Formal Languages

Definition

Alphabet is a nonempty finite set of symbols.

Remark: An alphabet is often denoted by the symbol Σ (upper case sigma) of the Greek alphabet.

Definition

A **word** over a given alphabet is a finite sequence of symbols from this alphabet.

Example 1:

 $\boldsymbol{\Sigma} = \{\mathtt{A}, \mathtt{B}, \mathtt{C}, \mathtt{D}, \mathtt{E}, \mathtt{F}, \mathtt{G}, \mathtt{H}, \mathtt{I}, \mathtt{J}, \mathtt{K}, \mathtt{L}, \mathtt{M}, \mathtt{N}, \mathtt{O}, \mathtt{P}, \mathtt{Q}, \mathtt{R}, \mathtt{S}, \mathtt{T}, \mathtt{U}, \mathtt{V}, \mathtt{W}, \mathtt{X}, \mathtt{Y}, \mathtt{Z}\}$

Words over alphabet Σ : HELLO ABRACADABRA ERROR

Example 2:

 $\boldsymbol{\Sigma}_2 = \{\mathtt{A}, \mathtt{B}, \mathtt{C}, \mathtt{D}, \mathtt{E}, \mathtt{F}, \mathtt{G}, \mathtt{H}, \mathtt{I}, \mathtt{J}, \mathtt{K}, \mathtt{L}, \mathtt{M}, \mathtt{N}, \mathtt{O}, \mathtt{P}, \mathtt{Q}, \mathtt{R}, \mathtt{S}, \mathtt{T}, \mathtt{U}, \mathtt{V}, \mathtt{W}, \mathtt{X}, \mathtt{Y}, \mathtt{Z}, {\scriptstyle \sqcup}\}$

A word over alphabet Σ_2 : HELLO_{LI}WORLD

Example 3:

 $\Sigma_3 = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Words over alphabet Σ_3 : 0, 31415926536, 65536

Example 4:

Words over alphabet $\Sigma_4 = \{0, 1\}$: 011010001, 111, 1010101010101010

Example 5:

Words over alphabet $\Sigma_5 = \{a, b\}$: *aababb*, *abbabbba*, *aaab*

Alphabet and Word

Example 6:

Alphabet Σ_6 is the set of all ASCII characters.

Example of a word:

```
class HelloWorld {
   public static void main(String[] args) {
      System.out.println("Hello, world!");
   }
}
```

 $class_{\sqcup}HelloWorld_{\sqcup}\{ \leftrightarrow_{\sqcup \sqcup \sqcup \sqcup \sqcup} public_{\sqcup} static_{\sqcup} void_{\sqcup} main(Str \cdots$

Language — a set of (some) words of symbols from a given alphabet

Examples of problem types, where theory of formal languages is useful:

- Construction of compilers:
 - Lexical analysis
 - Syntactic analysis
- Searching in text:
 - Searching for a given text pattern
 - Seaching for a part of text specified by a regular expression

To describe a language, there are several possibilities:

• We can enumerate all words of the language (however, this is possible only for small finite languages).

Example: $L = \{aab, babba, aaaaaa\}$

• We can specify a property of the words of the language:

Example: The language over alphabet $\{0, 1\}$ containing all words with even number of occurrences of symbol 1.

In particular, the following two approaches are used in the theory of formal languages:

- To describe an (idealized) machine, device, algorithm, that recognizes words of the given language approaches based on **automata**.
- To describe some mechanism that allows to generate all words of the given language – approaches based on grammars or regular expressions.

Some Basic Concepts

The **length of a word** is the number of symbols of the word. For example, the length of word *abaab* is 5.

The length of a word w is denoted |w|. For example, if w = abaab then |w| = 5.

We denote the number of occurrences of a symbol *a* in a word *w* by $|w|_a$. For word w = ababb we have $|w|_a = 2$ and $|w|_b = 3$.

An **empty word** is a word of length 0, i.e., the word containing no symbols.

The empty word is denoted by the letter ε (epsilon) of the Greek alphabet. (Remark: In literature, sometimes λ (lambda) is used to denote the empty word instead of ε .)

$$|\varepsilon| = 0$$

One of operations we can do on words is the operation of **concatenation**: For example, the concatenation of words OST and RAVA is the word OSTRAVA.

The operation of concatenation is denoted by symbol \cdot (similarly to multiplication). It is possible to omit this symbol.

 $\texttt{OST} \cdot \texttt{RAVA} = \texttt{OSTRAVA}$

Concatenation is **associative**, i.e., for every three words u, v, and w we have

$$(u \cdot v) \cdot w = u \cdot (v \cdot w)$$

which means that we can omit parenthesis when we write multiple concatenations. For example, we can write $w_1 \cdot w_2 \cdot w_3 \cdot w_4 \cdot w_5$ instead of $(w_1 \cdot (w_2 \cdot w_3)) \cdot (w_4 \cdot w_5)$.

Concatenation of Words

Concatenation is not **commutative**, i.e., the following equality does not hold in general

 $u \cdot v = v \cdot u$

Example:

 $\texttt{OST} \cdot \texttt{RAVA} \neq \texttt{RAVA} \cdot \texttt{OST}$

It is obvious that the following holds for any words v and w:

 $|\mathbf{v}\cdot\mathbf{w}| = |\mathbf{v}| + |\mathbf{w}|$

For every word w we also have:

 $\varepsilon \cdot w = w \cdot \varepsilon = w$

Definition

A word x is a **prefix** of a word y, if there exists a word v such that y = xv. A word x is a **suffix** of a word y, if there exists a word u such that y = ux. A word x is a **subword** of a word y, if there exist words u and v such that y = uxv.

Example:

- Prefixes of the word abaab are ε , a, ab, aba, abaa, abaab.
- Suffixes of the word abaab are ε , b, ab, aab, baab, abaab.
- Subwords of the word abaab are ε , a, b, ab, ba, aa, aba, baa, aab, abaa, baab, abaab.

The set of all words over alphabet Σ is denoted Σ^* .

Definition
A (formal) language L over an alphabet Σ is a subset of Σ^* , i.e., $L \subseteq \Sigma^*$.

Example 1: The set $\{00, 01001, 1101\}$ is a language over alphabet $\{0, 1\}$.

Example 2: The set of all syntactically correct programs in the C programming language is a language over the alphabet consisting of all ASCII characters.

Example 3: The set of all texts containing the sequence hello is a language over alphabet consisting of all ASCII characters.

Since languages are sets, we can apply any set operations to them:

Union – $L_1 \cup L_2$ is the language consisting of the words belonging to language L_1 or to language L_2 (or to both of them).

Intersection – $L_1 \cap L_2$ is the language consisting of the words belonging to language L_1 and also to language L_2 .

- **Complement** $-\overline{L_1}$ is the language containing those words from Σ^* that do not belong to L_1 .
- **Difference** $L_1 L_2$ is the language containing those words of L_1 that do not belong to L_2 .

Remark: It is assumed the languages involved in these operations use the same alphabet Σ .

Formally:

Union: $L_1 \cup L_2 = \{w \in \Sigma^* \mid w \in L_1 \lor w \in L_2\}$ Intersection: $L_1 \cap L_2 = \{w \in \Sigma^* \mid w \in L_1 \land w \in L_2\}$ Complement: $\overline{L_1} = \{w \in \Sigma^* \mid w \notin L_1\}$ Difference: $L_1 - L_2 = \{w \in \Sigma^* \mid w \in L_1 \land w \notin L_2\}$

Remark: We assume that $L_1, L_2 \subseteq \Sigma^*$ for some given alphabet Σ .

Set Operations on Languages

Example:

Consider languages over alphabet $\{a, b\}$.

- L₁ the set of all words containing subword baa
- L₂ the set of all words with an even number of occurrences of symbol b

Then

- L₁ ∪ L₂ the set of all words containing subword baa or an even number of occurrences of b
- L₁ ∩ L₂ the set of all words containing subword baa and an even number of occurrences of b
- $\overline{L_1}$ the set of all words that do not contain subword baa
- $L_1 L_2$ the set of all words that contain subword baa but do not contain an even number of occurrences of b

Definition

Concatenation of languages L_1 and L_2 , where $L_1, L_2 \subseteq \Sigma^*$, is the language $L \subseteq \Sigma^*$ such that for each $w \in \Sigma^*$ it holds that

 $w \in L \iff (\exists u \in L_1)(\exists v \in L_2)(w = u \cdot v)$

The concatenation of languages L_1 and L_2 is denoted $L_1 \cdot L_2$.

Example:

 $L_1 = \{abb, ba\}$ $L_2 = \{a, ab, bbb\}$

The language $L_1 \cdot L_2$ contains the following words:

abba abbab abbbbb baa baab babbb

Iteration of a Language

Definition

The iteration (Kleene star) of language L, denoted L^* , is the language consisting of words created by concatenation of some arbitrary number of words from language L. I.e. $w \in L^*$ iff

 $\exists n \in \mathbb{N} : \exists w_1, w_2, \ldots, w_n \in L : w = w_1 w_2 \cdots w_n$

Example: $L = \{aa, b\}$

 $L^* = \{\varepsilon, aa, b, aaaa, aab, baa, bb, aaaaaa, aaaab, aabaa, aabb, \ldots\}$

Remark: The number of concatenated words can be 0, which means that $\varepsilon \in L^*$ always holds (it does not matter if $\varepsilon \in L$ or not).

Z. Sawa (TU Ostrava)

Introd. to Theoretical Computer Science

Iteration of a Language - Alternative Definition

At first, for a language L and a number $k \in \mathbb{N}$ we define the language L^k :

$$L^0 = \{\varepsilon\}, \qquad L^k = L^{k-1} \cdot L \quad \text{for } k \ge 1$$

This means

$$L^{0} = \{\varepsilon\}$$

$$L^{1} = L$$

$$L^{2} = L \cdot L$$

$$L^{3} = L \cdot L \cdot L$$

$$L^{4} = L \cdot L \cdot L \cdot L$$

$$L^{5} = L \cdot L \cdot L \cdot L \cdot L$$

Example: For $L = \{aa, b\}$, the language L^3 contains the following words: aaaaaa aaaab aabaa aabb baaaa baab bbaa bbb

. . .

Alternative definition

The iteration (Kleene star) of language L is the language

 $L^* = \bigcup_{k \ge 0} L^k$

Remark:

$$\bigcup_{k\geq 0} L^k = L^0 \cup L^1 \cup L^2 \cup L^3 \cup \cdots$$

Remark: Sometimes, notation L^+ is used as an abbreviation for $L \cdot L^*$, i.e.,

 $L^+ = \bigcup_{k \ge 1} L^k$

The **reverse** of a word w is the word w written from backwards (in the opposite order).

The reverse of a word w is denoted w^R .

Example: w = HELLO $w^R = \text{OLLEH}$

Formally, for $w = a_1 a_2 \cdots a_n$ (where $a_i \in \Sigma$) is $w^R = a_n a_{n-1} \cdots a_1$.

The **reverse** of a language L is the language consisting of reverses of all words of L.

Reverse of a language L is denoted L^R .

 $L^R = \{ w^R \mid w \in L \}$

Example: $L = \{ab, baaba, aaab\}$ $L^R = \{ba, abaab, baaa\}$

Order on Words

Let us assume some (linear) order < on the symbols of alphabet Σ , i.e., if $\Sigma = \{a_1, a_2, \ldots, a_n\}$ then

 $a_1 < a_2 < \ldots < a_n$.

Example: $\Sigma = \{a, b, c\}$ with a < b < c.

The following (linear) order $<_L$ can be defined on Σ^* : $x <_L y$ iff:

- |x| < |y|, or
- |x| = |y| there exist words $u, v, w \in \Sigma^*$ and symbols $a, b \in \Sigma$ such that

$$x = uav$$
 $y = ubw$ $a < b$

Informally, we can say that in order $<_L$ we order words according to their length, and in case of the same length we order them lexicographically.

All words over alphabet Σ can be ordered by $<_L$ into a sequence

 w_0, w_1, w_2, \dots

where every word $w \in \Sigma^*$ occurs exactly once, and where for each $i, j \in \mathbb{N}$ it holds that $w_i <_L w_j$ iff i < j.

Example: For alphabet $\Sigma = \{a, b, c\}$ (where a < b < c), the initial part of the sequence looks as follows:

 ε , a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, aab, aac, aba, abb, abc, ...

For example, when we talk about the first ten words of a language $L \subseteq \Sigma^*$, we mean ten words that belong to language L and that are smallest of all words of L according to order $<_L$.

Regular expressions describing languages over an alphabet Σ :

• \emptyset , ε , *a* (where $a \in \Sigma$) are regular expressions:

- \emptyset ... denotes the empty language
- ϵ ... denotes the language $\{\epsilon\}$
- a ... denotes the language $\{a\}$

• If α , β are regular expressions then also $(\alpha + \beta)$, $(\alpha \cdot \beta)$, (α^*) are regular expressions:

- $(\alpha+\beta)\ \ldots$ denotes the union of languages denoted α and β
 - $(\alpha \cdot \beta) \ \ldots$ denotes the concatenation of languages denoted α and β

 (α^*) \ldots denotes the iteration of a language denoted α

• There are no other regular expressions except those defined in the two points mentioned above.

Example: alphabet $\Sigma = \{0, 1\}$

• According to the definition, 0 and 1 are regular expressions.

Example: alphabet $\Sigma = \{0, 1\}$

- According to the definition, 0 and 1 are regular expressions.
- Since 0 and 1 are regular expression, (0 + 1) is also a regular expression.

Example: alphabet $\Sigma = \{0, 1\}$

- According to the definition, 0 and 1 are regular expressions.
- Since 0 and 1 are regular expression, (0 + 1) is also a regular expression.
- Since 0 is a regular expression, (0^*) is also a regular expression.

Example: alphabet $\Sigma = \{0, 1\}$

- According to the definition, 0 and 1 are regular expressions.
- Since 0 and 1 are regular expression, (0 + 1) is also a regular expression.
- Since 0 is a regular expression, (0*) is also a regular expression.
- Since (0 + 1) and (0^*) are regular expressions, $((0 + 1) \cdot (0^*))$ is also a regular expression.

Example: alphabet $\Sigma = \{0, 1\}$

- According to the definition, 0 and 1 are regular expressions.
- Since 0 and 1 are regular expression, (0 + 1) is also a regular expression.
- Since 0 is a regular expression, (0^*) is also a regular expression.
- Since (0 + 1) and (0^*) are regular expressions, $((0 + 1) \cdot (0^*))$ is also a regular expression.

Remark: If α is a regular expression, by $[\alpha]$ we denote the language defined by the regular expression α .

 $[((0+1) \cdot (0^*))] = \{0, 1, 00, 10, 000, 100, 0000, 1000, 00000, \ldots\}$

The structure of a regular expression can be represented by an abstract syntax tree:

$(((((0\cdot 1)^*)\cdot 1)\cdot (1\cdot 1))+(((0\cdot 0)+1)^*))$

Z. Sawa (TU Ostrava)

The formal definition of semantics of regular expressions:

- $[\emptyset] = \emptyset$
- $[\varepsilon] = \{\varepsilon\}$
- [*a*] = {*a*}
- $[\alpha^*] = [\alpha]^*$
- $[\alpha \cdot \beta] = [\alpha] \cdot [\beta]$
- $[\alpha + \beta] = [\alpha] \cup [\beta]$

To make regular expressions more lucid and succinct, we use the following conventions:

- The outward pair of parentheses can be omitted.
- We can omit parentheses that are superflous due to associativity of operations of union (+) and concatenation (·).
- We can omit parentheses that are superflous due to the defined priority of operators (iteration (*) has the highest priority, concatenation (·) has lower priority, and union (+) has the lowest priority).
- A dot denoting concatenation can be omitted.

Example: Instead of

```
(((((0 \cdot 1)^*) \cdot 1) \cdot (1 \cdot 1)) + (((0 \cdot 0) + 1)^*))
```

we usually write

```
(01)^*111 + (00 + 1)^*
```

Examples: In all examples $\Sigma = \{0, 1\}$.

 $0 \ \ldots$ the language containing the only word 0

- $0 \ \ldots$ the language containing the only word 0
- $01 \ \ldots$ the language containing the only word 01

- $0 \ \ldots$ the language containing the only word 0
- $01 \ \ldots$ the language containing the only word 01
- $0+1 \ \ \ldots$ the language containing two words 0 and 1

- $0 \ \ldots$ the language containing the only word 0
- 01 \dots the language containing the only word 01
- $0+1 \ \ \ldots$ the language containing two words 0 and 1
 - 0^* ... the language containing words ε , 0, 00, 000, ...

- $0 \ \ldots$ the language containing the only word 0
- 01 ... the language containing the only word 01
- $0+1 \ \ \ldots \ the$ language containing two words 0 and 1
 - 0^* \ldots the language containing words $\epsilon,$ 0, 00, 000, \ldots
- $(01)^*$ \hdots the language containing words $\epsilon,$ 01, 0101, 010101, \dots

- $0 \ \ldots$ the language containing the only word 0
- 01 \dots the language containing the only word 01
- $0+1 \ \ \ldots$ the language containing two words 0 and 1
 - 0^* \ldots the language containing words $\epsilon,$ 0, 00, 000, \ldots
- $(01)^*$... the language containing words ε , 01, 0101, 010101, ... $(0+1)^*$... the language containing all words over the alphabet $\{0,1\}$

- $0 \ \ldots$ the language containing the only word 0
- 01 \dots the language containing the only word 01
- $0+1 \ \ \ldots$ the language containing two words 0 and 1
 - 0^* \ldots the language containing words $\epsilon,$ 0, 00, 000, \ldots
- $(01)^{\ast}$ \hdots the language containing words $\epsilon,$ 01, 0101, 010101, \dots
- $(0+1)^* \ \ldots$ the language containing all words over the alphabet $\{0,1\}$
- $(0+1)^*00 \ \ldots$ the language containing all words ending with 00

- $0 \ \ldots$ the language containing the only word 0
- 01 \dots the language containing the only word 01
- $0+1 \ \ \ldots$ the language containing two words 0 and 1
 - 0^* \ldots the language containing words $\epsilon,$ 0, 00, 000, \ldots
- $(01)^{\ast}$ \ldots the language containing words $\epsilon,$ 01, 0101, 010101, \ldots
- $(0+1)^* \ \ldots$ the language containing all words over the alphabet $\{0,1\}$
- $(0+1)^*00 \ \ldots$ the language containing all words ending with 00
- (01)*111(01)* ... the language containing all words that contain a subword 111 preceded and followed by an arbitrary number of copies of the word 01

$(0+1)^*00 + (01)^*111(01)^* \dots$ the language containing all words that either end with 00 or contain a subwords 111 preceded and followed with some arbitrary number of words 01

 $(0+1)^*00 + (01)^*111(01)^*$... the language containing all words that either end with 00 or contain a subwords 111 preceded and followed with some arbitrary number of words 01

 $(0+1)^* 1 (0+1)^* \ \ldots$ the language of all words that contain at least one occurrence of symbol 1

- $(0+1)^*00 + (01)^*111(01)^*$... the language containing all words that either end with 00 or contain a subwords 111 preceded and followed with some arbitrary number of words 01
- $(0+1)^* 1 (0+1)^* \ \ldots$ the language of all words that contain at least one occurrence of symbol 1
- $0^*(10^*10^*)^* \ \ldots$ the language containg all words with an even number of occurrences of symbol 1