
A Web Service for Scholarly Big 
Data Information Extraction

Kyle Williams, Lichi Li, Madian Khabsa, Jian 
Wu, Patrick C. Shih and C. Lee Giles

Information Sciences and Technology
Computer Science and Engineering
The Pennsylvania State University



Scholarly Big Data

● Scholarly Big Data includes all academic 
research output
○ Journal and conference publications
○ Books
○ Theses
○ Slides, data, course materials…

● Often found in data repositories
○ Google Scholar, Arxiv, Microsoft Academic, 

CiteSeerX, PubMed, University Libraries, etc.



Why is it Useful?

● Analyze scholarly and research trends

● Evaluation of investments in science and 
scholarship

● Identify opportunities for collaboration

● Evaluate individual scientist, groups and 
organizations



The Role of Metadata

● Metadata plays a crucial role in accessing, 
organizing and evaluating scholarly data

● Manual extraction of metadata is tedious and 
time consuming, thus motivating automatic 
methods 



Information
Extraction

Authors

Title

Figures

Algorithms

Database/
Index



Source: Getoor & Machanavajjhala, KDD’13



Duplication in Scholarly Big Data

● Duplication is common among scholarly data 
found on the Web
○ Co-authors storing versions of the same paper on 

their personal websites
○ Updated versions of papers
○ Published papers and preprints

● For a Web service for information extraction, 
users may submit the same paper

● At Big Data scale, we want to avoid 
redundant information extraction



CiteSeerExtractor

● A Web service from CiteSeerX for scholarly 
information extraction

● Performs automatic information extraction

● Deals with duplication by including a near 
duplicate matching backend



Resource Oriented Architecture

● Design is based on the resource oriented 
architecture
○ Defined by resources, identifiers, representations, 

addressability, statelessness, connectedness and 
uniformity

Resources are documents submitted to the Web 
service, which are identified by a random identifier, 
represented by the original file, header, citations, body 
or text and addressable through their IDs. 
CiteSeerExtractor is stateless as each request 
happens independently, connected through links to 
resources and makes use of the uniform HTTP 
protocol.





Architecture
● Python Web server handles

requests for submitting 
documents and retrieving
representation

● Extractors extract various
components from resources
○ Header, citations, etc.

● File store stores resources on disk for extraction

● Duplicate matching backend stores extracted metadata 
and matches incoming documents to previously 
processed documents



Duplicate Matching Backend

● Duplication among scholarly documents on 
the Web and documents submitted to an 
extraction service

● Store previously extracted metadata

● Match incoming documents to previously 
extracted documents
○ Return already extracted metadata if match exists
○ Or extract metadata and store



Simhash Near Duplicate Matching
● Documents represented by 64-bit hash

● If Hamming distance between 2 documents 
< k, we say the documents are near 
duplicates

● To find near duplicates, partition each hash 
into k+1 sub-hashes and store doc ids 
indexed by subhash (Manku et al, 2007)

● For a query document, lookup each sub-
hash in tables to get ids



Calculate the hamming distance between each 
matched document and the query document



Implementation in CiteSeerExtractor
● Redis NoSQL key-value store used for 

storing extracted metadata
○ Metadata can be given a time to live (TTL) 

afterwhich it is removed from Redis database

● Algorithm:
○ Calculate simhash of input document
○ Test for exact match
○ If found, return exact metadata
○ Else, partition into k=3 subhashes and lookup 

subhash matches
○ If subhash matches found: calculate Hamming 

distance and return any matches with distance <= 3
○ If no matches, extract, store and return metadata





Experiments
● High end server

○ CPU: 24 x Intel(R) Xeon(R) CPU X5650 @ 2.67
GHz

○ RAM: 48GB
○ OS: Red Hat Enterprise Linux (RHEL) Server 5.9; 

Python: 2.7; Redis: 2.4.10 with 44GB memory limit

● 3.6 million documents from the CiteSeerX 
collection

● 24 threads used for submitting documents 
to the Web service



Duplicate Matching Overhead
● Duplicate matching backend should not 

have a negative effect on performance

● Timed the processing of 100 files while 
extracting even near duplicates were found
○ 4.26 seconds (sd. 1.24) without duplicate matching
○ 4.35 seconds (sd. 1.25) with duplicate matching

● No large overhead by including near 
duplicate matching backend



Timing and Storage
● Compared the time and disk usage for 

header and citation extraction for 100 docs

● Citations are faster to extract and use more 
disk space
○ Use this information to set a TTL on citations so as 

to free up memory consumption of Redis database



● Baseline with no 
duplicate matching

● Redis with storing all
metadata and citations

● Redis+TTL sets a TTL 
of 6 hours on citations 
and uses compression

● Redis initially performs well until memory becomes full
● Redis+TTL solves this by expiring citations to free 

memory
● Performance increases as more files submitted
● 8.46% improvement in extraction time after ~3.6 million 

files (~21 hours saved with total running time of 10 days)

Extractor Performance



Verifying Results
● Number of documents processed:

○ No duplicate matching: 3,490,791
○ Redis: 3,484,213
○ Redis+TTL: 3,490,799
○ Using Redis+TTL does not lead to more failures

● Recorded first 100 near duplicate matches
○ 92% accuracy
○ False positives had large amount of mathematical 

notation, which can be fixed by filtering numeric 
characters



Conclusions
● Designed a RESTful Web service for 

scholarly big data information extraction
○ Deals with the issue of duplication
○ Improved performance by matching duplicates
○ Accuracy of matching can be improved by 

strengthening the criteria for 2 documents to be 
considered near duplicates

● Highly modular and can be extended with 
additional extractors



Demo

http://citeseerextractor.ist.psu.edu

http://citeseerextractor.ist.psu.edu
http://citeseerextractor.ist.psu.edu


Thanks
● Partial support by the National Science 

Foundation


