Formal Languages

Alphabet and Word

Definition

Alphabet is a nonempty finite set of symbols.

Remark: An alphabet is often denoted by the symbol Σ (upper case sigma) of the Greek alphabet.

Definition

A word over a given alphabet is a finite sequence of symbols from this alphabet.

Example 1:

$\Sigma=\{A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z\}$
Words over alphabet $\Sigma: \quad$ HELLO ABRACADABRA ERROR

Alphabet and Word

Example 2:

$\Sigma_{2}=\{A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, ~ \sqcup\}$
A word over alphabet Σ_{2} : HELLO \quad WORLD

Example 3:

$\Sigma_{3}=\{0,1,2,3,4,5,6,7,8,9\}$
Words over alphabet $\Sigma_{3}: \quad 0,31415926536,65536$

Example 4:

Words over alphabet $\Sigma_{4}=\{0,1\}: 011010001,111,1010101010101010$

Example 5:

Words over alphabet $\Sigma_{5}=\{a, b\}:$ aababb, $a b b a b b b a, ~ a a a b$

Alphabet and Word

Example 6:

Alphabet Σ_{6} is the set of all ASCII characters.
Example of a word:

```
class HelloWorld {
        public static void main(String[] args) {
        System.out.println("Hello, world!");
    }
}
```


Theory of Formal Languages - Motivation

Language - a set of (some) words of symbols from a given alphabet
Examples of problem types, where theory of formal languages is useful:

- Construction of compilers:
- Lexical analysis
- Syntactic analysis
- Searching in text:
- Searching for a given text pattern
- Seaching for a part of text specified by a regular expression

Representation of Formal Languages

To describe a language, there are several possibilities:

- We can enumerate all words of the language (however, this is possible only for small finite languages).

Example: $L=\{a a b, b a b b a$, aaaaaa $\}$

- We can specify a property of the words of the language:

Example: The language over alphabet $\{0,1\}$ containing all words with even number of occurrences of symbol 1 .

Representation of Formal Languages

In particular, the following two approaches are used in the theory of formal languages:

- To describe an (idealized) machine, device, algorithm, that recognizes words of the given language - approaches based on automata.
- To describe some mechanism that allows to generate all words of the given language - approaches based on grammars or regular expressions.

Some Basic Concepts

The length of a word is the number of symbols of the word.
For example, the length of word abaab is 5 .
The length of a word w is denoted $|w|$.
For example, if $w=a b a a b$ then $|w|=5$.
We denote the number of occurrences of a symbol a in a word w by $|w|_{a}$. For word $w=a b a b b$ we have $|w|_{a}=2$ and $|w|_{b}=3$.

An empty word is a word of length 0 , i.e., the word containing no symbols.
The empty word is denoted by the letter ε (epsilon) of the Greek alphabet. (Remark: In literature, sometimes λ (lambda) is used to denote the empty word instead of ε.)

$$
|\varepsilon|=0
$$

Concatenation of Words

One of operations we can do on words is the operation of concatenation: For example, the concatenation of words OST and RAVA is the word OSTRAVA.

The operation of concatenation is denoted by symbol • (similarly to multiplication). It is possible to omit this symbol.

$$
\text { OST } \cdot \text { RAVA }=\text { OSTRAVA }
$$

Concatenation is associative, i.e., for every three words u, v, and w we have

$$
(u \cdot v) \cdot w=u \cdot(v \cdot w)
$$

which means that we can omit parenthesis when we write multiple concatenations. For example, we can write $w_{1} \cdot w_{2} \cdot w_{3} \cdot w_{4} \cdot w_{5}$ instead of $\left(w_{1} \cdot\left(w_{2} \cdot w_{3}\right)\right) \cdot\left(w_{4} \cdot w_{5}\right)$.

Concatenation of Words

Concatenation is not commutative, i.e., the following equality does not hold in general

$$
u \cdot v=v \cdot u
$$

Example:

$$
\text { OST } \cdot \text { RAVA } \neq \text { RAVA } \cdot \text { OST }
$$

It is obvious that the following holds for any words v and w :

$$
|v \cdot w|=|v|+|w|
$$

For every word w we also have:

$$
\varepsilon \cdot w=w \cdot \varepsilon=w
$$

Prefixes, Suffixes, and Subwords

Definition

A word x is a prefix of a word y, if there exists a word v such that $y=x v$. A word x is a suffix of a word y, if there exists a word u such that $y=u x$. A word x is a subword of a word y, if there exist words u and v such that $y=u x v$.

Example:

- Prefixes of the word abaab are $\varepsilon, a, a b, a b a, ~ a b a a, ~ a b a a b$.
- Suffixes of the word abaab are $\varepsilon, b, a b, a a b, b a a b, a b a a b$.
- Subwords of the word abaab are $\varepsilon, a, b, a b, b a, a a, ~ a b a, b a a, ~ a a b$, abaa, baab, abaab.

Language

The set of all words over alphabet Σ is denoted Σ^{*}.

Definition

A (formal) language L over an alphabet Σ is a subset of Σ^{*}, i.e., $L \subseteq \Sigma^{*}$.

Example 1: The set $\{00,01001,1101\}$ is a language over alphabet $\{0,1\}$.
Example 2: The set of all syntactically correct programs in the C programming language is a language over the alphabet consisting of all ASCII characters.

Example 3: The set of all texts containing the sequence hello is a language over alphabet consisting of all ASCII characters.

Set Operations on Languages

Since languages are sets, we can apply any set operations to them:
Union $-L_{1} \cup L_{2}$ is the language consisting of the words belonging to language L_{1} or to language L_{2} (or to both of them).

Intersection $-L_{1} \cap L_{2}$ is the language consisting of the words belonging to language L_{1} and also to language L_{2}.

Complement $-\overline{L_{1}}$ is the language containing those words from Σ^{*} that do not belong to L_{1}.

Difference $-L_{1}-L_{2}$ is the language containing those words of L_{1} that do not belong to L_{2}.

Remark: It is assumed the languages involved in these operations use the same alphabet Σ.

Set Operations on Languages

Formally:
Union: $L_{1} \cup L_{2}=\left\{w \in \Sigma^{*} \mid w \in L_{1} \vee w \in L_{2}\right\}$
Intersection: $L_{1} \cap L_{2}=\left\{w \in \Sigma^{*} \mid w \in L_{1} \wedge w \in L_{2}\right\}$
Complement: $\overline{L_{1}}=\left\{w \in \Sigma^{*} \mid w \notin L_{1}\right\}$
Difference: $L_{1}-L_{2}=\left\{w \in \Sigma^{*} \mid w \in L_{1} \wedge w \notin L_{2}\right\}$

Remark: We assume that $L_{1}, L_{2} \subseteq \Sigma^{*}$ for some given alphabet Σ.

Set Operations on Languages

Example:

Consider languages over alphabet $\{\mathrm{a}, \mathrm{b}\}$.

- L_{1} - the set of all words containing subword baa
- L_{2} - the set of all words with an even number of occurrences of symbol b

Then

- $L_{1} \cup L_{2}$ - the set of all words containing subword baa or an even number of occurrences of b
- $L_{1} \cap L_{2}$ - the set of all words containing subword baa and an even number of occurrences of b
- $\overline{L_{1}}$ - the set of all words that do not contain subword baa
- $L_{1}-L_{2}$ - the set of all words that contain subword baa but do not contain an even number of occurrences of b

Concatenation of Languages

Definition

Concatenation of languages L_{1} and L_{2}, where $L_{1}, L_{2} \subseteq \Sigma^{*}$, is the language $L \subseteq \Sigma^{*}$ such that for each $w \in \Sigma^{*}$ it holds that

$$
w \in L \leftrightarrow\left(\exists u \in L_{1}\right)\left(\exists v \in L_{2}\right)(w=u \cdot v)
$$

The concatenation of languages L_{1} and L_{2} is denoted $L_{1} \cdot L_{2}$.

Example:

$$
\begin{aligned}
& L_{1}=\{a b b, b a\} \\
& L_{2}=\{a, a b, b b b\}
\end{aligned}
$$

The language $L_{1} \cdot L_{2}$ contains the following words:

$$
a b b a \quad a b b a b \quad a b b b b b \text { baa baab babbb }
$$

Iteration of a Language

Definition

The iteration (Kleene star) of language L, denoted L^{*}, is the language consisting of words created by concatenation of some arbitrary number of words from language L.
l.e. $w \in L^{*}$ iff

$$
\exists n \in \mathbb{N}: \exists w_{1}, w_{2}, \ldots, w_{n} \in L: w=w_{1} w_{2} \cdots w_{n}
$$

Example: $L=\{a a, b\}$

$$
L^{*}=\{\varepsilon, \text { aa, } b, \text { aaaa, aab, baa, bb, aaaaaa, aaaab, aabaa }, \text { aabb, } \ldots\}
$$

Remark: The number of concatenated words can be 0 , which means that $\varepsilon \in L^{*}$ always holds (it does not matter if $\varepsilon \in L$ or not).

Iteration of a Language - Alternative Definition

At first, for a language L and a number $k \in \mathbb{N}$ we define the language L^{k} :

$$
L^{0}=\{\varepsilon\}, \quad L^{k}=L^{k-1} \cdot L \quad \text { for } k \geq 1
$$

This means

$$
\begin{aligned}
L^{0}= & \{\varepsilon\} \\
L^{1}= & L \\
L^{2}= & L \cdot L \\
L^{3}= & L \cdot L \cdot L \\
L^{4}= & L \cdot L \cdot L \cdot L \\
L^{5}= & L \cdot L \cdot L \cdot L \cdot L \\
& \ldots
\end{aligned}
$$

Example: For $L=\{a a, b\}$, the language L^{3} contains the following words: aaaaaa aaaab aabaa aabb baaaa baab bbaa bbb

Iteration of a Language - Alternative Definition

Alternative definition

The iteration (Kleene star) of language L is the language

$$
L^{*}=\bigcup_{k \geq 0} L^{k}
$$

Remark:

$$
\bigcup_{k \geq 0} L^{k}=L^{0} \cup L^{1} \cup L^{2} \cup L^{3} \cup \cdots
$$

Iteration of a Language

Remark: Sometimes, notation L^{+}is used as an abbreviation for $L \cdot L^{*}$, i.e.,

$$
L^{+}=\bigcup_{k \geq 1} L^{k}
$$

Reverse

The reverse of a word w is the word w written from backwards (in the opposite order).
The reverse of a word w is denoted w^{R}.
Example: $\quad w=$ HELLO $\quad w^{R}=$ OLLEH

Formally, for $w=a_{1} a_{2} \cdots a_{n}$ (where $a_{i} \in \Sigma$) is $w^{R}=a_{n} a_{n-1} \cdots a_{1}$.

Reverse

The reverse of a language L is the language consisting of reverses of all words of L.
Reverse of a language L is denoted L^{R}.

$$
L^{R}=\left\{w^{R} \mid w \in L\right\}
$$

Example: $L=\{a b, b a a b a, a a a b\}$

$$
L^{R}=\{b a, a b a a b, b a a a\}
$$

Order on Words

Let us assume some (linear) order $<$ on the symbols of alphabet Σ, i.e., if $\Sigma=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ then

$$
a_{1}<a_{2}<\ldots<a_{n} .
$$

Example: $\Sigma=\{a, b, c\}$ with $a<b<c$.
The following (linear) order $<_{L}$ can be defined on Σ^{*} :
$x<L y$ iff:

- $|x|<|y|$, or
- $|x|=|y|$ there exist words $u, v, w \in \Sigma^{*}$ and symbols $a, b \in \Sigma$ such that

$$
x=u a v \quad y=u b w \quad a<b
$$

Informally, we can say that in order $<_{L}$ we order words according to their length, and in case of the same length we order them lexicographically.

Order on Words

All words over alphabet Σ can be ordered by $<_{L}$ into a sequence

$$
w_{0}, w_{1}, w_{2}, \ldots
$$

where every word $w \in \Sigma^{*}$ occurs exactly once, and where for each $i, j \in \mathbb{N}$ it holds that $w_{i}<L w_{j}$ iff $i<j$.

Example: For alphabet $\Sigma=\{a, b, c\}$ (where $a<b<c$), the initial part of the sequence looks as follows:
$\varepsilon, a, b, c, a a, a b, a c, b a, b b, b c, c a, c b, c c, a a a, a a b, a a c, a b a, a b b, a b c, \ldots$

For example, when we talk about the first ten words of a language $L \subseteq \Sigma^{*}$, we mean ten words that belong to language L and that are smallest of all words of L according to order $<_{L}$.

Regular Expressions

Regular Expressions

Regular expressions describing languages over an alphabet Σ :

- $\emptyset, \varepsilon, a$ (where $a \in \Sigma$) are regular expressions:
$\emptyset \ldots$ denotes the empty language
$\varepsilon \ldots$ denotes the language $\{\varepsilon\}$
a.. denotes the language $\{a\}$
- If α, β are regular expressions then also $(\alpha+\beta),(\alpha \cdot \beta),\left(\alpha^{*}\right)$ are regular expressions:
$(\alpha+\beta) \ldots$ denotes the union of languages denoted α and β $(\alpha \cdot \beta) \ldots$ denotes the concatenation of languages denoted α and β
$\left(\alpha^{*}\right) \ldots$ denotes the iteration of a language denoted α
- There are no other regular expressions except those defined in the two points mentioned above.

Regular Expressions

Example: alphabet $\Sigma=\{0,1\}$

- According to the definition, 0 and 1 are regular expressions.

Regular Expressions

Example: alphabet $\Sigma=\{0,1\}$

- According to the definition, 0 and 1 are regular expressions.
- Since 0 and 1 are regular expression, $(0+1)$ is also a regular expression.

Regular Expressions

Example: alphabet $\Sigma=\{0,1\}$

- According to the definition, 0 and 1 are regular expressions.
- Since 0 and 1 are regular expression, $(0+1)$ is also a regular expression.
- Since 0 is a regular expression, $\left(0^{*}\right)$ is also a regular expression.

Regular Expressions

Example: alphabet $\Sigma=\{0,1\}$

- According to the definition, 0 and 1 are regular expressions.
- Since 0 and 1 are regular expression, $(0+1)$ is also a regular expression.
- Since 0 is a regular expression, $\left(0^{*}\right)$ is also a regular expression.
- Since $(0+1)$ and $\left(0^{*}\right)$ are regular expressions, $\left((0+1) \cdot\left(0^{*}\right)\right)$ is also a regular expression.

Regular Expressions

Example: alphabet $\Sigma=\{0,1\}$

- According to the definition, 0 and 1 are regular expressions.
- Since 0 and 1 are regular expression, $(0+1)$ is also a regular expression.
- Since 0 is a regular expression, $\left(0^{*}\right)$ is also a regular expression.
- Since $(0+1)$ and $\left(0^{*}\right)$ are regular expressions, $\left((0+1) \cdot\left(0^{*}\right)\right)$ is also a regular expression.

Remark: If α is a regular expression, by $[\alpha]$ we denote the language defined by the regular expression α.

$$
\left[\left((0+1) \cdot\left(0^{*}\right)\right)\right]=\{0,1,00,10,000,100,0000,1000,00000, \ldots\}
$$

Regular Expressions

The structure of a regular expression can be represented by an abstract syntax tree:

Regular Expressions

The formal definition of semantics of regular expressions:

- $[\emptyset]=\emptyset$
- $[\varepsilon]=\{\varepsilon\}$
- $[a]=\{a\}$
- $\left[\alpha^{*}\right]=[\alpha]^{*}$
- $[\alpha \cdot \beta]=[\alpha] \cdot[\beta]$
- $[\alpha+\beta]=[\alpha] \cup[\beta]$

Regular Expressions

To make regular expressions more lucid and succinct, we use the following conventions:

- The outward pair of parentheses can be omitted.
- We can omit parentheses that are superflous due to associativity of operations of union (+) and concatenation (\cdot).
- We can omit parentheses that are superflous due to the defined priority of operators (iteration (*) has the highest priority, concatenation (\cdot) has lower priority, and union $(+)$ has the lowest priority).
- A dot denoting concatenation can be omitted.

Example: Instead of

$$
\left(\left(\left(\left((0 \cdot 1)^{*}\right) \cdot 1\right) \cdot(1 \cdot 1)\right)+\left(((0 \cdot 0)+1)^{*}\right)\right)
$$

we usually write

$$
(01)^{*} 111+(00+1)^{*}
$$

Regular Expressions

Examples: In all examples $\Sigma=\{0,1\}$.
0 ... the language containing the only word 0

Regular Expressions

Examples: In all examples $\Sigma=\{0,1\}$.
0 ... the language containing the only word 0
01 ... the language containing the only word 01

Regular Expressions

Examples: In all examples $\Sigma=\{0,1\}$.
0 ... the language containing the only word 0
01 ... the language containing the only word 01
$0+1 \ldots$ the language containing two words 0 and 1

Regular Expressions

Examples: In all examples $\Sigma=\{0,1\}$.
0 ... the language containing the only word 0
01 ... the language containing the only word 01
$0+1 \ldots$ the language containing two words 0 and 1
$0^{*} \ldots$ the language containing words $\varepsilon, 0,00,000, \ldots$

Regular Expressions

Examples: In all examples $\Sigma=\{0,1\}$.
0 ... the language containing the only word 0
01 ... the language containing the only word 01
$0+1 \ldots$ the language containing two words 0 and 1
$0^{*} \ldots$ the language containing words $\varepsilon, 0,00,000, \ldots$
$(01)^{*} \ldots$ the language containing words $\varepsilon, 01,0101,010101, \ldots$

Regular Expressions

Examples: In all examples $\Sigma=\{0,1\}$.
0 ... the language containing the only word 0
01 ... the language containing the only word 01
$0+1 \ldots$ the language containing two words 0 and 1
$0^{*} \ldots$ the language containing words $\varepsilon, 0,00,000, \ldots$
$(01)^{*} \ldots$ the language containing words $\varepsilon, 01,0101,010101, \ldots$
$(0+1)^{*} \ldots$ the language containing all words over the alphabet $\{0,1\}$

Regular Expressions

Examples: In all examples $\Sigma=\{0,1\}$.
0 ... the language containing the only word 0
01 ... the language containing the only word 01
$0+1 \ldots$ the language containing two words 0 and 1
$0^{*} \ldots$ the language containing words $\varepsilon, 0,00,000, \ldots$
$(01)^{*} \ldots$ the language containing words $\varepsilon, 01,0101,010101, \ldots$
$(0+1)^{*} \ldots$ the language containing all words over the alphabet $\{0,1\}$
$(0+1)^{*} 00 \ldots$ the language containing all words ending with 00

Regular Expressions

Examples: In all examples $\Sigma=\{0,1\}$.
0 ... the language containing the only word 0
01 ... the language containing the only word 01
$0+1 \ldots$ the language containing two words 0 and 1
$0^{*} \ldots$ the language containing words $\varepsilon, 0,00,000, \ldots$
$(01)^{*} \ldots$ the language containing words $\varepsilon, 01,0101,010101, \ldots$
$(0+1)^{*} \ldots$ the language containing all words over the alphabet $\{0,1\}$
$(0+1)^{*} 00 \ldots$ the language containing all words ending with 00
$(01)^{*} 111(01)^{*} \ldots$ the language containing all words that contain a subword 111 preceded and followed by an arbitrary number of copies of the word 01

Regular Expressions

$(0+1)^{*} 00+(01)^{*} 111(01)^{*} \ldots$ the language containing all words that either end with 00 or contain a subwords 111 preceded and followed with some arbitrary number of words 01

Regular Expressions

$(0+1)^{*} 00+(01)^{*} 111(01)^{*} \ldots$ the language containing all words that either end with 00 or contain a subwords 111 preceded and followed with some arbitrary number of words 01
$(0+1)^{*} 1(0+1)^{*} \ldots$ the language of all words that contain at least one occurrence of symbol 1

Regular Expressions

$(0+1)^{*} 00+(01)^{*} 111(01)^{*} \ldots$ the language containing all words that either end with 00 or contain a subwords 111 preceded and followed with some arbitrary number of words 01
$(0+1)^{*} 1(0+1)^{*} \ldots$ the language of all words that contain at least one occurrence of symbol 1
$0^{*}\left(10^{*} 10^{*}\right)^{*} \ldots$ the language containg all words with an even number of occurrences of symbol 1

