
Power-aware Consolidation of Scientific Workflows in
Virtualized Environments

Qian Zhu Jiedan Zhu Gagan Agrawal
Department of Computer Science and Engineering

Ohio State University, Columbus OH 43210
{zhuq,zhujie,agrawal}@cse.ohio-state.edu

ABSTRACT
Use of virtualization technologies is becoming prevalent, including,
but not limited to, the current commercial cloud environments. At
the same time, besides resources costs and application performance,
energy efficiency is becoming a dominant consideration while de-
signing systems and executing applications on them. The premise of
our work is that consolidation of scientific workflow tasks can be a
promising approach for energy and resource cost optimization, with-
out incurring substantial performance degradation. This is further
supported by detailed analysis of resource requirements of scientific
workflow tasks, and analysis of power consumption with use of vir-
tualization and with consolidation of workloads.

Based on the trends observed from our experiments, we have de-
velopedpSciMapper, a power-aware consolidation framework for
scientific workflow tasks. We view consolidation as a hierarchical
clustering problem, and introduce a distance metric that is based on
interference between resource requirements. We extract the key tem-
poral features of the resource (CPU, memory, disk I/O, and network
I/O) requirements of each workflow task, and use a dimensionality
reduction method (KCCA) to relate the resource requirements to per-
formance and power consumption. We have evaluated pSciMapper
with both real-world and synthetic scientific workflows, and demon-
strated that it is able to reduce power consumption by up to56%,
with less than15% slowdown for the workflow. Our experiments
also show that overhead of pSciMapper is very low, and it can be a
practical approach even for workflows with hundreds of tasks.

1. INTRODUCTION
Business and scientific computing processes can often be mod-

eled as workflows. Formally, a“scientific workflow is a specifica-
tion of a scientific process, which represents, streamlines, and auto-
mates the analytical and computational steps that a scientist needs
to go through from dataset selection and integration, computation
and analysis, to final data product presentation and visualization”1.
Large-scale scientific workflows are used to support research in ar-
eas like astronomy [1], bioinformatics [5], physics [12], and seis-
mic research [2], and many others. Scientific workflow manage-
ment systems like Pegasus [18] and Kepler [31] have been developed
with goals of supporting specification, management, and execution
of workflows, especially on large datasets and high-end resources
like the TeraGrid [4].

Another recent trend has been towardscloud computing. Lately,
there is a growing interest in the use of cloud computing for scientific
applications, as evidenced by a large-scale funded project like Mag-
ellan 2, and related research efforts like the Nimbus project3. Sev-
eral projects have experimented with scientific workflows on cloud
environments [17, 26, 23]. One of the characteristics of cloud en-

1http://www.cs.wayne.edu/ shiyong/swf/swf2010.html
2Please see http://www.cloudbook.net/doe-gov
3http://workspace.globus.org

vironments is the use of virtualization technologies, which enable
applications to set up and deploy a customized virtual environment.
Virtual Machines (VMs) are configured independent of the resources
and can be easily migrated to other environments. Another feature
of cloud computing is thepay-as-you-gomodel, or the support for
on-demandcomputing. Applications have access to a seemingly un-
limited set of resources, and users are charged based on the number
and type of resources used.

Resource utilization and resource costs are important considera-
tions for both cloud service providers and cloud users. From users’
perspective, with thepay-as-you-gomodel, users need to maintain
the tradeoff between resource costs and application performance.
Cloud providers, on the other hand, will like to maintain high through-
put, and meet the needs of a large number of users with a fixed set of
resources. Power management is another critical issue for the clouds
hosting thousands of computing servers. A single high-performance
300 W server consumes 2628 KWh of the energy per year, with an
additional 748 KWh in cooling [10], which also causes a significant
adverse impact on the environment in terms ofCO2 emissions. Even
in 2006, data centers accounted for 1.5% of the total U.S. electricity
consumption, and this number is expected to grow to 3.0% by 20114.
Lately, there has been much interest in effective power management,
and techniques like Dynamic Voltage and Frequency Scaling (DVFS)
have been applied to reduce power consumption [22, 50, 40, 38].

This paper focuses on effective energy and resource costs man-
agement for scientific workflows. Our work is driven by the obser-
vation that tasks of a given workflow can have substantially different
resource requirements, and even the resource requirements of a par-
ticular task can vary over time. Mapping each workflow task to a
different server can be energy inefficient, as servers with a very low
load also consume more than50% of the peak power [8]. Thus,
server consolidation, i.e. allowing workflow tasks to be consolidated
onto a smaller number of servers, can be a promising approach for
reducing resource and energy costs.

We apply consolidation to tasks of a scientific workflow, with the
goal of minimizing the total power consumption and resource costs,
without a substantial degradation in performance. Effective consol-
idation, however, poses several challenges. First, we must carefully
decide which workloads can be combined together, as the workload
resource usage, performance, and power consumption is not addi-
tive. Interference of combined workloads, particularly those hosted
in virtualized machines, and the resulting power consumption and
application performance needs to be carefully understood. Second,
due to the time-varying resource requirements, resources should be
provisioned at runtime among consolidated workloads.

We have developedpSciMapper, a power-aware consolidation fra-
mework to perform consolidation to scientific workflow tasks in vir-
tualized environments. We first study how the resource usage im-
pacts the total power consumption, particularly taking virtualization

4http://www.energystar.gov/index.cfm?c=prod_development.server
_efficiency_study

Data
Partitioning

Data
Aggregation

Pipeline

data

gMM5

gWaterLevel

gTurbulentStress

gNetHeatFlux

gGridResolution

gPOM2D

gPOM3D

gVis

Figure 1: GLFS Workflow

into account. Then, we investigate the correlation between work-
loads with different resource usage profiles, and how power and per-
formance is impacted by their interference. Our algorithm derives
from the insights gained from these experiments. We first summarize
the key temporal features of the CPU, memory, disk, and network
activity associated with each workflow task. Based on this profile,
consolidation is viewed as ahierarchical clusteringproblem, with a
distance metric capturing the interference between the tasks. We also
consider the possibility that the servers may be heterogeneous, and
an optimization method is used to map each consolidated set (clus-
ter) onto a server. As an enhancement to our static method, we also
perform time varying resource provisioning at runtime.

We evaluated pSciMapper using several real and synthetic scien-
tific workflows. The observations from our experiments show that
our consolidation algorithm, with time-varying resource provision-
ing, is able to save up to56% of the total consumed power, with only
10-15% performance slowdown, over the case where each workflow
task is mapped to a different server. This is close to, or even better
than, an optimal static approach that is based on exhaustive search. In
addition, we also show that the overhead of pSciMapper is negligible
and it is practical even for workflows with hundreds of tasks.

The rest of the paper is organized as follows. We motivate our
work by analyzing the resource requirements of a scientific work-
flow application in Section 2. We study the impact of a workload’s
resource requirements, use of virtualization, and workload consoli-
dation, on power consumption in Section 3. In Section 4, we describe
our power-aware consolidation algorithm. Results from our experi-
mental evaluation are reported in Section 5. We compare our work
with related research efforts in Section 6 and conclude in Section 7.

2. MOTIVATING APPLICATIONS
The work presented in this paper is driven by characteristics of

scientific workflows (or DAG-based computations), and the opportu-
nities for optimizations they offer. We specifically study one appli-
cation in details.

2.1 Great Lake Forecasting System (GLFS)
We now describe one such scientific application in details. Par-

ticularly, we first show its DAG structure. Then, we analyze the
resource usage of theGLFS workflow and discuss the characteris-
tics that make consolidation a promising solution to save power and
resource costs in any virtualized environment, including the clouds.

This application monitors meteorological conditions of the Lake
Erie for nowcasting (for the next hour) and forecasting (for the next
day). Every second, data comes into the system from the sensors

planted along the coastal line, or from the satellites supervising this
particular coastal district. Normally, the Lake Erie is divided into
multiple coarse grids, each of which is assigned available resources
for model calculation and prediction. We illustrate the GLFS work-
flow in Figure 1. The number of inputs processed by the workflow
may increase over time as more regions of Lake Erie need to be
covered. This will also translate to an increase in the number of
computational tasks. The initial satellite sea surface temperature and
other measured data, including the the wind speed, pressure and air
humidity, are fed into thegMM5 task. Then, the updated meteo-
rological data go through a series of interaction models, including
gTurbulentStress, gNetHeatFluxandgWaterLevel, as shown in the
figure. These steps prepare the data that is required for predicting
corresponding meteorological information using thegPOM2Dor the
gPOM3D tasks. Before starting the POM model, thegGridResolu-
tion task decides the resolution that will be used in the model. Fi-
nally, the grid resolution, along with the output from various inter-
action models, serve as inputs to thegPOM2D task (which applies
a 2D ocean model) and/or thegPOM3D(which applies a 3D ocean
model for more accurate prediction). Such POM models will predict
meteorological information, including the water level, current veloc-
ity, and water temperature, for Lake Erie. ThegVis task is then used
to project the outputs onto images.

The runtime of most individual tasks in theGLFS workflow can
be quite small (seconds to few minutes). Yet,GLFS is clearly a
compute-intensive application. On a standard PC (Dual Opteron 254
(2.4GHz) processors, with 8 GB of main memory and 500 GB lo-
cal disk space), predicting meteorological information for the next
two days for an area of 1 square miles took nearly 2 hours. The
execution time could grow rapidly with need for increasing spatial
coverage (for example, the total area of Lake Erie is9, 940 square
miles), and/or better temporal granularity. Better response time can
be achieved by using different servers for different workflow tasks.
Obviously, this will also increase resource and power costs, and the
right tradeoff between the execution time and resource and power
costs needs to be maintained. In the next subsection, we perform
a detailed analysis on the resource utilization of the GLFS workflow
and motivate our work on using server consolidation to reduce power
and resource costs.

2.2 Resource Usage ofGLFS Workflow
We execute theGLFS application in a Linux cluster, which con-

sists of 64 computing nodes. Each node has a dual Opteron 254
(2.4GHz) with 8 GB of main memory and 500 GB local disk space,
and the nodes are interconnected with a switched 1 Gb/s Ethernet.
During the execution of theGLFS workflow, we usedSysstattools
[3] to collect the following performance data every 1 second: CPU
utilization, memory utilization, disk I/O (including reads and writes),
and network I/O (including sends and receives). Like other scientific
workflows,GLFS has the long-running, iterative nature. For a given
certain input data, the steps between the transferring data into the first
task,gMM5 to the output fromgVisare referred to as one invocation
of the workflow. For different invocations, behavior of the applica-
tion could be different, due to different data size, and/or dynamics
exposed by the application. Figure 2 shows the CPU, memory, disk,
and network utilization of twoGLFS tasks, for 5 invocations of the
workflow.

As illustrated in Figure 2, each resource usage data can be ex-
pressed as atime series. The resource usage of the first task varies
across different invocations. In contrast, resources consumed bythe
second task remains roughly the same across invocations. We further
analyze the characteristics of the time series we have obtained. Par-
ticularly, we have applied the auto-correlation function (ACF) [27] to
the series and it shows that the resource utilization data from the sci-
entific workflows is expressed as a periodic time series. Furthermore,
a time series can be eitherstationary, with observations fluctuating

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0%

50%

100%

C
P

U
 U

til
iz

at
io

n

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

1000

2000

3000

M
em

or
y

U
til

iz
at

io
n

(M
B

)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

2

4

6
x 10

5

D
is

k
I/O

 (
B

yt
es

)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

2

4

6
x 10

7

N
et

w
or

k
I/O

 (
B

yt
es

)

Execution Time (Sec)

CPU

Memory

Disk

Network

<500, 3,
 600><1000, 6, 600> <1000, 6, 600><2000, 12, 1200><1000, 6, 600>

(a)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0%

50%

100%

C
P

U
 U

til
iz

at
io

n

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
300

350

M
em

or
y

U
til

iz
at

io
n

(M
B

)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−1

0

1

D
is

k
I/O

 (
B

yt
es

)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
1

2

3
x 10

7

N
et

w
or

k
I/O

 (
B

yt
es

)

Execution Time (Sec)

CPU

Memory

Disk

Network

<500, 3,
 600><1000, 6, 600> <1000, 6, 600><2000, 12, 1200><1000, 6, 600>

(b)

Figure 2: The CPU, Memory, Disk and Network Usage of Two GLFS Components (< 1000, 6, 600 >, < 500, 3, 600 > and
< 2000, 12, 200 > Represent Different Application Parameters

around a constant mean with constant variance, ornon-stationary,
where the underlying process has unfixed moments (i.e. mean and
variance) that intend to increase or decrease over time. We claim
that the resource utilization time series from one invocation at least
meets theweak stationaryrequirements, which are that the first two
moments (mean and variance) do not vary with time. The resource
usage pattern ofGLFS, in this respect, is similar to the observations
made from other scientific workflow executions [13, 49].

Overall, we can make the following observations from the re-
source usage patterns we have seen. 1) The scientific workflow can
be composed of a large number of tasks. The workflow tasks have a
periodic behavior with respect to CPU, memory, disk, and network
usage, with most of them incurring low resource utilization (e.g. Fig-
ure 2(b)). 2) The resource usage of a workflow task is significantly
smaller than its peak value for more than80% of the time (except
that network activity, which remains constant over time). Therefore,
provisioning resources based on peak requirements will likely lead
to resource and power wastage. Furthermore, considering the time
series of resource utilization of different tasks, we can see that their
respective usage of the same resource does not peak at the same time.
3) The resource consumed by a workflow task can be dependent on
the values of the application parameters for the particular invocation
(Figure 2(a)), as well as characteristics of the host server. Compar-
ing the 1st (and 2nd) to the 4th invocation, the resource usage pattern
remains the same, with only a change in the intensity of resources
consumption. However, even the pattern itself could change because
of a different set of application parameters (i.e. consider the 3rd invo-
cation). In the 5th invocation, the same parameter values were used
with a change in the resource availability from the host server.

3. POWER ANALYSIS WITH VMS AND CON-
SOLIDATION

In the previous section, we demonstrated how the resource require-
ments of workflow tasks have a periodic pattern, with actual require-
ments being significantly lower than peak requirements most of the
time. Our goal in this section is to understand the potential of using
virtualization and consolidation of virtual machines (VMs) for opti-
mizing resource and power requirements. To this end, we first an-
alyze the relationship between resource usage and power consump-
tion, particularly taking virtualization into account. Then, perfor-
mance and power consumption with consolidation of different types
of workloads is analyzed.

3.1 Power Consumption Analysis
In this subsection, we study how power consumption is related to

different levels of resource activities. Particularly, we conducted the
experiments on a single PC with Intel Dual Core processor at 3.0G

Workload CPU Memory Disk Network
CPU-bound Vary 2% None None

Memory-bound 70% Vary None None
Disk-bound 50% 2% Vary None

Network-bound 50% 2% 18MB/s Vary

Table 1: Resource Activities of Different Sets of Workloads

CPU−bound Memory−bound Disk−bound Network−bound
0

10

20

30

40

50

60

U
ni

t P
ow

er
 C

on
su

m
pt

io
n

(W
at

t)

Low Moderately Low Moderately High High

Figure 3: Power Consumption with Different Levels of CPU,
Memory, Disk, and Network Usage

Hz, 2 GB of memory and a 160 GB hard drive. This machine is
connected to the department research network through a 1 GB Eth-
ernet connection. We clutched a power meter to this PC to measure
the power consumed as workloads are varied. Four distinct sets of
synthetic workloads were used for our analysis. Note that a mix of
such workloads could be representatives of the scientific workflow
tasks. These sets areCPU-bound, Memory-bound, Disk-bound, and
Network-bound, where CPU-bound denotes that only the CPU us-
age is varied, while other resource activities are fixed. Within each
set, the workload is varied betweenlow, moderately low, moderately
high, andhigh levels. We summarize the resource needs for work-
loads in each set in Table 1.

We present the experimental results in Figure 3. Unit power is
reported here, and it denotes the power consumed every 1 second.
When the system is idle, the power consumption is32 watt. We
varied the CPU usage from20%, 40%, 80%, to 100% in the CPU-
bound workload set. As we can see, CPU utilization has a significant
impact on the consumed power. Between a workload where CPU
activity is 20% and the workload where the CPU activity is 100%,
power consumption increases by a factor of 64%. However, we can
also see that lowering CPU activity does not result in a proportional
decrease in power consumption. If the CPU activity is lowered to
one fifth of the peak capacity of the system, the power savings are
only close to 40% of the peak power.

In the memory-bound set, the memory utilization is10%, 20%,

C@C C@M C@D C@N M@M M@D M@N D@D D@N N@N
0

10

20

30

40

50

60

U
ni

t P
ow

er
 C

on
su

m
pt

io
n

(W
at

t)

App1
App2
Consolidated VMs

(a)

C@C C@M C@D C@N M@M M@D M@N D@D D@N N@N
0

20

40

60

80

100

120

140

E
xe

cu
tio

n
T

im
e

(S
ec

)

App1 App2 Consolidated VMs

(b)

Figure 5: Impact of Consolidation of Workloads(C:CPU, M:memory, D:disk, N:network -intensive): (a) Power Consumption (b) Exe-
cution Time

CPU Memory Disk Network
0

10

20

30

40

50

60

U
ni

t P
ow

er
 C

on
su

m
pt

io
n

(W
at

t)

Native
Xen

(a)

20%+20% 20%+80% 40%+60% 50%+50%
0

5

10

15

20

25

30

35

40

45

50

U
ni

t P
ow

er
 C

on
su

m
pt

io
n

(W
at

t)

Work−Conserving
Non Work−Conserving

(b)

Figure 4: (a) Unit Power Consumption Comparison: Native vs.
Xen (b) Credit Scheduler: Work-Conserving vs. Non Work-
Conserving

40%, and80%, for the four workloads. The CPU activity is fixed at
70%, and thus, all four workloads in this set corresspond to a fairly
high CPU load. As we can see, a larger memory footprints results
in higher power consumption. Furthermore, during our experiments,
we have also observed that varying cache activity levels, while keep-
ing the same total memory footprint, impacts power consumption,
and as expected, more power is consumed when cache miss rate is
high.

Next, we consider disk activity of the workloads. Within the set,
all workloads involved disk activity, but we varied the disk read rates.
CPU usage is fixed at50% and memory usage is less than1%. We
can observe that the consumed power remains constant as disk read
rates are varied. More analysis demonstrated that power consump-
tion is reduced if the disk is completely idle for long periods of time.

Finally, network-bound workload set is studied. CPU and mem-
ory usage is fixed at50% and10%, respectively. Disk activity is
18 MB/s. Similar to disk activity, presence of network I/O adds a
constant overhead to the unit power consumption. However, the fre-
quency of network I/O itself does not impact power consumption.

Next, we analyzed the power overheads of use of virtualization
technologies (particularly, Xen). The results are shown in Figure 4(a).
We chose one of the workloads from the four sets we had studied,
i.e., CPU-bound, memory-bound, disk-bound, and Network-bound
sets. We compared the unit power consumption by executing the
workload on the same PC with and without Xen VM’s enabled. Our
results show that Xen VMs pose less than7% of power overhead.
This demonstrates that Xen VMs incur negligible overhead in terms
of unit power consumption. Furthermore, we study the power con-
sumption with the credit-scheduler of Xen [6]. We pined 2 VMs to
a physical core, each of which has a different CPU requirement. In
theWork-Conservingmode, the CPU requirement of each workload
will be allowed whenever there is idle CPU. While using theNon
Work-Conservingmode with thecapset, the workload cannot access
more CPU than what has been limited by the cap value. As we can

see from Figure 4(b), when there is a contention for CPU cycles, the
power consumed by using theNon Work-Conservingmode is less
than what is consumed in theWork-Conservingmode.

Overall, we can make several observations from our experiments.
First, all of the resource activities impact power consumption. Varia-
tion in the CPU utilization has the largest impact on total power con-
sumption, though memory footprint and cache activity also impact
the consumed power. Enabling virtualization does incur some addi-
tional overheads, though these overheads are small. Finally, when
there is CPU contention between Xen VMs, dynamic provisioning
of CPU at runtime saves power.

3.2 Impact of Consolidation and Workload Correlation
We next study the impact of consolidating different types of work-

loads on a single physical machine, with the of virtualization tech-
nologies. We study both the execution time and the rate of power
consumption (i.e., the unit power) after consolidation of workloads
with different resource usage profiles.

We take four workloads, which could be considered ascompute-
intensive(C),memory-intensive(M), disk-intensive(D), andnetwork-
intensive(N), respectively. For each distinct pair from these four
workloads (10 pairs in all), we compared two executions. The first
execution involves running each workload individually on the re-
search PC we used in Subsection 3.1. This is referred to asApp1
andApp2. Then, we place each workload on a VM, and execute 2
VMs on the same core of the same machine. This execution is re-
ferred to asConsolidated VMs. The unit power consumption
and the total execution time is reported in Figure 5, sub-figures (a)
and (b), respectively.

From Figure 5 (a), we can see that consumed unit power from
consolidation is up to55% lower that the aggregate power used by
executing workloads individually. Consolidated VMs can incur more
power, but the extra power is negligible except in one case. When
two memory-intensive workloads are co-located, frequent memory
accesses from both of them increase the cache miss rates, resulting
in higher unit power consumption.

Figure 5 (b) shows the execution times. The results show that
when dissimilar workloads are consolidated, we are able to execute
the application with only at most 10% slowdown as compared to the
execution time of a single application. In other words, if we had only
a single server for execution of the two workloads, consolidation of
dissimilar workloads leads to a significant reduction in the total ex-
ecution time. Another way of viewing these results is as follows.
Compared to the case when we could use two independent servers
for execution of these workloads, we are incurring only a small slow-
down in the execution time, and large saving in resource and power
costs.

As expected, consolidating workloads with similar requirements is
not beneficial. For example, when we consolidate two CPU-intensive

Offline Analysis Online Consolidation

Scientific Workflows

Temporal Feature Extraction

Time Varying

Resource
Provisioning

Kernel Canonical
Correlation Analysis

Knowledge

Base

Optimization Search

Algorithm

Time series

Temporal
signatures

Consolidated

Workloads

KCCA model

Hidden Markov Model (HMM)
Hierarchical Clustering

Figure 6: The pSciMapper Framework Design

workloads, the execution time doubled. Also, for a pair of memory-
intensive workloads, the execution time increased by41%. Consol-
idation of two workloads that have a high disk or network activity
also leads to significant slowdowns. In these cases, even if the unit
power does not increase, the total power consumption will increase
because the same power is being consumed for a longer duration.

Overall, our results indicate that consolidation of workloads with
dissimilar requirements can reduce the total power consumption and
resource requirements significantly, without a substantial degrada-
tion in performance.

4. DESIGN OF PSCIMAPPER
This section presents the framework,pSciMapper, that we have

developed to consolidate scientific workflows in virtualized environ-
ments. We first give an overview of our approach. Next, we discuss
how we extract key temporal information from the given resource uti-
lization profiles (time-series) for each task of the workflow, and fur-
ther relate it with application performance and power consumption.
Then, we present our power-aware consolidation algorithm, which
places tasks of a scientific workflow on servers so that power con-
sumption is minimized, without a substantial increase in the comple-
tion time. Finally, towards the end of this section, we describe how
we learn a model capturing the resource usage profile’s dependence
on the application parameters and the characteristics of the resources
on which the workflow is executed.

4.1 Overview
In order to reduce the total power in a computing environment,

effective power management strategies have been developed [22, 50,
44, 39]. Dynamic Voltage and Frequency Scaling (DVFS) is a widely
applied technique to minimize the processor power by scaling down
CPU frequencies. We use server consolidation in our work, which
is based on the characteristics of the workflows we have observed.
Unlike the previous work on consolidating workloads [48, 43], we
not only specifically focus on scientific workflows (DAGs), but also
consider a more complex consolidation problem. We investigate
server heterogeneity, with respect to CPU, memory, disk, and net-
work bandwidths, as well as the application requirements for these
resources. We also study the interference caused by resource con-
tention when multiple workflow tasks are placed on a single server,
and how it impacts the power consumption and application perfor-
mance.

The overall design of pSciMapper is illustrated in Figure 6. It
consists of two major components:online consolidationandoffline
analysis. The online consolidation algorithm assumes that for each
task of the workflow to be scheduled, a set of time series data repre-
senting the CPU, memory, disk, and network utilization is available.
In practice, such specific information may not be available for the
given hardware and the application parameters without executing the
workflow. We train a hidden Markov model (HMM) to predict such

time series, which we describe towards the end of this section.
Now, for consolidation, we extract keytemporal featuresfrom the

time-series. This results in 52 features per workflow task , not all
of which may be equally important for predicting the execution time
and power consumption. We use a dimensionality reduction tech-
nique, Kernel Canonical Correlation Analysis (KCCA) [7], to relate
the key features to the execution time and power consumption.

Next, the online consolidation algorithm uses hierarchical cluster-
ing [25] and the Nelder-Mead optimization algorithm [35], to search
for the optimal consolidation, where power requirements are min-
imized, without a substantial impact on performance. As an en-
hancement to our static consolidation approach, we also perform
time-varying resource provisioningbased on the dynamic resource
requirements of the workflow tasks.

4.2 Temporal Feature Extraction and Kernel
Canonical Correlation Analysis

The relationships between resource usage time series and a work-
flow task’s execution time and its power consumption are complex.
To facilitate our analysis, we use a specifictemporal signatureto
capture the key characteristics of a given time series.
Temporal Signature: Given a resource usage time series, which
specifies the resource requirements with respect to a specific resource
(CPU, memory, disk, or network) of a workflow task, we extract the
following three sets of information: 1)Peak value: We define it as
the max value of the time series data and denote it asmax. 2) Rela-
tive variance: We compute the sample variance of the data, denoted
as v2. However, the sample variance depends on the scale of the
measurement of a particular resource. Therefore, we transform the
v2 values to a normalized[0, 1] space, with 0 being the lowest vari-
ance and 1 being the highest. This value serves as an indicator of
fluctuation around the average resource utilization of the workflow.
3) Pattern: Besides peak and variance, we need to capture how the
resource usage varies around an expected baseline. We take the repet-
itive pattern of the time series data and generate a sequence of sam-
ples, choosing the sampling rate is a way such that the information
from the original time series is preserved as much as possible [27]. In
this work, the pattern is represented by10 numbers,p1, p2, ..., p10.

Now the temporal signature for a resource utilization time series
data (Ti) can be represented as

Ti =< maxi, v
2

i , p1,i, p2,i, ..., p10,i > (1)

As the last part of the offline analysis in pSciMapper, we need to
relate the usage of resources with the workflow task’s performance
and power consumption when it is mapped onto a server. We train
a model for this purpose. The input to such model is the tempo-
ral signatures we extracted from the CPU, memory, disk, and net-
work utilization time series, plus resource variables representing the
host server capacity. The model outputs time and consumed power
for a task of the scientific workflow on this server. Thus, we have
52 features in the input space and 2 features in the output space.
In our work, we have used Kernel Canonical Correlation Analysis
(KCCA) [7] for modeling theresource-timeandresource-powerre-
lationships.

KCCA

Resource Usage

Projection

Metric

Projection

Maximum

correlation

Resource Usage
Time Series

Temporal
Signatures

<0.12, 0.3, 0.6, 0.3,
0.3, 0.12, …, 0.6>
<0.0, 0.8, 0.8, 0.8,
0.8, 0.8, …, 0.8>

...

Power &
Performance

<34.5, 12.65>
<56.8, 33.85>

...

Figure 7: KCCA Training: From Vectors of Resource Usage Fea-
tures to Vectors of Metric Features

Algorithm 4.1: WORKFLOWCONSOLIDATION(C, S)

INPUT C: the set of components
S: the set of servers

OUTPUT Θ̂: the consolidation plan
// initial assignment of components
InitialCluster(C, S);
// generate resource usage profile
for eachCi and Sj

GenerateTS(Ci, Sj);
Θ = OptimalSearch(C, S);
while (true)

for each clusteri and clusterj

//calculate distance between two clusters
linkagei,j = CalculateDist(clusteri, clusterj);
if linkagei,j < mergethreshold

// consolidate workloads in two clusters
MergeCluster(clusteri, clusterj)

Θ = OptimalSearch(C, S);
if (stopping criteria is met)

Θ̂ = Θ;
break;

TimeV aryingResourceProvisioning(Θ̂);

Figure 8: Workflow Consolidation Algorithm

KCCA : Canonical Correlation Analysis (CCA) is a dimension-
ality reduction technique that is useful to determine the correlation
between two sets of multi-variate datasets. KCCA is a generalization
of CCA using kernel functions to model nonlinear relationships [7].
GivenN temporal signatures from resource usage profiles, we form
anN × N matrix Kx, where the(i, j)th entry is the kernel evalua-
tion kx(xi, xj). Specifically, we have used the Gaussian kernel [37].
Similarly, we also form anN × N matrixKy, where the(i, j)th el-
ement is the kernel evaluationky(yi, yj) with respect to application
performance and power consumption. The KCCA algorithm takes
the matricesKx andKy, and solves the following generalized eigen-
vector problem:

»

0 KxKy

KyKx 0

– »

A

B

–

= λ

»

KxKx 0
0 KyKy

– »

A

B

–

(2)

This procedure finds subspaces in the linear space spanned by
the eigenfunctions of the kernel functions such that projections onto
these subspaces are maximally correlated [7]. We refer to such pro-
jections asresource usage projectionandmetric projection, respec-
tively. We illustrate such projections in Figure 7. If the linear space
associated with the Gaussian kernel can be understood as clusters in
the original feature space, then KCCA finds correlated pairs of clus-
ters in the resource usage vector space and the performance/power
vector space.

4.3 Power-Aware Consolidation
We now present the details of the online consolidation algorithm

in our pSciMapper framework. The main algorithm is summarized
in Figure 8. For generality, we assume that available servers may be
heterogeneous. We first randomly assign each of the workflow tasks
onto an underlying server. We assume for now that CPU, memory,
disk, and network usage time-series for executing the task on this
particular server is available. In practice, this is obtained using the
HMM, which we will describe later.

Our consolidation problem can be viewed as aclusteringproblem.
Normally, clustering groups similar objects together. Here, our goal
is to group workflow tasks that are dissimilar in their resource re-
quirements. This can be handled by defining a distance measure that

focuses on the interference between the resource requirements of the
workflow tasks.

Particularly, we apply the agglomerative hierarchical clustering
algorithm [25] using the extracted temporal signature vectors. The
consolidation procedure is iterative and it starts from the bottom of
the hierarchical cluster structure, i.e., when each cluster is formed
by a single workflow task. We decide whether two tasks,i andj,
can be consolidated by calculating thedistancebetween them. To be
specific, we define the distance metric as the following.

Disti,j =
X

R1,R2

aff_score(R1, R2) × Corr(peak
R1

i , peak
R1

j)

×Corr(peak
R2

i , peak
R2

j) (3)

, whereR1, R2 denotes any type of resources (thus 10 pairs in total)
and Corr(peak

R1

i , peak
R1

j) is the Pearson’s correlation between
two workloads with regards to the resource usage ofR1. We ar-
gue that it is more important to consider the correlation of the peak
values rather than the whole temporal signature. Theaff_score

is pre-specified based on our correlation analysis in Section 3.2. It
varies between 0 and 1, with 0 denoting the least interference when
consuming two resourcesR1 andR2 together. The DAG structure
has to be considered here. Although combining two workloads with
active network activities could incur significant computing overhead,
communication cost can be reduced if there is a direct dependency
between them. Thusaff_score is small for two network-intensive
workloads with aparent-child relationship. We merge two clus-
ters if the distance between them is smaller than a threshold, i.e .
merge_threshold in the pseudo-code.

Next, a well-known optimization algorithm, the Nelder-Mead [35],
is applied to identify how the clusters obtained can be mapped to the
given set of servers. The goal here is to minimize the power, with-
out incurring a significant performance degradation. The consumed
power and execution time for the one-to-one mapping of clusters to
the servers can be estimated using the KCCA model trained offline.
To be specific, the input vector, which includes the temporal signa-
ture of the resource usage profile along with the server capacity, is
projected into the resource subspace. We then infer the coordinates
in the metric subspace using thek nearest neighbors, wherek = 3 in
our implementation. Finally, we map the metric projection back to
the metrics, which are the consumed power and the execution time. A
weighted sum of the metric projections from the nearestk neighbors
has been used, with the weight to be the reverse distance between
coordinates of two projections in the subspace. The optimal point of
this iteration with the minimum total power consumption is recorded.

Then, temporal signature of the new cluster is updated from the
consolidated workloads. Such consolidation iterations stop when the
clusters cannot be merged anymore since merging will incur signifi-
cant interference, and/or the degradation in application performance
will be intolerable.

As an enhancement to the static consolidation algorithm, we fur-
ther take into account the dynamic resource requirements in the con-
solidated workloads to save power (Section 3.1). The reasons is
that co-located workloads could peak together, or the resource us-
age from different workloads that we have co-located can vary. For
example, the CPU utilization of a workload changes from30% to
60% while its co-located workload drops from50% to 30%. To sup-
port such dynamics, we propose a heuristic method for performing
the time varying resource provisioning for each of the consolidated
servers. Specifically, we make a reservation plan that simply allo-
cates virtual CPU and memory (currently, Xen only supports run-
time changes to CPU and memory) to individual workloads. Clearly,
the total requirements from these two resources should not exceed
what is available on the physical server. However, if we are unable to
meet the peak requirements, resources are allocated to workloads in
proportion to their peak values. Note that such resource reallocation

only takes action at the time instances where there are significant
changes to the resource requirements, since dynamically changing
the resource allocations frequently can involve significant overheads
too.

Level 1

Level 2

Level 3

Level 4

C1 C2 C3 C4 C5

CPU: moderate

Mem: low

Disk: low

Net: low

CPU: moderate

Mem: low

Disk: low

Net: moderate

CPU: moderate

Mem: high

Disk: high

Net: low

CPU: high

Mem: moderate

Disk: low

Net: low

CPU: low

Mem: low

Disk: high

Net: moderate

Assignment <power, time>

{C1, S2}, {C2, S3}, {C3, S5}, {C4, S1},{C5, S4} <180.56, 92.87>

{(C1, C2), S2}, {C3, S5}, {(C4, C5), S1}

{(C1, C2, C3), S2}, {(C4, C5), S1}

<135.11, 88.03>

<93.62,83.93>

C1 C2 C3 C4 C5

Figure 9: Consolidating Workflows: An Example

Example: We use an example to explain our consolidation algo-
rithm, as illustrated in Figure 9. Assume that the workflow has 5
tasks,C1, C2, ..., C5 and originally it is on 5 servers,S1, S2, ...

, S5. The resource usage profile for each task is known in advance.
At the beginning of the consolidation algorithm, eachCi at level 1 is
randomly assigned to a serverSj . Then the optimization algorithm
generates an assignment where the power consumption is the mini-
mum at the current level. Then we move up to level 2, whereC1 and
C2, and,C4 andC5 are merged as new clusters. This is consistent
with what we expect by observing the resource utilization character-
istics. The optimal search will find the servers for the consolidated
workloads. Now the power consumption drops significantly as we
now are using only 3 servers. This procedure repeats in level 3, where
C3 is merged with the cluster which containsC1 andC2. Note that
due to the high memory footprint ofC3 and intensive I/O activities,
serious interference would occur if it is co-located withC4 or C5.
Now, 5 tasks of the workflow are consolidated on 2 servers and we
are able to save half of the power with only a9% performance degra-
dation. Since no tasks can be consolidated anymore, our algorithm
will generateC1, C2, andC3 onS2, C4 andC5 onS1 as the output.

4.4 Hidden Markov Model for Resource Usage Estimate
The approach presented so far assumes that when a workflow is

submitted, along with a set of application parameters, we know the
time series of CPU, memory, disk I/O, and network I/O usage for
each workflow task on any of the servers in our environment. In
practice, however, it is impossible to know this information. We now
describe how we train a hidden markov model (HMM) based on a
representative set of application parameters and hardware specifica-
tions. Using this HMM, resource usage time series can be generated
for given application parameters and hardware specification.

A hidden Markov model(HMM) is a statistical model that assumes
that a sequence of observationsO = O1,O2, ...OT is generated
from a set ofN states (X = x1, x2, ..., xn), with transition probabil-
ities,P (xt|xt−1), between them, and emission probabilities,P (Ot|xt),
denoting the probability of an observationOt being generated from
the statet. The probability of a particular state in an HMM is only
dependent on the previous state. The probability of an observation is
dependent only on the state that produced this observation.

We generate our HMM for resource utilization prediction in the
following way.

• Hidden states: They represent equivalence classes in resource
usage. To be specific, a hidden statexi is of the format of
xi =< cpui, memi, diski, neti >, denoting the CPU, mem-
ory utilization, disk I/O, and network I/O. One issue we had
to address is that, in practice, each resource usage variable is a
continuous number, which leads an infinite number of hidden

states. We discretize the variable and thus make the number of
states finite.

• Observations: At time stept, the observationOt is a set that
comprises of the values of the application parameters and the
current resource availability of the hosting node, denoted as
Ot =< parat, resourcet >.

• State transition probability: The transition matrix character-
izes the distribution over the states for CPU, memory, disk, and
network usage. This is learned during the training of HMM.

• Emission probability given an hidden state: They are modeled
using per-state multivariate Gaussian distributions.

The HMM is trained offline so that we are able to predict the CPU,
memory, disk, and network usage without executing the workflow
task on the server.

5. EXPERIMENTAL EVALUATION
This section presents results from a number of experiments we

conducted to evaluate our power-aware consolidation algorithm.

5.1 Algorithms Compared, Metrics and Goals
As a baseline for evaluating our proposed algorithm, we imple-

mented anoptimal approach. In this approach, the best consolida-
tion plan is obtained with an exhaustive search, i.e., we try every
combination of placing workloads together and executing them on
different servers. The consolidation plan resulting in a minimum
power and less than15% performance degradation is taken as the
result. Furthermore, once the workloads are consolidated, we use
work-conservingscheme during the application execution so that re-
source requirements of a workflow task are always satisfied, as long
as total requirements of consolidated tasks does not exceed available
resources. This consolidation plan thus is obtained and the resulting
execution is referred to asOptimal + Work Conserving.

We also evaluated two versions of our consolidation algorithm. In
the first version, only the static consolidation was performed. Then,
we statically assigned resources among consolidated workloads pro-
portional to the mean of their resource requirements. This is de-
noted aspSciMapper + Static Allocation. In the sec-
ond version, we apply the time varying resource provisioning part
of our algorithm. We refer this to aspSciMapper + Dynamic
Provisioning. Finally, the three versions thus obtained through
consolidation are compared with the case where each workflow task
on an individual server, without virtualization. This is denoted as
With-
out Consolidation.

To evaluate the performance of our approach against the optimal
and the case where consolidation is not used, we use the following
two metrics:

• Normalized Total Power Consumption: This shows the power
that has been saved from our power-aware consolidation algo-
rithm, as a percentage of the total power that is consumed by
Without Consolidation version.

• Execution Time: It is defined as the makespan of the work-
flows.

Using the optimal approach and the above two metrics, we de-
signed the experiments with the following goals: 1) Demonstrate that
our power-aware consolidation algorithm can reduce total power sig-
nificantly without incurring substantial slowdowns. 2) Demonstrate
that the overhead of our algorithm is negligible, and the algorithm is
scalable to workflows with a large number of tasks. 3) Demonstrate
that our proposed resource prediction model is effective in estimat-
ing resource usage. Also, models trained on one type of hardware
can still be effective on another type of hardware.

Application CPU Memory Disk Network
GLFS High Moderate Moderate Low
VR Moderate High Moderate Moderate

SynApp1 Low Low High High
SynApp2 Moderate High Moderate Low
SynApp3 High Moderate Low Low

Table 2: Resource Usage of Scientific Workflows

5.2 Experimental Setup and Applications
Our experiments are conducted using 2 Linux clusters, each of

which consists of 64 computing nodes. One cluster has dual Opteron
250 (2.4GHz) processors with 8 MB L2 cache and 8 GB main mem-
ory, while the other has Intel Xeon CPU E5345 (2.33 GHz) nodes,
comprising two quad-core CPUs, with 8 MB L2 cache and 6 GB
main memory. Computing nodes are interconnected with switched 1
Gb/s Ethernet within each cluster. We chose Xen as the virtualiza-
tion technology and we used Xen-enabled 3.0 SMP Linux kernel in
a stock Fedora 5 distribution. On a single consolidated server, hard-
ware resources are shared between the virtual machines that host ap-
plication service tasks and the management domain (dom0 in Xen
terminology). Throughout our experiments, we restrict the manage-
ment domain to use one physical core, thus isolating it and avoiding
performance interference. The virtual machines hosting application
services share the remaining physical cores. The placement of VMs
are decided at the start of application execution. In order to facilitate
hosting the scientific workflows, the VMs are created and customized
for each application.

The experiments we report were conducted using two real applica-
tions and three synthetic workflows. Two real applications areGLFS
andVolume Rendering. The first of these applications was de-
scribed earlier in Section 2.Volume Rendering interactively
creates a 2D projection of a large time-varying 3D data set (volume
data) [19]. The workflow we implemented reads 7.5 GB of image
data, stores the spatial and temporal information in a tree structure,
and then renders the final image using composed unit images.VR is
considered as a memory-intensive application as it consumes more
than 1GB of physical memory for76% of its execution time. In
order to cover a wide range of scientific workflows with different re-
source requirements and scales, we also evaluated our consolidation
algorithm using three synthetic scientific workflows. These synthetic
scientific workflows are from a set of benchmark scientific applica-
tions developed by Bharathiet al. [9]. GLFS andVR are executed on
our clusters (with Xen virtual machines), whereas simulations were
used for the synthetic applications. We used GridSim [42] as the grid
environment simulator and its extension, CloudSim [14], to simulate
a virtualized environment. Table 2 shows the relative resource us-
age of the two real workflows and three synthetic workflows, with
respect to CPU, memory, disk I/O, and network I/O.

Since we did not have physical access to these clusters to be able
to attach the power meter, we usedpower modelingfor estimat-
ing power consumption. Particularly, we apply a full-system power
model based on high-level system utilization metrics [20]. We val-
idated this power model by actual measurements on the PC in our
research lab, and found it to be very accurate. Furthermore, as we
report only normalized power comparison for all of our experiments,
limitations of the power model have a negligible impact on our re-
sults.

5.3 Performance Comparison
We now evaluate our proposed power-aware consolidation algo-

rithm against the optimal approach and the case without consolida-
tion, with respect to two metrics, i.e., normalized total power con-
sumption and execution time.
Normalized Total Power Consumption Comparison: We now eval-

uate our power-aware consolidation algorithm and demonstrate that
the total power has been reduced significantly from the case no con-
solidation is applied. Moreover, we also show that power reductions
are close to, or in some cases even better than, the optimal (but static)
approach, as time varying resource provisioning is enabled through
our approach.

First, we executed theGLFS workflow with four different combi-
nations of application parameters, which are referred to asAppConf-
1, AppConf-2, AppConf-3, andAppConf-4. For each of the param-
eter configurations, the workflow is invoked 5 times and the av-
erage is reported as the result. The normalized total power con-
sumption, which is the ratio of consumed total power over that from
the Without Consolidation version, is shown in Figure 10
(a). We can make the following observations from these results.
First, the total power is reduced up to27% by the Optimal +
Work Conserving version. The CPU-bound characteristics of
GLFS limit the consolidation that can be performed without signif-
icant performance degradation. In comparison, ourpSciMapper
+ Static Allocation only performs4% worse. Although the
number of servers on which theGLFS workflow has been consoli-
dated is the same as what is obtained from the optimal approach, the
tasks that are merged into a cluster might not always be the optimal,
due to the our distance metric definition.

Next, we considerpSciMapper + Dynamic Provisioning,
where time varying resource provisioning heuristic is enabled. We
are able to save up to35% of the total consumed power, which is
8% better than the optimal (static) approach. This is consistent with
our power analysis in Section 3.1, i.e., dynamically allocating CPU
and memory to the consolidated tasks at runtime can help reduce the
power, as compared to work conserving, particularly when the vari-
ance in resource requirement is large.

We repeated this experiment with theVR workflow and the three
synthetic scientific workflows. The results are presented in Figures 10
(b) and (c), respectively. We executedVR with four different pa-
rameter configurations. As we can see, we are able to reduce58%
of the total power consumption in all cases, by applying the op-
timal consolidation approach. pSciMapper achieves52% savings,
and when time varying resource provisioning is enabled, pSciMap-
per performs only2% worse than the optimal approach. Similar
observations can be made from the three synthetic workflows. In
the optimal case, more than70% power is saved fromSynApp1
due to its large number of tasks with low CPU and memory usage.
AsSynApp1’s tasks have relatively constant resource requirements,
dynamic resource provisioning does not help improve performance.
pSciMapper, however, is still able to save66% of the power. The
other two synthetic workflows perform better withpSciMapper
+ Dynamic Provisioning when comparing to the optimal ap-
proach, and we are able to reduce the total power consumption by
59% and44%, respectively.
Execution Time Comparison: Next, we compare the performance
of pSciMapper with the other versions with respect of the workflow
execution time. We first conducted the experiments using theGLFS
workflow. Recall that we set performance degradation constraint to
be 15%, i.e., consolidation stops when the estimated performance
is still within 15% of theWithout Consolidation case. As
illustrated in Figure 11 (a), the execution time from theOptimal
+ Work Conserving case is within15% of the case where each
task of the workflow is mapped onto a single server.pSciMapper
+ Static Allocation also leads to performance that is close
to the optimal case. This demonstrates the effectiveness of the tem-
poral feature extraction and KCCA model in mapping resource us-
age to power and execution time. With time varying resource provi-
sioning, pSciMapper leads to3% better performance than the opti-
mal case, and thus, the performance is within12% of theWithout
Consolidation case. The experiment was repeated with theVR
workflow and the other three synthetic workflows. The results are

AppConf−1 AppConf−2 AppConf−3 AppConf−4
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
N

or
m

al
iz

ed
 T

ot
al

 P
ow

er
 C

on
su

m
pt

io
n

Optimal + Work Conserving
pSciMapper + Static Allocation
pSciMapper + Dynamic Provisioning

(a)

AppConf−1 AppConf−2 AppConf−3 AppConf−4
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

N
or

m
al

iz
ed

 T
ot

al
 P

ow
er

 C
on

su
m

pt
io

n

Optimal + Work Conserving

pSciMapper + Static Allocation

pSciMapper + Dynamic Provisioning

(b)

SynApp1 SynApp2 SynApp3
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

N
or

m
al

iz
ed

 T
ot

al
 P

ow
er

 C
on

su
m

pt
io

n

Optimal + Work Conserving

pSciMapper + Static Allocation

pSciMapper + Dynamic Provisioning

(c)

Figure 10: Normalized Total Power Consumption Comparison: (a)GLFS (b) VR (c) Synthetic Workflows (Power Consumption of
Without Consolidation is 100%)

AppConf−1 AppConf−2 AppConf−3 AppConf−4
0

50

100

150

200

250

E
xe

cu
tio

n
T

im
e

(M
in

)

Without Consolication

Optimal + Work Conserving

pSciMapper + Static Allocation

pSciMapper + Dynamic Provisioning

(a)

AppConf−1 AppConf−2 AppConf−3 AppConf−4
0

5

10

15

20

25

30

35

40
E

xe
cu

tio
n

T
im

e
(M

in
)

Without Consolication

Optimal + Work Conserving

pSciMapper + Static Allocation

pSciMapper + Dynamic Provisioning

(b)

SynApp1 SynApp2 SynApp3
0

20

40

60

80

100

120

140

E
xe

cu
tio

n
T

im
e(

M
in

)

Without Consolidation
Optimal + Work Conserving
pSciMapper + Static Allocation
pSciMapper + Dynamic Provisioning

(c)

Figure 11: Execution Time Comparison: (a)GLFS (b) VR (c) Synthetic Workflows

demonstrated in Figure 11 (b) and (c). Similar observations can be
made here. With time-varying resource allocation, pSciMapper re-
sults in only a7% degradation.

5.4 Consolidation Overhead and Scalability
We now evaluate the execution time of our consolidation algorithm

and compare it to the optimal approach. We usedGLFS and theVR
workflows, which have 16 and 24 tasks, respectively. The results are
shown in Figure 12 (a). As shown in the Figure, our algorithm is able
to consolidate 16 and 24 tasks onto 2 emulated grid sites, each with
64 nodes, with an algorithm execution time of1.5 and2.2 seconds,
respectively. The overhead comes from the Nelder-Mead optimiza-
tion algorithm at each level in the hierarchical cluster structure. In
comparison, optimal algorithm involves an exhaustive search, and
completes the consolidation in10.4 and 26.5 seconds. The over-
head of our algorithm is clearly very small, as compared to the actual
execution time of any real scientific workflow. It may appear from
these results that even the optimal algorithm is an acceptable choice
for scheduling real workflows. However, the execution time of the
optimal search will grow exponentially with respect to the number
of tasks in the workflow and/or the number of servers. Therefore,
its overhead will be unacceptable for consolidating large-scale sci-
entific workflows, where hundreds or even thousands of tasks can be
involved.

Furthermore, we evaluate the scalability of pSciMapper in Fig-
ure 12 (b). We used synthetic workflows and simulated 640 process-
ing nodes for a grid computing environment. The number of tasks
from the synthetic workflow is varied from 100 to 200, 400, 800,
and 1000. We can see that the consolidation overhead only increases
linearly as the number of workflow tasks increases, and it takes less
than 1 minute to consolidate 1000 workflow tasks on 640 nodes.

GLFS VR
0

5

10

15

20

25

30

C
on

so
lid

at
io

n
O

ve
rh

ea
d

(S
ec

)

pSciMapper

Optimal

(a)

100 200 400 800 1000 100 200 400 800
0

10

20

30

40

50

60

Numbef of Workflow Tasks

C
on

so
lid

at
io

n
O

ve
rh

ea
d

(S
ec

)

(b)

Figure 12: (a) Consolidation Overhead Comparison of
pSciMapper with Optimal (b)Scalability

5.5 Model Evaluation
In this subsection, we evaluate the HMM-based model, and show

that our model can accurately estimate the CPU, memory, disk and
network usage, given the application parameters and the resource ca-
pacity of the host server. Furthermore, we show that the model can be
trained on one server, and then used on a server with a different type
of hardware effectively. This is an important requirement in cloud
computing, as a service provider may use different types of hard-
ware, with a user not having any control on what is made available
to them.

We use tasks from both theGLFS andVR workflows. The data
contains two sets of vectors. One includes the application parame-
ter values and the resource capacity information of the server, while
the other is the corresponding CPU, memory, disk and network uti-
lization data. We performedcross-validationon the training data set

0 50 100 150 200 250 300 350 400
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Execution Time (Sec)

C
P

U
 U

til
iz

at
io

n

Measured CPU Usage
Estimated CPU Usage

(a)

0 50 100 150 200 250 300 350 400
500

1000

1500

Execution Time (Sec)

M
em

or
y

U
til

iz
at

io
n

(M
B

)

Measured Memory Usage
Estimated Memory Usage

(b)

Figure 13: Resource Usage Measurement and Prediction Com-
parison: (a) CPU (b) Memory

and evaluate the model using new tasks from the two applications
that have not been seen during the training. Note that our model is
trained on a server with Intel Xeon quad-core CPU - 2.33 GHz, and
then evaluated on a different server with AMD Opteron model 252 -
2.6 GHz. The results of CPU and memory predictions are presented
in Figure 13 (a) and (b). As we can see, the average prediction error
is 3.3%. Accurate resource usage prediction serves as an important
step for our consolidation algorithm.

6. RELATED WORK
We now discuss the research efforts relevant to our work from the

areas of scientific workflow scheduling and power management tech-
niques.
Scientific Workflow Scheduling: Scientific workflows management
and execution, particularly for heterogeneous and distributed envi-
ronments like the computational grids, has been a popular topic of
research in recent years. Workflow systems such as Pegasus [18],
Kelper [31], ASKALON [51], Taverna [36], and Triana [46], are
currently used in a number of scientific domains. As part of this
research, several workflow scheduling algorithms have been devel-
oped, most of which focus onmakespanminimization. Yanet al.
proposed a workflow scheduler using data/network-aware execution
planning and advanced reservation. VGrADS (previously GrADS) [32,
21, 41] first applies a ranking mechanism to assign each workflow job
with a rank value, and then schedules these jobs based on their rank
priorities.

None of these efforts have, however, considered consolidation of
workflow tasks with virtualization technologies. In the future, our
work can be combined together with workflow scheduling algorithm
to achieve integrated scheduling and consolidation.

As scientific workflows are represented as a DAG structure, DAG
scheduling is also related to our work. Comparison and evaluation
of different DAG scheduling algorithms can be found in survey pa-
pers [15, 29]. Topcuougluet al. proposed a Heterogeneous Earliest-
Finish-Time (HEFT) algorithm, which minimizes the earliest finish
time of priority-based tasks with an insertion-based approach [24].

As an improvement to the HEFT heuristic, Bittencourtet al. pro-
posed to look ahead in the schedule and estimate a task by taking
into account the impact on its children [11]. Again, our work is dis-
tinct in consolidating tasks in virtualized environments, and reducing
total power requirements.

With the emergence of clouds, efforts have been initiated on ex-
ecuting scientific workflows on cloud environments, and evaluating
the tradeoff between application performance and resource costs [17,
26, 23]. Our work focuses on virtualized environments, where either
the users can control resource allocation for each VM, or a manage-
ment layer knows the periodic resource requirements of a workflow.
We expect that commercial cloud environments will have these char-
acteristics in the near future.
Power Management: There have been two common mechanisms
for power management, i.e., Dynamic Speed Scaling (DSS) and Dy-
namic Resource Sleeping (DRS). Dynamic Voltage and Frequency
Scaling (DVFS), a typical example of DSS, is an effective technique
to reduce processor power dissipation by either reducing the sup-
ply voltage or by slowing down the clock frequency [22, 50, 40, 38].
Wanget al. presented a cluster-level power controller based on multi-
input-multi-output system model and predictive control theory, with
the goal of shifting power among servers based on the performance
needs of the applications [50]. DRS dynamically hibernates tasks to
save energy and then wakes them up on demand [44, 39, 16].

Recently, power management for virtualized environments have
received much attention [34, 47, 28, 45, 33]. Laszewskiet al. pro-
pose a power-aware scheduling algorithm to schedule virtual ma-
chines in a DFVS-enabled cluster [30]. More closely related to our
work are the efforts on power minimization using consolidation [48,
43]. Vermaet al. propose two consolidation algorithms based on
the detailed analysis of the workloads executed in data centers [48].
Particularly, they observed that 90-percentile of the CPU usage of
the workloads should be used for consolidation, as it is less than half
of the peak value. Furthermore, they also considered the correlation
between workloads so that SLA violation could be avoided when
such workloads are placed together. Our focus has been on scien-
tific workflows, which have more complex structures and resource
usage patterns. Besides CPU, we have taken memory, disk, and
network usage into account. Furthermore, performance interference
resulting from co-locating multiple workloads on the same server
has been analyzed so that the consolidated workflows can achieve
high performance with optimal power. Srikantaiahet al. proposed a
multi-dimensional bin packing algorithm for energy-aware consoli-
dation [43]. Our method, based on KCCA, is a more powerful model.
Overall, we perform global optimization and can also consider time-
varying provisioning of resources for meeting the requirements of
consolidated workflow tasks.

7. CONCLUSION
Our work has been driven by two popular trends. First, scien-

tific workflows have emerged as a key class of applications for en-
abling and accelerating scientific discoveries. Second, in executing
any class of (high-end) applications, power consumption is becoming
an increasingly important consideration.

In this paper, we consider the power management problem of exe-
cuting scientific workflows in virtualized environments. We have de-
veloped apSciMapper, a power-aware consolidation algorithm based
on hierarchical clustering and a optimization search method. We
have evaluated pSciMapper using 2 real and 3 synthetic scientific
workflows. The experimental results demonstrate that we are able
to reduce the total power consumption by up to56% with at most a
15% slowdown for the workflows. Our consolidation algorithm also
incurs low overheads, and is thus suitable for large-scale workflows.

8. REFERENCES
[1] Montage: An astronomical image engine.

http://montage.ipac.caltech.edu/.
[2] Southern california earthquake center, community modeling

environment (cme).http://www.scec.org/cme.
[3] Sysstat.

http://pagesperso-orange.fr/sebastien.godard/.
[4] Teragrid.http://www.teragrid.org/.
[5] Usc epigenome center.http://epigenome.usc.edu.
[6] Xen credit-bsed cpu scheduler.http:

//wiki.xensource.com/xenwiki/CreditScheduler.
[7] F. R. Bach and M. I. Jordan. Kernel independent component analysis.

Journal of Machine Learning Research, 3, 2003.
[8] L.A. Barroso and U. Hölzle. The case for engergy-proportional

computing.IEEE Computer, 14(12), 2007.
[9] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.H. Su, and

K. Vahi. Characterization of scientific workflows. InProceedings of the
3rd Workshop on Workflows in Support of Large-Scale Science
(WORKS08), pages 1–10, Nov. 2008.

[10] R. Bianchini and R. Rajamony. Power and energy management for
server systems.IEEE Computer, 37(11), 2004.

[11] L.F. Bittencourt, R. Sakellariou, and E. Madeira. Dag scheduling using
a lookahead variant of the heterogeneous earliest finish timealgorithm.
In Proceedings of the 18th Euromicro International Conference on
Parallel, Distributed and Network-Based Computing (PDP 2010), Feb.
2010.

[12] D.A. Brown, P.R. Brady, A. Dietz, J. Cao, B. Johnson, andJ. McNabb.
A case study on the use of workflow technologies for scientific
analysis: Gravitational wave data analysis.Workflows for eScience,
2006.

[13] E.S. Buneci and D.A. Reed. Analysis of application heartbeats:
Learning structural and temporal features in time series datafor
identification of performance problems. InProceedings of the 22nd
International Conference on High Performance Computing and
Networking (SC08), pages 1–12, Nov. 2008.

[14] R. Buyya, R. Ranjan, and R.N. Calheiros. Modeling and simulation of
scalable cloud computing environments and the cloudsim toolkit:
Challenges and opportunities. InProceedings of the 7th International
Conference on High Performance Computing & Simulation (HPCS09),
June 2009.

[15] L.C. Canon, E. Jeannot, R. Sakellariou, and W. Zheng. Comparative
evaluation of the robustness of dag scheduling heuristics.In CoreGRID
Technical Report TR-0120, 2007.

[16] J. Chase, D. Anderson, P. Thakar, A. Vahdat, and R. Doyle. Managing
energy and server resources in hosting centers. InProceedings of the
18th ACM Symposium on Operating Systems Principles (SOSP01),
pages 103–116, Oct. 2001.

[17] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good. The cost
of doing science on the cloud: the montage example. InProceedings of
the 22nd International Conference on High Performance Computing
and Networking (SC08), pages 50–61, Nov. 2008.

[18] E. Deelman, G. Singh, M.H. Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, G.B. Berriman, J. Good, A. Laity, J.C. Jacob, and
D.S. Katz. Pegasus: A framework for mapping complex scientific
workflows onto distributed systems.Scientific Programming, 13(3),
2005.

[19] R.A Drebin, L.Carpenter, and P.Hanrahan. Volume rendering. In
Proceedings of the 15th Annual Conference on Computer Graphics
and Interactive Techniques, pages 65–74, 1988.

[20] D. Economou, S. Rivoire, C. Kozyrakis, and P. Ranganathan.
Full-system power analysis and modeling for server environments. In
Proceedings of the Workshop on Modeling Benchmarking and
Simulation (MOBS06), June 2006.

[21] F.Berman, H.Casanova, A.Chien, K.Cooper, H.Dail, A.Dasgupta,
W.Deng, J. Dongarra, L. Johnsson andK.Kennedy, C.Koelbel,B.Liu,
X. Liu, A.Mandal, G.Marin, M.Mazina, J.Mellor-Crummey,
C.Mendes, A. Olugbile, M.Patel, D.Reed, Z.Shi, O.Sievert,H.Xia, and
A. YarKhan. New grid scheduling and rescheduling methods in the
grads project.International Journal of Parallel Programming, 33(2),
2005.

[22] S. Govindan, J. Choi, B. Urgaonkar, A. Sivasubramaniam, and
A. Baldini. Statistical profiling-based techniques for effective power
provisioning in data centers. InProceedings of the 4th ACM European
conference on Computer systems (EuroSys09), pages 317–330, April
2009.

[23] C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey, B. Berriman,
and J. Good. On the use of cloud computing for scientific workflows. In
Proceedings of the 3rd International Workshop on ScientificWorkflows
and Business Workflow Standards in e-Science (SWBES08), Dec. 2008.

[24] H.Topcuoglu, S.Hariri, and M.Y.Wu. Performance-effective and
low-complexity task scheduling for heterogeneous computing. IEEE
Transactions on Parallel and Distributed Systems, 13, 2002.

[25] S.C. Johnson. Hierarchical clustering schemes.Psychometrika, 32(3),
1966.

[26] G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berriman, B.P. Berman,
and P. Maechling. Scientific workflow applications on amazon ec2. In
Workshop on Cloud-based Services and Applications in conjunction
with 5th IEEE Internation Conference on e-Science (e-Science09),
Dec. 2009.

[27] L.H. Koopsman. Sampling, aliasing and discrete-time models.The
Spectral Analysis of Time Series, 1995.

[28] D. Kusic, J.O. Kephart, J.E. Hanson, N. Kandasamy, and G.F. Jiang.
Power and performance management of virtualized computing
environments via lookahead control. InProceedings of the 5th
International Conference on Autonomic Computing (ICAC08), pages
3–12, June 2008.

[29] Y.K. Kwok and I. Ahmad. Static scheduling algorithms for allocating
directed task graphs to multiprocessors.ACM Computing Surveys,
31(4), 1999.

[30] G.V. Laszewski, L.Z. Wang, A. Younge, and X. He. Power-aware
scheduling of virtual machines in dvfs-enabled clusters. InProceedings
of the IEEE International Conference on Cluster Computing
(Cluster09), pages 1–10, 2009.

[31] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones,
E.A. Lee, J. Tao, and Y. Zhao. Scientific workflow management and
the kepler system.Concurrency and Computation: Practice &
Experience, 18(10), 2006.

[32] A. Mandal, K. Kennedy, C. Koelbel, G. Marin, J. Mellor-Crummey,
B. Liu, and L. Johnsson. Scheduling strategies for mapping application
workflows onto the grid. InProceedings of the 14th IEEE International
Symposium on High Performance Distributed Computing(HPDC05),
pages 125–134, June 2005.

[33] R. Nathuji and K. Schwan. Virtualpower: Coordinated power
management in virtualized enterprise systems. InProceedings of the
21st ACM Symposium on Operating Systems Principles (SOSP07),
pages 265–278, Oct. 2007.

[34] R. Nathuji and K. Schwan. Vpm tokens: virtual machine-aware power
budgeting in datacenters. InProceedings of the 17th IEEE
International Symposium on High Performance Distributed
Computing(HPDC08), pages 119–128, June 2008.

[35] J.A. Nelder and R. Mead. A simplex method for function
minimization.Computer Journal, 1965.

[36] T. Oinn, M. Greenwood, M. Addis, M.N. Alpdemir, J. Ferris,
K. Glover, C. Goble, A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord,
M.R. Pocock, M. Senger, R. Stevens, A. Wipat, and C. Wroe. Taverna:
lessons in creating a workflow environment for the life sciences.
Concurrency and Computation: Practice and Experience, 18, 2006.

[37] E. Parzen. On estimation of a probability density function and mode.
The Annals of Mathematical Statistics, 3, 1962.

[38] P. Pillai and K.G. Shin. Real-time dynamic voltage scaling for
low-power embedded operating systems. InProceedings of the 18th
ACM Symposium on Operating Systems Principles (SOSP01), pages
89–102, Oct. 2001.

[39] E. Pinheiro, R. Bianchini, and C. Dubnicki. Exploitingredundancy to
conserve energy in storage systems.ACM SIGMETRICS Performance
Evaluation Review, 34(1), 2006.

[40] C. Poellabauer, T. Zhang, S. Pande, and K. Schwan. An efficient
frequency scaling approach for energy-aware embedded real-time
systems. InProceedings of the 18th International Conference on
Architecture of Computing Systems (ARCS05), pages 207–221, March
2005.

[41] L. Ramakrishnan, C. Koelbel, Y.S. Kee, R. Wolski, D. Nurmi,
D. Gannon, G. Obertelli, A. YarKhan, A. Mandal, T.M. Huang,
K. Thyagaraja, and D. Zagorodnov. Vgrads: enabling e-science
workflows on grids and clouds with fault tolerance. InProceedings of
the 23rd International Conference on High Performance Computing
and Networking (SC09), pages 1–12, Nov. 2009.

[42] R.Buyya and M.Murshed. Gridsim: A toolkit for the modeling and
simulation of distributed resource management and schedulingfor grid
compu ting.Concurrency and Computation: Practice and Experience,

14, 2002.
[43] S. Srikantaiah, A. Kansal, and F. Zhao. Energy. InWorkshop on Power

Aware Computing and Systems (HotPower08), Dec. 2008.
[44] M. Steinder, I. Whalley, J.E. Hanson, and J.O. Kephart. Coordinated

management of power usage and runtime performance. InProceedings
of the IEEE/IFIP Network Operations and Management Symposium
(NOMS08), pages 387–394, April 2008.

[45] J. Stoess, C. Lang, and F. Bellosa. Energy management for
hypervisor-based virtual machines. InProceedings of the 2007
USENIX Annual Technical Conference (USENIX07), pages 1–14, June
2007.

[46] I. Taylor, M. Shields, I. Wang, and A. Harrison. The triana workflow
environment: Architecture and applications.Workflows for e-Science,
2007.

[47] A. Verma, P. Ahuja, and A. Neogi. pmapper: Power and migration cost
aware application placement in virtualized systems. InProceedings of
the 9th ACM/IFIP/USENIX International Conference on Middleware
(Middleware08), pages 243–264, Sept. 2008.

[48] A. Verma, G. Dasgupta, T.K. Nayak, P. De, and R. Kothari. Server
workload analysis for power minimization using consolidation. In
Proceedings of the 2009 USENIX Annual Technical Conference
(USENIX09), June 2009.

[49] F. Wang, Q. Xin, B. Hong, S. Brandt, E. Miller, D. Long, and
T. McLarty. File system workload analysis for large scale scientific
computing applications. InProceedings of the 21st IEEE / 12th NASA
Goddard, 2004.

[50] X.R. Wang and M. Chen. Cluster-level feedback power control for
performance optimization. InProceedings of the 14th IEEE
International Symposium on High-Performance Computer Architecture
(HPCA08), pages 101–110, Feb. 2008.

[51] M. Wieczorek, R. Prodan, and T. Fahringer. Scheduling of scientific
workflows in the askalon grid environment.ACM SIGMOD Record,
34(3), 2005.

