
Antivirus Performance Characterization: System-Wide View

Mohammed I. Al-Saleh
University of New Mexico

Department of Computer Science
Mail stop: MSC01 1130

1 University of New Mexico
Albuquerque, NM 87131

alsaleh@cs.unm.edu

Jedidiah R. Crandall
University of New Mexico

Department of Computer Science
Mail stop: MSC01 1130

1 University of New Mexico
Albuquerque, NM 87131

crandall@cs.unm.edu

Abstract
Cyber security threats are still big concerns of the cyber
world. Even though many defense techniques have been
proposed and used so far, the antivirus (AV) software is
very widely used and recommended for the end-users-
PC community. Most effective AV products are commer-
cial and thus competitive and it is not obvious for secu-
rity researchers or system developers how exactly the AV
works or how it affects the whole system. The AV adds
layers of complications over the already layered, com-
plicated systems. Because there is very little effort in
the literature to provide a way for understanding the AV
functionality and its performance impact, in this paper
we want to shed some light on that direction.

To the best of our knowledge, we are the first to present
an OS-aware approach to analyse and reason about the
AV performance impact. Our results show that the main
reason of performance degradation the tasks have with
the existence of the AV software is that they mainly
spend the extra time waiting on events. Also, the AV
in most of our experiments enforces the tasks to spend
more time using the CPU. Although there is an overhead
from the competition between the tasks and the AV on
the CPU, this competition is not a main factor of the
overall overhead. Because of the AV intrusiveness, the
tasks in our experiments are caused to create more file
IO operations, page faults, system calls, and threads.

1 Introduction

The Antivirus software (AV), even vulnerable for new
attacks, is still widely used and recommended for that it
can detect a wide range of known malware. The AV is
claimed to detect some of the unknown malware through
heuristic algorithms [11] it runs looking for malware-
similar behaviors. According to two studies [2, 5], 80-
81% of end-users have an AV installed on their machines.
Also, Microsoft Windows keeps alerting a user who has
no installed AV as if it is so dangerous not to have an AV.

The AV has an OS property for that it intercepts and in-
spects system-wide operations. It is not just a user-space
process with a bunch of DLL (Dynamic Link Libraries)
files linked to it; it is more complicated software to un-
derstand. Users care about buying machines with decent
hardware hoping to accomplish their work fast. How-
ever, they are less aware of installing software that might
render the new hardware unutilized. System designers
care about designing efficient, reliable systems with no
care of software that could render their system ineffi-
cient. Also, software developers and security adminis-
trators might be unaware of what the AV could cause to
the debugging process or the intrusion detection system
given that the AV might change processes’ behaviors.

Most AVs are commercial and their scanning algo-
rithms are not revealed to the public. Even though this
strategy is good for the AV venders to compete, it is not
good for security researchers who will not be able to as-
sess, if even possible, the AV without suffering. There
is no effort in the security research literature that specifi-
cally targets analyzing the commercial AV software.

The AV performance impact has not been well stud-
ied. Some studies [19, 6, 3] had conducted several ex-
periments aiming to show the overhead (extra time or in-
structions) the AV adds while performing specific tasks.
Even though these studies did well in characterizing the
AV performance, the main question would still be what
exactly causes this overhead! Because we can consider
the AV as a property of the whole system, we need a
system-wide inspection approach to characterize its per-
formance. Although monitoring the system from the
hardware-level [19] is useful and the hardware perfor-
mance counters could be queried, the hardware view is
limited in terms of information it can provide. A bet-
ter approach is to have a system-wide, OS-aware instru-
mentation scheme that is able to provide information at
different levels.

In this paper, we examine the performance issues
caused by the AV from the OS point of view. For-



tunately, we utilized an instrumentation tool to inspect
the whole system; a Windows built-in technology, called
Event Tracing for Windows (ETW). This technology is
integrated with Microsoft Windows kernel to log events
of interest very efficiently (when enabled). More details
about this technology are coming in Section 2. We de-
signed several experiments that represent common end-
users tasks W/A the AV being installed to see how in-
trusive the AV is to these tasks and thus to pinpoint its
performance impact. To enrich the study, we pursued
two AVs, Symantec and Sophos.

This paper is organized as follows. First, we give a
background on ETW in Section 2. This is followed by
Section 3 that explains our experimental setup, and then
our results in Section 4. A discussion and future work
are in Section 5. Then related works and the conclusion
follow.

2 Event Tracing for Windows (ETW)

Because the AV intercepts and inspects system-wide op-
erations, we need a system-wide tool to be able to un-
derstand the AV behavior. Event Tracing for Windows
(ETW) is a low-overhead, system-wide instrumentation
technology that comes with Microsoft Windows starting
from Windows 2000. ETW is integrated into the kernel
so that it can capture most kinds of the OS events users
are interested in such as process-related, CPU-related,
IO-related, and memory-related events. ETW can be en-
abled/disabled on the fly without a need to restart the ma-
chine. It produces binary files with .etl extension that can
be converted to CSV or XML formats using tools such as
tracerpt.exe. In the XML format, the trace file consists
of events, each starts with <Event> tag and ends with
</Event> tag. Every event consists of header and body.
The header contains fixed and general information about
the event and is common to all events, while the body
contains specific information based on the event type.
Listing 1 shows an XML representation for Process Start
event. The header starts with <System> section, while
the body starts with <EventData>.

ETW architecture consists of four components: con-
trollers, providers, sessions, and consumers. See Fig-
ure 2.

1. Controller : its main job is to start/stop tracing.

2. Provider : it is the source of events. Whenever an
event happens, it sends it out to one of the sessions.

3. Session : it manages buffers and logs events into
trace files.

4. Consumer : it interprets the trace files produced by
sessions.

xperf is a powerful tool that comes with the Windows
Performance Tools, which can be used as a controller to
start ETW. It also can be used as consumer of the log
files. Figure 1 shows a graph captured from xperf as a
consumer.

The ”Windows Kernel Trace” provider is responsible
for sending the OS kernel events to the ”NT Kernel Log-
ger” session which in turn logs the events into trace files.
In this project, we used xperf to enable The ”Windows
Kernel Trace” with many flags that represent all kinds of
events.

<Event xmlns=”http : / / schemas .microsoft .com /win←↩
/ 2 0 0 4 / 0 8 /events /event”>

<System>
<Provider Guid=”{9e814aad−3204−11d2−9a82←↩

−006008a86939}” />
<EventID>0</EventID>
<Version>3</Version>
<Level>0</Level>
<Task>0</Task>
<Opcode>1</Opcode>
<Keywords>0x0</Keywords>
<TimeCreated SystemTime=”2011−03−21T21←↩

: 3 7 : 1 5 . 7 7 0 9 8 8 4 0 0Z” />
<Correlation ActivityID←↩

=”{00000000−0000−0000−0000−000000000000}”←↩
/>

<Execution ProcessID=”2120” ThreadID=”6592”←↩
ProcessorID=”0” KernelTime=”0” ←↩
UserTime=”15” />

<Channel />
<Computer />

</System>
<EventData>

<Data Name=”UniqueProcessKey”>0←↩
xFFFFFA800E071060</Data>

<Data Name=”ProcessId”>0x77C</Data>
<Data Name=”ParentId”>0x848</Data>
<Data Name=”SessionId”> 1</Data>
<Data Name=”ExitStatus”>259</Data>
<Data Name=”DirectoryTableBase”>0x14E594000←↩

</Data>
<Data Name=”UserSID”>\\alsaleh−hpdv6\←↩

alsaleh</Data>
<Data Name=”ImageFileName”>calc .exe</Data>
<Data Name=”CommandLine”>&quot ;C :\Windows\←↩

system32\calc .exe&quot ; </Data>
</EventData>
<RenderingInfo Culture=”en−US”>

<Opcode>Start</Opcode>
<Provider>MSNT_SystemTrace</Provider>
<EventName xmlns=”http : / / schemas .microsoft .←↩

com /win / 2 0 0 4 / 0 8 /events / t r a c e ”>Process←↩
</EventName>

</RenderingInfo>
<ExtendedTracingInfo xmlns=”http : / / schemas .←↩

microsoft .com /win / 2 0 0 4 / 0 8 /events / t r a c e ”>
<EventGuid>{3d6fa8d0−fe05−11d0−9dda−00←↩

c04fd7ba7c}</EventGuid>
</ExtendedTracingInfo>

</Event>

Listing 1

3 Experimental setup

We designed our experiments to investigate and charac-
terize the performance issues caused by AVs on specific

2



Figure 1: xperf as a consumer.

Figure 2: ETW architecture, reproduced from [16].

tasks from a system-wide view. We designed four exper-
iments that represent common end-user tasks. All of our
experiments were scripted in PowerShell to prevent any
user intervention during experiments. We ran the exper-
iments on a machine that has Windows 7 OS, Intel Dual
Core Atom processor at 1.66 GHz, 4 GB RAM, and 250
GB of hard disk. The hard disk is partitioned into three
partitions almost equally likely. The machine has triple
boot on Windows 7. All partitions have the same ex-
act software except that the second partition has Sophos
AV installed, and the third partition has Symantec AV
installed. Besides Windows 7, each partition has MS Of-
fice 2010, Windows SDK 7.1 (contains Windows Per-
formance Tools 4.7), and Python. The Windows update
service and the indexing services had been disabled to
prevent accidental events from taking place in the middle

of the experiments. All the experiments in the following
section had been conducted on every partition separately
and the machine has been rebooted after every experi-
ment.

3.1 Experiments
1. Client-Server: a PowerShell script starts the ETW

logging, and then it starts a Python client that con-
nects to a server on another machine using sock-
ets. Then the client receives a zipped file from the
server that is password-protected. The zipped file
has putty.exe, the popular SSH client. After receiv-
ing the file, putty.a, the script unzips the file using
7za.exe, an unzipping program. Once the unzipping
is done, the logging is disabled and the log file is
taken. This experiment involves file IO operations,
system calls, CPU operations, and networking.

2. Write to Microsoft Word and save: a Power-
Shell script starts the ETW logging, creates a new
Microsoft Word COM object, writes a short sen-
tence to the object, saves and closes the object into
word.doc file, and then stops logging. In this experi-
ment we want to see how the AV interacts with such
popular staff end-users frequently do. Memory and
file IO operations are involved in this experiment.

3. Copy from Microsoft Word to Microsoft Pow-
erPoint: a PowerShell script starts the ETW log-
ging, creates a new Microsoft Word COM object,
opens a pre-created word file (wordsourcedoc.doc)
into the new object, copies its content into the clip-
board (only has a short sentence), creates a new Mi-
crosoft PowerPoint COM object, creates a new pre-
sentation in the PowerPoint object, adds a new slide
to the created presentation, pastes the copied sen-
tence into the slide, saves the PowerPoint object,
closes both objects, and stops logging. This experi-

3



ment shows a frequent act in which end users copy
data from application into another. The question is
how the AV interacts with this process that involves
COM objects creations and data transfer between
different applications.

4. YouTube: a PowerShell script starts the ETW log-
ging and creates an Internet Explorer COM object
and makes it navigate into a particular video in
www.youtube.com. Then the script sleeps for five
seconds, letting the browser to start the video and
then it closes the browser and stops logging. This
experiment involves using the Internet Explorer that
is considered one of main gates usually threats come
through. Also, the experiment involves running
flash videos over the internet.

We convert all experiments’ log files into a CSV files
and dumped the data into PostgreSQL [4] database. Then
we designed SQL queries to retrieve information we care
about. We present our findings in the next Section.

4 Results

In this section we present the results for the experiments
we explained their methodology in Section 3. The goal
is to show as many as differences (in terms of OS point
of view) between running an experiment with and with-
out an installed AV. In all of our experiments we care
about the processes and files directly involved in the ex-
periment. The OS metrics we examine are: File IO op-
erations, page faults, system calls, threads and processes
creations, and CPU scheduling.

Figure 3: Client-Server experiment: processes’ life-
times. Each line represents the time a process takes
from start to end. The processes we care about are:
python.exe, cmd.exe, and 7za.exe.

Figures 3, 4, 5, 6 show the lifetimes of processes
we care about in all experiments. The overhead caused
by Symantec and Sophos is obvious in all experiments.

Figure 4: YouTube experiment: processes’ lifetimes.
Each line represents the time a process takes from
start to end. The processes we care about are two
processes of the same image: iexplore.exe.

Figure 5: Copy from Microsoft Word to Microsoft
PowerPoint experiment: processes’ lifetimes. Each
line represents the time a process takes from start to
end. The processes we care about are: winword.exe
and powerpnt.exe.

Not only that, but also if a process start time depends on
another process, the other process would delay the start
time of its dependent.

After it gets executed, a process is in one of three
states: executing, waiting in the ready queue to be picked
up by the scheduler, or waiting for an event that, when
happens, puts it back in the ready queue. Figure 7 shows
the lifetime of the processes divided between the three
states. What is clear here is that in both Symantec and
Sophos the processes spend more time on waiting for
events than in the Vanilla case. Also, what is surprising
in the figure is that in Sophos case, the total wait time
is about 17 seconds while the whole execution is about
4.1 seconds. We found that 7za.exe process has three
threads; the wait time is accumulated for the all three,
see figure 11. However, that total time for all 7za.exe
threads is about 2.8 seconds out of the 17 seconds. We
found that python.exe process creates five threads in case
of Sophos, while it is only one thread in case of Vanilla
and Symantec. Figure 12 shows the waiting times for the

4



Figure 6: Write to Microsoft Word experiment: pro-
cesses’ lifetimes. Each line represents the time a pro-
cess takes from start to end. The process we care
about is winword.exe.

Figure 7: Client-Server experiment: processes’ time
(in sec) distributed between execute (actual), ready
(wait in ready), and wait (wait for event) states.

python.exe threads in case of Sophos. We ran the exper-
iment again and found out that the same thing is happen-
ing again, which means that Sophos makes python.exe to
create the extra four threads.

Figure 8 shows the excessive amount of the waiting
times for iexplore.exe processes in the YouTube experi-
ment. More threads are created for the iexplore.exe pro-
cesses in case of Sophos (74 threads) and Symantec (64
threads) than in Vanilla (60 threads). Also, figures 9 and
10 show the extra time the processes spend waiting on
events.

It is obvious from figures 7, 8, 9, and 10 that the
main reason of the overhead caused by the AV on the run-
ning processes come from the waiting time they spend on
events. Also, it is obvious from the figures that the AV in
most of the experiments enforce the tasks to spend more
time on using the CPU (execute state). Although there
is an overhead from the competition between the tasks
and the AV on the CPU, this competition is not a main
factor of the overall overhead because those tasks spend
negligible time in the scheduler’s ready queue.

A process’ lifetime is affected by the system (hard-

Figure 8: YouTube experiment: processes’ time (in
sec) distributed between execute (actual), ready (wait
in ready), and wait (wait for event) states.

Figure 9: Copy from Microsoft Word to Microsoft
PowerPoint experiment: processes’ time (in sec) dis-
tributed between execute (actual), ready (wait in
ready), and wait (wait for event) states.

ware and software) it is running on. Because we have
fixed the hardware for all experiments, it is only the soft-
ware that takes the role. Figure 13 shows the num-
ber of processes, threads, and images that were creat-
ed/loaded before and during running the Client-Server
experiment. The figure shows that the AV creates threads
and loads images during the experiments to achieve
something. Figure 14 shows the same thing happening
in the YouTube experiment. Although this is not a direct
performance implication, we can predict some intrusive-
ness from the AV to the tasks as the coming figures will
show. Also, those extra threads could compete with the
tasks on some resources like the hard drive and memory.

Figures 15 and 16 show a comparison between the
numbers of file IO operations on the files involved in two
different experiments by whatever process, including the
AV. The intrusiveness of both AVs is obvious.

Figure 17 shows the total number of file IO oper-
ations directly made by the processes we care about.
The figure shows the two different approaches Syman-
tec and Sophos take to scan the task. Syman-
tec approach is to enforce the running process to
do more operations that is not originally designed to
do. For example, python.exe did 128 file IO op-
erations on ”ProgramData/Symantec/Definitions/Virus-
Defs/20110313.002/VIRSCAN7.DAT” file. It is obvi-
ous that python.exe is not supposed to read Symantec’s

5



Figure 10: Write to Microsoft Word Experiment: ex-
periment: processes’ time (in sec) distributed be-
tween execute (actual), ready (wait in ready), and
wait (wait for event) states.

Figure 11: Client-Server experiment: the wait time (in
sec) for the 7za.exe threads.

signatures! This explains why in case of Symantec the
number of file IO operations made by the processes we
care about is much more than the Vanilla and Sophos
cases. Sophos on the other hand does part of its job
through detouring the execution of the running process.
This is clear when the processes make file IO operations
on sophos detoured.dll, sophos∼1.dll, and swi lsp.dll
(Sophos Web Intelligence), so the load could be detoured
to Sophos processes.

Figures 18 and 19 show the number of caused page
faults. Hard faults are the ones that need hard disk ac-
cess, while others are other kinds of faults like copy-on-
write and demand-zero faults. When a process causes
a hard fault, it needs to wait until the page is brought in
memory. The high increase of hard faults in both Syman-
tec and Sophos experiments is correlated to the overhead
they add to the processes’ lifetimes. Again, these faults
are only accumulated for the processes we care about.

A system call proceeds from the user space (unpro-
tected mode) to kernel space (protected mode) for the
kernel to achieve a task on behalf of the user process and
then get back to the user process. Increasing the number
of system calls decreases performance. Figures 20 , 21,
and 22 show the increase in the number of system calls
made by the processes we care about in case of Symantec

Figure 12: Client-Server Experiment: the wait
time (in sec) for python.exe threads created in case
of Sophos. In the Vanilla and Symantec cases,
python.exe has only one thread.

Figure 13: Client-Server experiment: the total num-
ber of processes, threads, and images in the system
before and during the experiment.

and Sophos, compared with the Vanilla case.

5 Discussion and future work

Although we claim that our approach is useful in char-
acterizing the effect of the AVs on the running processes
in terms of performance from the OS point of view, it is
not perfectly accurate. We depend on finding differences
between the Vanilla and the AV cases to conclude, which
is loosely connected to the AV. Some operations might
happen or not based on the system state or the state of
the task that is about to execute. For example, if an AV
uses the same DLLs the task will be using, then the task
would not cause a hard fault in case of the AV because
the AV might have already brought the DLLs before even
the task starts. Also, a program could do some staff based
on its last run or configuration which might make its ex-
ecution to look different.

In this paper, we started from the files and processes
we care about to find out what operations they do or are
done on them. Another approach, which is a future work,
is to start from the AV components to directly find out

6



Figure 14: YouTube experiment: the total number of
processes, threads, and images in the system before
and during the experiment.

Figure 15: Client-Server experiment: the total num-
ber of file IO operations with respect to the files
involved in the experiment (python.exe, 7za.exe,
cmd.exe, client.py, putty.a, putty.exe).

what they are doing exactly. This approach is challeng-
ing, though, for that we need to know all the changes and
the components the AV adds to the system when it gets
installed.

6 Related work

The AV software is well known in the literature to pre-
vent viruses and worms from spreading. Surfing the in-
ternet without having an AV is not safe. Although pat-
tern matching is in the heart of the AV scanning engine,
other techniques such as heuristics [11], code emulation,
and algorithmic scanning are essential parts of modern
AVs [18]. Little research has been conducted towards
analyzing and improving AVs, mainly because most AVs
are closed source. Few papers [13, 14] improved the
scanning engine of the open source AV, ClamAV [1]. Al-
Saleh et al. [7] shows that it is possible to create timing
channel attacks against AVs. Christodorescu et al. [10]
shows that it is possible to extract the signature for a spe-
cific virus that the antivirus is using to detect that virus.
The closest to our work is [19], however they studied the

Figure 16: Copy from Microsoft Word to Microsoft
PowerPoint experiment: the total number of file IO
operations with respect to the files involved in the ex-
periment (winword.exe, powerpnt.exe, wordsource-
doc.doc, pres.ppt).

Figure 17: Client-Server Experiment: the total num-
ber of file IO operations made by the processes in-
volved in the experiment.

performance of the AV purely at the hardware level while
our approach is to characterize the AV performance from
the OS point of view. Naive ways [6, 3] of measuring
the AV performance are conducted by running a task and
then compare the total time while running different AVs.

Software instrumentation [12, 8, 15, 9, 17] is a pow-
erful technique to analyze programs’ behaviors through
adding extra code at certain positions of the instrumented
programs. The purpose of instrumentation could be mea-
suring performance, proving correctness, or assuring se-
curity of programs. Pin [12] is a dynamic binary instru-
mentation tool that can instrument binaries at the instruc-
tion level without modifying them. DTrace [9] is whole-
system instrumentation tool for Linux. ETW is similar
to DTrace, but ETW is integrated within Microsoft Win-
dows kernel and it is very light, efficient, and easy to use.

7 Conclusion

Less care is given to study the functionality and the per-
formance of the AV software despite how important and

7



Figure 18: Client-Server experiment: the total num-
ber of page faults made by the processes involved in
the experiment.

Figure 19: Write to Microsoft Word experiment: the
total number of page faults made by the processes in-
volved in the experiment.

widely used it is. In this paper, we investigated the per-
formance issues for two commercial AVs. While naive
techniques concentrate on the elapsed times of running
tasks with the existence of AVs and others look at it from
a purely hardware point of view, we focused on OS-
aware approach to give more meaningful and accurate
results. We used the Event Tracing for Windows instru-
mentation technology (a system-wide, kernel-integrated
tool), xperf (a performance tool), and PowerShell (an au-
tomation and scripting framework in Windows) to design
our experiments. Our experiments were designed to sim-
ulate common end-users tasks. Our results show that a
considerable amount of performance overhead is added
by the AVs because of the AV intrusiveness. The main
impact of the AV on tasks is that they spend extra time
waiting on events or using the CPU. The AV changes a
task behavior by enforcing it do more file IO operations,
page faults, system calls, and threads. We also show that
a process behavior is changed with the existence of the
AV. So, software development process (design, test, de-
bug) and intrusion detection systems (which might look
at a process changing its behavior as anomalous) should
be aware of the AV existence.

Figure 20: Client-Server experiment: the total num-
ber of system calls made by the processes involved in
the experiment.

Figure 21: Copy from Microsoft Word to Microsoft
PowerPoint experiment: the total number of system
calls made by the processes involved in the experi-
ment.

References

[1] Clam antivirus. http://www.clamav.net.

[2] Internet security threats will affect u.s. con-
sumers holiday shopping online. http:
//www.bsacybersafety.com/news/
2005-Holiday-Online-Shopping.cfm.

[3] Passmark software. http://www.passmark.
com/benchmark-reports/.

[4] Postgresql: The world’s most advanced open
source database. http://www.postgresql.
org/.

[5] Small and medium size businesses
are vulnerable. http://www.
staysafeonline.org/blog/
small-and-medium-size-businesses-are-vulnerable.

[6] Tests of anti-virus and security software. http:
//www.av-test.org/.

8

http://www.clamav.net
http://www.bsacybersafety.com/news/2005-Holiday-Online-Shopping.cfm
http://www.bsacybersafety.com/news/2005-Holiday-Online-Shopping.cfm
http://www.bsacybersafety.com/news/2005-Holiday-Online-Shopping.cfm
http://www.passmark.com/benchmark-reports/
http://www.passmark.com/benchmark-reports/
http://www.postgresql.org/
http://www.postgresql.org/
http://www.staysafeonline.org/blog/small-and-medium-size-businesses-are-vulnerable
http://www.staysafeonline.org/blog/small-and-medium-size-businesses-are-vulnerable
http://www.staysafeonline.org/blog/small-and-medium-size-businesses-are-vulnerable
http://www.av-test.org/
http://www.av-test.org/


Figure 22: Write to Microsoft Word experiment: the
total number of system calls made by the processes
involved in the experiment.

[7] M. I. Al-Saleh and J. R. Crandall. Application-level
reconnaissance: Timing channel attacks against an-
tivirus software. In LEET 2011: 4th USENIX
Workshop on Large-Scale Exploits and Emergent
Threats, 2011. To appear.

[8] D. Bruening, E. Duesterwald, and S. Amarasinghe.
Design and implementation of a dynamic optimiza-
tion framework for windows. In In 4th ACM
Workshop on Feedback-Directed and Dynamic Op-
timization (FDDO-4, 2000.

[9] B. M. Cantrill, M. W. Shapiro, A. H. Leventhal, and
S. Microsystems. Dynamic instrumentation of pro-
duction systems. pages 15–28, 2004.

[10] M. Christodorescu and S. Jha. Testing malware de-
tectors. SIGSOFT Softw. Eng. Notes, 29(4):34–44,
2004.

[11] J. Eisner. Understanding heuristics:
Symantecs bloodhound technology. syman-
tec white paper series volume xxxiv.
http://www.symantec.com/avcenter/
reference/heuristc.pdf, 1997.

[12] C. keung Luk, R. Cohn, R. Muth, H. Patil,
A. Klauser, G. Lowney, S. Wallace, V. Janapa, and
R. K. Hazelwood. Pin: Building customized pro-
gram analysis tools with dynamic instrumentation.
In In Programming Language Design and Imple-
mentation, pages 190–200. ACM Press, 2005.

[13] P.-C. Lin, Y.-D. Lin, and Y.-C. Lai. A hybrid algo-
rithm of backward hashing and automaton tracking
for virus scanning. IEEE Transactions on Comput-
ers, 60:594–601, 2011.

[14] Y. Miretskiy, A. Das, C. P. Wright, and E. Zadok.
Avfs: An on-access anti-virus file system. In In

Proceedings of the 13th USENIX Security Sympo-
sium (Security 2004, pages 73–88. USENIX Asso-
ciation, 2004.

[15] N. Nethercote and J. Seward. Valgrind: A program
supervision framework. In In Third Workshop on
Runtime Verification (RV03, 2003.

[16] D. I. Park and R. Buch. Improve debug-
ging and performance tuning with etw.
http://msdn.microsoft.com/en-us/
magazine/cc163437.aspx/.

[17] A. Skaletsky, T. Devor, N. Chachmon, R. S. Cohn,
K. M. Hazelwood, V. Vladimirov, and M. Bach.
Dynamic program analysis of microsoft windows
applications. In ISPASS, pages 2–12, 2010.

[18] P. Szor. The Art of Computer Virus Research and
Defense. Symantec Press, 2005.

[19] D. Uluski, M. Moffie, and D. Kaeli. Characterizing
antivirus workload execution. SIGARCH Comput.
Archit. News, 33:90–98, March 2005.

9

http://www.symantec.com/avcenter/reference/heuristc.pdf
http://www.symantec.com/avcenter/reference/heuristc.pdf
http://msdn.microsoft.com/en-us/magazine/cc163437.aspx/
http://msdn.microsoft.com/en-us/magazine/cc163437.aspx/

	Introduction
	Event Tracing for Windows (ETW)
	Experimental setup
	Experiments

	Results
	Discussion and future work 
	Related work
	Conclusion

