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We present a method for the classification of cancer based on gene expression profiles using single 
genes. We select the genes with high class-discrimination capability according to their depended 
degree by the classes. We then build classifiers based on the decision rules induced by single genes 
selected. We test our single-gene classification method on three publicly available cancerous gene 
expression datasets. In a majority of cases, we gain relatively accurate classification outcomes by just 
utilizing one gene. Some genes highly correlated with the pathogenesis of cancer are identified. Our 
feature selection and classification approaches are both based on rough sets, a machine learning 
method. In comparison with other methods, our method is simple, effective and robust. We conclude 
that, if gene selection is implemented reasonably, accurate molecular classification of cancer can be 
achieved with very simple predictive models based on gene expression profiles. 
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1. Introduction 

Conventionally morphological diagnosis of tumor is not always effective as revealed by 
frequent occurrences of misdiagnoses. Recent molecular biological studies have 
elucidated that cancer was a disease involving dynamic changes in the genome. 
Moreover, the rapid advances in microarray technology have made it possible to 
simultaneously measure the expression levels of tens of thousands of genes in a single 
experiment. This technology has much facilitated the detection of cancerous molecular 
markers [13]. Accordingly, the use of biomarkers might be an alternative approach to the 
diagnosis of tumors. To this end, abundant explorations have been conducted to carry out 
cancer diagnosis, prognosis or prediction based on DNA microarray data since the 
pioneering work of Golub et al. [5].  

Generally speaking, this field includes two key procedures: gene selection and 
classifier construction. The gene selection is particularly crucial in this topic as the 
number of genes irrelevant to classification may be huge, and hence, accurate prediction 
can be achieved only by performing gene selection reasonably, that is, identifying most 
informative genes from a large number of candidates. Once such genes are chosen, the 
creation of classifiers on the basis of the genes is another undertaking. If we survey the 
established investigations in this field, we will find that almost all the accurate 
classification results are obtained based on more than two genes. A very few 
investigators have attempted to address the problem by using gene pairs [6, 7]. However, 
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multi-gene models suffer from the disadvantage that it is not easy to assess which gene is 
more important in the models, because they are run on the basis of a group of genes. As a 
result, the significant biomarkers of related cancers are hard to be detected. In addition, 
multi-gene models are prone to impart the difficulty in understanding the models 
themselves.  

Recently, we proposed a rough sets based soft computing method to conduct cancer 
classification using single or double genes [19]. In this article, we reevaluate the method 
by exploring the classification of cancer on the basis of single genes with three distinct 
datasets. We want to underscore that sufficiently accurate classification can be achieved, 
and important biomarkers can be found with ease using single-gene models. In addition, 
differing from the previous study, we estimate the classification accuracy rate by testing 
on independent samples, which is believed to be more unbiased than the cross validation.  

2. Materials and Methods 

2.1. Datasets 

We use three datasets: leukemia, lung cancer and prostate cancer, which are available 
from the website: http://datam.i2r.a-star.edu.sg/datasets/krbd/. The gene number, class, 
training and test samples number contained in the three datasets are listed in Table 1. 

Table 1. Summary of the three gene expression datasets. 

Dataset # Genes Class # Training samples # Test samples 
leukemia 7129 ALL / AML 38 (27 / 11) 34 (20 / 14) 

lung cancer 12533 MPM / ADCA 32 (16 / 16) 149 (15 / 134) 
prostate cancer 12600 Tumor / Normal 102 (52 / 50) 34 (25 / 9) 

2.2. Rough Sets 

In practice, we often want to dissect a collection of data to learn about their implications 
via the data with already known meaning. Yet, usually the significance of the analyzed 
data cannot be precisely explained as they incorporate vague components. In rough sets, 
the definite parts are described with the concept of positive region.  

Definition 1 Let U be a universe of discourse, XU, and R is an equivalence relation 
on U. U/R represents the set of the equivalence class of U induced by R. The positive 
region of X on R in U, is defined as pos(R,X)= {YU/R | YX}. 

The data studied by rough sets are mainly organized in the form of decision tables. 
One decision table can be represented as S = (U, A=CD), where U is the set of samples, 
C the condition attribute set and D the decision attribute set. We can represent every 
cancer classification related microarray data with the decision table like Table 2. In the 
decision table, there are m samples and n genes. Every sample is assigned to one class 
label. Each gene is a condition attribute and each class is a decision attribute. g(x, y) 
signifies the expression level of gene y in sample x. 
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Table 2. Microarray data decision table. 

Condition attributes (genes) Decision attributes (classes) 
Samples 

Gene 1 Gene 2 … Gene n  Class label 
1 g(1, 1) g(1, 2) … g(1, n) Class (1) 
2 g(2, 1) g(2, 2) … g(2, n) Class (2) 
… … … … … … 
m g(m, 1) g(m, 2) … g(m, n) Class (m) 

 
Without loss of generality, we assume D is a single-element set, and call D the 

decision attribute. In S, we define Ia as the function that maps a member of U to its value 
on the attribute a (aA), and an equivalence relation R(A’) induced by the attribute subset 
A’A as: for s1, s2U, s1R(A’)s2 if and only if Ia(s1)=Ia(s2) for each aA’. In rough sets, 
the depended degree of condition subset P  by the decision attribute D , written ( )P D , 

is defined as 
|POS ( )|

( )=
| |

P

P

D
D

U
 , where |POS ( )| = | ( , ) |

/ ( )
P D pos P  X

X U R D
  denotes the 

size of the union of the positive region of each equivalence class in U /R(D )  on P  in U , 

and | |U  signifies the size of U (set of samples). The greater ( )P D  value often indicates 

the stronger classification power of P [10, 7]. But it is not always the case, especially for 

the microarray data. In [19], we define α depended degree
|POS ( , )|

( , )=
| |

P

P

D α
D α

U
 , where 

0≤α≤1, |POS ( , )| = | ( )|
/ ( )

P D α pos P,X,α
X U R D

  and pos(P,X,α)= {YU/P | |Y∩X|/|Y|α}.  

Inducing decision rules from decision tables is one of the main tasks in rough sets. 
One decision rule in the form of “A B” indicates that “if A, then B”, where A is the 
description on condition attributes and B the description on decision attributes. The 

confidence of A B is 
support( ) 

support( )

A B

A


, where support( )A  denotes the proportion of the 

samples satisfying A and support( ) A B the proportion of the samples satisfying A and 

B simultaneously. It reflects the reliable degree of one rule. 

2.3. Data Preprocessing, Gene Selection and Classification 

Before the learning algorithm is carried out, we discretize each original training set 
decision table by the entropy-based discretization method, proposed in [3]. We 
implement the discretization in the Weka package [17]. Every continuous-valued 
attribute is discretized into the attribute with no more than 3 different values. In addition, 
because there are microarray intensity discrepancies between the training set and the test 
set in the prostate cancer dataset caused by two different experiments, we normalize both 
the training and the test data. Each original expression level ( , )g x y  is normalized to 
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( , ) (max ( , ) min ( , )) / 2

(max ( , ) min ( , )) / 2

g x y g y g y

g y g y

   

  
, where max ( , )g y  and min ( , )g y  represent 

the maximum and the minimum expression levels of gene y  in all samples, respectively. 

After the normalization, all the gene expression levels are limited in interval [-1, 1]. For 
the other datasets, to avoid unnecessary loss of information, we do not conduct the 
process since the training and the test sets are from the same experiments. 

We select informative genes based on α depended degree. Once α value is 
determined, we only choose the genes with ( , )P D  =1 to build rule classifiers. Suppose 

g is one of the selected genes and U the sample set. U/R(g)={c1(g), c2(g),…, cn(g)} 
represents the set of the sample equivalence class induced by R(g). Two samples s1 and s2 
belong to the same equivalence class of U/R(g) if and only if they have the same value on 
g. In addition, we represent the set of the sample equivalence class induced by R(D) as 
U/R(D)={d1(D), d2(D),…, dm(D)}, where D is the class (decision) attribute. Likewise, 
two samples s1 and s2 belong to the same equivalence class of U/R(D) if and only if they 
have the same value on D. For each ci(g) (i=1, 2,…, n), if there exists some dj(D) (j{1, 
2,…, m}), satisfying |ci(g)∩dj(D)|/|ci(g)|α, then we generate the classification (decision) 
rule: Φ(ci(g)) Φ(dj(D)), where Φ(ci(g)) is the description of sample subset ci(g) by g 
value and Φ(dj(D)) is the description of sample subset dj(D) by the class value. It is noted 
that the confidence of every classification rule produced by the way is no less than α [19]. 
Thus, we can ensure sufficient reliability of the derived classification rules by setting 
high threshold of α value.  

After data preprocessing, we carry out gene selection and classifier construction. 
Initially, we select high class-discrimination genes by the measure of α depended degree. 
We begin with α=1, then gradually decrease α value. If we are lucky enough, we may 
stop the selection step at the point of very high α value. Otherwise, more search steps are 
needed. In the worst case, we will stop attempts at the point of α=0.7, which is the lower 
bound. The genes with ( , )P D α =1 are picked out. Next, we create the classifiers based 

on the decision rules induced by the selected genes, and apply the classifiers for 
independent test sets to validate the classification performance.  

3. Results 

3.1. Classification Results 

In the leukemia dataset, when α=1, gene #4847 is identified; when α=0.95, gene #4847, 
#1926 and #1882 are identified; when α=0.90, 25 genes are identified. With the 
decreasing of α, more and more genes are identified. Given α 0.90, 25 genes are finally 
marked. Among the 25 genes, 8 genes have the classification accuracy no less than 85%, 
of which gene #1882 and #1834 have 94% accuracy, and gene #4847 and #760 possess 
91% accuracy. We denote the expression level of gene x by g(x). Two decision rules 
induced by gene #4847 are: if g(#4847) > 994, then AML; if g(#4847) ≤ 994, then ALL. 
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Both rules have 100% confidence. By the rules, we obtain 91% classification accuracy in 
the test set. Likewise, gene #1882 induces two rules: if g(#1882) > 1419.5, then AML; if 
g(#1882) ≤ 1419.5, then ALL, which have 100% and 96% confidence respectively. 94% 
classification accuracy is achieved in the test set by the rules. Table 3 summarizes the 
information on the 8 genes with no less than 85% classification accuracy.  
 

Table 3. Genes with high classification accuracy in the leukemia dataset. 

No.a Accession #Correctly-classified samplesb Classification accuracy (%)c α 

4847 X95735_at 31 (18 / 13) 91 (90 / 93) 1 
1882 M27891_at 32 (19 / 13) 94 (95 / 93) 0.95 
760 D88422_at 31 (20 / 11) 91 (100 / 79) 0.9 

1834 M23197_at 32 (20 / 12) 94 (100 / 86) 0.9 
2402 M96326_rna1_at 29 (18 / 11) 85 (90 / 79) 0.9 
4373 X62320_at 30 (19 / 11) 88 (95 / 79) 0.9 
6376 M83652_s_at 30 (19 / 11) 88 (95 / 79) 0.9 
6855 M31523_at 30 (20 / 10) 88 (100 / 71) 0.9 

a The order number of attributes (genes) in the decision table. b The number of correctly-classified samples in 
total and with respect to every class (presented in parentheses). c The classification accuracy in whole and in 
every class (presented in parentheses). 

 

Table 4. Genes with high classification accuracy in the lung cancer dataset. 

No. Accession # Correctly-classified samples Classification accuracy (%) α 

2549 32551_at 134 (14 / 120) 90 ( 93 / 90 ) 1 
3250 33245_at 137 (14 / 123) 92 ( 93 / 92 ) 1 
3844 33833_at 139 (13 / 126) 93 ( 87 / 94 ) 1 
6571 36533_at 141 (13 / 128) 95 ( 87 / 96 ) 1 
7249 37205_at 135 (12 / 123) 91 ( 80 / 92 ) 1 
7765 37716_at 145 (11 / 134) 97 ( 73 / 100 ) 1 
9863 39795_at 135 (14 / 121) 91 ( 93 / 90 ) 1 
11015 40936_at 140 (12 / 128) 94 ( 80 / 96 ) 1 
12114 575_s_at 141 (14 / 127) 95 ( 93 / 95 ) 1 

541 1500_at 145 (13 / 132) 97 ( 87 / 99 ) 0.9 
633 1585_at 138 (13 / 125) 93 ( 87 / 93 ) 0.9 
869 179_at 137 (14 / 123) 93 ( 93 / 92 ) 0.9 

2421 32424_at 145 (11 / 134) 97 ( 73 / 100 ) 0.9 
3333 33327_at 143 (14 / 129) 96 ( 93 / 96 ) 0.9 
3916 33904_at 138 (14 / 124) 93 ( 93 / 93 ) 0.9 
4336 34320_at 144 (14 / 130) 97 ( 93 / 97 ) 0.9 
5301 35276_at 145 (14 / 131) 97 ( 93 / 98 ) 0.9 
7200 37157_at 146 (12 / 134) 98 ( 80 / 100 ) 0.9 
8005 37954_at 140 (14 / 126) 94 ( 93 / 94 ) 0.9 
8537 38482_at 139 (15 / 124) 93 (100 / 93 ) 0.9 
9474 39409_at 138 (13 / 125) 93 ( 87 / 93 ) 0.9 
9698 39631_at 134 (13 / 121) 90 ( 87 / 90 ) 0.9 
11841 41755_at 139 (10 / 129) 93 (67 / 96 ) 0.9 
11958 41871_at 142 (10 / 132) 93 (67 / 99 ) 0.9 
12200 661_at 142 (12 / 130) 93 (80 / 97 ) 0.9 



184   X. Wang & O.  Gotoh  

In the lung cancer dataset, when α=1 or 0.95, 16 genes are identified; when α=0.90, 
56 genes are identified. Among the 56 genes, gene #1223 has 98% classification 
accuracy with the classification rules: if g(#1223) > 490.5, then MPM; if g(#1223) ≤ 
490.5, then ADCA. Both rules have 100% and 94% confidence, respectively. The genes 
with classification accuracy no less than 90% are presented in Table 4. 

In the prostate cancer dataset, when α=1, 0.95 or 0.9, no any gene is identified; when 
α=0.85, only gene #1315 is identified; when α=0.8, 11 genes are marked. Among the 11 
genes, genes #827 and #1266 have the highest classification accuracy of 91%. The 
classification rules induced by them are: if g(#827) > -0.612121, then Normal (80% 
confidence); if g(#827) ≤ -0.612121, then Tumor (89% confidence); and if g(#1266) > -
0.543166, then Normal (81% confidence); if g(#1266) ≤ -0.543166, then Tumor (93% 
confidence). The genes with classification accuracy no less than 70% are presented in 
Table 5. 

 

Table 5. Genes with high classification accuracy in the prostate cancer dataset. 

No. Accession # Correctly-classified samples Classification accuracy (%) α 

5757 36491_at 30 (23 / 7) 88 (92 / 78) 0.8 

7557 32243_g_at 31 (22 / 9) 91 (88 / 100) 0.8 

9050 38044_at 29 (21 / 8) 85 (84 / 88) 0.8 

10138 41288_at 31 (22 / 9) 91 (88 / 100) 0.8 
10956 1767_s_at 24 (22 / 2)  71 (88 / 22) 0.8 
12148 575_s_at 27 (18 / 9) 79 (72 / 100) 0.8 

 
 

3.2. Comparison of Classification Results 

The leukemia dataset has been well studied by many researchers [4, 5, 7, 8, 10,12]. 
Although there are a few reports on the use of a single gene to distinguish the AML from 
the ALL, a majority of investigators conduct the classification with more than one gene, 
even tens or hundreds. In [8, 15, 18], the authors present the classification outcomes of 
31 out of 34 samples correctly classified with one common gene: Zyxin. Yet, we 
correctly classify 32 samples using a single gene. Moreover, Zyxin (X95735_at) is also 
identified by our approach, by which we correctly classify 31 samples as well.  

Regarding the three datasets, the best classification results reported in our and some 
other works are shown in Table 6, 7 and 8, respectively. These tables demonstrate that 
our single-gene classifiers perform comparatively well in these datasets. If using single 
genes, our accuracy is the highest among all the methods, and the other methods must use 
far more genes to reach or slightly surpass our accuracy. 
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Table 6. Comparison of the best classification accuracy for the leukemia dataset. 

Methods ( feature selection + classification)d # Selected genes # Correctly-classified samples (accuracy) 

α depended degree + decision rules [this work] 1 32 (94.1%) 

t-test, attribute reduction + decision rules [15] 1 31 (91.2%) 

 rough sets, GAs + k-NN [1] 9 31 (91.2%) 

EPs [8] 1 31 (91.2%) 

discretization + decision trees [16] 1038 31 (91.2%) 

CBF + decision trees [18] 1 31 (91.2%) 

RCBT [2] 10-40 31 (91.2%) 

neighborhood analysis + weighted voting [5] 50  29 (85.3%) 

prediction strength + SVMs [4] 25-1000 30-32(88.2%-94.1%) 
d The text before “+” states the feature selection method while that after it states the classification method. The 
absence of “+” means both methods can not be separated clearly.  

Table 7. Comparison of best classification accuracy for the lung cancer dataset. 

Methods ( feature selection + classification) # Selected genes # Correctly-classified samples (accuracy) 

α depended degree + decision rules [this work] 1 146 (98%) 

attribute reduction + k-NN [12] 2 146 (98%) 

 PCLs [9] unknown 146 (98%) 

C4.5 [9] 1 122 (81%) 

Bagging [9] unknown 131 (88%) 

Boosting [9] unknown 122 (81%) 

discretization + decision trees [16] 5365 139 (93%) 

RCBT [2] 10-40 146 (98%) 

Table 8. Comparison of best classification accuracy for the prostate cancer dataset. 

Methods ( feature selection + classification) # Selected genes # Correctly-classified samples (accuracy) 

α depended degree + decision rules [this work] 1 31 (91%) 

 PCLs [9] unknown 33 (97%) 

discretization + decision trees [16] 3071    25 (73.53 %) 

RCBT [2] unknown 33 (97%) 

SVMs [2] unknown   27 (79.41%) 

4 26 (77.2%) 
signal to noise ratios + k-NN [14]e 

16 29 (85.7%) 
e We compare their results from normalized dataset. For facilitating comparison, the correctly-classified sample 
numbers are calculated according to the total of 34 instead of 35 samples used in [14]. 

3.3. Analysis of Results 

In each dataset, we identify some highly-discriminative genes. These genes might be 
able to provide insight into the pathogenesis of specific or general tumors. In our models, 
the rules in the form of “if g(x)>t, then y” indicate that gene x is upregulated in the 
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samples with class y. In contrast, the rule like “if g(x)≤t, then y” imply that gene x is 
downregulated in the samples with class y.  

In terms of this standard, among the eight genes identified in the leukemia dataset, 
seven are upregulated and one is downregulated in AML. The seven upregulated genes 
include CST3, CD33, Zyxin, Azurocidin, PPF, Granulin and CYSTATIN A, and the 
downregulated one is TCF3. The first five of the seven genes also lie in the list of the 50 
informative genes distinguishing ALL from AML chosen by Golub et al [5] and are 
marked as highly expressed genes in AML. Zyxin is the only chosen gene when α=1. It is 
also frequently selected by other learning algorithms [4, 5, 8, 15, 18]. Some 
investigations reveal Zyxin might play an important role in leukemia pathogenesis. CD33 
is one of the two genes with the best classification performance identified by us. Indeed, 
CD33 is an important biomarker of AML [5, 11]. CST3 is another gene with the highest 
classification accuracy. Although it has not been found to be associated with AML or 
ALL directly, it was chosen as one of the most discriminative genes distinguishing AML 
from ALL by some authors [5, 18]. Granulin is correlated with the pathogenesis of 
various tumors. CYSTATIN A is also reported to be correlated with the prognosis and 
diagnosis of cancer.  

In the lung cancer dataset, the gene with the strongest classification ability is 
Calretinin (98% accuracy), which is identified when α=0.9. Our rules show Calretinin 
has higher expression levels in MPM, which is consistent with the reports from [6]. In 
fact, the gene has been recognized as one of the most important biomarkers in the 
diagnosis of MPM and lung cancer [6]. The genes with the second best classification 
performance include WT1, MRC OX-2, HAS1, Claudin 4 et al., all with 97% 
classification accuracy. Many investigations have revealed WT1 linked with the 
malignancy of tumors. That is, high levels of WT1 have been connected with poor 
prognosis in various cancers. Our rules indicate that WT1 has elevated expression in 
MPM, which is a highly lethal malignancy relative to ADCA. Thus our rules are 
reasonable. Likewise, our rules imply that both MRC OX-2 and HAS1 are overexpressed 
in MPM, conforming to the past studies [6]. In contrast, Claudin 4 is underexpressed in 
MPM while overexpressed in ADCA in our rules, which imply that the overexpression of 
Claudin 4 means a better prognosis.  

In the prostate cancer dataset, our rules indicate that Thymosin beta is overexpressed 
in tumors. Some investigations have revealed that it was associated with the pathology of 
several cancers. TGFβ is a multifunctional peptide that controls proliferation, 
differentiation, and other functions in many cell types. Hence, its dysregulation may be 
concerned with various cancer types. By our rules, TGFβ is underexpressed in tumors. 
That is also revealed in [14]. GA733 is the gene encoding a carcinoma-associated antigen. 
Many investigations have revealed its overexpression in diverse tumors. Without 
exception, our rules indicate GA733 is highly expressed in prostate tumors. 

4. Discussion 

The principal advantage of our single-gene models is that the predication procedures 
and results are understood with ease, because our models are based on rules and our rules 



Cancer Classification Using Single Genes   187 

are built by single genes. Obviously, biologists and clinicians prefer “rules” to “non-
rules”. Further, they favor simple rules more than complicated rules. Whereas some rule-
based models do well in prediction, they are not inclined to be adopted as their rules are 
created via many features (genes) so that it is quite difficult to understand the rules. In 
contrast, our single-gene derived rules are fairly simple and concise.  

Our models are both simple and effective. The efficacy of our models has been 
proven through their application to several noted microarray datasets. The results 
manifest that not only accurate classification of cancer can be achieved, but also 
biologically important genes can be identified with the models. Moreover, our models are 
rather robust. We select informative genes based on α depended degree instead of 
depended degree originally proposed in rough sets. Indeed, if we use the conventional 
depended degree standard, many important genes will be neglected for their depended 
degrees are often fairly lower, even zero. But their lower depended degrees are 
frequently caused by a small number of exceptional instances. If we tolerate the 
exceptions, we will find that these genes are indeed significant in class discrimination. 
Hence, we develop α depended degree standard to address the problem. By the operation 
of α value, we are able to not only select authentically important genes, but also control 
the size of selected genes as well as the confidence of classification rules. Accordingly, 
we can adjust our models to meet different datasets.  

One might doubt the utility of our models as he holds that cancerous pathogenesis is 
so complex that it must be connected with many genes instead of just one. Our findings 
do not contradict this argument in that our methods can mark many significant genes 
solely, each of which could be the candidate biomarker of cancer. Clearly, our methods 
might achieve the goal of finding the possible molecular markers of cancer more easily 
compared with multi-gene models because when good predication is obtained by multi-
gene models, it is difficult to gauge which genes are essential in cancerous pathogenesis. 
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