
§2. Complex 2-Forms: Cauchy-Pompeiu’s Formula

In §3.1 we have seen df = fzdz + fz̄dz̄, (where fz = ∂f/∂z and fz̄ = ∂f/∂z̄,) for
a complex (smooth) function f . Recall: z = x + iy, z̄ = x − iy, dz = dx + idy and
dz̄ = dx− idy. In general, a complex 1-form on a set in the complex plane is an expression
of the form ω = gdz + hdz̄, where g and h are complex functions. By using exterior
products, we can build complex 2-forms from complex 1-forms.

Example 2.1. Verify the following identities:

dz ∧ dz = 0, dz̄ ∧ dz̄ = 0, and dz̄ ∧ dz = −dz ∧ dz̄ = 2i dx ∧ dy. (2.1)

(Suggestion: keep these identities in mind.)

Solution. Here we go:

dz ∧ dz = (dx + idy) ∧ (dx + idy)

= dx ∧ dx + i dy ∧ dx + i dx ∧ dy − dy ∧ dy

= 0 + i(−dx ∧ dy) + i dx ∧ dy − 0 = 0,

dz̄ ∧ dz = (dx− idy) ∧ (dx + idy)

= dx ∧ dx− i dy ∧ dx + i dx ∧ dy + dy ∧ dy

= 0− i(−dx ∧ dy) + i dx ∧ dy + 0 = 2i dx ∧ dy.

In the same way we can show that dz̄ ∧ dz̄ = 0 and −dz ∧ dz̄ = 2i dx ∧ dy.

Given 1-forms ω1 = f1dz + g1dz̄ and ω2 = f2dz + g2dz̄, using (2.1), we have

ω1 ∧ ω2 = (f1dz + g1dz̄) ∧ (f2dz + g2dz̄) = f1g2 dz ∧ dz̄ + g1f2 dz̄ ∧ dz

= (f1g2 − f1h2) dz ∧ dz̄ ≡
∣∣∣∣
f1 g1

f2 g2

∣∣∣∣ dz ∧ dz̄.
(2.2)

The differential dω of a complex 1-form ω = gdz + hdz̄ is the complex 2-form given
by dω = dg ∧ dz + dh ∧ dz̄. More explicitly,

dω = dg ∧ dz + dh ∧ dz̄ = (gzdz + gz̄dz̄) ∧ dz + (hzdz + hz̄dz̄) ∧ dz̄

= gz̄ dz̄ ∧ dz + hzdz ∧ dz̄ = (gz̄ − hz)dz̄ ∧ dz.
(2.3)

(There is no need to memorize (2.2) and (2.3).)

Example 2.2. Verify that 1-form ω = zdz̄ + z̄dz is closed, that is, dω = 0.
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Solution: dω = dz ∧ dz̄ + dz̄ ∧ dz = dz ∧ dz̄ − dz ∧ dz̄ = 0. Alternatively, we can
proceed as follows: d(zdz̄ + z̄dz) = d(d(zz̄)) = 0, in view of d2 = 0.

It is convenient to introduce the following “partial differentials”:

∂f =
∂f

∂z
dz, ∂f =

∂f

∂z̄
dz̄.

(Note: in some books ∂f stands for ∂f/∂z̄.) Then identity df = fzdz + fz̄dz̄ becomes
df = ∂f + ∂f . So we simply write d = ∂ + ∂. For a 1-form ω = fdz + gdz̄, we have

∂ω = ∂f ∧ dz + ∂g ∧ dz̄ = fz̄dz̄ ∧ dz + gz̄dz̄ ∧ dz̄ = fz̄ dz̄ ∧ dz.

Similarly we have ∂ω = gz dz ∧ dz̄. Notice that ∂2f = ∂(∂f) = ∂(fz dz) = 0. Thus we
write ∂2 = 0. Similarly we have ∂

2
= 0. We already know that d2 = 0 (Rule E6). So

0 = d2 = (∂ + ∂)(∂ + ∂) = ∂2 + ∂∂ + ∂∂ + ∂
2

= ∂∂ + ∂∂.

So we have ∂∂ + ∂∂ = 0. This makes us curious about ∂∂. Well,

∂∂f = ∂(fzdz) = ∂fz ∧ dz = fz̄z dz̄ ∧ dz =
1
4
∆f. 2idx ∧ dy =

i

2
∆f dx ∧ dy,

where ∆f = fxx + gyy, the Laplacian of f ; (see (1.6) in §3.1 for fzz̄ = 1
4∆f).

In §3.1 we have introduced the complex 1-form z−1dz to study the complex logarithm
log z. Here we entertain a slightly more general expression χ = (z−z0)−1dz for some fixed
z0 = x0 + iy0, which is defined for all z except z0. Notice that

dχ = d(z − z0)−1 ∧ dz = (−1)(z − z0)−2dz ∧ dz = 0.

Thus χ is a closed 1-form. However, χ is not an exact 1-form, that is, there is no function
f defined on the complex plane with the point z0 deleted such that df = χ. We have seen
the kind of argument at the end of §1.1 leading to this conclusion. But let us repeat here
using different symbols. Take a loop around z0, say γ(t) = z0 + reit (0 ≤ t ≤ 2π), where r

is any positive number and eit stands for cos t + i sin t. Then

∫

γ

χ =
∫

γ

dz

z − z0
=

∫ 2π

0

d(z0 + reit)
(z0 + reit)− z0

=
∫ 2π

0

r × ieitdt

reit
=

∫ 2π

0

idt = 2πi.

Thus we have:
1

2πi

∫

γ

dz

z − z0
dz = 1 (2.4)
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(Suggestion: keep this identity in mind.) If χ were exact, say χ = df , we would have∫
γ

χ =
∫

γ
df = f(γ(2π))− f(γ(0)) = f(z0 + r)− f(z0 + r) = 0. So χ is not exact.

Take any complex function f and differentiate the 1-form fχ:

d(fχ) = df ∧ χ + fdχ = df ∧ χ [because of the closedness of χ]

= (fzdz + fz̄dz̄) ∧ (z − z0)−1dz

= fz̄(z − z0)−1dz̄ ∧ dz [because dz ∧ dz = 0]

≡ fz̄

z − z0
dz̄ ∧ dz = 2i

fz̄

z − z0
dx ∧ dy.

(2.5)

Now we take a domain D in the complex plane and apply Stokes’ Theorem to d(fχ)
over D. We have to be careful in doing this in view of the singularity of χ presented
at z0. More precisely, D is a bounded open set in the complex plane with (positively
oriented) boundary ∂D consisting of finitely many smooth curves. Let f be a smooth
function defined on its closure D̄ (= D ∪ ∂D). Take a point z0 in D and consider the
1-form ω = fχ ≡ f(z)(z − z0)−1dz, which is defined on D̄ except at z0. Due to the
singularity of ω at z0, we remove a tiny disk D(z0; r) centered at z0 from D; here
D(z0; r) = {z| |z− z0| ≤ r}, the disk centered at z0 with radius r. Assume that the radius
r is so small that D(z0; r) is contained in D. Let Dr = D \D(z0; r), which is the remaining
part of D when this disk is removed. Notice that ∂Dr, the boundary of Dr, consists of
the boundary ∂D of D, together with the boundary ∂D(z0; r) of D(z0; r) oriented in the
opposite way. Thus we write ∂Dr = ∂D ∪ (−∂D(z0; r)). Now ω has no singularity in Dr,
we may apply Stokes’ Theorem to ω over Dr:

∫ ∫

Dr

dω =
∫

∂Dr

ω =
∫

∂D

ω −
∫

∂D(z0; r)

ω. (2.6)

Here ∂D(z0; r) is a circle γ around the point z0 we have seen before: it is described by the
parametric equation γ(t) = z0 + reit (1 ≤ t ≤ 2π). Since f(z0 + reit) converges to f(z0)
as the radius r shrinks to 0, the last line integral in (2.6)

∫

∂D(z0; r)

ω =
∫ 2π

0

f(z0 + reit)
(z0 + eit)− z0

deit = i

∫ 2π

0

f(z0 + reit)dt

converges to i
∫ 2π

0
f(z0)dt = 2πif(z0) as r decreases to 0. Letting r → 0 in (2.6), the disk

D(z0; r) diminishes and Dr fills up D. Consequently we have
∫ ∫

D

dω =
∫

∂D

ω − 2πif(z0) (2.7)
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Now ω = (z − z0)−1f(z)dz and dω = (z − z0)−1fz̄dz̄ ∧ dz; see (2.5). Substituting them in
(2.7) and rearranging terms, we arrive at the celebrated Cauchy-Pompeiu’s formula:

f(z0) =
1

2πi

∫

∂D

f(z)
z − z0

dz − 1
2πi

∫ ∫

D

fz̄

z − z0
dz̄ ∧ dz. (2.8)

We discuss two special cases. First, when f is analytic, fz̄ = 0 and hence we have

f(z0) =
1

2πi

∫

∂D

f(z)
z − z0

dz (2.9)

which is the well-known Cauchy formula in complex analysis. (Many elementary text-
books in complex analysis set are written in such a way that as though the authors designate
half of the time for establishing this formula, and treat the rest as applications of it.) This
formula tells us that the value of f at any point z0 in D is completely determined by the
values of f on the boundary of D. Note that Cauchy’s formula tells us that (2.4) holds
for any closed curve γ surrounding z0, not just for a circle with z0 as its center. Secondly,
when f vanishes on the boundary of D, that is, f

∣∣
∂D

= 0, (2.8) becomes

f(ζ) =
1

2πi

∫ ∫

D

fz̄(z)
ζ − z

=
1
π

∫ ∫

D

fz̄(z)
ζ − z

dx ∧ dy, (2.10)

where z0 is switched to ζ. This identity suggests how to find a solution to the following
so-called ∂̄-equation (pronounced as “dee bar equation”)

∂u

∂z̄
= g (2.11)

(which is a first order elliptic partial differential equation). Here g is a continuous function
on the complex plane with a compact support (that is g(z) = 0 if |z| is large enough.)
Take a large circular disk D in the complex plane so that g vanishes outside D. Let us
restrict our attention to solutions on D, that is, those u defined on D so that the identity
∂u/∂z̄ = g holds on D. Notice that if u is a solution and v is an analytic function on D,
then u + v is another solution; indeed (∂/∂z̄)(u + v) = (∂/∂z̄)u + (∂/∂z̄)v = g + 0 = g.
We can reverse the above argument to show that the general solution to (4.11) is of the
form u + v, where v is an analytic function. Thus, it is enough to find a special solution
to (2.11). Suppose that u is indeed a solution. Then, by Cauchy-Pompeiu’s formula, for
all ζ ∈ D,

u(ζ) =
1

2πi

∫

∂D

u(z)
z − ζ

dz − 1
π

∫ ∫

D

uz̄

z − ζ
dx ∧ dy = v(ζ) +

1
π

∫ ∫

D

g(z)
ζ − z

dx ∧ dy,
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where v(ζ) = 1
2πi

∫
∂D

u(z)
z−ζ dz can be shown to be analytic as a function of ζ ∈ D: indeed,

by the “punching and kicking” principle, we have

∂

∂ζ̄
v(ζ) =

1
2πi

∫

∂D

f(z)
∂

∂ζ̄

(
1

z − ζ

)
dz = 0.

Thus, assuming (2.11) has a solution, the function u0 given by

u0(ζ) =
1
π

∫ ∫

D

g(z)
ζ − z

dx ∧ dy (2.12)

is a solution to this ∂̄-equation. Note that we have not established the existence of a
solution to (2.11) yet. What we have done is that, if solutions do exist, then one of them
can be explicitly written down as (2.12). In order to show that (2.11) has a solution, the
most natural thing to do is to check directly that u0 given by (2.12) is indeed a solution.
This needs some delicate work and we do not pursue this endeavor. The function u0 in by
(2.12) is called the Cauchy transform of g and

C(ζ, z) ≡ 1
ζ − z

is called the Cauchy kernel of this integral transform.

Exercises

1. The conjugate of a 1-form ω = fdx + gdy is defined to be ω = f̄dx + ḡdy. Verify
the following identities: dz = dz̄, dz̄ = dz, ∂f = ∂̄ f̄ , ∂̄f = ∂f̄ .

2. (a) Verify that (∂ − ∂̄)2 = 0. (b) Verify the product rule: ∂̄(fω) = ∂̄f ∧ ω + f∂̄ω.

3. Is the identity ∂̄(g∗f) = g∗∂̄f true ?

(Hint: Take any analytic function f and any g so that f ◦ g is not analytic.)

4. Let f be an analytic function and write w = u+ iv = f(z) = f(x+ iy) as usual. Then
dw = f ′(z) dz and dw̄ = f ′(z) dz̄. (a) Verify dw̄ ∧ dw = |f ′(z)|2 dz̄ ∧ dz and compare
it to dudv = {∂(u, v)/∂(x, y)} dxdy to deduce

|f ′(z)|2 =
∂(u, v)
∂(x, y)

. (2.13)

(b) Use the Cauchy-Riemann equation to check (2.13) directly.

5



5. We extend Hodge’s ∗-operator (see (2.1) in §1.2) to complex differential forms ω =
Pdx + Qdy (where P and Q are complex-valued functions of x and y) by putting

∗ω = ∗(Pdx + Qdy) = P ∗ dx + Q ∗ dy ≡ P dy −Qdx. (2.14)

(a) Check that ∗ ∗ ω = −ω.

(b) Check that ∗dz = idz̄ and ∗dz̄ = −idz.

(c) Verify that the Cauchy Riemann equations ux = vy, uy = −vx (see (1.8) in §3.1)
can be rewritten as ∗du = dv.

(d) Check that a real valued function w = w(x, y) is harmonic if and only if d∗dw = 0.

6. We say that a real-valued function v = v(x, y) is a harmonic conjugate of a real-
valued function u = u(x, y) if dv = ∗du. From part (c) of the previous exercise we
know that the last condition is equivalent to u + iv being a holomorphic function of
z = x + iy. In each of the following parts, show that the given function u = u(x, y) is
harmonic and find a harmonic conjugate of it.

(a) u = x2 − y2, (b) u = x3 − 3xy2 (c) u = ex cos y (d) u = log
√

x2 + y2.

7. Let u = u(x, y) be a harmonic function on Do = {z = x + iy ∈ C : |z| < 1} such
that u(0, 0) = 0. Check that ∂u/∂z is an analytic function and the complex 1-form
(∂u/∂z) dz is closed. For each z in Do, take any path linking 0 to z and define

f(z) = 2
∫

γ

∂u

∂z
dz.

Show that f is a well defined analytic function, with ∂f/∂z = 2∂u/∂z. Finally, check
that the real part of f is u.

8. The punctured plane C0 is defined to be the complex plane with the origin removed,
that is, C0 = C\{0}. The reflection of the punctured plane (with respect to the unit
circle) is defined to be the transformation R of C0 given by R(z) = 1/z̄.

(a) Verify that R is idempotent in the sense that R(R(z)) = z.

(b) Verify that three points 0, z and R(z) are collinear, and |z||R(z)| = 1. Make
a simple sketch (including the unit circle, the origin, the ray from the origin
containing z and R(z)) to understand the effect of R. Also check that R leaving
all points on the unit circle fixed, that is, R(z) = z if |z| = 1.
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(c) Check that if we identify the complex variable z = x + iy with (x, y), then

R(x, y) =
(

x

x2 + y2
,

y

x2 + y2

)

(The above identity suggests how to generalize R to higher dimensional spaces.)

(d) Check that R∗(z−1dz) = −z̄−1dz̄ and R∗(z̄−1dz̄) = −z−1dz; (recall that R∗

stands for pull back by R). Deduce that the 2-form Ω ≡ |z|−2dz ∧ dz̄ is invariant
under R in the sense that R∗Ω = Ω and consequently the 2-form (x2+y2)−1dx∧dy

is also invariant under R.

(e) Verify the following remarkable identity the reflection R:

|eiθ − z|
|eiθ −R(z)| = |z|,

that is, the LHS is independent of which point eiθ on the unit circle is chosen.
(Remark: the image R(z) of z under the reflexion R is often denoted by z∗. We
avoid using this notation because it crashes with pullbacks.)

9. Let γ be the elliptic path given by z(t) = a cos t + ib sin t (0 ≤ t ≤ 2π), where a and b

are positive constants. Use the identity
∫

γ
dz/z = 2πi to verify

∫ 2π

0

cos t sin t

a2 cos2 t + b2 sin2 t
dt = 0 and

∫ 2π

0

dt

a2 cos2 t + b2 sin2 t
=

2π

ab
.

(The first identity can also be obtained by changing the variable t to s = 2π − t.)

10. Let D be the unit disk and let m,n be integers ≥ 0. Consider

I =
∫ ∫

D

z̄mzn dz̄ ∧ dz.

Compute this double integral by two different methods: first, use Green’s theorem
(2.2); second, use polar coordinates: dz̄ ∧ dz = 2i dx ∧ dy = 2i rdrdθ. (You need to
use the identity

∫ 2π

0
ei(m−n)t dt = 2πδmn, which can be easily checked.)

11. Let D be the unit disk and let χ be its characteristic function: χ(z) = 1 if z belongs
to D and = 0 otherwise. Consider ϕ(ζ) = (2πi)−1

∫∫
(ζ − z)−1χ dz̄ ∧ dz, the Cauchy

transform of χ.

(a) Use polar coordinates to compute ϕ(0) directly.

(b) Use Cauchy-Pompeiu’s formula to find ϕ(ζ) for ζ in the interior of D: |ζ| < 1.

(c) Can you find ϕ(ζ) for general ζ?
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