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Abstract. Symbolic q-ary multithreshold decoding (qMTD) for q-ary self-
orthogonal codes (qSOC) is analyzed. The SER performance of qMTD is 
shown to be close to the results provided by optimum total search methods, 
which are not realizable for non-binary codes in general. qMTD decoders are 
compared with different decoders for Reed-Solomon and LDPC codes. The re-
sults of concatenation of qSOC with simple to decode outer codes are de-
scribed. The complexity of qMTD is also discussed. 

Keywords: iterative decoding, non-binary (symbolic) multithreshold decoding, 
q-ary self-orthogonal codes, concatenated codes, symbolic codes 

1 Introduction 

Error correcting coding is used to correct errors appearing during data transmission 
via channels with noises. Main attention in literature is given to binary error-
correcting codes working with data on the level of separate bits. But in many digital 
systems it’s often more convenient to work with byte structure data. As an example, 
it’s more convenient to work with bytes in systems which store big volumes of data 
(optic discs and other devices). In such systems to protect data from errors it is rec-
ommended to use non-binary error-correcting codes. At present preference among 
non-binary codes is given to Reed-Solomod codes (RS), which have algebraic decod-
ing algorithms [1], allowing to correct up to half-distance errors as well as more com-
plex algorithms [2] providing correction of higher error number. At the same time due 
to their implementation complexity such methods allow to decode only short and thus 
low-effective RS codes. Lately many specialists have been developing decoders of 
non-binary low-density parity-check (qLDPC) codes which are able to provide ex-
tremely high efficiency [3, 4]. But the complexity of such decoders especially with 
big alphabet size still remains too high to be used in practice. 



Special attention among non-binary algorithms to correct errors should be given to 
non-binary (q-ary) self-orthogonal codes and special high-speed alphabet 
multithreshold decoders (qMTD) corresponding to them [5…8], being the develop-
ment of binary multithreshold decoders (MTD) [5, 6, 9…10]. Great interest to MTD is 
shown not only in Russia [11, 12]. Research results given in [5…8] show that qMTD 
greatly exceed in their efficiency RS codes and qLDPC codes being used in practice 
remaining as simple to be implemented as their prototypes – binary MTD. It is also very 
important not to use multiplication in non-binary fields during encoding and decoding 
as well as total independence of alphabet codes lengths from the size of applied sym-
bols. That’s the reason why such codes will find broad application in the sphere of pro-
cessing, storage and transmission of large volumes of audio, video and other types of 
data.  

The rest part of the article is organized in the following way. Section 2 contains 
basic information about qMTD. Section 3 shows the results of qМTD efficiency com-
parison with efficiency of decoders for RS and qLDPC codes. Section 4 is dedicated 
to the development of new concatenated schemes to correct errors based on qMTD 
and their efficiency analysis. Section 5 demonstrates the main conclusions. 

2 Non-binary multithreshold decoding 

Let’s describe operating principles of qMTD during non-binary self-orthogonal 
codes (qSOC) decoding. The description is given for q-ary symmetric channel (qSC) 
having alphabet size q, q > 2, and symbol error probability p0.  

Let’s assume linear non-binary systematic convolutional or block self-orthogonal 
code with parity-check matrix H to be equal to binary case [6, 13], i.e. it has only 
zeros and ones excluding the fact that instead of 1 there will be –1 in identity 
submatrix, i.e. H = [P : –I]. Here P – submatrix defined by generator polynomial for 
binary SOC; I – identity submatrix. Generator matrix of such code will be of  
G = [I : PT] type. This code can be used with any size q of alphabet. 

Note that for this qSOC during encoding and decoding operations only addition 
and subtraction on q module are necessary to be made. Calculations in non-binary 
fields are not applied in this case.  

The example of a scheme realizing the operation of encoding by block qSOC, giv-
en by generator polynomial g(x) = 1+x+x4+x6, is given on Fig. 1. Such code is charac-
terised by the parameters: code length n=26 symbols, data part length k=13 symbols, 
code rate R=1/2, code distance d=5. 

Let’s assume that encoder has performed encoding of data vector U and received 
code vector A = [U, V], where V = U · G. Note that in this example and below when 
multiplication, addition, subtraction of vectors and matrices are made, module 
arithmetics is applied. When code vector A having the length n with k data symbols 
on qSC is transmitted decoder is entered with vector Q, generally speaking, having 
differences from original code vector due to errors in the channel: Q = A + E, where 
E – channel error vector of qSC type.  



 
Fig. 1. Encoder for block qSOC, given by polynomial g(x) = 1+x+x4+x6 

Operating algorithm of qMTD during vector Q decoding is the following [5…8]. 
1. Syndrome vector is calculated S = H · QT. Difference register D is reset. This 

register will contain data symbols changed by decoder. Note that the number of non-
zero elements of D and S vectors will always determine the distance between message 
Q received from the channel and code word being the current solution of qMTD. The 
task of decoder is to find such code word which demands minimal number of non-
zero elements of D and S vectors. This step totally corresponds to binary case. 

2. For arbitrarily chosen decoded q-ary data symbol ij of the received message let’s 
count the number of two most frequent values of checks sj of syndrome vector S from 
total number of all checks relating to symbol ij, and symbol dj of D vector, corre-
sponding to ij symbol. Let the values of these two checks be equal to h0 and h1, and 
their number be equal to m0 and m1 correspondingly when m0  m1. This step is an 
analogue of sum reception procedure on a threshold element in binary MTD. 

3. If m0–m1 > T, where T – a value of a threshold (some integer number), then from 
ij, dj and all checks regarding ij error estimation equal to h0 is subtracted. This step is 
analogous to comparison of a sum with a threshold in binary decoder and change of 
decoded symbol and correction via feedback of all syndrome symbols being the 
checks for decoded symbol.  

4. The choice of new im, m  j is made, next step is clause 2.  
Such attempts of decoding according to cl. 2…4 can be repeated for each symbol 

of received message several times [5, 6]. Note that when implementing qMTD algo-
rithm the same as in binary case it is convenient to change all data symbols conse-
quently and to stop decoding procedure after fixed number of error correction at-
tempts (iterations) or if during such iteration no symbol changed its value. The exam-
ple of qMTD implementation for encoder from Fig. 1 is given on Fig. 2. 

For qMTD algorithm described the following theorem is valid, 
Theorem. Let decoder realize qMTD algorithm for the code described above. 

Then during each change of decoded symbols a transition to a more plausible solution 
in comparison with previous decoder solutions takes place. 

Proof of a theorem is given in [5…8]. In the course of proof it is shown that total 
Hamming weight of syndrome and difference registers during each change of decoded 
symbols in accordance with qMTD algorithm described above strictly decreases.  



 
Fig. 2. MTD for block qSOC. 

Let’s note two most important features characterizing offered algorithm. First, as in 
case of binary codes we can’t claim that qMTD solution improvement during multiple 
decoding attempts will take place till optimal decoder solution is achieved. In fact 
both in block and in convolutional codes it’s possible to meet such error configura-
tions which cannot be corrected in qMTD, but some of them can be corrected in op-
timal decoder. That’s why the main way to increase qMTD efficiency is to search 
codes where these noncorrected error configurations are quite rare even in high level 
of noise. The questions to choose such codes are considered in detail in [6]. 

Another important moment is the fact that in comparison with traditional approach 
to major systems to change decoded symbol qMTD needs not absolute but relatively 
strict majority of checks as it follows from m0–m1 > T condition. E.g., in qSOC with 
d = 9 an error in decoded symbol will be corrected even when only 2 checks will be 
correct from 9 his checks (including symbol dj of difference register) and the other 
7 - erroneous! This situation cannot be imagined for binary codes but for qMTD this 
is typical. 

These features essentially expand the possibilities of non-binary multithreshold al-
gorithm during operation in high noises retaining as it follows from given description 
only linear dependence of implementation complexity from code length.  

3 Simulation results 

Let’s compare characteristics of qМTD and other non-binary error correction 
methods in qSC. Dependencies of symbol error rate Ps after decoding from symbol 
error P0 probability in qSC for codes with code rate R=1/2 are given in Fig. 3. Here 
curves 5 and 6 show characteristics of qМTD for qSOC with block length n=4000 and 



32000 symbols when using 8-bit symbols (alphabet size q=256). The volume of simu-
lation in lower points of these graphs contained from 5·1010 to 2·1012 symbols which 
shows extreme method simplicity. As a comparison in this Figure curve 1 shows 
characteristics of algebraic decoder for (255, 128) RS code for q=256. As it follows 
from the Fig. 3, efficiency of qMTD for qSOC turns out to be far better than efficien-
cy of RS code decoders using the symbols of similar size. When code length in 
qMTD increases the difference in efficiency turns out to be even higher. Note that 
even when using concatenated schemes of error correction based on RS codes it’s not 
possible to increase decoding efficiency considerably. E.g., with the help of product-
code having code rate 1/2, consisting of two RS codes with q=256 and several dozens 
of decoding iterations error rate less than 10-5 can be provided with error probability 
in the channel only equal to 0,18 (curve 4 in Fig. 3), which is considerably worse than 
when using qMTD. Besides different methods to increase correcting capability of RS 
codes including all variations of Sudan algorithm ideally have the complexity of n2 
order. For the codes having the length of 32000 symbols this leads to the difference in 
complexity equal to 32000 times having at the same time little increase of error-
correctness. This is shown in Fig. 3 with curve 3, which gives the estimations of Wu 
[2] algorithm possibilities for (255, 128) of RS code.  

 
Fig. 3. Characteristics of non-binary codes with code rate R=1/2 in qSC 

Additional advantage of qMTD over other error correcting methods is the fact that 
it allows to work easily with symbols of any size providing high correcting capability. 
This is confirmed by curves which show characteristics of qMTD for code having the 
length equal to 32000 two-byte symbols (curve 7) and to 100000 four-byte symbols 
(curve 10). We should note that very simple to be implemented qMTD decoder for 
two-byte code with the length 32000 is capable to provide error-correctness not ac-



cessible even by RS code with the length of 65535 two-byte symbols (curve 2 in 
Fig. 3), the decoder for which is not to be implemented in close future. Besides, 
qMTD for four-byte symbols even surpasses in efficiency more complicated decoder 
of qLDPC codes with the length of 100000 four-byte symbols which has the example 
of characteristics presented in Fig. 3 by curve 9 [4].  

It should be noted once more that to achieve these results with the help of qMTD 
used codes should be chosen very thoroughly and the main criterion while choosing 
should be the degree of resistance to the effect of error propagation. At the same time 
the most effective are the codes where several data and several check branches are 
used [6, 14]. In [15] it is shown that in the process of such codes optimizing it is pos-
sible to improve qMTD operating efficiency. Particularly, characteristics of the code 
with q=256 and code rate 1/2 found in [15] are given in Fig. 3 by curve 8. It is clear 
that this code provides effective work in conditions of bigger error probabilities in 
qСК, than the codes known before (curve 6), having the same complexity of their 
decoding.  

4 Concatenated schemes of error correction based on qМTD  

One of the ways to improve qMTD characteristics is to use it in concatenated en-
coding schemes. The simplest and most effective concatenated encoding scheme is 
concatenated scheme on the basis of qSOC and control code on module q [6, 8, 16]. 
In the field of its effective work qMTD is known to leave only rare single errors. The 
task to correct such single errors is easily solved with the help of control codes on 
module q. 

The process of encoding by concatenated code encoder on the basis of qSOC and 
control code on module q is the following. First each sequence consisting of n–1 
symbols is complemented by such n-th symbol that the sum of symbols value having 
the sequence of n elements on q module becomes equal to 0. After that this new se-
quence of n elements is encoded by qSOC encoder. Decoding process of the message 
received from the channel is made in reverse order, i.e. non-binary multithreshold 
decoding is made first after which in the conditions of lower noise level channel con-
tains basically single errors which are corrected by decoder for control code on mod-
ule q.  

Operation of decoder for control code on module q is the following. First e sum on 
module q values for block consisting of n elements is calculated. If this sum is not 
equal to 0, then among the first n–1 elements in the block the one with less reliability 
should be found, the reliability of which is less than reliability of n-th symbol in 
block. If such symbol exists then it is changed on e value. The reliability here is un-
derstood as m0–me difference, where m0 – number of zero symbols of syndrome and 
difference register of qМTD connected with given data symbol; me – number of sym-
bols of syndrome and difference register of qМTD with the value e and connected 
with given symbol.  

In Fig. 3 curve 11 shows characteristics of concatenated encoding scheme consist-
ing of qSOC and control code on module q in qSC. Inner code was qSOC with mini-



mum code distance d=17 and code rate R=8/16 the characteristics of which are repre-
sented by curve 8. Outer code was control code on module q with the length L=50. 
During qSOC decoding qMTD with 30 iterations was used. The Figure shows that 
usage of decoder for control code on module q with block length L=50 after qМTD 
allows to reduce decoding error rate on more than two orders. The increase of calcula-
tion volume in concatenated code is less than 20% in comparison with original qMTD 
algorithm. 

Essential drawback of the concatenated scheme described above is the fact that de-
coder of outer control code on module q sometimes does not correct even the only 
error in the block. To eliminate this drawback it is recommended to use together with 
qSOC more effective and simple to be implemented non-binary code the decoder of 
which will always correct the only symbol error in the block. This will allow to re-
duce error rate in the field of effective qMTD operation even more in comparison 
with concatenated scheme presented above. As an example of such code non-binary 
Hamming codes [17] can be used. At the same time known non-binary Hamming 
codes have such features as the necessity to use extended Galois fields in the process 
of decoding as well as dependence of code length from alphabet size. As a result the 
application of such codes in offered concatenated scheme especially when the alpha-
bet is big becomes too complicated. That’s why it could be offered to build non-
binary Hamming codes [16] on the basis of known binary Hamming codes. Let’s 
describe them in detail. 

 Parity-check matrix of these codes coincides with parity-check matrix of binary 
Hamming codes Hh=[Ch : I]. Generator matrix will be as follows Gh=[I : -Ch

T]. Let us 
formulate the principles to decode this code. 

Let’s assume that after qMTD vector Y entered input of non-binary Hamming 
code decoder. In the process of decoding a syndrome of received message is calculat-
ed first:  

 Sh = Y · Hh
T. 

If the received message contains only one error with value ej on j position then 
generated syndrome can be written down as 

 Sh = S2
jej, 

where S2
j – syndrome of binary Hamming code with single error on j position. Conse-

quently, such symbol of received message need to be corrected on value ej for which a 
column of parity-check matrix Hh coincides with syndrom S2

j.  
If received message contains two errors ei and ej on i and j positions then the 

syndrom can be written down as follows 

 Sh = S2
iei + S2

jej. 

Such syndrome contains only values 0, ei, ej and ei+ej. Consequently, such symbol 
of received message need to be corrected on value ei for which matrix column Hh 
coincides with vector S2

i, and such symbol of received message need to be corrected 
on value ej for which matrix column Hh coincides with vector S2

j. Thus, offered algo-



rithm of offered non-binary Hamming codes decoding in majority of cases (approxi-
mately in 71% cases for q=256 [16]) is able to correct even two errors. And if it is use 
offered extended non-binary Hamming codes having in addition one general check on 
module q then two errors are practically corrected in all cases (in 99% of cases for 
q=256 [16]). 

The example of performance of offered concatenated scheme containing qSOC with 
R=8/16, q=256, d=17 and given extended non-binary Hamming code with the length 
N2=128 is shown in Fig. 3 by curve 12. At the same time total decoding complexity due 
to addition of extended non-binary Hamming code increases not more than 35 % [16]). 

5 Conclusion 

Given results allow to conclude that qMTD methods can really be regarded as unique 
algorithms capable to provide effective decoding in the conditions of high noise level 
requaring quite small number of operations and achieving highest levels of reliability 
in the process of digital information transmission and storage as well as its processing 
rate in high-speed communication channels and in the devices to store large volume 
of data.  

The work was supported by Russian foundation for basic research, Space research 
institute, Ryazan state radioengineering university and Science comitte of Republic of 
Kazakhstan. Great deal of additional information on multithreshold decoders can be 
found on websites [18]. 
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