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SUMMARY

The inherent complex nature of current distributed computing architectures hinders
the widespread adoption of these systems for mainstream use. In general, users
have access to a highly heterogeneous set of compute resources, which may include
clusters, grids, desktop grids, clouds, and other compute platforms. This heterogeneity
is especially problematic when running parallel and distributed applications. Software is
needed which easily combines as many resources as possible into one coherent computing
platform.

In this paper we introduce Zorilla: Peer-to-Peer middleware that creates a single
distributed environment from any available set of compute resources. Zorilla imposes
minimal requirements on the resource used, is platform independent, and does not
rely on central components. In addition to providing functionality on bare resources,
Zorilla can exploit locally available middleware. Zorilla explicitly supports distributed
and parallel applications, and allows resources from multiple sites to cooperate in a single
computation.

Zorilla makes extensive use of both virtualization and Peer-to-Peer techniques. We
will demonstrate how virtualization and Peer-to-Peer combine into a simple design,
while enhancing functionality and ease of use. Together, these techniques bring our goal
a step closer: transparent, easy use of resources, even on very heterogeneous distributed
systems.
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2 NIELS DROST ET AL.

1. Introduction
When grid computing was introduced over a decade ago, its goal was efficient and transparent
(i.e. easy-to-use) wall-socket computing over a distributed set of resources [16]. This goal is
sometimes referred to as the promise of the grid. Since then, other distributed computing
paradigms have been introduced, including desktop grids, volunteer computing, and more
recently cloud computing. These all share many of the goals of grid computing, ultimately
trying to give end-users access to resources with as little effort as possible. These new
distributed computing paradigms have led to a diverse collection of resources available to end-
users. In general, users have simultaneous access to many different resources, with different
paradigms, available software, access policies, etc. In this paper we refer to such a heterogeneous
set of resources as a real-world distributed system (see Figure 1).

Unfortunately, the emergence of real-world distributed systems has made the running of
applications complex for end-users. The heterogeneity of these systems makes it hard to install
and run software on multiple resources, as each site requires configuring, compiling and possibly
even porting the application to the specific resource. Current systems also lack so-called global
functionality, such as system-wide schedulers and global file systems. Standardized hardware
and software, as well as global functionality, requires coordination between all resources
involved. In grids, coordination is done in a Virtual Organization (VO) specifically created
for each grid. Since a real-world distributed system is created ad hoc, no such VO can exist.
The resulting heterogeneity and lack of global functionality greatly hinders usability.

Because of the above problems, usage of real-world distributed systems for high performance
computing is currently rather limited [4]. In general, users install and run their software
manually on a small number of sites. Moreover, parallel applications are often limited to
coarse-grained parameter-sweep or master-worker programs. More advanced use cases such as
automatically discovering resources, global file systems, or running applications across multiple
sites, are currently impractical, if not impossible. This is unfortunate, as many scientific and
industrial applications can benefit from the use of distributed resources (e.g., astronomy [20],
multimedia [32] and medical imaging [24]).

We argue that the ability to use all available resources transparently and simultaneously
will greatly benefit users. Not all users have exclusive access to resources, and in our
experience, no matter how powerful a single computer or cluster is, users will always desire
more computational power. What is needed is a platform capable of turning any (possibly
distributed) collection of resources into a single, homogeneous, and easy to use system.

This paper investigates middleware specially designed to run parallel and distributed
applications on real-world distributed systems. This middleware has unique design
requirements. For instance, since it needs to function on ad hoc created systems, it too must
support ad hoc installation. This is different from existing grid and cloud middleware, where a
more or less stable system is assumed. Also, middleware for real-world distributed systems is
installed by users, not system administrators. As a result, this middleware must be very easy
to install, and not require special privileges. Moreover, since resources usually utilize some
form of middleware already, our new middleware must be able to cooperate with this local
middleware.
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ZORILLA: A P2P MIDDLEWARE FOR REAL-WORLD DISTRIBUTED SYSTEMS 3

Figure 1. A worst-case real-world distributed system as perceived by end-users, simultaneously
comprising of clusters, grids, and clouds, as well as several other computing platforms. In general,
a real-world distributed system is defined as an ad hoc collection of stand-alone compute resources
(the yellow dots), each having a local memory, and each capable of communicating via a network
protocol stack over a wired or wireless connection. Clusters, grids, and clouds, are administratively
and semantically organized subsets of such a system, each provided with their own middleware,

programming interfaces, access policies, and protection mechanisms.

Although a real-world distributed system can be comprised of any number of resources,
typically, everyday scenarios will most likely be somewhat simpler. As an example use case, a
scientist may have access to a local cluster. When this cluster is busy, or simply not powerful
enough, he or she can combine the processing power of this cluster with acquired cloud
computing resources, for instance Amazon EC2 [13] resources. Alternatively, the scientist can
acquire additional resources by deploying on a number of desktop machines. Unfortunately, it
is impossible to predict exactly which types of resources are combined by users. As a result,
middleware for real-world distributed systems must support all combinations of resources. In
this paper, we will assume the worst-case scenario of all possible types of resources, ensuring
the resulting system is applicable in all possible scenarios.

Recently, cloud computing has emerged as a promising new computing platform. One of
the defining properties of cloud computing is its use of virtualization techniques. The use
of a Virtual Machine such as Xen, VirtualBox, or the Java Virtual Machine (JVM) allows
applications to run on any available system. Software is created and compiled once for a
certain virtual environment, and this environment is simply deployed along with the software.
Although originally designed to run mostly web servers, cloud computing is now also used as
a high performance computing platform [21, 31]. Virtualization of resources is an efficient way
of solving the problem of heterogeneity in distributed systems today.
The use of virtualization allows for a simplified design of middleware for real-world

distributed systems. For example, finding resources commonly requires complex resource
discovery mechanisms. Virtualization allows applications to run on a much bigger fraction
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4 NIELS DROST ET AL.

of all resources, allowing a greatly simplified resource discovery mechanism. In addition
to virtualization, we also explore using Peer-to-Peer (P2P) techniques in middleware. P2P
techniques allow for easy installation and maintenance-free systems, and are highly suited for
large-scale and dynamic environments. Together, virtualization and P2P techniques combine
into a relatively simple design for middleware.

In this paper we introduce Zorilla: our P2P middleware. Zorilla is designed to run
applications remotely on systems ranging from clusters and desktop grids, to grids and clouds.
Zorilla is fully P2P, with no central components to hinder scalability or fault-tolerance. Zorilla
is implemented entirely in Java, making it highly portable. It requires little configuration,
resulting in a system which is trivial to install on any machine with a Java Virtual Machine
(JVM). Zorilla can be either installed permanently on top of a bare-bone system, or deployed
on-the-fly exploiting existing local middleware.

Zorilla is a prototype system, explicitly designed for running parallel and distributed
applications concurrently on a distributed set of resources. It automatically acquires resources,
copies input files to the resources, runs the application remotely, and copies output files back
to the users’ local machine. Being a prototype system, Zorilla focuses on this single use-case,
and does not include all functionality present in a typical middleware. Most notable are its
limited security mechanisms, and its lack of long term file storage functionality. Other groups
are researching distributed filesystems and security in a P2P context [25, 34], and we consider
integrating such systems as future work.

The contributions of this paper are as follows:

• We establish the requirements of middleware for real-world distributed systems.
• We describe the design and implementation of Zorilla: a new lightweight, easy to use

Java-based P2P middleware, explicitly designed for parallel and distributed applications.
• We show how the combination of virtualization and P2P helps in simplifying the design
and enhancing the functionality of middleware. We especially explore resource discovery,
deployment, management, and security.

• We show how the use of middleware designed for real-world distributed systems brings
closer the goal of easy-to-use distributed computing on these systems.

• We show the use of Zorilla in a large-scale application, concurrently using a variety of
resources, including clusters, grids, desktop grids, and clouds. Although consisting of
this large number of different systems, our system is still able to perform computations
efficiently, and handles faults automatically.

The research described in this paper is part of the Ibis project, which strives to make running
parallel and distributed applications as easy as possible. Zorilla and other software referred to
in this paper can be freely downloaded from the Ibis website at http://www.cs.vu.nl/ibis.

The rest of this paper is organized as follows. In Section 2 we define the requirements
of middleware for real-world distributed systems. Section 3 gives a description of Zorilla, our
P2P middleware. Experiments are described in Section 4. We discuss related work in Section 5.
Finally, we conclude in Section 6.
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2. Requirements

In this section we discuss the requirements of middleware for real-world distributed systems.

Resource independence: The primary function real-world distributed system middleware
is to turn any collection of resources into one coherent platform. The need for resource
independence, the ability to run on as many different resources as possible, is paramount.

Middleware independence: As most resources already have some sort of middleware
installed, real-world distributed system middleware must be able to interface with this
local middleware†. The implementation of real-world distributed system middleware
must be such that it is as portable as possible, functioning on different types of local
middleware. This and the requirement of resource independence can be summed up into
one requirement as well: platform independence.

Decentralization: Traditional (grid) middleware uses central servers to implement
functionality spanning multiple resources such as schedulers and distributed file systems.
Centralized solutions introduce a single point of failure, and are a potential performance
bottleneck. In clusters and grids this is taken into account by hosting these services on
high capacity, partially redundant machines. However, in a real-world distributed system,
it is hard to guarantee such machines are available: resources are not under the control
of the user, and reliability is hard to determine without detailed knowledge of resources.
Therefore, middleware should rely on as little central functionality as possible. Ideally,
middleware uses no centralized components, and instead is implemented in a completely
decentralized manner.

Malleability: In an real-world distributed system, the set of available resources may change,
for instance if a resource is removed from the system by its owner. Middleware systems
should support malleability, correctly handling new resources joining and leaving.

System-level fault-tolerance: Because of the many independent parts of a real-world
distributed system, the chance that some resource fails at a given time is high.
Middleware systems should be able to handle these failures gracefully. Failures should
not hinder the functioning of the entire system, and failing resources should be detected,
and if needed replaced. Note that this does not include application-level fault-tolerance:
restoring the state of any application running on the failing resource. Application-level
fault-tolerance is usually implemented either in the runtime of the programming model of
the application , or in the application itself. Support for application-level fault-tolerance
in the middleware can be limited to failure detection and reporting.

Easy deployment: Since a real-world distributed system is created ad hoc by end-users,
middleware is typically deployed by the user, possibly for the duration of only a single
experiment. Therefore, middleware for these systems needs to be as easy to deploy

†We will use the term local middleware for existing middleware installed on resources, throughout this paper.
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6 NIELS DROST ET AL.

as possible. Complicated installation and setup procedures defeat the purpose of this
middleware. Also, no additional help from third parties, such as system administrators,
should be required to deploy the middleware.

Parallel application support: Many high-performance applications can benefit from using
multiple resources in parallel, even on distributed systems [3]. Parallel applications
require scheduling of multiple (distributed) resources concurrently, tracking which
resources are available [12], and providing reliable communication in the face of firewalls
and other problems [23].

Global file storage: Besides running applications, distributed systems are also used for
storing files. In the simplest case files are used as input and output of applications.
However, long term storage of data, independently of applications, is also useful. Ideally,
middleware should provide a single filesystem spanning the entire system. This filesystem
must be resilient against failures and changes in available storage resources.

Security: As in all distributed systems, security is important. Middleware must protect
resources from users, as well as users from each other. Because of the heterogeneous
nature of the resources in a real-world distributed system, and the lack of a central
authority, creating a secure environment for users and applications is more challenging
than in most systems.

The large number of requirements of middleware for real-world distributed systems presented
above lead us to the conclusion that using existing techniques for implementing this middleware
is not possible. Some of the fundamental assumptions of traditional (grid) middleware (e.g.
the presence of a reliable, centralized server), do not hold in a real-world distributed system.
Therefore, our middleware, discussed in the next section, uses a number of alternative
approaches for implementing functionality.

3. Zorilla

In this section we describe the design of Zorilla, our prototype P2P middleware. We will first
give an overview of Zorilla, followed by a more detailed discussion of selected functionality. The
main purpose of Zorilla is to facilitate running parallel and distributed applications remotely
on any resource available. We refer to a single instance of an application as a job.

The design and implementation of Zorilla is rather different from a typical middleware.
Instead of using bare resources, it builds on existing infrastructure, and it is specifically kept
lightweight. Therefore, rather than explaining the design of Zorilla using the typical separation
in layers or modules, we will describe Zorilla using the steps required to run a job: discovering
resources, scheduling, deploying, and managing the running job
Zorilla relies heavily on P2P techniques to implement functionality. P2P techniques have

proved very successful in recent years in providing services on a large scale, especially for file
sharing applications. P2P systems are highly robust against failures, as they have no central
components which could fail, but instead implement all functionality in a fully distributed
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Figure 2. Example of a compute system created by Zorilla. This system consists of two clusters, a
desktop grid, a laptop, as well as cloud resources (for instance acquired via Amazon EC2). On the
clusters, a Zorilla node is run on the headnode, and Zorilla interacts with the local resources via
the local scheduler. On the desktop grid and the cloud a Zorilla node is running on each resource,
since no local middleware capable of scheduling jobs is present on these systems. All Zorilla nodes are

connected by a P2P overlay network.

manner. In general, P2P systems are also easier to deploy than centralized systems, as no
centralized list of resources needs to be kept or updated. One downside of P2P systems is
a lack of trust. For instance, a reliable authentication system is hard to implement without
any central components. We argue that P2P techniques can greatly simplify the design of
middleware, if the limitations of P2P techniques are dealt with. Implementing all functionality
of middleware using P2P techniques is the ultimate goal of our research.

A Zorilla system is made up of nodes running on all resources, connected by a P2P network
(see Figure 2). This single overlay network connects all nodes in the entire system, both within
a site, as well as in different sites. Each node in the system is completely independent, and
implements all functionality required of a middleware, including handling submission of jobs,
running jobs, storing of files, etc. Each Zorilla node has a number of local resources. This may
simply be the machine it is running on, consisting of one or more processor cores, memory,
and data storage. Alternatively, a node may provide access to other resources, for instance
to all machines in a cluster. Using the P2P network, all Zorilla nodes tie together into one
big distributed system. Collectively, nodes implement the required global functionality such as
resource discovery, scheduling, and distributed data storage, all using P2P techniques.
Jobs in Zorilla consist of an application and input files, run remotely on one or more

resources. See Figure 3 for an overview of the life cycle of a (parallel) job in a Zorilla system.
Zorilla has been explicitly designed to fulfill the requirements we established in Section 2.

Table I shows an overview of the requirements, and how Zorilla adheres to these. As said,
virtualization is used extensively in Zorilla. Zorilla is implemented completely in Java, making
it resource independent : it is usable on any system with a suitable Java Virtual Machine (JVM).
Virtualization is also used when applications are started. Instead of exposing the application to
the underlying system, we hide this by way of a virtual machine (VM), currently either the JVM
or Sun VirtualBox [35]. Although using virtual machines causes a decrease in performance, we
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Figure 3. Job life cycle in a Zorilla system consisting of 5 nodes connected through an overlay network.
(a) A (parallel) job is submitted by the user to a node. (b) The job is disseminated to other nodes. (c)
Local schedulers at each node decide to participate in the job, and start one or more Worker processes

(e.g. one per processor core available). (d) Output files are copied back to the originating node.

Requirement
Approach

Solution in Zorilla
P2P Virt.

Resource independence X JVM, VirtualBox
Middleware independence X JavaGAT [26]
Decentralization X P2P implementations of functionality
Malleability X Replacement resources allocated if needed
System-level fault-tolerance X Faulty resources detected and replaced
Easy deployment X X No server, sole requirement a JVM
Parallel application support X X Flood scheduler, SmartSockets [23], JEL [12]
Global file storage X Per-job files only
Security X Sandboxing of applications

Table I. Design overview of Zorilla. Listed are the requirements, the approach used
to address the issue (be it virtualization or peer-to-peer), and how this affects the

design of zorilla.
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ZORILLA: A P2P MIDDLEWARE FOR REAL-WORLD DISTRIBUTED SYSTEMS 9

argue that this is more than offset by the increase in usability and flexibility of the resulting
system.
Another virtualization technique used in Zorilla is the use of a middleware independent API

to access resources. As resources in a real-world distributed system commonly have existing
local middleware installed, Zorilla will have to interact with this local middleware to make use
of these resources. Moreover, since Zorilla is deployed ad hoc, it is not possible to change the
middleware in any way.
We use a generic API to interface to resources, in this case the JavaGAT [26]. The JavaGAT

allows Zorilla to interact with a large number of middlewares, including Globus, Unicore, Glite,
SGE, and PBS. Support for new middleware is added to JavaGAT regularly, and automatically
available in Zorilla. The JavaGAT has a very stable API, and is currently being standardized
by OGF as the SAGA API [19]. Zorilla uses the JavaGAT API whenever it uses resources,
hiding the native API of the middleware installed on each specific resource. In effect, this
makes Zorilla middleware independent.
The P2P design of Zorilla allows it to fulfill a number of the requirements of Table I. All

functionality is implemented without central components. Fault-tolerance and malleability is
implemented in the resource discovery, scheduling, and job management subsystems of Zorilla.
Any node failing has a very limited impact on the entire system, only influencing computational
jobs the node is directly involved in. Likewise, removing a Zorilla node from the system is done
by simply stopping the node. Other nodes will automatically notice that it is gone, and the
remaining nodes will keep functioning normally.
Besides being useful techniques in themselves, the combination of virtualization and P2P

provides additional benefits. Zorilla is very easy to deploy, partially because no central servers
need to be setup or maintained. When a Zorilla node is started on a resource, it can be added
to an existing Zorilla system by simply giving it the address of any existing node in the system.
Also, as Zorilla is implemented completely in Java, it can be used on any resource for which a
JVM is available. Another benefit of using both P2P and virtualization is that it allows Zorilla
to support parallel applications. Zorilla explicitly allows parallel and distributed applications
by supporting applications which span multiple resources, and optimizing scheduling of these
resources (see Section 3.1). Besides scheduling, parallel applications are also supported by
offering reliable communication by way of SmartSockets (see Section 3.2), and resource tracking
in the form of our JEL model (see Section 3.3).
Zorilla supports files when running applications. Executables, virtual machine images,

input files, and output files are automatically staged to and from any resources used in the
computation. To keep the design of Zorilla as simple as possible, files are always associated
with jobs. This allows Zorilla to transfer files efficiently when running jobs, and makes cleanup
of files trivial. However, this also limits the usage of files in Zorilla, as long-term file storage is
not supported. We regard adding such a filesystem as future work.
The last requirement of Zorilla is security. The virtualization used by Zorilla allows us

to minimize the access of applications to resources to the bare minimum, greatly reducing
the risk of applications damaging a resource. However, Zorilla currently has little to no
access restrictions. Since it is hard to implement a reliable authentication system using only
P2P techniques, one alternative is to integrate support for the Grid Security Infrastructure
(GSI) [15] also used in Globus into Zorilla.
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Requirement Impact on Applications
Resource independence None, Any application can be run
Middleware independence None
Decentralization None
Malleability Applications preferable need to be able to handle changes in resources
System-level fault-tolerance Programming models and applications can detect and react to faults
Easy deployment None
Parallel application support Applications can now run on large scale, dynamic systems
Global file storage Applications can use input and output files normally
Security Applications cannot read and write to anywhere but the sandbox provided

Table II. Impact of the design of Zorilla on Applications.

The main goal of our research is to make running applications on real-world distributed
systems as easy as possible. Therefore, the impact of our software on applications should be as
little as possible. Table II lists the impact Zorilla has on applications. It shows that applications
are mostly unaffected. The biggest impact for applications is the fact that Zorilla can provide
applications, or the runtime of the programming model of the application, with information
regarding failures, and changes to the resources available. To make full use of the features of
Zorilla, the application or runtime of its programming model must support reacting to this
information provided by the system.

3.1. Resource Discovery and Scheduling

We will now discuss several subsystems of Zorilla, starting with resource discovery. Whenever
a job is submitted by a user, the first step in executing this job is allocating resources to it.
In a traditional (grid) middleware system this is usually done by a centralized scheduler. In a
P2P system, this approach obviously cannot be implemented. Instead, a distributed discovery
and scheduling system is required.
Resource discovery in a P2P context is, in essence, a search problem. An important aspect

of the resource discovery process is how exactly the required resources are specified, as
this influences the optimal search algorithm considerably. One option for the specification
of resources is to precisely specify the requirements of an application, including machine
architecture, operating system (version), required software, libraries, minimum memory, etc.
Unfortunately, finding a match for the above resource specification is difficult. As real-world
distributed systems are very heterogeneous, a resource is likely to match only a small subset
of the requirements. The chance of finding a resource fulfilling all of the requirements is akin
to finding the proverbial needle in a haystack.
Instead of trying to search for resources matching all requirements of an application, we

exploit the fact that virtualization is used when running applications. Using virtualization, any
application can be deployed on any suitable hardware, independent of the software running
on that hardware. The virtualization of resources greatly reduces the number of requirements
of an application. What remains are mostly basic hardware requirements such as amount of
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memory, processor speed, and available disk space, in addition to a suitable virtual machine
(Java, VirtualBox, VMware, Xen, or otherwise).
Most remaining requirements have a very limited range of values. For instance, any machine

used for high performance computing is currently likely to have a minimum of 1GB of main
memory. However, machines with over 16GB of main memory are rare. Other requirements
such as processor speed, and hard disk size have a very limited range as well. Also, the number
of virtual machines, and different versions of these virtual machines available, is not very
large. Finally, most requirements can be expressed as minimum requirements, satisfied by a
wide range of resources. From our analysis we conclude that the chances that a randomly
selected machine matches the requirements of a randomly selected application are quite high
when virtualization is used.
In Zorilla, the resource discovery process is designed explicitly for supporting virtualized

resources. Because of virtualization, it is sufficient for our system to be capable of finding
commonly available resources. Support for uncommon resources (the needle in a haystack), is
not required. Instead, our system is optimized for finding hay.

As said, Zorilla explicitly supports parallel applications. This influences its design in a
number of aspects, including resource discovery. As parallel applications require multiple
resources, the middleware must support acquiring these. Besides the resources themselves,
the connectivity between the acquired resources is also important. A parallel application may
send and receive a large amount of data during its lifetime, so high bandwidth connections
between the resources are required. Also, most parallel applications are sensitive to the latency
between resources used. Zorilla supports parallel applications by allowing a user to request
multiple resources, and by striving to allocate resources close (in terms of network latency) to
the user. This gives applied resources a higher chance of having low latency, high bandwidth
connections between them.
Resource discovery in Zorilla is a three step process (see Figure 4). First, a P2P overlay

network consisting of all Zorilla nodes is built up. Second, the P2P overlay is then used to
build up a list of close-by nodes or neighbors. Last, virtualized resources are searched using
this neighbor list, using an iterative flooding algorithm. We will now briefly discuss each step
in turn. For a more detailed description of (a previous version of) our system see [11].

Zorilla’s overlay network is based on the ARRG [10] gossiping algorithm. ARRG provides
a peer sampling service [22] which can be used to retrieve information about peer nodes in
the P2P overlay. Gossiping algorithms work on the principle of periodic information exchange
between nodes. In ARRG, information on the nodes of the P2P network itself is kept in a
limited size cache. On every gossip, entries in this cache are exchanged with peer nodes. These
exchanges lead to a random subset of all nodes in the cache of each node. Taking entries from
this cache thus yields a random stream of nodes in the P2P overlay (see Figure 4(a)).
Next, Zorilla uses the stream of random nodes to create a list of neighbors: nodes close-by in

the network. For this purpose, Zorilla implements the Vivaldi [8] synthetic coordinate system.
Vivaldi assigns coordinates in a Cartesian space to each node of a P2P overlay. Coordinates are
assigned as to reflect the round trip latency between nodes. Given two Vivaldi coordinates, the
distance between these two nodes can be calculated without any direct measurements. Vivaldi
updates the coordinates of each node by periodically measuring the distance to a randomly
selected node. Zorilla determines the distance to a node by comparing their virtual coordinates
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12 NIELS DROST ET AL.

Figure 4. Resource discovery in Zorilla. (a) Random overlay created for resource discovery. (b)
Neighbor connections created. (c) Flood scheduling (iterative ring search) performed using neighbors

to schedule resources.

with the coordinates of the local node. Zorilla continuously checks the random stream of nodes
for potential neighbors, replacing far away neighbors with new close-by nodes (see Figure 4(b)).

Once a suitable P2P network and neighbor list is built up, this is then used for the
actual allocation of resources to jobs. When a job is submitted at a node, Zorilla’s flood
scheduling [11] algorithm sends a request for resources to all neighbors of the node. Besides
sending a reply if they have resources available, these neighbors in turn forward the message
to all their neighbors. The search is bound by a maximum hop count, or time to live (TTL)
for each request. If not enough resources are found, the search is repeated periodically with an
increasingly larger TTL, causing more and more resources to be searched, further and further
away (see Figure 4(c)). In effect, close-by resources (if available) are used before far away
resources.

The resource discovery mechanism of Zorilla relies on the fact that resources are virtualized.
Flooding a network for resources can be prohibitively expensive if a large portion of the network
needs to be searched. This was for instance the case in the Gnutella [18] system, where flooding
was used for searching for a specific file. However, since virtualization of resources allows us to
assume resources to be common, Zorilla will on average only need to search a small number
of nodes before appropriate resources are found. Moreover, the properties of the network
automatically optimizes the result for parallel applications, with resources found as close-by
(measured in round-trip latency) as possible.

The resource discovery mechanism of Zorilla is very robust due to its P2P nature. Failing
nodes do not hinder the functioning of the system as a whole, as resource requests will still
be flooded to neighboring nodes. Also, new resources added to the system are automatically
used as soon as neighbors start forwarding requests. We conclude that the combination of P2P
and virtualization allows us to create a simple, efficient and robust scheduling mechanism in
Zorilla.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 0000; 00:1–0
Prepared using cpeauth.cls



ZORILLA: A P2P MIDDLEWARE FOR REAL-WORLD DISTRIBUTED SYSTEMS 13

3.2. Deployment

After resources for a job have been discovered, the job is deployed. This requires copying all
input files, application executables, and possibly virtual machine (VM) images, to all nodes
participating in the computation. For this reason, the submitting node acts as a file server
for the job. It hosts files required to run the job, and provides a place to store output files.
Unfortunately, the submitting node quickly becomes a bottleneck if a large number of nodes
is participating in the job, or if it has a slow network connection. To alleviate this problem we
again use P2P techniques: instead of transferring files from the submitting node only, nodes
also transfer files among each other. Whenever a node requires a certain input file, it contacts
a random node also participating in the job, and downloads the file from this peer, if possible.
As a fallback, the submitting node is used when the file is not present at any peer.

Although using peers to transfer input files, executables and VM images greatly improves
scalability, there can still be a significant amount of traffic and time required to get all files
to all nodes, especially if large input files, or a large VM image is required to launch jobs. In
the latter case, reducing the size of the VM image can help, for instance by using a minimal
distribution. As future work, we plan to further reduce this problem by integrating a global,
persistent filesystem in Zorilla. Then, input files and VM images can be stored permanently
in this filesystem, reused for each job, and cached at nodes locally.

While running a job, it is important all nodes used to run this job can communicate reliably.
Since the resources used may be in different domains, communication may be limited by
Firewalls, NATs and other problems. To allow all resources to communicate, Zorilla deploys
a SmartSockets [23] overlay network. This overlay network is used by Zorilla to route traffic
over, if needed. Besides Zorilla itself, this overlay can also be used by applications. This ensures
reliable communication between all resources used, regardless of NAT and Firewalls.
When all files are available, the application is started on all resources, using a VM. Our

current prototype implementation supports the Java Virtual Machine (JVM) and the generic
Open Virtualization Format (OVF), using Sun VirtualBox [35]. For Java, this is simply done
by invoking the java command with the right parameters. For OVF, this image is first imported
to the local VirtualBox environment, and subsequently started.

Apart from the benefit of platform independence, using a VM to deploy the application
has three advantages. First, it allows for a very simple scheduling mechanism, as described in
Section 3.1. Second, using a VM greatly simplifies the deployment of an application, especially
on a large number of resources. Normally, an application needs to be compiled or at least
configured for each resource separately. With a VM, the entire environment required to run
the application is simply sent along with the job. This approach guarantees that the application
will run on the target resource, without the need for configuring the application, or ensuring
that all dependencies of the application are present on the resource.

The third advantage of using a VM is that it improves security. Since all calls to the
operating system go through the VM, the system can enforce security policies. For instance,
Zorilla places each job in a sandbox environment. Jobs can only read and write files inside this
sandbox, making it impossible to compromise any data on the given resources. Although not
implemented in Zorilla, the VM could also be used to limit access to the network, for instance
by letting a job connect only with other nodes participating in the same job. Traditionally,
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security in distributed systems relies primarily on security at the gates, denying access to
unknown or unauthorized users. As virtualization provides complete containment of jobs, the
need for this stringent policy is reduced: unauthorized access to a machine results mainly in a
loss of compute cycles.

3.3. Job Management

The last subsystem of Zorilla that we will discuss is job management. On traditional (grid)
middleware this mostly consists of keeping track of the status of a job, for instance scheduling,
running, or finished. Zorilla has an additional task when managing a job: keeping track of the
resources of each job. As resources may fail or be removed from the system at any time, a
node participating in a parallel job may become unavailable during the runtime of the job.
Traditional middleware usually considers a job failed when one of the resources fails. However,
in a real-world distributed system changes to the set of available resources are much more
common, making this strategy inefficient. Instead, in Zorilla users can specify a policy for
resource failures. A job may be canceled completely when a single resource fails, resource
failures can simply be ignored, or a new resource can be acquired to replace the old one. The
last two cases require the application to support removing and adding resources dynamically.
This can for instance be achieved with FT-MPI [14], or our Join-Elect-Leave (JEL) [12] model.
Zorilla explicitly supports JEL, where the application is notified of any changes to the resources.
Using this information, the application, or the runtime of the application’s programming model,
can react to the changes.
Zorilla implements all management functionality on the submitting node. This node is also

responsible for hosting files needed for the job, and collecting any output files. Although it is
in principle possible to delegate the management of a job to other nodes, for instance by using
a Distributed Hash Table, we argue that this is hard to do efficiently and reliably, and regard
it as future work.

4. Experiments

After discussing the design of Zorilla, we will now illustrate its use by running a number of
experiments. We will focus on high-level experiments showing the functioning of Zorilla as a
whole. Various subsystems and techniques used in Zorilla are evaluated in other work, including
the JavaGAT [26], SmartSockets [23], JEL [12], ARRG [10], and the scheduling subsystem of
Zorilla [11] These papers also evaluate the scalability of the various techniques.
For the experiments in this paper we use the Distributed ASCI Supercomputer 3 (DAS-3),

a five cluster distributed system located in The Netherlands. We use an additional cluster in
Chicago , an Amazon EC2 Cloud system (USA, East Region), as well as a desktop grid and
a single stand-alone machine (both Amsterdam, The Netherlands). Together, these machines
comprise a real-world distributed system, as described in the introduction.
On the headnode of each cluster used in the experiment, a Zorilla node is started. This

node is then responsible for managing the resources in that cluster. To show that Zorilla is
capable of accessing resources using multiple middlewares, we use different ways of accessing
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Location Country Type Middleware Nodes Cores
VU University, Amsterdam

The Netherlands Grid(DAS-3)

SGE 16 64
University of Amsterdam Globus 16 64
Leiden University prun 8 16
MultimediaN, Amsterdam prun 16 32
EVL, Chicago USA Cluster SSH 16 16
VU University, Amsterdam The Netherlands Desktop Grid - 2 4
Amazon EC2 USA Cloud - 8 8
VU University, Amsterdam The Netherlands Desktop - 1 1

Total 83 205

Table III. Sites used in the world wide experiment. All sites run Zorilla on the frontend.
In some cases, Zorilla interfaces with existing middleware at the site to allocate resources.
Middleware used includes Sun Grid Engine (SGE), Globus, and the custom prun scheduling
interface available on the DAS-3. In the last three sites in the list, the resources themselves

also run Zorilla nodes, and no other middleware is necessary.

the resources, including Globus, SGE and SSH. On the cloud, the desktop grid, and the stand-
alone machine Zorilla is started on each machine individually. After startup, all Zorilla nodes
form one large distributed system.
As an application we used an implementation of First Capture Go, a variant of the Go

board game where a win is completed by capturing a single stone. Our application determines
the optimal move for a given player, given any board. It uses a simple brute-force algorithm
for determining the solution, trying all possible moves recursively using a divide-and-conquer
algorithm. Since the entire space needs to be searched to calculate the optimal answer, our
application does not suffer from search overhead. Our Go application is implemented in
Java, with many of the techniques used inspired by the Satin [28] programming model. It
is implemented using the IPL [27] communication library, which in turn uses JEL to track the
resources available, and SmartSockets to communicate between resources. Our application is
highly malleable and fault-tolerant, automatically uses any new resources added, and continues
computations even if resources are removed or fail.
As a first experiment, we deployed the Go application on the entire instant cloud by

submitting it to the Zorilla node on the local desktop machine. See Figure 5 for an overview
of all nodes used, and the SmartSockets overlay network. Zorilla deployed the application on
83 nodes, with over 200 cores. The applications achieved 87% efficiency overall, ranging from
72% on the poorly connected cluster in Chicago, to over 90% on machines in the DAS system.
This experiment shows that Zorilla is able to efficiently combine resources of a multitude of
computing platforms, with different middlewares.
We also tested the ability of Zorilla to detect and respond to failures. Using the same

distributed system as used in the previous experiment, we deployed the Go application on 40
nodes. As Zorilla prefers close-by resources it acquires mostly local resources (the stand alone
machine, desktop grid, and local cluster), as well as some resources from other sites in The
Netherlands. To simulate a resource failing, we manually killed all jobs running on our local
cluster, totaling 11 nodes. As shown in Figure 6, the number of nodes used in the computation
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Figure 5. Resources used in the world wide experiment. This visualization shows all nodes, and the
SmartSockets overlay network between them. A node marked Z represents a Zorilla node, running on

either a frontend or a resource. A node marked I represents an instance of the Go application.

drops from 40 to 29. As we requested Zorilla to run the application on 40 nodes, it starts
searching for additional resources. After a while, these resources are found and added to the
computation. Since most close-by resources are already in use, some of the Amazon EC2 cloud
resources are acquired. Subsequently, the number of resources used increases to 40 again.

Using JEL, the application is notified of the resources failing, as well as the new
resources being available. The application responds by re-computing all lost results, and
automatically starts using the new resources when they become available. In contrast to the
previous experiment, the application does not use the poorly connected EVL resources. This
dramatically increases the efficiency of the application, resulting in an average efficiency of
95%. This experiment shows that Zorilla is able to automatically acquire new resources in the
face of failures, and optimizes resource acquirement for parallel and distributed applications.
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Figure 6. Fail test, where a job requiring 40 nodes was submitted. Zorilla automatically compensates
when nodes fail by acquiring new resources.

5. Related Work

There are a number of projects that share at least some of the goals and techniques of Zorilla.
One type of related system are Wide Area Overlays of virtual Workstations, or WOW [17, 36]
which create a single system out of independent resources, best described as a virtual cluster.
This cluster is creating using VMware virtual machines, and an overlay network between all
nodes. Applications do not need to be aware the system they run on is actually a virtual
machine. The drawback of this approach is that all traffic is routed over the overlay network,
limiting performance. In Zorilla, traffic is only routed using the overlay network if needed,
while direct connections are used if possible, leading to native network speeds. Also, Zorilla
supports the more lightweight Java Virtual Machine rather than only VMWare. Because of
these limitations, WOWs are described as a platform for high throughput computing. Zorilla,
on the other hand, explicitly supports high performance, parallel applications.
ProActive [2] is another system which, like Zorilla, strives to use Java and P2P techniques [6]

to run high-performance computations on distributed systems. However, Proactive primarily
supports applications which use an ActiveObject model, while Zorilla supports any application,
even non-Java applications. Also, ProActive requires the user to manually handle all connection
setup problems and to manually (and statically) select the appropriate middleware.

Also related Zorilla are cloud middleware, including Amazon EC2 [13], Eucalyptus [30] and
Globus Nimbus [29]. All these middleware are designed to turn a number of machines into
a single coherent system. One difference to Zorilla is the fact that these middleware assume
no other middleware is present, while zorilla can also run on top of other middleware. Also,
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these middleware all have centralized components, while zorilla is complete decentralized, and
these systems are assumed to be installed (semi) permanently by system administrators, while
Zorilla can be deployed on demand by users. One advantage the above systems have to Zorilla
is the fact that all are generic systems, while Zorilla is targeted to running HPC applications.

Zorilla can, through its use of the JavaGAT, use many, if not all, compute resources available
to it. Some cloud computing systems sometimes support a so-called hybrid cloud model, where
local, private resources are combined with remote, public, clouds. However, this model is more
limited than Zorilla, which is able to use any resources, be it clusters, grids, clouds, or otherwise.
Examples of systems supporting hybrid clouds are Globus Nimbus [29], OpenNebula [33], and
InterGrid [9].

An element of Zorilla also present in other systems is its use of P2P techniques to tie together
resources into a single system. However, these other systems [1, 5, 7] focus on providing
middleware on bare resources, not taking into account existing middleware. Also, not all
these systems assume virtualized resources, leading to rather complex resource discovery and
allocation mechanisms.

Another approach to creating a system spanning multiple resources is used in the
InterGrid [9] project. Here, gateways are installed which allow users to allocate resources
from all grids which enter into a peering arrangement with the local grid. If remote resources
are used, InterGrid uses virtualization to create a software environment equal to the local
system. Unlike Zorilla, where resources can be added on demand, InterGrid gateways and
peering agreements need to be setup in advance by system administrators.

6. Conclusions and Future Work

The emergence of real-world distributed systems has made running high-performance and
large-scale applications a challenge for end-users. These systems are heterogeneous, faulty,
and constantly changing. In this paper we suggest a possible solution for these problems:
middleware explicitly designed for real-world distributed systems. We established the
requirements of such a middleware, including fault-tolerance, platform independence, and
support for parallel applications.

We introduce Zorilla, a prototype P2P middleware designed for creating a single, coherent
system out of any available resources, including stand-alone machines, clusters, grids, and
clouds used concurrently, and running parallel and distributed applications on the resulting
system. Zorilla uses a combination of Virtualization and P2P techniques to implement all
functionality, resulting in a simple, effective, and robust system. For instance, the flood-
scheduling system in Zorilla makes use of the fact that resources are virtualized, allowing
for a simple yet effective resource discovery mechanism based on P2P techniques.

Using Zorilla, we ran a world-wide experiment, showing how Zorilla can tie together a large
number of resources into one coherent system. Moreover, we have shown that these resources
can be used efficiently, even when faults occur. Zorilla allows users to transparently use large
numbers of resources, even on very heterogeneous distributed systems comprised of grids,
clusters, clouds, desktop grids, and other systems.
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Although we have shown Zorilla to be highly useful, it is not yet complete. Future work
includes adding a global filesystem for long-term storage and security in the form of GSI.
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