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CoSLAM: Collaborative Visual SLAM in
Dynamic Environments
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Abstract—This paper studies the problem of vision-based simultaneous localization and mapping (SLAM) in dynamic environ-
ments with multiple cameras. These cameras move independently and can be mounted on different platforms. All cameras work
together to build a global map, including 3D positions of static background points and trajectories of moving foreground points. We
introduce inter-camera pose estimation and inter-camera mapping to deal with dynamic objects in the localization and mapping
process. To further enhance the system robustness, we maintain the position uncertainty of each map point. To facilitate inter-
camera operations, we cluster cameras into groups according to their view overlap, and manage the split and merge of camera
groups in real-time. Experimental results demonstrate that our system can work robustly in highly dynamic environments and
produce more accurate results in static environments.

Index Terms—Visual SLAM, Swarm, Dynamic Environments, Structure-from-Motion
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1 INTRODUCTION

Many vision based SLAM (simultaneous localization
and mapping) systems [23], [10], [18] have been devel-
oped, and have shown their remarkable performance
on mapping and localization in real-time. Recent
works took further steps to provide high level scene
understanding [20], or to improve the system accu-
racy and robustness, such as ‘loop closure’ [16], ‘re-
localization’ [36], and dense depth map reconstruction
[22]. These works have made cameras become more
and more favorable sensors for SLAM systems.

Existing vision-based SLAM systems mainly focus
on navigation in static environments with a single
camera. However, the real world is full of moving ob-
jects. Although there are robust methods to detect and
discard dynamic points by treating them as outliers
[18], [5], conventional SLAM algorithms tend to fail
when the portion of moving points is large. Further,
in dynamic environments, it is often important to
reconstruct the 3D trajectories of the moving objects
[38], [35] for tasks such as collision detection and path
planning. This 3D reconstruction of dynamic points
can hardly be achieved by a single camera.

To address these problems, we present a collabora-
tive visual SLAM system using multiple cameras. The
relative positions and orientations between cameras
are allowed to change over time, which means cam-
eras can be mounted on different platforms that move
independently. This setting is different from existing
SLAM systems with a stereo camera [23], [25] or a
multi-camera rig [17] where all cameras are fixed on a
single platform. Our camera configuration makes the
system applicable to the following interesting cases:
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1) wearable augmented reality [5], where multiple
cameras are mounted on different parts of the body; 2)
robot teams [4], [34], [1], where multiple robots work
in the same environment and each carries a single
camera because of limited weight and energy capacity,
e.g. micro air vehicles (MAVs) [40].

In our system, we use images from different cam-
eras to build a global 3D map. We maintain the po-
sition uncertainty of each map point by a covariance
matrix, and iteratively refine the map point position
whenever a new observation is available. This de-
sign increases the system robustness and accuracy
in dealing with complex scenes. Further, we classify
map points as dynamic or static at every frame by
analyzing their triangulation consistency. False points
caused by incorrect feature matching are also detected
and removed. For robust localization in dynamic en-
vironments, we use both dynamic and static points to
simultaneously estimate the poses of all cameras with
view overlap. We divide cameras into groups accord-
ing to their view overlap. Cameras within the same
group share a common view, and work collaboratively
for robust mapping and localization. Groups can split
or merge when cameras separate or meet.

Our system was tested in static and dynamic, in-
door and outdoor scenes. Experimental results show
that our method is more accurate and robust than
existing single camera based SLAM methods. Our
system succeeds in highly dynamic environments,
and is able to reconstruct the 3D trajectories of moving
objects. The system currently runs at approximately
38 ms per frame for three cameras. In the next section
we shall briefly review existing visual SLAM methods
and discuss our work in detail.
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2 RELATED WORK

Visual SLAM with a single camera There are
mainly two types of methods for single camera based
visual SLAM. One is based on the structure-from-
motion (SFM) technique [15]. Royer et al. [26] first
reconstructed a 3D map of the scene offline from
a learning sequence, and then estimated the camera
pose in real-time by referring to that map. Mouragnon
et al. [21] proposed a local bundle adjustment method
so that mapping and pose update can run in nearly
real-time. Klein et al. [18] put the time-consuming
bundle adjustment into an asynchronous thread, and
made the system much faster.

The second type of methods model SLAM as a
Bayesian inference problem, and solve it through the
Extended Kalman Filter [9], [10]. In [30], line features
were used to complement point features to improve
the matching robustness. Eade et al. [12] applied
particle filter and a top-down approach to handle
a relatively large number of landmarks (hundreds)
more efficiently. To improve the robustness of SLAM,
Williams et al. [36] proposed a re-localization method
to recover the SLAM system from tracking failures.

Strasdat et al. [31], [33] compared both types of
methods, and concluded that the SFM based methods
produce more accurate results per unit computing
time, while filter based methods could be more ef-
ficient when processing resource is limited.

These methods often do not consider dynamic
scenes. Some of them, such as [18], [5], detected and
discarded dynamic points as outliers. However, this
approach tends to fail when the portion of dynamic
points is large. Some more recent methods, such
as [24], [19], applied multi-body SFM to deal with
dynamic environments. However, this approach is
only applicable to rigid moving objects, and the 3D
reconstruction of moving points is up to a scaling
ambiguity [24]. In comparison, we propose to solve
the SLAM problem in dynamic scenes with multiple
independently moving cameras. Our approach can
reconstruct the full 3D of dynamic points within the
scene map.

Visual SLAM with multiple cameras Nister et
al. [23] proposed a visual odometry system with
a stereo rig. Their system was much like a SFM-
based single camera SLAM system with an additional
camera to generate map points at every frame. They
also pointed out the narrow base line between stereo
cameras could affect the map quality. To address this
problem, Paz et al. [25] separated close and far 3D
points, and used far points to estimate camera rotation
only. To obtain wider FOV, Kaess et al. [17] mounted
multiple cameras in a rig facing different directions to
combine the advantages of omnidirection vision [37]
and monocular vision. Castle et al. [5] used multiple
cameras distributed freely in a static environment,
where each camera was processed by an independent

Fig. 1. CoSLAM system architecture.

single camera based SLAM system. A camera could
be localized according to different maps by registering
its feature points to the other map points.

These methods still focus on static scenes and do
not take full advantage of multiple cameras. Further,
the relative positions of their cameras are often fixed.
In comparison, we allow cameras to move indepen-
dently and achieve more flexible system design. For
example, our cameras can be mounted on different
robots for robot team applications.

SLAM in dynamic environments Existing works
on SLAM in dynamic environments mostly use filter-
based methods and have been successfully applied to
SLAM problems with sensors such as laser scanners
[14], [38], [35] and radar systems [2], [3]. In this work,
we aim to use cameras to address the SLAM problem.
Compared with other sensors, cameras are passive,
compact and energy efficient, which have important
advantages for micro robots with limited weight and
energy capacity (such as MAVs [40], [1]). To the best
of our knowledge, this work is the first visual SLAM
solution in a dynamic environment with multiple
cameras moving independently. This method could
be applied to emerging swarm robotics applications
[1], [27].

3 SYSTEM OVERVIEW

The intrinsic parameters of all our cameras are cal-
ibrated beforehand. Our collaborative SLAM system
treats each camera as a sensor input, and incorporates
all inputs to build a global map, and simultaneously
computes the poses of all cameras over time. The
system framework is illustrated in Figure 1. The sys-
tem detects and tracks feature points at every frame,
and feeds them to the four SLAM components. We
use Kanade-Lucas-Tomasi(KLT)[28] tracker for both
feature detection and tracking because of its good
balance between efficiency and robustness. However,
there is no restriction to use other feature detectors
and trackers such as the ‘active matching’ [6].
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The four SLAM components are ‘camera pose es-
timation’, ‘map building’, ‘point classification’, and
‘camera grouping’. The main pipeline of our sys-
tem follows conventional sequential structure-from-
motion (SFM) methods. We assume that all cameras
look at the same initial scene to initialize the system.
After that, the ‘camera pose estimation’ component
computes camera poses at every frame by registering
the 3D map points to 2D image features. From time
to time, new map points are generated by the ‘map
building’ component. At every frame, points are clas-
sified into different types by the ‘point classification’
component. The system maintains the view overlap
information among cameras throughout time. The
‘camera grouping’ component separates cameras into
different groups, where cameras with view overlap
are in the same group. These groups could merge and
split when cameras meet or separate. In the following
section, we shall describe these four components in
detail.

4 CAMERA POSE ESTIMATION

Our system alternatively uses two different methods
for camera pose estimation: intra-camera pose esti-
mation and inter-camera pose estimation. In the for-
mer, each camera works independently, where tracked
feature points from a camera are registered with
static map points to compute its pose. In dynamic
environments, the number of static map points could
be small, or the static points are distributed within a
small image region, which can make the intra-camera
pose estimation fail. In such a case, we switch to the
inter-camera pose estimation method that uses both
static and dynamic points to simultaneously obtain
poses for all cameras.

4.1 Intra-camera Pose Estimation
If the camera intrinsic parameters are known, the cam-
era pose Θ = (R, t) can be computed by minimizing
the reprojection error (the distance between the image
projection of 3D map points and their corresponding
image feature points), namely,

Θ∗ = arg min
θ

∑

i

ρ (||mi − P(Mi, Θ)||) . (1)

where P(Mi, Θ) is the image projection of the 3D
point Mi, mi is the image feature point registered to
Mi, || · || measures the distance between two image
points. i is an index of feature points. The M-estimator
ρ : R+ → R+ is the Tukey bi-weight function [39]
defined as

ρ(x) =
{

t2/6 (1− [1− (x
t )2]3) if |x| ≤ t

t2/6 otherwise. (2)

Assuming that the error of feature detection and
tracking obeys a Gaussian distribution N (0, σ2I), we
set the threshold t in ρ(·) as 3σ. Equation (1) is

Fig. 2. The pose of camera A at the nth frame cannot
be estimated from its previous pose, since it observes
only the moving object (the grey square). However,
its relative pose with respect to camera B can be
determined. So the absolute pose of camera A can be
computed.

minimized by the iteratively re-weighted least squares
(IRLS) method, where Θ is initialized according to the
camera pose at the previous frame. At each iteration of
the IRLS, the Levenberg-Marquart algorithm is used
to solve the non-linear least square problem, where Θ
is parameterized in Lie algebra se(3) as [32].

4.2 Inter-camera Pose Estimation

When the number of visible static points is small,
or the static points are located in a small image
region, the intra-camera pose estimation is unstable
and sometimes fails. Fortunately, points on moving
objects give information about the relative camera
poses. Figure 2 provides such an illustration. The pose
of camera A at the nth frame cannot be decided on
its own, since it only observes the moving object (the
grey square). However, its relative pose with respect
to the camera B can be decided. We can therefore use
both static and dynamic points together to decide all
camera poses simultaneously.

Actually, the 3D coordinates of dynamic points can
only be computed when the camera poses are already
known. Hence, our system in fact simultaneously es-
timates both the camera poses and the 3D positions of
dynamic points. We formulate the inter-camera pose
estimation problem as an minimization of reprojection
error,

{Θc}∗ = arg min
MD,{Θc}

∑
c

{ ∑

i∈S

vc
i ρ (||mi − P(Mi,Θc)||)

+
∑

j∈D

vc
jρ (||mj − P(Mj , Θc)||)

}
.

(3)

Here, c is an index of cameras, S and D are the set of
‘static’ and ‘dynamic’ map points. vc

i represents the
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visibility of the i-th map point at camera c ( 1 for
visible, 0 otherwise).

The difference between the ‘intra-camera pose esti-
mation’ and the ‘inter-camera pose estimation’ lies in
the second term of Equation (3), where the dynamic
points are included in the objective function. The
relative poses between cameras are therefore enforced
by minimizing the reprojection error of the dynamic
points. Hence, our system can determine the poses of
cameras where few static points are visible. As the
cameras need to have view overlap, we only apply
inter-camera pose estimation to cameras within the
same group. We refer the reader to Section 6 for more
details about camera grouping.

The optimization of Equation (3) is also solved by
the IRLS. The camera poses and 3D positions of dy-
namic points are initialized from the previous frame.
We call intra-camera pose estimation by default. We
call the inter-camera pose estimation only when the
number of dynamic points are greater than that of
static points, or the area covered by the convex hull
of static feature points is less than 20% of the image
area.

5 MAP MAINTENANCE

Unlike previous SFM based SLAM systems [18], [5],
where only the 3D position is recovered for each map
point, we further maintain the position uncertainty
of each map point to help point registration and
distinguishing static and dynamic points. Specifically,
we recover a probability distribution of the map point
position, which is represented by a Gaussian func-
tion N (Mi, Σi). Mi is the triangulated position. The
covariance matrix Σi ∈ R3×3 measures the position
uncertainty.

To facilitate computation, for each feature point, we
keep a pointer directing to its corresponding map
point. Similarly, for each map point, we also keep
pointers directing to its corresponding image feature
points in each view, and store the local image patches
centered at these feature points. We downsize the
original input image to its 30% size, and take a patch
of 11 × 11 pixels. We further keep track of the frame
numbers when a map point is generated or becomes
invisible.

5.1 Position Uncertainty of Map Points

When measuring the uncertainty in map point po-
sitions, we only consider the uncertainty in feature
detection and triangulation. In principle, we could
also include the uncertainty in camera positions. We
assume the feature detection error follows Gaussian
distribution N (0, σ2I). The position uncertainty of a
3D map point is described by the covariance com-
puted as

Σi = (JT
i Ji)−1σ2, (4)

Fig. 3. Both the mean position and position covariance
matrix are updated when a new observation is coming.

where Ji ∈ R(2k)×3 is the Jacobian of the camera
projection function that maps a 3D map point to its
2D image coordinates in all views, and k denotes the
number of views used for triangulation.

When there is a new image observation m(n+1)
i of

a map point, we can quickly update its 3D position
with Kalman Gain

M(n+1)
i = M(n)

i + Ki[Pn+1(M
(n)
i )−m(n+1)

i ]. (5)

Here, Pn+1(M
(n)
i ) computes the image projection of

M(n)
i in the (n + 1)th frame. The Kalman Gain Ki ∈

R3×2 is computed as

Ki = Σ(n)
i ĴT

i

(
σ2I + ĴT

i Σ(n)
i Ĵi

)−1

. (6)

Here, Ĵi ∈ R2×3 is the Jacobian of Pn+1(·) evaluated
at M(n)

i . The triangulation uncertainty can meanwhile
be updated by

Σ(n+1)
i = Σ(n)

i −KiĴiΣ
(n)
i . (7)

We illustrate the idea of this refinement in Figure 3.
Unlike SLAM algorithms based on Kalman filter,

such as [9], [11], which spend a high computational
cost O(N2) (N is the number of map points) to main-
tain the covariance matrix for both camera states and
the whole map states (including correlation between
positions of different points), we only maintain the tri-
angulation uncertainty for each individual map point.
The computation cost of our method is only O(N).
Further, the computation is independent at each point,
which enables parallel computation to achieve better
efficiency. Maintaining position uncertainty is impor-
tant for the following map operations such as point
classification and registration described in Section 5.3
and Section 5.4. For example, the point classification
benefits from the position uncertainty. Even for static
points, their reconstructed positions are always chang-
ing over time due to triangulation uncertainties. (This
can be seen clearly in our supplementary videos.)
With the position covariance matrix Σi, we can dis-
tinguish static and dynamic points better. Though we
could also maintain the covariance among different
points and uncertainty of camera positions, we do not
include them for efficiency consideration.
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Fig. 4. Guided feature matching between two cameras.
u, v are the projections of a map point. We will prefer
the match i ↔ j than i ↔ k for its better consistency to
u ↔ v.

5.2 Map Points Generation
We propose two methods to generate new map points.
The first one, ‘intra-camera mapping’, reconstructs
static map points from feature tracks in each in-
dividual camera. To deal with moving objects, we
propose the second method, ‘inter-camera mapping’,
to generate map points from corresponding points
across cameras within the same group (i.e. cameras
with view overlap).

5.2.1 Intra-camera mapping
Previous methods usually use key frames to generate
new map points [18], [26], where feature points in se-
lected key frames are matched and triangulated. Since
all feature points are tracked over time in our system,
it is not necessary to select key frames to match those
feature points again. If there are unmapped feature
tracks (whose pointers to map points are NULL) that
are long enough (> Nmin frames), we use the begin-
ning and the end frames of this track to triangulate
a 3D point. Once the 3D position is computed, the
covariance can also be evaluated by Equation (4). We
then check the reprojection error at all frames of the
feature track. If the Mahalanobis distance (described
in Section 5.3) between the projection and the feature
point is smaller than θ for all frames, a new map point
is generated and marked as ‘static’.

5.2.2 Inter-camera mapping
Inter-camera mapping is applied to unmapped feature
points only. We match the image features between
different cameras by zero-mean normalized cross cor-
relation (ZNCC). To avoid ambiguous matches, the
corresponding points are searched only in a narrow
band within 3σ distance to the epipolar line. Only
matches with ZNCC > τncc are considered. We further
use the correspondence of existing map points as
seeds to guide matching - a pair of feature points
is not considered to be matched, if it has a very
difference disparity vector from that of the nearest
seed.

As shown in Figure 4, suppose we want to find the
corresponding point for the unmapped feature point

i. There are two candidates k and j within the band of
the epipolar line. u is the closest mapped feature point
to i. If it is within φr pixels distance to i, we use the
disparity vector Duv to guide feature matching. We
compare the difference between the disparity vectors.
A candidate with very different disparity from the
seed is discarded, e.g. candidate k is removed in
Figure 4 because ||Duv−Dik|| > φd. The best match is
then obtained from the remaining candidates by the
winner-take-all strategy.

After matching feature points between cameras,
we triangulate the corresponding points to generate
new map points. Exhaustive feature matching in all
possible camera pairs is inefficient. We construct a
graph for cameras within the same group where
cameras are linked according to their view overlap.
We select a spanning tree of the graph and only match
features between cameras that are connected by the
spanning tree edges. More details of this spanning
tree are discussed in Section 6. Inter-camera mapping
are called every 5 frame in our system when dynamic
points are detected.

5.3 Point Registration

At every frame, we need to associate each map point
with its incoming observations – newly detected im-
age feature points from different cameras. Many of the
feature points are registered to a map point through
feature tracking. We further process the remaining
unmapped feature points. For these points, we only
consider active map points which are static and have
corresponding feature points within the most recent
Nrec frames. These map points are cached in our
system for fast access. For each unmapped feature
point detected at the current frame, we go through
these active map points for registration.

We project active map points to the images, and
compare the image patches centered at the projections
with that of the feature point through ZNCC. Consid-
ering the uncertainty in map point position and fea-
ture detection, the projected position of a map point
Mi should satisfy a Gaussian distribution N (mi, ci),
where the covariance ci = ĴiΣiĴT

i + σI, Ĵi ∈ R2×3 is
the Jacobian of the image projection P(·) evaluated at
Mi. The Mahalanobis distance is computed as

D2(mj ,mi) = (mj −mi)T c−1
i (mj −mi). (8)

We only consider the feature point mj which has the
smallest Mahalanobis distance to mi. We then check
the ZNCC score between Mi and mj . To alleviate
problems caused by perspective distortion, when se-
lecting the image patch for Mi, we choose the one
stored from the nearest camera. mj is discarded if
its ZNCC score < τncc. We further traverse back
along the feature track of mj to check if its previous
positions are also nearby to the projections of Mi. If
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the Mahalanobis distances between them in all frames
are smaller than θ, then the mj is registered to Mi.

Once an unmapped feature point is registered to
a 3D map point, the 3D position and the position
covariance of this map point can be updated based on
the new observation. However, the new observation
obtained from point registration, unlike those ob-
tained from feature tracking, usually deviates largely
from the previous observations (e.g. this new obser-
vation often comes from a different camera). It will
lead to inaccurate estimation if we use the iterative
refinement described in Equation (5) and Equation (7).
In such case, we retriangulate the 3D position of this
map point with all observations and recompute the
covariance by Equation (4). To reduce the computa-
tional cost, we select only two observations from the
feature track in each camera for retriangulation, which
have the largest viewpoint changes.

5.4 Point Classification

At every frame, we need to distinguish ‘dynamic’
points on moving objects and ‘static’ points on the
background. A naı̈ve method for this classification
is to threshold the position variation of the 3D map
points. It is, however, difficult to set a common
threshold for different scenes. Further, in our system,
the positions of static points are also changing over
time, since their positions are updated whenever new
observations are available. Especially, for static points
in the distant background, their positions may change
significantly as cameras move from far to near.

We instead distinguish static and dynamic points by
the reprojection error, which can be easily measured
on the image plane. For a dynamic point, if we project
its 3D position at the (n − 1)th frame to the nth

frame, since the 3D position actually changes, the
projection should be distant from its tracked corre-
sponding feature points. In other words, if we use
image feature points from different (or the same) time
to triangulate the 3D position of a dynamic point,
the reprojection error should be large (or small). In
comparison, if the point is static, the reprojection error
should be always small, no matter if we use image
feature points from the same or different time. Based
on this observation, we design a process to distinguish
‘static’ and ‘dynamic’ points. The whole process is
illustrated in Figure 5. We use ‘false’ points to denote
map points generated from incorrect correspondence.
An intermediate state ‘uncertain’ is also introduced
for points need further investigation.

Initially, we consider all points as static. At ev-
ery frame, we check the reprojection errors of all
‘static’ points. The projected position of a static map
point obeys Gaussian distribution N (mi, ci). The
Mahalanobis distance between corresponding feature
points and mi should be less than θ. If the tracked
feature point has larger Mahalanobis distance, the

Fig. 5. Map point classification. The pipeline for clas-
sifying a point into four types : ‘static’, ‘dynamic’, ‘false’
or ‘uncertain’.

map point is likely to be ‘dynamic’ or ’false’. We
consider these points are intra-camera outliers, i.e. out-
liers for intra-camera triangulation. We mark them as
‘uncertain’ for the next step of classification.

An uncertain point could be either ‘dynamic’ or
‘false’. To distinguish them, we re-triangulate its 3D
position Mi with its tracked feature points in the same
frame from different cameras. If the Mahalanobis
distances of all these feature points to the projection
of Mi are smaller than θ, we consider the map point
as ‘dynamic’. Otherwise, it is an inter-camera outlier,
i.e. an outlier for inter-camera triangulation. We con-
sider inter-camera outliers as ‘false’ points caused by
incorrect feature matching. Note that the 3D positions
of dynamic points are naturally updated over time
during point classification. Hence, our system is able
to produce the 3D trajectories of moving points.

A dynamic point may become static if the object
stops moving. Hence, we project the current 3D po-
sition of a dynamic point to the previous frames. If
the projection is close to its tracked feature points
(Mahalanobis distance < θ) for Nmin of continuous
frames, we consider this point as ‘static’.

Figure 6 shows two video frames of a camera from
the ‘sitting man’ example, where all the points on
the body should be dynamic. We use green and blue
points to visualize static and dynamic points. Though
all map points were marked as ‘static’ initially, during
the SLAM process, our map point classification com-
ponent successfully differentiated dynamic and static
points. This can be seen from the right in Figure 6,
where all points on the body were marked in blue.

6 CAMERA GROUPING

The inter-camera operations, e.g. mapping and pose
estimation, can be only applied to cameras with view
overlap. As cameras move independently, the view
overlap among cameras changes over time. In this sec-
tion, we describe our method to identify and manage
camera groups, where cameras with view overlap are
in the same group.
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Fig. 6. Map point classification. Green and blue points
indicate static and dynamic map points. Left: during the
initialization, all points were marked as ‘static’. Right:
our system correctly identified the dynamic points by
map classification.

Fig. 7. Camera grouping and splitting. Each node is
a camera and each edge links two cameras with view
overlap. The solid edges are those on the spanning
trees.

6.1 Grouping and Splitting

Since we store a pointer to the corresponding 3D
point for each mapped feature point, we can quickly
count the number of common map points Nij between
two cameras i, j. We construct an undirected graph
where the nodes represent the cameras. If Nij > 0,
we connect the camera i and j by an edge weighted
by Nij . A connected component in this graph forms
a camera group. The inter-camera operations are only
applied to cameras in the same group.

As discussed in Section 5.2.2, to improve the ef-
ficiency of inter-camera mapping, we do not match
feature points between all camera pairs with view
overlap. Instead, we extract a spanning tree for each
camera group with maximum weight, and only match
feature points between cameras if the edge connecting
them is on the selected spanning tree.

A camera group will split when any camera in it
moves away and does not have view overlap with
others. Such a case is illustrated in Figure 7. The edges
between camera 3, 4 and 3, 5 are removed as they have
no common feature points any more. The original
graph is therefore separated into two connected com-
ponents, each of which forms a new camera group
at the current frame. A real example is provided in
Figure 8. Four cameras were split into two groups,
where the red and green cameras share a common
view, and the blue and yellow cameras share another
common view.

Fig. 8. The cameras were split into two groups accord-
ing to their view overlap.

Fig. 9. The two camera groups were merged when
the cameras meet again. The camera poses and map
points were adjusted for consistent merge. The light
gray curves (see the zoomed area) represent the cam-
era trajectories before adjustment, and the dark ones
are those after adjustment.

6.2 Merging

Two camera groups will be merged if their cameras
meet and have view overlap. To detect if cameras
in different groups have view overlap, we project
the map points generated from one camera onto the
image planes of the cameras in the other group. If the
number of visible points is large (> 30% of all map
points from that camera in our implementation), and
the area spanned by these points are large (> 70% of
the image area), we consider the two cameras to have
view overlap and will merge their camera groups. A
real example of such a merge is shown in Figure 9,
the separated camera groups meet again.

When cameras move away from each other, the
mapping and localization are performed within each
camera group independently. When the cameras meet
again, due to drifting errors [7], the 3D maps re-
constructed from different groups are inconsistent.
For example, the same object could be reconstructed
at different 3D positions in different groups. Hence,
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Fig. 10. Camera poses adjustment. Each vertex is a
camera pose. Each edge represents a relative pose
constraint, where solid and dash edges are hard and
soft constraints respectively.

during group merging, we need to correct both the
camera poses and map points to generate a single
global consistent map. Suppose two camera groups
are separated at the 1st frame and are merged at the
F th frame. We will adjust all camera poses from frame
2 to F , and adjust the map points generated within
these frames, which consists of two successive steps
described in the following section.

6.2.1 Step 1
We first estimate the correct relative poses between
cameras at frame F . For this purpose, we detect and
match SURF features between cameras in different
groups, and then compute their relative poses (i.e. the
essential matrices). We use these essential matrices to
guide the matching of feature points (i.e. searching for
correspondences in a narrow band within 3σ distance
to the epipolar line). For each pair of matched feature
points, we then merge their corresponding 3D map
points by averaging their positions. In the next step,
all the map points and their corresponding feature
points in the F th frame are put into bundle adjustment
[15] to refine all camera poses.

6.2.2 Step 2
Now, we use the updated relative camera poses at
the F th frame as hard constraints to refine all camera
poses. Figure 10 illustrates our problem formulation.
We form a undirected graph where each camera pose
is a vertex and each edge enforces a relative pose
constraint. As shown in Figure 10, for each camera,
its poses at neighboring frames are connected. For
cameras in the same group, their poses at the same
frame are connected if they are neighbors in the
spanning tree. We fix camera poses in the 1st frame.
Except the relative poses at the F th frame, we treat

all the other relative poses as soft constraints. Hard
and soft constraints are denoted by solid and dashed
lines in Figure 10 respectively.

Let p = 1, . . . , P and q = 1, . . . , Q be cameras from
different groups. We denote the pose of the camera p
at the ith frame by Ti

p, and the relative pose between
the camera p and q at the ith frame by Ti

pq , where

Ti
p =

(
Ri

p ti
p

0T 1

)
, Ti

pq =
(

Ri
pq αti

pq

0T 1

)
. (9)

Ri
p,R

i
pq ∈ R3×3 and tF

p , tF
pq ∈ R3 are rotation matrices

and translation vectors. α is used to account for
the global scale difference between the two camera
groups.

We treat the relative poses at the F th frame as hard
constraints. Hence,

TF
q −TF

pqT
F
p = 04×4, (10)

which is equivalent to

RF
q −RF

pqR
F
p = 03×3 (11)

tF
q −RF

pqtp − αtF
pq = 03×1. (12)

Although there are (P + Q) × (P + Q − 1)/2 relative
poses at the F th frame, we select only (P + Q − 1)
of them, which either lie on the spanning trees of the
camera groups or connect the two spanning trees, as
illustrated by the solid lines in Figure 10. Putting all
these constraints together, we get two linear systems
with the following forms

UrF = 0 and V tF = 0, (13)

where rF ∈ R9(P+Q) is a vector stacked with elements
of all the rotation matrices at the F th frame, and
tF ∈ R3(P+Q)+1 is a vector that consists of all the
translation elements at the F th frame together with
the scale factor α.

The relative camera poses from the original SLAM
process are used as soft constraints. For any cameras
m and n connected by the dashed edge, we expect
their relative pose to have small change by the ad-
justment. Hence,

Tm −Told
mnTn ≈ 0. (14)

Here, Told
mn is the relative pose between m and n ac-

cording to the SLAM process before merging. Putting
all soft constraints together, we obtain two similar
linear systems

Ar ≈ a 6= 0 and Bt ≈ b 6= 0, (15)

where r ∈ R9F (P+Q) and t ∈ R3F (P+Q) are vectors
stacked by all the rotation and translation elements of
all frames. Notice that the right sides of the two linear
systems are not equal to zero because the camera
poses at the 1st frame are fixed.

Combining both the hard constraints in Equation
(10) and soft constraints in Equation (14), we obtain
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Fig. 11. Camera poses and map point positions are
adjusted during group merge. Left: before the adjust-
ment, the corresponding feature points of A in the
‘camera 3’ and ‘camera 4’ do not lie on the its epipolar
lines. Right: after adjustment, all its corresponding
feature points lie on the epipolar lines.

the updated cameras poses and the scale factor by
solving two constrained linear least square problems

arg min
r
‖Ar − a‖2 s.t. Ûr = 0 (16)

and
arg min

t̂
‖B̂t̂− b̂‖2 s.t. V̂ t̂ = 0, (17)

where t̂ ∈ R3F (P+Q)+1 is t appended with a scale
factor α. Û , V̂ , B̂, b̂ are the augmented matrices and
vectors by adding zero elements. Note that we do
not impose orthonormality condition to the rotation
matrices in this formulation. Hence, once we obtain
results from the above two equations, we further find
the closest rotation matrices to the initial matrices by
SVD (i.e. setting all the singular values to one).

The above optimization problem is converted to
a set of sparse linear equations [13]. We use the
CSparse[8] library to solve them in our system. After
the camera poses have been updated, the 3D positions
of map points are also updated by re-triangulating
their corresponding feature points.

In Figure 9, the camera poses are updated when
the two camera groups merge. The light gray curves
(and dark curves) represent the camera trajectories
before (and after) merging. To further exemplify the

importance of pose updates, we examine the epipolar
geometries in Figure 11. In the left of Figure 11, we
plot the epipolar lines of the feature point A in the first
camera. Because of the map inconsistency between
the two camera groups, the corresponding feature
points in the third and the fourth camera do not lie
on the epipolar lines. In comparison, after camera
pose update and re-triangulation of map points, the
corresponding feature points in all cameras lie on
their respective epipolar lines as shown in the right of
Figure 11. To provide an additional validation, when
visualizing the projection of a map point in Figure
11, we use its circle radius to indicate its number cor-
responding feature points. It is clear that the overall
circle size is larger on the right, which suggests map
points have more corresponding feature points after
the adjustment. This increase in corresponding feature
points comes from the merge of duplicated 3D map
points.

7 INCREMENTAL REFINEMENT

We refine both the camera poses and the 3D map
points from time to time by bundle adjustment. For
better efficiency, bundle adjustment only refines the
camera poses of some selected key frames and the
map points reconstructed from these frames. When-
ever there is a significant drop (30%) in the number
of tracked feature points in any camera, we insert a
key frame for all cameras.

The bundle adjustment runs in a separate thread,
which operates with the most recent K key frames.
It is called when K − 1 key frames have been in-
serted consecutively (i.e. in two successive bundle
adjustment calls, there is one common key frame).
The bundle adjustment only refines camera poses of
key frames and map points reconstructed from these
frames. To refine the camera poses of the other frames,
we adopt a similar method as Section 6.2.2. Basically,
we fix the camera pose at key frames, and use the
relative poses between successive frames before bun-
dle adjustment as soft constraint. In other words, we
enforce Tm −Told

mnTn ≈ 0, where Told
mn is the relative

pose between camera m,n before bundle adjustment.
We then update all the camera poses while keep those
at key frames unchanged. After the pose refinement,
the 3D positions of other map points are updated by
re-triangulating their corresponding feature points.

8 RESULTS

We tested our collaborative SLAM system on both
static scenes and dynamic scenes. All data were cap-
tured by hand held cameras with Field of View about
70o and processed offline. In all our experiments, we
set the standard deviation of feature detection uncer-
tainty σ as 3.0 pixels. The threshold for Mahalanobis
distance θ is set to be 2.0 to decide if a feature point is
an inlier or outlier (with confidence of 95% according
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Fig. 12. Our results on the ‘wall’ sequence. Trajectories
of different cameras are visualized in different color
from the top-down viewpoint. Map points are projected
in the input video frames for a reference.

to Gaussian distribution). The ZNCC threshold τncc

to measure the similarity between image patches is
set to 0.7. The minimum number of frames Nmin to
triangulate a feature track is set to 60. The number of
frames Nrec for active map point caching is 200. The
radius φr for searching nearby seed matches in ‘inter-
camera mapping’ is set to 10% of max{image width,
image height}, and φd = 3φr. In practice, we found
our results are not sensitive to these parameters. We
also present the results on an accompanying video.

8.1 Static Scenes
8.1.1 Critical camera motion
Single camera based visual SLAM systems usually fail
under critical motion, such as camera rotation without
translation. This is because when a camera rotates, the
number of visible map points drops quickly. However,
new map points cannot be generated because of lit-
tle camera translation. This problem is more serious
when the camera field of view is small. Our CoSLAM
system can deal with such situation by the collabo-
ration among multiple cameras as demonstrated in
‘wall’ example in Figure 12. In this example, cameras
started rotating at around the 180th frame and finished
at about the 256th frame. Our method successfully
captured the motion of all cameras and the two
perpendicular walls.

For a comparison, we applied the single camera
based SLAM system, PTAM [18], on the same data.
The results from PTAM are provided in Figure 13.
PTAM failed on all cameras when they started to
rotate. Even the re-localizatoin cannot recover it from
this failure. This is because the re-localization works
only when the newly captured frames have view
overlap with previous key frames. In camera rotation,
the camera is turning to a novel view that is not
observed before. Hence, re-localization cannot help in
this case.

8.1.2 Drift analysis
We tested our CoSLAM system in a middle scale
‘courtyard’ example. The average length of camera

Fig. 13. Results generated by PTAM [18] on the ‘wall’
sequence. The system failed on all three sequences
when the camera started rotating.

Fig. 14. The overview of the ’courtyard’ example. Four
hand held cameras were used to capture the data. The
view overlaps between cameras changed over time.

trajectories was 96 m. The input videos were captured
in a courtyard by four hand held cameras. The view
overlap among cameras changed over time, which
led to camera group splitting and merging as dis-
cussed in Section 6. During data capturing, we walked
around the courtyard and returned to the starting
place. Hence, the drift error can be measured by
manually identifying corresponding points in the first
and the last video frames. We analyzed the drift errors
with different number of cameras in the system. An
overview of the scene is provided in Figure 14.

We tried all possible 1-camera, 2-camera, 3-camera,
and 4-camera CoSLAM. The average distance drift
errors were 2.53m, 1.57m, 1.19m, and 0.67m respec-
tively. The average scale drift error were 0.76, 1.10,
0.96, 1.00 respectively. This result is visualized in Fig-
ure 15, where the red and green line segment indicates
the reconstruction of the sign board from the first and
last frames. This result indicates that CoSLAM with
multiple cameras can successfully reduce the drift
errors.

For a comparison, we tried to apply the PTAM
system to this example and measure its drift error.
However, PTAM failed at all the four 1-camera tests
and cannot finish the whole loop. In comparison, our
system only failed in one 1-camera test. We believe
this is because we maintain the triangulation uncer-
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Fig. 15. The final drift error is measured by the dif-
ference between the board reconstructed from the first
(marked by red) and the last video frames (marked by
green). The left is an example image of the board. The
right are the CoSLAM results with different number of
cameras.

tainty of map points, and continuously improve map
accuracy when more images are captured.

8.2 Dynamic Scenes

The capability of the our method to robustly estimate
camera poses in highly dynamic scenes is demon-
strated in Figure 16. Note that the number of static
points (green dots) was small in all cameras. Further,
the static points were often distributed within a small
region, which usually leads to large error if the camera
pose is estimated only according to static points. Our
CoSLAM system automatically switched to the ‘inter-
camera pose estimation’, and successfully estimated
the poses of all cameras in such a challenging case.
For a comparison, we disabled the ‘inter-camera pose
estimation’ and applied the ‘intra-camera pose esti-
mation’ to the same sequence. The system failed at
the # 665-th frame because of the large error in pose
estimation. This comparison can be seen clearly from
the visualization of the camera trajectories in the right
column of Figure 16.

We tested our CoSLAM system in an indoor scene,
the ‘walking man’ example in Figure 17. The relatively
dim indoor lighting usually leads to blurry images,
which make feature tracking difficult and pose estima-
tion inaccurate. Our CoSLAM system can successfully
handle this data. The estimated map points and cam-
era trajectories are visualized from the top view in the
left of Figure 17. An important feature of our system
is that we can recover the 3D trajectories of moving
points, which is demonstrated in Figure 18, where the
blue curves are 3D trajectories of the dynamic points
on the walking person. We also manually specify
corresponding points to measure the drift error. Our
CoSLAM system had 1.2m distance drift and 1.12
scale drift. The average length of camera trajectories
is 28.7m.

Fig. 17. Result on the ‘walking man’ example. The blue
points represent the moving points in the scene.

Fig. 18. Our system can track the time-varying 3D
positions of the dynamic points on the moving objects.

We further tested the robustness of our system on
a middle scale ‘garden’ example, where the average
length of camera trajectories is 63m. Three hand held
cameras were used to capture the input videos in a
garden. Several people walked in front of the cam-
era to disturb the capturing process. As the moving
people frequently occupied a large part of the video
frame, the SLAM problem with this data was very
challenging (please refer to the supplementary video).
As shown in Figure 19, our method succeeded in
such a data. The manually measured drift errors are
5.3m in distance and 0.65 in scale. These errors are
relative large, because the moving objects frequently
occluded nearby static points. In this situation, the
faraway static points played a more important role
in camera pose estimation. However, the positions of
these faraway points were less reliable, which led to
inaccurate estimation and finally produced a relative
large drift error.

8.3 Run Time Efficiency

Our system was developed under the Ubuntu 64-bit
system with an Intel i7 CPU (4 cores at 2.80GHz),
4G RAM and an nVidia GeForce GTX 480 graphics
card. The main thread of the system estimated the
egomotion of the cameras and generated map points.
Bundle adjustment and camera group management



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, JANUARY 20XX 12

Fig. 16. Our results on the ‘sitting man’ sequence. There are only a few static points in the scene. Our ‘inter-
camera pose estimation’ successfully estimates all camera poses (shown in the first two rows). The bottom row
shows the result by only applying the ‘intra-camera pose estimation’. The pose of the blue camera (camera #3)
was completely wrong at the 665-th frame, because of little static points. The reconstructed map points (both
static and dynamic points) and camera trajectories of the last 150 frames are provided on the right (visualized
from the top view)

TABLE 1
Average timings

components ms calling conditions
feature tracking 8.7 every frame (by GPU)
intra-camera pose estimation 10.7 every frame
inter-camera pose estimation 57.2 see Section 4
map point classification 4.9 every frame
map point registration 14.47 every frame
intra-camera mapping 2.3 see Section 5.2
inter-camera mapping 48.3 see Section 5.2

were called in separated threads. Feature tracking was
implemented in GPU according to the GPU-KLT [29].

We evaluated the run time efficiency on the ‘garden’
sequence shown in Figure 19. All the 4800 frames
were used for evaluation. The average time spent
in each call of all components are listed in Table
1. Most of the components run quickly. The ‘inter-
camera pose estimation’ and the ‘inter-camera map-
ping’ took about 50 ms to run. The number of map
points (including both dynamic and static points) and
the processing time of each frame are also shown
respectively in Figure 21. Although the runtime ef-
ficiency was reduced when inter-camera operations
were called (see the peaks in Figure 21), our system
on average ran in real-time and took about 38ms to
process a frame with about one thousand of map
points.
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Fig. 21. Run time efficiency with three cameras. Top:
number of map points over time. Bottom: the time spent
to process each frame. The average time to process a
frame is 38ms.

8.4 System Scalability

We tested our system scalability with 12 cameras
moving independently in a static scene. Some results
are shown in Figure 20. On the left of each row
shows the top view of the reconstructed scene map
with camera trajectories. On the right are the input
images from all 12 cameras. Images framed by the
same color come from cameras in the same group.
This scene contains several separated ‘branches’ as
can be seen from the scene map in the third row. These
12 cameras were divided into several troops, and each
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Fig. 19. The collaborative SLAM result in a challenge dynamic scene using three cameras. An overview of the
reconstruction is provided in the first row from the top and side view respectively. The gray point cloud indicates
the static scene structures, while the blue trajectories are the moving points. In the middle are the detected
feature points on video frames. The green and blue points represent static and dynamic points respectively,
while the yellow points are the unmapped feature points (please zoom in to check details). In the last row we
provide some zoomed views of the camera trajectories with their frame index marked in the first row.

troop explored one branch. Our system can correctly
handle camera group splitting and merging. (Please
refer to the supplementary video.) However, when
there are 12 cameras, the average run time efficiency
dropped significantly to about 1fps due to the heavy
computation.

9 CONCLUSION AND FUTURE WORK

We propose a novel collaborative SLAM system with
multiple moving cameras in a possibly dynamic envi-
ronment. The cameras move independently and can
be mounted on different platforms, which makes our
system potentially applicable to robot teams [4], [34],
and wearable augmented reality [5]. We address sev-
eral issues in pose estimation, mapping and camera
group management, so that the system can work
robustly in challenging dynamic scenes as shown in
the experiments. The whole system runs in real-time.
Currently, our system works offline with pre-captured

video data. We plan to integrate a data capturing com-
ponent to make an online system. Further, our current
system requires synchronized cameras, and all images
from these cameras are sent back and processed in
the same computer. It will be interesting to develop
a distributed system for collaborated SLAM, where
computation is distributed to multiple computers.
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