
metamodel of a component-based access rights system:

name : String = "COM"

isAbstract : Bool = false

COM : Metaclass

name : String = "AccessPolicy"

isAbstract : Bool = false

AccessPolicy : Metaclass

name : String = ComPolicy

isAbstract : Bool = false

A1 : Association

name : String = " "

multiplicity : Multiplicity = *

A1FromEnd : AssociationEnd

name : String = "policy"

multiplicity : Multiplicity = 1

A1ToEnd : AssociationEnd

type

from

to

type

name : String = " "

multiplicity : Multiplicity = 1

A2FromEnd : AssociationEnd

name : String = "uses"

multiplicity : Multiplicity = *

A2ToEnd : AssociationEnd

name : String = COMused

isAbstract : Bool = false

A2 : Association

type

type

from

to

name : String = "name"

Name : Attribute

name : String = "String"

isAbstract : Bool = false

String : Datatype

attibutes

type

name : String = "level"

Level : Attribute
name : String = "Int"

isAbstract : Bool = false

Integer : Datatype
attibutes type

The metamodel is formally defined by the following fixed
point of type Metamodel:

mm ≡ µ Self : {metaclasses : [MetaClass];

attributes : [Attribute]; associations : [Association];

associationEnds : [AssociationEnd]}.
{metaclasses = [COM,AccessPolicy];

attributes = [Attributes,Level];

associations = [A1, A2];

associationEnds = [A1FromEnd,A1ToEnd,

A2FromEnd,A2ToEnd]}
Its various subterms correspond to the various MOF meta-
objects of the diagram. For instance, the COM metaclass is
represented by a term COM of the form ({name = “COM”;
isAbstract = false; attributes = [Self.attributes@1]}, p1) with
p1 a lambda term representing a proof that the record part of
the term satisfies the required semantics of a MOF metaclass
instance.

4.2 Metamodels as types
Recall that metamodels have a dual representation, as M2

level objects and as M2 level classes. This relationship was
outlined in subsection 2.2.

This dual representation is formalized by means of a trans-
formation between instantiating Metamodel terms and
Type1 level types. The transformation is twofold: (1) A re-
flection map φ is applied to obtain a set of mutally recursive
record types from a metamodel term. The map essentially
obtains a type structure for the metaclasses and associations
of the metamodel. (2) The constraints specified by the MOF
metamodel description as Constraint objects are formalized
as a specification over the type structure obtained from the
reflection map. The transformation then uses this infor-
mation to build a dependent sum type that represents the
metamodel. The mapping is omitted for reasons of space –
see [10] for details.

Definition 4.2 (Metamodel types). Given a
Metamodel instance a : Metamodel, the type φ(a) is
called the metamodel structure type for a, and represents the
structure of the metamodel, when considered as a collection
of M2 level classifiers. The general form of a metamodel type
is Σx : φ(a).P (x) for some predicate P and a : Metamodel.

For example, application of φ to the metamodel term mm
above will yield a Type2 dependent sum of the form

Σx : φ(mm).asType(P (x))

where φ(mm) is a fixed point of the form µ X : {COM :
Type2;AcesssPolicy : Type2).{COM = f1;AcesssPolicy =
f2} and P is a formula that is derived from Constraint

metaobjects that were associated with the metamodel. As
required, this corresponds to the equivalent M2 level class-
based metamodel diagram of the form

+name : String

COM

+uses *

+level : Int

AccessPolicy

+policy1

Given a metamodel type Σx : φ(a).P (x), the predicate
P should be a formal specification of the Constraints ob-
jects that form part of the MOF metamodel for a. It is in
this way that metamodel constraints are treated in our ap-
proach. They are not represented in Metamodel terms, but
are added to the Type1 class record-based representation of
metamodels.

In general, constraints can be written in any language,
and, consequently, we cannot define a general method for
formally specifying them within our metamodel dependent
sums. If constraints are written in a language with a formal
semantics (such as formal versions of the OCL), it should be
possible to automatically develop predicates for metamodel
types. This problem is left for future research.

The model reflection mapping is key to formalizing how a
model is to be used as an abstraction of a final implemented
system. For instance, a UML model, understood as a term,
is usually mapped to a class hierarchy, so that implementing
terms are objects with values inside them. This mapping
considers an implementation abstraction as a set of objects
at runtime.

5. RELATED WORK AND CONCLUSIONS
We have attempted to demonstrate that constructive type

theory is a natural choice to formally encode the higher-
order structure of the MOF. To the best of our knowledge,
constructive type theory has not been used previously as a
framework to treat metamodelling.

The closest results to our proposal are type theoretic treat-
ments of structured algebraic specification and refinement.
In [6], Luo uses higher-order type theory as a framework for
representing algebraic specifications and performing refine-
ments. A different approach, using a nonstandard construc-
tive logic and type theory, was developed by Crossley, Poer-
nomo and Wirsing in [11]. However, both these approaches

are frameworks for treating a single metamodel (a language
of algebraic specifications), rather than all metamodelling
languages.

Favre [5] developed a methodology for writing correct
transformations between UML-based metamodels. Trans-
formations are understood formally in terms of the Casl
algebraic specification language, so a notion of formal cor-
rectness is present and transformations are proved correct.
The work has yet to be generalized to arbitrary MOF meta-
models. Akehurst et al. have used relational algebras to
formalize metamodels and model transformations [1].

The MOF is promoted by the OMG as the metamod-
elling technology for use within Model Driven Architecture
(MDA). Our work has the potential to be extended to for-
malize MOF-based MDA. Model transformations should be
representable as Type1 functions defined over metamodel
types. Development of this extension forms part of ongoing
research by the author’s group.

6. REFERENCES
[1] David H. Akehurst, Stuart Kent, and Octavian

Patrascoiu. A relational approach to defining and
implementing transformations between metamodels.
Software and System Modeling, 2(4):215–239, 2003.

[2] Roberto M. Amadio and Luca Cardelli. Subtyping
recursive types. ACM Transactions on Programming
Languages and Systems, 15(4):575–631, 1993.

[3] Robert Constable, N. Mendler, and D. Howe.
Implementing Mathematics with the Nuprl Proof
Development System. Englewood Cliffs, NJ:
Prentice-Hall, 1986.

[4] Therry Coquand. Metamathematical Investigations of
a Calculus of Constructions. In Logic and Computer
Science, pages 91 – 122, 1990.

[5] Liliana Favre. Foundations for mda-based forward
engineering. Journal of Object Technology,
4(1):129–153, January-February 2005.

[6] Zhaohui Luo. Program specification and data
refinement in type theory. Mathematical Structures in
Computer Science, 3(3), 1993.

[7] Per Martin-Löf. Intuitionistic Type Theory.
Bibliopolis, 1984.

[8] Jishnu Mukerji and Joaquin Miller. MDA Guide
Version 1.0.1. Object Management Group, 2003.

[9] OMG. Meta Object Facility (MOF) Specification.
Object Management Group, 2000.

[10] Iman Poernomo. A type theoretic framework for
formal metamodelling. In Architecting Systems from
Trustworthy Components, LNCS. Springer, 2006.

[11] Iman Poernomo, John Crossley, and Martin Wirsing.
Adapting Proofs-as-Programs: The Curry-Howard
Protocol. Monographs in computer science. Springer,
2005.

[12] Erik Poll. Subtyping and Inheritance for Categorical
Datatypes. In Theories of Types and Proofs (TTP) -
Kyoto, RIMS Lecture Notes 1023, pages 112–125.
Kyoto University Research Insitute for Mathematical
Sciences, 1998.

[13] Anthony J.H. Simons. The theory of classification.
part 3: Object encodings and recursion. Journal of
Object Technology, 1(4):49–57, September–October
2002.

