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ABSTRACT vironments is the use of virtualization technologies, which enable

Use of virtualization technologies is becoming prevalent, including, @PPlications to set up and deploy a customized virtual environment.

but not limited to, the current commercial cloud environments. At Virtual Machines_ (VMS) are configured in(_jependent of the resaurce
the same time, besides resources costs and application performancé"?‘,nol can be ea3|_ly m_|grated to other environments. Another feature
energy efficiency is becoming a dominant consideration while de- ©f €loud computing is theay-as-you-ganodel, or the support for
signing systems and executing applications on them. The premise ofqn-.demand:omputlng. Applications have access to a seemingly un-
our work is that consolidation of scientific workflow tasks can be a lImited set of resources, and users are charged based on the number
promising approach for energy and resource cost optimization, with- and type of resources used. . .

out incurring substantial performance degradation. This is further . Resource utilization a_nd resource costs are important con3|dera1’-
supported by detailed analysis of resource requirements of scientifictions for both cloud service providers and cloud users. From users

workflow tasks, and analysis of power consumption with use of vir- PErsPective, with theay-as-you-ganodel, users need to maintain
tualization and with consolidation of workloads. the tradeoff between resource costs and application performance.

Based on the trends observed from our experiments, we have de_CIoud providers, on the other hand, will like to maintain high through-

velopedpSciMappey a power-aware consolidation framework for put, and meet the needs of a Iarge number Of. users with a fixed set of
scientific workflow tasks. We view consolidation as a hierarchical "€Sources. Power management is another critical issue for the clouds

clustering problem, and introduce a distance metric that is based on10Sting thousands of computing servers. A single high-performance

interference between resource requirements. We extract the key temS00 W Server consumes 2628 KWh of the energy per year, with an

poral features of the resource (CPU, memory, disk /0, and network 2dditional 748 KWh in cooling [10], which also causes a significant
1/0) requirements of each workflow task, and use a dimensionality 20Verse impacton the environment in term&'6?2 emissions. Even
reduction method (KCCA) to relate the resource requirements to per- " 2006, data centers accounted for 1.5% of the total U.S. electricity
formance and power consumption. We have evaluated pSciMappercONSumption, and this number is expected to grow to 3.0% by’2011
with both real-world and synthetic scientific workflows, and demon- L@tely, there has been much interest in effective power management,
strated that it is able to reduce power consumption by UBGtG, and technlques'llke Dynamic Voltage and Frequency Scaling (DVFS)
with less thanl5% slowdown for the workflow. Our experiments ~ave been applied to reduce power consumption [22, 50, 40, 38].
also show that overhead of pSciMapper is very low, and it can be a | /iS Paper focuses on effective energy and resource costs man-

practical approach even for workflows with hundreds of tasks. agement for scientific workflows. Our work is driven by the obser-
vation that tasks of a given workflow can have substantially different

resource requirements, and even the resource requirementsmf a pa

1. INTRODUCTION ticular task can vary over time. Mapping each workflow task to a
Business and scientific computing processes can often be mod-different server can be energy inefficient, as servers with a very low
eled as workflows. Formally, &cientific workflow is a specifica- load also consume more th&0% of the peak power [8]. Thus,

tion of a scientific process, which represents, streamlines, and auto- server consolidatioyi.e. allowing workflow tasks to be consolidated
mates the analytical and computational steps that a scientist needsonto a smaller number of servers, can be a promising approach for
to go through from dataset selection and integration, computation reducing resource and energy costs.
and analysis, to final data product presentation and visualization” We apply consolidation to tasks of a scientific workflow, with the
Large-scale scientific workflows are used to support research in ar-goal of minimizing the total power consumption and resource costs,
eas like astronomy [1], bioinformatics [5], physics [12], and seis- Wwithout a substantial degradation in performance. Effective consol-
mic research [2], and many others. Scientific workflow manage- idation, however, poses several challenges. First, we must carefully
ment systems like Pegasus [18] and Kepler [31] have been developediecide which workloads can be combined together, as the workload
with goals of supporting specification, management, and executionresource usage, performance, and power consumption is not addi-
of workflows, especially on large datasets and high-end resourcestive. Interference of combined workloads, particularly those hosted
like the TeraGrid [4]. in virtualized machines, and the resulting power consumption and
Another recent trend has been towaditsud computing Lately, application performance needs to be carefully understood. Second,
there is a growing interest in the use of cloud computing for scientific due to the time-varying resource requirements, resources should be
applications, as evidenced by a large-scale funded project like Mag-provisioned at runtime among consolidated workloads.
ellan?, and related research efforts like the Nimbus préje&ev- We have developepSciMappera power-aware consolidation fra-
eral projects have experimented with scientific workflows on cloud mework to perform consolidation to scientific workflow tasks in vir-
environments [17, 26, 23]. One of the characteristics of cloud en- tualized environments. We first study how the resource usage im-
pacts the total power consumption, particularly taking virtualization

Thttp:/imvww.cs.wayne.edu/ shiyong/swf/swf2010.html
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planted along the coastal line, or from the satellites supervising this
particular coastal district. Normally, the Lake Erie is divided into
multiple coarse grids, each of which is assigned available resources
| for model calculation and prediction. We illustrate the GLFS work-
| flow in Figure 1. The number of inputs processed by the workflow
Parbtining may increase over time as more regions of Lake Erie need to be
covered. This will also translate to an increase in the number of
computational tasks. The initial satellite sea surface temperature and
_ ‘_Agg?:;:ﬁon other measured data, including the the wind speed, pressure and air

() ohetrearrun - ‘ humidity, are fed into thggMMS5 task. Then, the updated meteo-

© oue
O gWaterLevel

gTurbulentStress

”””” rological data go through a series of interaction models, including
gTurbulentStressgNetHeatFluxand gWaterLevel as shown in the

Q gPOMZD b~ .~ Pipeline figure. These steps prepare the data that is required for predicting

Q J— corresponding meteorological information using gfROM2Dor the

®

gGridResolution

| gPOM3Dtasks. Before starting the POM model, #p@ridResolu-
gvis . | tion task decides the resolution that will be used in the model. Fi-

nally, the grid resolution, along with the output from various inter-
Figure 1: GLFS Workflow action models, serve as inputs to #feOM2Dtask (which applies
a 2D ocean model) and/or tigf?OM3D (which applies a 3D ocean
model for more accurate prediction). Such POM models will predict
into account. Then, we investigate the correlation between work- meteorological information, including the water level, current veloc-

loads with different resource usage profiles, and how power and per 1Y and water temperature, for Lake Erie. Tgistask is then used
formance is impacted by their interference. Our algorithm derives 0 Project the outputs onto images. _

from the insights gained from these experiments. We first summarize 1€ runtime of most individual tasks in ti@& FS workflow can

the key temporal features of the CPU, memory, disk, and network P& quite small (seconds to few minutes). YELFS is clearly a
activity associated with each workflow task. Based on this profile, COMPute-intensive application. On a standard PC (Dual Opteron 254

consolidation is viewed ashderarchical clusteringproblem, witha  (2-4GHz) processors, with 8 GB of main memory and 500 GB lo-
distance metric capturing the interference between the tasks. We als¢2! disk space), predicting meteorological information for the next
consider the possibility that the servers may be heterogeneous, andWo days for an area of 1 square miles took nearly 2 hours. The
an optimization method is used to map each consolidated set (dus_executlon time could grow rapidly with need for increasing spatial

ter) onto a server. As an enhancement to our static method, we alsg-verage (for example, the total area of Lake Eri6,i840 square
perform time varying resource provisioning at runtime. miles), and/or better temporal granularity. Better response time can

We evaluated pSciMapper using several real and synthetic scien-P€ achieved by using different servers for different workflow sask
tific workflows. The observations from our experiments show that OPViously, this will also increase resource and power costs, and the
our consolidation algorithm, with time-varying resource provision- 1ght tradeoff between the execution time and resource and power
ing, is able to save up 6% of the total consumed power, with only costs _needs to b_e maintained. In tht_e_ next subsection, we perform
10-15% performance slowdown, over the case where each workflow@ detallgd analysis on the resource utlllzatlon. of t.he GLFS workflow
task is mapped to a different server. This is close to, or even better@nd motivate our work on using server consolidation to reduce power
than, an optimal static approach that is based on exhaustive search. " résource costs.
addition, we also show that the overhead of pSciMapper is negligible
and it is practical even for workflows with hundreds of tasks. 2.2 Resource Usage GEFS Workflow

The rest of the paper is organized as follows. We motivate our ~We execute th&LFS application in a Linux cluster, which con-
work by analyzing the resource requirements of a scientific work- sists of 64 computing nodes. Each node has a dual Opteron 254
flow application in Section 2. We study the impact of a workload’s (2.4GHz) with 8 GB of main memory and 500 GB local disk space,
resource requirements, use of virtualization, and workload consoli- and the nodes are interconnected with a switched 1 Gb/s Ethernet.
dation, on power consumption in Section 3. In Section 4, we describe During the execution of th&LFS workflow, we usedSysstatools
our power-aware consolidation algorithm. Results from our experi- [3] to collect the following performance data every 1 second: CPU
mental evaluation are reported in Section 5. We compare our work utilization, memory utilization, disk I/O (including reads and writes),
with related research efforts in Section 6 and conclude in Section 7. and network I/O (including sends and receives). Like other scientific
workflows, GLFS has the long-running, iterative nature. For a given
certain input data, the steps between the transferring data into the first
2. MOTIVATING APPLICATIONS task,gMM5 to the output frongVisare referred to as one invocation

The work presented in this paper is driven by characteristics of of the workflow. For different invocations, behavior of the applica-
scientific workflows (or DAG-based computations), and the opportu- tion could be different, due to different data size, and/or dynamics
nities for optimizations they offer. We specifically study one appli- exposed by the application. Figure 2 shows the CPU, memory, disk,

cation in details. and network utilization of twdaLFS tasks, for 5 invocations of the
. workflow.
2.1 Great Lake Forecasting System (GLFS) As illustrated in Figure 2, each resource usage data can be ex-

We now describe one such scientific application in details. Par- pressed as ime series The resource usage of the first task varies
ticularly, we first show its DAG structure. Then, we analyze the across different invocations. In contrast, resources consuméteby
resource usage of theLFS workflow and discuss the characteris- second task remains roughly the same across invocations. We further
tics that make consolidation a promising solution to save power and analyze the characteristics of the time series we have obtained. Par-
resource costs in any virtualized environment, including the clouds. ticularly, we have applied the auto-correlation function (ACF) [27] to

This application monitors meteorological conditions of the Lake the series and it shows that the resource utilization data from the sci-
Erie for nowcasting (for the next hour) and forecasting (for the next entific workflows is expressed as a periodic time series. Furthermore,
day). Every second, data comes into the system from the sensors time series can be eithstationary with observations fluctuating
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Figure 2: The CPU, Memory, Disk and Network Usage of Two GLFS Comonents (< 1000, 6,600

(b)
>, < 500,3,600 > and

< 2000, 12,200 > Represent Different Application Parameters

around a constant mean with constant variancejam-stationary

Workload CPU | Memory Disk Network
where the underlying process has unfixed moments (i.e. mean and CPU-bound | Vary 2% None None
variance) that intend to increase or decrease over time. We claim Memory-bound| 70% Vary None None
that the resource utilization time series from one invocation at least Disk-bound 50% 2% Vary None
meets thaveak stationaryequirements, which are that the first two Network-bound| 50% 2% 18MB/s Vary
moments (mean and variance) do not vary with time. The resource

usage pattern dBLFS, in this respect, is similar to the observations
made from other scientific workflow executions [13, 49].

Overall, we can make the following observations from the re-
source usage patterns we have seen. 1) The scientific workflow can
be composed of a large number of tasks. The workflow tasks have a
periodic behavior with respect to CPU, memory, disk, and network
usage, with most of them incurring low resource utilization (e.g. Fig-
ure 2(b)). 2) The resource usage of a workflow task is significantly
smaller than its peak value for more th&d% of the time (except
that network activity, which remains constant over time). Therefore,
provisioning resources based on peak requirements will likely lead
to resource and power wastage. Furthermore, considering the time
series of resource utilization of different tasks, we can see that their
respective usage of the same resource does not peak at the same timgigure 3: Power Consumption with Different Levels of CPU,

3) The resource consumed by a workflow task can be dependent odMemory, Disk, and Network Usage

the values of the application parameters for the particular invocation

(Figure 2(a)), as well as characteristics of the host server. Cempar ) i .

ing the Lst (and 2nd) to the 4th invocation, the resource usage patterri1Z: 2 GB of memory and a 160 GB hard drive. This machine is

remains the same, with only a change in the intensity of resourcesC0nnected to the department research network through a 1 GB Eth-

consumption. However, even the pattern itself could change becausé"net connection. We clutched a power meter to this PC to measure

of a different set of application parameters (i.e. consider the 3rd invo (1€ Power consumed as workloads are varied. Four distinct sets of

cation). In the 5th invocation, the same parameter values were used®YNthetic workloads were used for our analysis. Note that a mix of

with a change in the resource availability from the host server. such workloads could be representatives of the _smentmc workflow
tasks. These sets a@PU-bound Memory-boundDisk-bound and

3. POWER ANALYSIS WITH VMS AND CON- Network-boundwhere CPU-bound denotes that only the CPU us-
age is varied, while other resource activities are fixed. Within each

SOLIDATION set, the workload is varied betwekaw, moderately lowmoderately

In the previous section, we demonstrated how the resource require-high, andhigh levels. We summarize the resource needs for work-
ments of workflow tasks have a periodic pattern, with actual require- loads in each set in Table 1.
ments being significantly lower than peak requirements most of the We present the experimental results in Figure 3. Unit power is
time. Our goal in this section is to understand the potential of using reported here, and it denotes the power consumed every 1 second.
virtualization and consolidation of virtual machines (VMs) for opti- When the system is idle, the power consumptior3dswatt. We
mizing resource and power requirements. To this end, we first an- varied the CPU usage fro20%, 40%, 80%, to 100% in the CPU-
alyze the relationship between resource usage and power consumpbound workload set. As we can see, CPU utilization has a significant
tion, particularly taking virtualization into account. Then, perfor- impact on the consumed power. Between a workload where CPU
mance and power consumption with consolidation of different types activity is 20% and the workload where the CPU activity is 100%,
of workloads is analyzed. power consumption increases by a factor of 64%. However, we can

. . also see that lowering CPU activity does not result in a proportional
3.1 Power Consumption Analysis decrease in power consumption. If the CPU activity is lowered to

In this subsection, we study how power consumption is related to one fifth of the peak capacity of the system, the power savings are
different levels of resource activities. Particularly, we conducted the only close to 40% of the peak power.
experiments on a single PC with Intel Dual Core processor at 3.0G  In the memory-bound set, the memory utilizationl &%, 20%,

Table 1: Resource Activities of Different Sets of Workloads

I Lo [ voderately Low [ Moderately High [l High

2
3

@
]

Unit Power Consumption (Watt)

CPU-bound

d  Disk-bound
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Figure 5: Impact of Consolidation of Workloads(C:CPU, M:memory, D:disk, N:network -intensive): (a) Power Consumption (b) Exe-
cution Time

see from Figure 4(b), when there is a contention for CPU cycles, the
power consumed by using thidon Work-Conservingnode is less
than what is consumed in thgork-Conservingnode.

Overall, we can make several observations from our experiments.
First, all of the resource activities impact power consumption. Varia-
tion in the CPU utilization has the largest impact on total power con-
sumption, though memory footprint and cache activity also impact

atve
. en

n (Wat))

Unit Power Consumptior
Unit Power Consumption (Watt)

O —NCPU Memory " Disk Nework 20n 20 200 ORGSE 550%6 the consumed power. Enabling virtualization does incur some addi-
tional overheads, though these overheads are small. Finally, when
@ () there is CPU contention between Xen VMs, dynamic provisioning
Figure 4: (a) Unit Power Consumption Comparison: Native vs. of CPU at runtime saves power.
Xen (b) Credit Scheduler: Work-Conserving vs. Non Work-
Conserving 3.2 Impact of Consolidation and Workload Correlation

We next study the impact of consolidating different types of work-

loads on a single physical machine, with the of virtualization tech-
40%, and80%, for the four workloads. The CPU activity is fixed at  nologies. We study both the execution time and the rate of power
70%, and thus, all four workloads in this set corresspond to a fairly consumption (i.e., the unit power) after consolidation of workloads
high CPU load. As we can see, a larger memory footprints results with different resource usage profiles.
in higher power consumption. Furthermore, during our experiments, We take four workloads, which could be considered¢aspute-
we have also observed that varying cache activity levels, while keep- intensivg/C), memory-intensivéM), disk-intensivéD), andnetwork-
ing the same total memory footprint, impacts power consumption, intensive(N), respectively. For each distinct pair from these four
and as expected, more power is consumed when cache miss rate igvorkloads (10 pairs in all), we compared two executions. The first
high. execution involves running each workload individually on the re-

Next, we consider disk activity of the workloads. Within the set, search PC we used in Subsection 3.1. This is referred fppd
all workloads involved disk activity, but we varied the disk read rates. andApp2. Then, we place each workload on a VM, and execute 2
CPU usage is fixed &0% and memory usage is less th&#. We VMs on the same core of the same machine. This execution is re-
can observe that the consumed power remains constant as disk reaférred to asConsol i dat ed VMs. The unit power consumption
rates are varied. More analysis demonstrated that power consump-and the total execution time is reported in Figure 5, sub-figures (a)
tion is reduced if the disk is completely idle for long periods of time. and (b), respectively.

Finally, network-bound workload set is studied. CPU and mem-  From Figure 5 (a), we can see that consumed unit power from
ory usage is fixed as0% and 10%, respectively. Disk activity is consolidation is up t&5% lower that the aggregate power used by
18 MB/s. Similar to disk activity, presence of network I/O adds a executing workloads individually. Consolidated VMs can incur more
constant overhead to the unit power consumption. However, the fre- power, but the extra power is negligible except in one case. When
guency of network I/O itself does not impact power consumption.  two memory-intensive workloads are co-located, frequent memory

Next, we analyzed the power overheads of use of virtualization accesses from both of them increase the cache miss rates, resulting
technologies (particularly, Xen). The results are shown in Figure 4(a). in higher unit power consumption.

We chose one of the workloads from the four sets we had studied, Figure 5 (b) shows the execution times. The results show that
i.e., CPU-bound, memory-bound, disk-bound, and Network-doun when dissimilar workloads are consolidated, we are able to execute
sets. We compared the unit power consumption by executing thethe application with only at most 10% slowdown as compared to the
workload on the same PC with and without Xen VM'’s enabled. Our execution time of a single application. In other words, if we had only
results show that Xen VMs pose less tH&l of power overhead. a single server for execution of the two workloads, consolidation of
This demonstrates that Xen VMs incur negligible overhead in terms dissimilar workloads leads to a significant reduction in the total ex-
of unit power consumption. Furthermore, we study the power con- ecution time. Another way of viewing these results is as follows.
sumption with the credit-scheduler of Xen [6]. We pined 2 VMs to Compared to the case when we could use two independent servers
a physical core, each of which has a different CPU requirement. In for execution of these workloads, we are incurring only a small slow-
the Work-Conservingnode, the CPU requirement of each workload down in the execution time, and large saving in resource and power
will be allowed whenever there is idle CPU. While using thien costs.

Work-Conservingnode with thecapset, the workload cannot access As expected, consolidating workloads with similar requirements is
more CPU than what has been limited by the cap value. As we cannot beneficial. For example, when we consolidate two CPU-intensive
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time series, which we describe towards the end of this section.

Now, for consolidation, we extract kegmporal featurefrom the
time-series. This results in 52 features per workflow task , not all
of which may be equally important for predicting the execution time
and power consumption. We use a dimensionality reduction tech-
nigue, Kernel Canonical Correlation Analysis (KCCA) [7], to relate
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Hidden Markov Model (HMM)

Hierarchical Clustering

Optimization Search
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Algorithm the key features to the execution time and power consumption.
Temporal Feature - . . . . . A
R Next, the online consolidation algorithm uses hierarchical cluster-
weon mml} Time Varying ing [25] and the Nelder-Mead optimization algorithm [35], to search
Kemel C p ; o . .
Correlation Analysis | presource ) consolidated for the optimal consolidation, where power requirements are min-
Workloads imized, without a substantial impact on performance. As an en-

|
\ . e
[ hancement to our static consolidation approach, we also perform
time-varying resource provisioningased on the dynamic resource

Figure 6: The pSciMapper Framework Design requirements of the workflow tasks.

4.2 Temporal Feature Extraction and Kernel

workloads, the execution time doubled. Also, for a pair of memory- Canonical Correlation Analysis
intensive workloads, the execution time increased . Consol- The relationships between resource usage time series and a work-
idation of two workloads that have a high disk or network activity g,y task’s execution time and its power consumption are complex.
also leads to significant slowdowns. In these cases, even if the UnitTy facilitate our analysis, we use a speciiiznporal signatureto
power does not increase, the total power consumption will increase capture the key character'istics of a given time series.
because the same power is being consumed for a longer duration. - omnora| Signature: Given a resource usage time series, which

_Overall, our results indicate that consolidation of workloads with - geifies the resource requirements with respect to a specific resourc
dissimilar requirements can reduce the total power consumption and ~py memory, disk, or network) of a workflow task, we extract the
resource requirements significantly, without a substantial degrada'following three sets of information: 1eak value We define it as
tion in performance. the max value of the time series data and denotesitas. 2) Rela-

tive variance We compute the sample variance of the data, denoted
4. DESIGN OF PSCIMAPPER asv®. However, the sample variance depends on the scale of the

This section presents the framewogSciMappey that we have measurement of a pa_rticular resource. Therefore, we transfaafrr_] th
developed to consolidate scientific workflows in virtualized environ- v values to a normalizefd, 1] space, with 0 being the lowest vari-
ments. We first give an overview of our approach. Next, we discuss ance and 1 being the highest. This value serves as an indicator of
how we extract key temporal information from the given resource uti- fluctuation around the average resource utilization of the workflow.
lization profiles (time-series) for each task of the workflow, and fur- 3) Pattern Besides peak and variance, we need to capture how the
ther relate it with application performance and power consumption. resource usage varies around an expected baseline. We take the repe
Then, we present our power-aware consolidation algorithm, which itive pattern of the time series data and generate a sequence of sam-
places tasks of a scientific workflow on servers so that power con- Ples, choosing the sampling rate is a way such that the information
sumption is minimized, without a substantial increase in the comple- from the original time series is preserved as much as possible [27]. In
tion time. Finally, towards the end of this section, we describe how this work, the pattern is represented iynumbersp:, pz, ..., p1o.
we learn a model capturing the resource usage profile’s dependence Now the temporal signature for a resource utilization time series
on the application parameters and the characteristics of the resource§ata () can be represented as
on which the workflow is executed. Ty =< mawzi, v2, p1i, Pai, oy P10 > 1)
4.1 Overview As the last part of the offline analysis in pSciMapper, we need to

In order to reduce the total power in a computing environment, relate the usage of resources with the workflow task’s performance
effective power management strategies have been developed®[22, 5 and power consumption when it is mapped onto a server. We train
44, 39]. Dynamic Voltage and Frequency Scaling (DVFS) is awidely a model for this purpose. The input to such model is the tempo-
applied techniqgue to minimize the processor power by scaling down ral signatures we extracted from the CPU, memory, disk, and net-
CPU frequencies. We use server consolidation in our work, which work utilization time series, plus resource variables representing the
is based on the characteristics of the workflows we have observed.host server capacity. The model outputs time and consumed power
Unlike the previous work on consolidating workloads [48, 43], we for a task of the scientific workflow on this server. Thus, we have
not only specifically focus on scientific workflows (DAGs), but also 52 features in the input space and 2 features in the output space.
consider a more complex consolidation problem. We investigate In our work, we have used Kernel Canonical Correlation Analysis
server heterogeneity, with respect to CPU, memory, disk, and net- (KCCA) [7] for modeling theresource-timeandresource-powere-
work bandwidths, as well as the application requirements for these |ationships.
resources. We also study the interference caused by resource con-

tention when multiple workflow tasks are placed on a single server, Rosoure Usage
and how it impacts the power consumption and application perfor- Resource Usage Tompora o
mance Time Series g 2 OO O
The overall design of pSciMapper is illustrated in Figure 6. It = AN ﬂm .?—
consists of two major componentsnline consolidatiorandoffline corelsiony
analysis The online consolidation algorithm assumes that for each raomnce 1 ;,‘!,-i:’:fa"
task of the workflow to be scheduled, a set of time series data repre- Soa s o® ®
senting the CPU, memory, disk, and network utilization is available. hd

In practice, such specific information may not be available for the
given hardware and the application parameters without executing theFigure 7: KCCA Training: From Vectors of Resource Usage Fea-
workflow. We train a hidden Markov model (HMM) to predict such tures to Vectors of Metric Features



focuses on the interference between the resource requirements of the

Algorithm 4.1: WORKFLOWCONSOLIDATION(C, S) workflow tasks.
Particularly, we apply the agglomerative hierarchical clustering
INPUT C" the set of components algorithm [25] using the extracted temporal signature vectors. The
S the set of servers consolidation procedure is iterative and it starts from the bottom of
OUTPUT ©: the consolidation plan the hierarchical cluster structure, i.e., when each cluster is formed

[/ initial assignment of components
InitialCluster(C, S);
// generate resource usage profile

by a single workflow task. We decide whether two taskand j,
can be consolidated by calculating tistancebetween them. To be

for each C; and S, specific, we define the distance metric as the following.
GenerateT S(C;, S5);
O = OptimalSearch(C, S); Dist;; = Z aff_score(Ri, R2) X Corr(peakfl,peakfl)
while (true) Ry Ro
for each cluster; and cluster; ' R R
/lcalculate distance between two clusters xCorr(peak;?, peak;?) (3)
linkage; ; = CalculateDist(cluster;, cluster;);
if linkage;,; < mergethreshold , whereR1, R» denotes any type of resources (thus 10 pairs in total)
I consolidate workloads in two clusters and Corr(peak!™ , peak]™) is the Pearson’s correlation between
MergeCluster (clusters, cluster;) two workloads with regards to the resource usageiof We ar-

© = OptimalSearch(C, S);
if ( stopping criteria is met)
6 =0;
break; R
TimeV aryingResource Provisioning(©);

gue that it is more important to consider the correlation of the peak
values rather than the whole temporal signature. d@fi¢_score
is pre-specified based on our correlation analysis in Section 3.2. It
varies between 0 and 1, with 0 denoting the least interference when
consuming two resource’l and R2 together. The DAG structure
has to be considered here. Although combining two workloads with
active network activities could incur significant computing overhead,
communication cost can be reduced if there is a direct dependency
Figure 8: Workflow Consolidation Algorithm between them. Thusf f_score is small for two network-intensive
workloads with aparent-child relationship. We merge two clus-
ters if the distance between them is smaller than a threshold, i.e .
KCCA: Canonical Correlation Analysis (CCA) is a dimension- merge_threshold in the pseudo-code.
ality reduction technique that is useful to determine the correlation  Next, a well-known optimization algorithm, the Nelder-Mead [35],
between two sets of multi-variate datasets. KCCA is a generalization is applied to identify how the clusters obtained can be mapped to the
of CCA using kernel functions to model nonlinear relationships [7]. given set of servers. The goal here is to minimize the power, with-
Given N temporal signatures from resource usage profiles, we form out incurring a significant performance degradation. The consumed
anN x N matrix K, where the(s, j)th entry is the kernel evalua-  power and execution time for the one-to-one mapping of clusters to
tion k. (23, z;). Specifically, we have used the Gaussian kernel [37]. the servers can be estimated using the KCCA model trained offline.
Similarly, we also form anlV x N matrix K, where the(s, j)th el- To be specific, the input vector, which includes the temporal signa-
ement is the kernel evaluatidn (v;, y;) with respect to application  ture of the resource usage profile along with the server capacity, is
performance and power consumption. The KCCA algorithm takes projected into the resource subspace. We then infer the coordinates
the matrices<, and K, and solves the following generalized eigen- in the metric subspace using th@earest neighbors, wheke= 3 in
vector problem: our implementation. Finally, we map the metric projection back to
the metrics, which are the consumed power and the execution time. A
0 K. Ky| |A K, K, 0 A . : o :
{K K 0 } [B} = { 0 KK } {B} 2) weighted sum of th_e metric p_rOJectlons from the neakgselghbors
v vy has been used, with the weight to be the reverse distance between
This procedure finds subspaces in the linear space spanned byoordinates of two projections in the subspace. The optimal point of
the eigenfunctions of the kernel functions such that projections onto this iteration with the minimum total power consumption is recorded.
these subspaces are maximally correlated [7]. We refer to such pro- Then, temporal signature of the new cluster is updated from the
jections agesource usage projectioandmetric projection respec- consolidated workloads. Such consolidation iterations stop when the
tively. We illustrate such projections in Figure 7. If the linear space clusters cannot be merged anymore since merging will incur signifi-
associated with the Gaussian kernel can be understood as clusters inant interference, and/or the degradation in application performance
the original feature space, then KCCA finds correlated pairs of clus- will be intolerable.
ters in the resource usage vector space and the performance/power As an enhancement to the static consolidation algorithm, we fur-

vector space. ther take into account the dynamic resource requirements in the con-
L solidated workloads to save power (Se