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Generalized Finite-Difference Time-Domain Method
Utilizing Auxiliary Differential Equations for the
Full-Vectorial Analysis of Photonic Crystal Fibers
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Abstract—We present the generalized finite-difference
time-domain full-vectorial method by reformulating the
time-dependent Maxwell’s curl equations with electric flux
density and magnetic field intensity, with auxiliary differential
equations using complex-conjugate pole-residue pairs. The model
is generic and robust to treat general frequency-dependent mate-
rial and nonlinear material. The Sellmeier equation is implicitly
incorporated as a special case of the general formulation to ac-
count for material dispersion of fused silica. The results are in
good agreement with the results from the multipole method. Kerr
nonlinearity is also incorporated in the model and demonstrated.
Nonlinear solutions are provided for a one ring photonic crystal
fiber as an example.

Index Terms—Auxiliary differential equation (ADE),
finite-difference time-domain (FDTD), Kerr nonlinearity, material
dispersion, photonic crystal fibers (PCF).

I. INTRODUCTION

PHOTONIC crystal fibers (PCFs) have attracted a great deal
of attention in optics research domain since its introduc-

tion in 1996 [1]. PCFs, generally classified in two classes, i.e.,
index-guiding PCF and photonic bandgap PCF, can offer many
superior properties over conventional step-index fibers, such as
endlessly single-mode operation, high birefringence, high/low
nonlinearity, tailorable dispersion, or even guidance in a hollow
core [2]. With the growing interest in PCFs, effective numer-
ical modeling is an indispensable tool as mathematical analyses
are difficult for PCF. Several modeling methods have been pro-
posed to study the modal properties of PCFs, including the mul-
tipole method [3], [4], the beam propagation method [5], the
finite-element method [6], and the finite-difference method in
time-domain (FDTD) [7] or frequency-domain [8]. Among all
these methods, the FDTD method has been recognized as a pow-
erful technique since it offers several advantages, such as its
ablity to treat frequency-dependent, nonlinear, or anisotropic
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material; generality, i.e., arbitrary shapes can be easily calcu-
lated; robustness, as numerous systems have been accurately
modeled; easy implementation, as it is formulated directly from
Maxwell’s equations; and it allows parallel computing which
greatly reduces computation time.

A compact two-dimensional FDTD (C2D-FDTD) approach
is proposed to solve guided modes in PCF by assuming the prop-
agation constant real and constant along the fiber axis [9]. Re-
cently Jiang et al. [10] proposed that by implicitly including the
Sellmeier formula in the formulation by introducing an auxiliary
polarization current density, material dispersion of fused silica
can be processed. However, for other frequency-dependent ma-
terial, which the Sellmeier formula may not provide accurate
estimation of the material permittivity, their formulation is no
longer sufficient. Furthermore, the current model is not able to
treat nonlinearities. To give a general and comprehensive mod-
eling for material dispersion and nonlinearity in PCF, we use
a generalized formulation of Maxwell’s curl equations by flux
density and magnetic field with complex-conjugate pole-residue
pairs, and we demonstrate our approach is more general and ro-
bust to treat complicated material in PCF. The effective indexes
of guided modes calculated by our FDTD model are found to be
within 0.02% relative error compared to the multipole method.
The Kerr nonlinearity is incorporated and a one ring PCF is used
to demonstrate nonlinear solutions by our generalized model.

II. FORMULATION

For an isotropic material in a source-free region, the time-
dependent Maxwell’s curls equations for electric flux density

, electric and magnetic field intensities and are arranged
in a form

(1)

(2)

(3)

where and are vacuum permeability and permittivity.
characterizes the material constitution between electric

field intensity and electric flux density. As given in (4),
is the linear index of the system, the second term is mate-
rial dispersion described by the sum of complex-conjugate
pole-residue pairs [11], and the third term is Kerr nonlinearity
as a function of intensity, where , and is Kerr
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nonlinearity coefficient of the material, therefore, if it is
air

(4)

Here we define the auxiliary parameter and pairs to de-
scribe material dispersion. Since and are complex con-
jugates, we only need to store and update either or
instead of both. Taking for example

(5)

The parameters in the time domain are expressed as

(6)

Therefore at every time step in the sampled time domain

(7)

Combining the auxiliary differential equation (ADE) (6) and the
Maxwell curl equations [(1), (2)], we arrive at the corresponding
ADE-FDTD implementation

(8)

where

(9)

for . Here the Kerr polarization term in (4) is
updated with Newton iteration. denotes the approxima-
tion of at th iteration of the Newton procedure and the
initial estimate of is , i.e., . Therefore, at
each time step , the electric field is obtained by the iterative
calculations with the stored field value at time step ,
and each iteration gives an estimate of the field value until the
iterative process completes. The index denotes the discrete
time step, is the time increment. The parameters and
are calculated using (9) and they are generally complex num-
bers, and are position dependent parameters. Updated

can be used in another updating of . The above presented
formulation using complex-conjugate pole-residue pairs is
able to treat Debye media and Lorentz media in a unified
manner [11], which definitely reduces implementation cost
when dealing with different frequency-dependent materials.
The advantage of our model, which is based on electric flux
density and magnetic field intensity, is the robustness to treat
complicated material while maintaining most of the formula-
tion equations unchanged, i.e., for other materials in PCF, such
as nonlinear dispersive materials, or gain mediums, only the
constitutive material equation which relates the electric field
and flux density needs corresponding modifications. The curl
equations concerning flux density and magnetic field are un-
changed. The Sellmeier formula is a special case of this model.

Fig. 1. Mode indexes of guided modes of the six-hole PCF. The stars are ob-
tained by current FDTD model; the dotted line is obtained by multipole method.
The largest relative error in effective index is less than 0.02%.

Fig. 2. Contour plots of the normalized fields jE j, jE j, and jE j for an
x-polarized fundamental mode for a six-hole PCF, with effective mode index
n = 1:441469.

In particular, let , , and , the
above formulation is exactly the same as ADE formulation for
a medium modeled by Sellmeier equation.

III. NUMERICAL RESULTS

Consider a structure with a single ring of six equally spaced
air holes with m, m, m, the back-
ground material is silica. The dielectric constant is described by
Sellmeier formula, and the Kerr nonlinearity is zero. denotes
the air hole diameter; is the hole to hole distance. The compu-
tation domain is shown in Fig. 1 with six holes in the cladding,
fiber core is solid. The space increment of .
A total of 19 600 (140 140) mesh points are in the computa-
tion domain with ten PML cells on each side of the boundary
and the total number of the time steps is 100 000, with each
time step smaller than the Courant limit. In our work,

, which depends on the input
propagation constant values. The calculated fields in time do-
main are transformed into frequency domain using fast Fourier
transform techniques to extract spectral information [12]. The
effective index for an x-polarized fundamental mode calculated
by the current FDTD program is 1.441469, compared to the
multipole method [4] which is 1.441465, we see a very good
agreement. We further investigate the mode profile of electric
field intensities at this wavelength as shown in Fig. 2, which are
normalized electric fields and they correlate with the multipole
method very well.
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Fig. 3. Total chromatic dispersion of the six-hole PCF. The circles are obtained
by current FDTD model; the solid line is obtained by multipole method.

Fig. 4. Dependence of effective indexes difference on the input intensity. Three
inset plots show intensity distribution of different solutions, i.e., linear mode,
nonlinear modes with E = 0:5e10 V/m, and E = 2:5e10 V/m.

The calculated effective indexes of guided modes in the fiber
are shown in Fig. 1, which includes the material dispersion. The
wavelength spans from 1.4 to 1.5 m. We see that they agree
well; the largest relative discrepancy is less than 0.02% from
multipole method. The total chromatic dispersion is also calcu-
lated and shown in Fig. 3. We could see the results obtained by
our FDTD model match well with multipole method.

Next we present the nonlinearity analysis for the same
fiber structure, without considering material dispersion for
simplicity. A Gaussian profile with in the center is
launched as the initial field. The Kerr nonlinearity coefficient
of silica, i.e., m W is used. The nonlinear
solutions have slight difference with linear solution, defined
as in Fig. 4. In our model is used
as a user defined parameter to search for resonance frequency,
corresponding to wavevector , and is the linear so-
lution. The difference shows a strong dependence on the
initial field amplitude . Mode profiles at three typical am-
plitudes are shown as insets, which are linear mode, nonlinear
modes with V/m and V/m,

respectively. It agrees with [13] that the PCF structure is
able to support stable solutions as the nonlinear fundamental
mode. It is also clear that as field intensity increases, the mode
self-focusing effect can be observed.

IV. CONCLUSION

We have given the basic formulation of our FDTD method
based on flux density and magnetic field. And we have shown
this method is a general approach to calculate the modal
properties in PCFs with different frequency-dependent and
nonlinear material. With appropriate parameters defined in
the complex-conjugate pole-residue poles, general dispersive
media can be processed. Fused silica is a special case and the
Sellmeier formula can be treated as a particular case in the
formulation as well. The results are in good correlation with
multipole methods. We also demonstrate nonlinear analysis of
a one-ring PCF assuming instantaneous response of Kerr type
material by our generalized FDTD model.
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