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Prior-Assisted Propagation of Spatial Information for
Object Search
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Abstract— We propose a novel method for efficient object
search in realistic environments. We formalize object search as
a probabilistic inference problem over possible object locations.
The method makes two contributions. First, we identify five
priors, each capturing structure inherent to the physical world
that is relevant to the search problem. Second, we propose a
formalization of the object search problem that leverages these
priors effectively. Our formalization in form of a probabilistic
graphical model is capable of combining the various sources
of information into a consistent probability distribution over
object locations. The formalization allows us to sharpen the
distribution by determining and propagating the effects of
knowledge about the world. We use this reasoning method to
select actions of a searching robot in a simulated environment
and show that it results in efficient object search.

I. INTRODUCTION

Robotics research aims at enabling robots to perform tasks
in real world environments. Common tasks in these envi-
ronments, such as pick and place or manipulation, require
the robot to locate objects, given only partial and uncertain
information about the world. This object search may require
costly, physical motion. It therefore is desirable that the robot
is able to reason about the most probable location of a target
object, so as to visit this location first. We define the object
search problem as the efficient exploration of an environment
to find an object. Exploration is performed by first identifying
a probability distribution over object locations by leveraging
all available knowledge. Based on this distribution, the robot
chooses an action, leading to new observations, triggering
the computation of a new distribution over locations, etc.

In this paper, we present a novel method for reasoning
about object locations in realistic environments such as the
apartment in Figure [I] The contribution of our method
is twofold. First, we identify five priors, each capturing
structure inherent to the physical world. Second, we propose
a formalization of the object search problem that leverages
these priors effectively. Our formalization is capable of
combining the various sources of information into a consis-
tent probability distribution. The formalization allows us to
sharpen the distribution by determining and propagating the
effects of combining knowledge about the world. We use this
reasoning method to select actions of a searching robot in
a simulated environment and show that it results in efficient
object search.
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Fig. 1.  Searching for objects or places in human-made environments
requires effective spatial reasoning. We present a spatial reasoning method
that leverages structure inherent to the environment to propagate information
so as to improve search performance.

The five proposed priors represent the following informa-
tion about the structure of the world and the specific scene
(the colors identify the priors throughout the paper):

M Scene Structure (SS) comprises all facts about the
current scene collected by observing objects and their
locations.

B Domain Knowledge (DK) captures spatial co-
occurrence of object pairs. At this point it is important
to note that locations are simply treated as objects
(locations can contain objects, just as objects can con-
tain objects, and locations may contain other locations,
hence the two concepts merge).

B Physical Constraints (PC) encode physical facts that
constrain the possible locations of objects. For example,
large objects cannot be inside smaller objects.

B Logical Consistency (LC) further constrains the pos-
sible locations of objects using logic. We define two
types of consistency: mutual exclusion and transitive
consistency. Mutual exclusion ensures that an object on-
ly appears at one place at a time. Transitive consistency
enforces the transitivity property of spatial relations: if
the laptop is on the desk, and the desk is in the office,
then the laptop must also be in the office.

B Search History (SH) can be interpreted as short-
term memory. The robot remembers the relationships
between objects it already has observed and can use
this knowledge to guide its search.

To solve the object search problem, we encode these priors
in a probabilistic model. By performing inference consistent
with these priors, we compute highly informed, globally
consistent hypotheses about object locations based on partial
and uncertain knowledge of the world.
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II. RELATED WORK

To reason about object locations, the robot requires domain
knowledge that expresses the likelihood of objects occurring
at particular locations [1]. Such domain knowledge can be
encoded in terms of spatial co-occurrence statistics and then
be used to classify locations [2] or guide object search [3].
The concept of spatial co-occurrence for search has been
applied to a specific scenario, in which cupboards were the
considered locations [4]. In this work, the authors improve
reasoning by incorporating physical constraints implied by
object size, albeit in a narrow application domain.

Another line of research performs efficient object search
in large scale environments [5]. The proposed system first
selects a limited set of potential locations (rooms) using se-
mantic information (e.g., ’subway-shop is of type restaurant-
space”) and then infers the most likely location within this
limited set using spatial co-occurrence. Although the au-
thors use scene structure (semantic information) and domain
knowledge (spatial co-occurrence), the reasoning ends at a
very coarse level of abstraction (rooms).

The object search problem can also be considered in
unknown environments [6]. Domain knowledge in form of
spatial co-occurrence can then be used to find a room with a
high probability of containing the target. Within that room,
visual search is performed [7], assuming knowledge of the
exact location of the target in the scene graph (e.g., book in
box on table). This work is complementary to ours, as we
generate the relational location hypotheses that could serve
as input to such a visual search algorithm.

The object search problem was also formulated in the con-
text of supermarkets. Here, domain knowledge consists of co-
occurrence statistics from typical placement of products [8].
The method also reasons about object attributes (e.g., edi-
ble). The likelihood that a shelf contains a particular item
depends on products in the proximity (e.g., adjacent shelf)
and their attributes. The consideration of related locations
can be considered as a form of “short-range” information
propagation. Our proposed method, in contrast, propagates
information throughout the entire scene graph. However, our
method does not consider object attributes.

From this review of related work it becomes apparent
that domain knowledge is the most crucial ingredient to
efficient object search. Moreover, we have seen that physical
constraint priors (such as size) can help to make search even
more efficient. However, the idea of improving object search
by using scene structure to propagate spatial information
among locations has not yet been considered explicitly.

III. PROBABILISTIC INFERENCE OF LOCATION
HYPOTHESES

We now describe the relevant aspects of the search prob-
lem in an incremental fashion. Along the way, we will
expand our formalization and address each aspect with an
additional prior. The result is a probabilistic formalization
of the problem in form of a factor graph. This factor graph
allows us to reason about spatial locations and to infer a
probability distribution over locations of the target object.

A. Object Search In Real-World Environments

We want to determine a probability distribution over object
locations. We assume that the robot possesses the perceptual
skills to perceive a scene as a hierarchical structure, i.e. as
a scene graph, as the one shown in Figure [2(a)] containing
objects oy, ...,0, € O (rectangular nodes) and their spatial
relations (edges). We consider three types of spatial relations
(edge labels): in, on and disjoint, where the latter is equiva-
lent to the lack of an edge in the scene graph. Moreover, we
consider in and on to be transitive.

Given this scene graph, the robot’s task is to infer the most
likely spatial relations of a target object to all other objects
in the scene (the dashed edges in Fig. 2(b)). Formally, we
denote the (unknown) spatial relation of the target object s
with an object o as a predicate R(s,0) or as R, when talking
about a fixed target object.

To be able to infer the most likely relations, we represent
them as discrete random variables and specify a probability
mass function P over these variables. The goal is then to find
a set of spatial relations that maximizes the posterior over P
given the aforementioned priors -,

arg max
Toys-Ton e{in,on disjoint}

PRy, =715, ,Ro, =T0,])- (1

We thus compute the instantiation of all relations R,, between
the target object s and all other objects that has the maximum
probability, given priors that have yet to be specified. In
the forthcoming sections, we are going to formalize P, and
explain how to add suitable priors. Each prior captures
a different aspect of the object search problem and will
ultimately allow us to factorize P and solve Equation (1)
efficiently.
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B. Representing Probabilistic Location Hypotheses

To render the computation of the probability distribution P
efficient, or even tractable, we leverage the priors mentioned
above. We now explain how to incorporate the first three
priors: domain knowledge (DK), physical constraints (PC),
and search history (SH).

Each of these priors is represented by a discrete probability
distribution for every spatial relation R,,, as depicted in
Figure |3} For now, it suffices to introduce these three priors.
In Section [[II-D] we will explain how to combine them to



a joint distribution for the spatial relation. Given the priors,
we rewrite Equation (I)):

arg max
Toy seesTon €{in,on disjoint}

P(Ry, =To,,---,Ro, =r,,| DK,PC,SH),

2
by adding the concrete priors. This formalization allows us to
infer the most likely location hypothesis, but this hypothesis
will not necessarily be consistent with the scene structure.
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Fig. 3. Every random variable represents a spatial relation and captures

domain knowledge, physical constraints and search history.

C. Inferring Consistent Location Hypotheses

To enforce scene consistency in our lo-
cation hypotheses, we leverage the scene
structure (SS) prior. The scene structure
is captured by the edges in the scene
graph (Fig. 2(a)). We incorporate the
scene structure into our probabilistic rep-
resentation by connecting a pair of ran-
dom variables R,, and R, iff o; and o;
are connected in the scene graph. The
resulting edges in Figure [] are colored
orange. This step turns our probabilistic
representation into a graphical model [9],
which now allows information to be prop-
agated among random variables.

Although we can now propagate information according to
the scene structure, propagation can still result in a globally
inconsistent state. The reason is that the true spatial relations
R,; = r,,; are yet unknown, and not every combination is log-
ically possible. Hence, we prevent information propagation
of inconsistent states by incorporating logical consistency
(LC) into the graph. We do so by restricting information flow
along the already created (orange) edges to reflect transitivity
consistency. Moreover, we add further connections between
the random variables (purple edges in Fig. |4) to deal with
mutual exclusion.
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Fig. 4. Connect-
ing random vari-
ables enables prop-
agation of spatial
information.

D. Factor Graph Representation

The graphical model in Figure [ captures all aspects
necessary for probabilistic reasoning about object locations.
However, the model is impractical from a computational
perspective due to the presence of loops. The model also
makes it difficult to combine different probability distribu-
tions based on the priors (probability masses in Section [[II-
B) and to enforce global consistency with other priors
(Section . Therefore, in this last step, we transform
the graphical model into a factor graph.

A factor graph
is a bipartite graph
which connects
random variables by
potential functions.
Each  factor is
a  function that
maps the states Val
of the connected
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The potential of a factor can be determined by combining
several probability distributions. To achieve this, we chose to
represent the factors as Boltzmann distributions, which relate
energies to potentials. That is, we define the factor functions
to be of the form:

¢(-) == exp(—E()) )

in which E is an energy function that in turn consists of
several energy terms.

In order to transform the graphical model into a factor
graph, we [) turn the probability mass functions from our
domain knowledge, physical constraints, and search history
priors from Section [[II-B| into univariate factors and 2) re-
place the dependencies between the variables in the graphical
model from Section[[II-C| by suitable multivariate factors. We
will now describe these two types of factors.

1) Univariate factors for domain knowledge, physical
consistency and search history: We first define three factors
®pk, ¢pc and ¢sy for the corresponding priors. We connect
to every random variable R, a factor of each of these
three types. The colored squares at each random variable
in Figure [3] illustrate this. In our implementation we merge
the three factors into one common factor ¢pk pc,su to gain
computational efficiency. The combined factor’s energy is
the weighted sum of energy terms of each single factor:

Epk pc,sH(Ro) = ApkEpc(R,) + ApcEpc(R,) + AsnEsH(Ro)
4)
with weights Apk, Apc, and Agy.

2) Multivariate factors for scene structure, physical, and
logical consistency: To maintain the ability to propagate in-
formation among random variables, we first identify cliques
in the graphical model. For every clique R C {R,,,...,Ro, },
we create a new factor ¢sk ¢ and connect all of the clique’s
members to this factor. This type of factor has orange/violet
color in Figure [5] symbolizing that it originates from our
scene structure and logical consistency priors. Given the
clique R, we compute the energy for ¢sk 1 c as the weighted
sum of two energy terms

Esk1c(R) = AMeEmE(R) + ArcErc(R), (6)

capturing the two logical consistency rules, namely mutual
exclusion and transitivity consistency, respectively.



Our factor graph now allows us to express the posterior
from Equation (I)) as the product of all factors ¢;,

1
P(R,, =To,,-..,Ry, = 1,,|DK,PC,SH,SK,LC) = ~ [1¢:
i
(7)

where Z is a normalization factor. Using this factorization,
we can efficiently compute the solution to our problem
stated in Equation (I)) by applying Belief Propagation [10].
The result of the Belief Propagation algorithm constitutes
our final location hypothesis for the target object which is
consistent with all of the priors introduced above.

IV. EXPERIMENTS

We evaluate the performance of our method in experiments
by searching for objects in a simulated world. We measure
performance in terms of the expected number of actions
required to find an object divided by the expected optimal
number of actions. Thus, optimal performance is 1, all
other numbers can be interpreted as a factor expressing the
sub-optimality of the performance. All results reported are
averaged over 30 independent trials in the same environment.

A. Experimental Setup

1) Simulated World: We conduct the experiments in a
simulated apartment (see Fig. [) consisting of five rooms
containing 35 pieces of furniture (cupboards, tables, a sofa
etc., note that a cupboard with two shelves counts as three
objects) and 51 items (cups, soap, socks, etc.). Rooms,
furniture and items are all considered to be objects of which
some have an open/closed state (e.g., rooms and cupboards).

The robots can “see” the scene graph of the room it
currently is in. However, if an object is in the closed state,
it cannot perceive the content of that object. The robot is
able to perform “open” actions on objects that are closed
and have been perceived by the robot. At the beginning of
every experiment, all objects are closed.

In the absence of initial scene graph knowledge, the robot
only knows one closed object: the apartment itself. Its first
action will be to open the door to the apartment, then being
able to perceive the hallway with closed doors to the other
rooms. For each experiment, we count the number of “open”
actions the robot has to perform to find the target object.
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Fig. 6. Map of the experimental environment (objects not shown)

2) Inference Strategies: We compare our propagation ap-
proach to a greedy approach. The greedy approach exploits
domain knowledge, physical constraints, and search history
priors, but not the scene structure and logical consistency
priors, and therefore resembles the search approaches pro-
posed in related work [3]-[8]. We implement the greedy
approach by setting the multivariate factor weights Arc, Arc
to zero, which is equivalent to removing all edges from the
factor graph (see Sec. [II-D.2). Otherwise we set Apk =
Apc =3, Asg = 1, Avg = Atc = 25. By comparing the two
methods, we can examine the effect of propagation on search
efficiency.

We also want to examine the influence of a priori knowl-
edge of the scene structure on the performance. We therefore
compare the situation in which the robot starts an experiment
with no prior knowledge of the scene to a situation in which
the robot starts with a map of the apartment. The map is a
scene graph containing the six rooms and the closed furniture
inside them but not the “invisible” locations inside the closed
furniture or the objects.

3) Search Policy: We embed each of the four reasoning
strategies into the same observation-reasoning-action loop.
The robot first observes a scene graph. From this scene graph,
a factor graph is constructed and used to infer a probability
distribution for the location of the target object. To test the
location hypothesis, the robot identifies which room/object
it needs to open and executes the respective action. Fol-
lowing its action, the robot makes a new observation. If
this observation includes the target object, the search ends
successfully. Otherwise the reasoning mechanism updates the
search history factors with the new observations and the
process repeats.

4) Gathering Spatial Co-occurrence Information: Our
approach to object search leverages information from spatial
co-occurrence statistics of objects. In some of our experi-
ments, these statistics are hand-coded. But we also evaluate
our method with real-world spatial co-occurrence data, which
was obtained as follows. Similar to prior work [11], we use
an image search engin to extract spatial co-occurrence data
from the WWW. We estimate the spatial co-occurrence for
the two relations in and on for object/location pairs based on
search statistics. For example, we count the number of results
for a query like “’knife in the kitchen” or “cup on the counter”
and normalize by the counts of “in the kitchen” or “on the
counter”. The count for the disjoint relation is computed by
assuming a maximum total number of occurrences of each
object in the database and subtracting the count of the in-
query and on-query from it.

5) Framework: The reasoning system uses an inference
algorithm (Belief Propagation) that is provided by the libDAI
library [12]. A typical iteration of the algorithm (a full
approximation of the probability mass and extracting the
MAP state) takes less than one second on an eight-core PC
with 2.3GHz each.

Uhttp://www.bing.com/images



B. Evaluation Using Hand-Coded Domain Knowledge

To analyze the benefits of our reasoning approach, we
construct three scenarios suitable for illustrating the propaga-
tion of information. To eliminate the effects of noisy domain
knowledge, we manually define the energies that represent
the spatial co-occurrence information (Eq. ).

1) Scenarios: The three scenarios show how propagation
of scene and partial domain knowledge allows the robot to
infer the correct location hypothesis. The first two cases
illustrate that information spread across the scene can be
leveraged by propagation. We consider two targets: “ice
cream” and “book”. We provide the domain knowledge
that ice cream is usually found in kitchens, in freezers and
slightly less often in storages. In the experiment apartment,
the ice cream is located “in freezer in storage”. Similarly,
we provide that books are equally likely to be in living
rooms, bedrooms and kitchens, and often in shelves. The
true location of the book is “in shelf in living room”. In
both cases propagating the information about freezer/shelf
to the corresponding room, helps to find the target quicker.

In the third scenario we
point out a search prob-
lem in which a huge search
space is reduced by propa-
gating domain knowledge.
We choose “knife” as
the target object and pro-
vide the domain knowl-
edge that knifes usually
occur in drawers as well as
in kitchens. Without com-
bining these two pieces
of information all draw-
ers in the apartment are
equally likely and, there-
fore, span a huge search
space. Our strategy prop-
agates the information and
should, thus, correctly in-
fer “knife in drawer in
kitchen” as the most prob-
able object location.

2) Results and discussion: The results for the first ex-
periment show that propagation successfully leverages infor-
mation where it is available (Fig. . Without map, neither
strategy reaches optimal performance. This is because the
information available initially is not sufficient to reduce
the search space far enough. In all cases several location
alternatives remain (several equally likely rooms or drawers)
all of which need to be checked. Without map, the problems
cannot be simplified.

However, when the robot does have initial knowledge
about the environment (with map), the propagation approach
requires fewer actions than greedy in all scenarios. This result
confirms our expectation: the ice cream and the book are
found with fewer actions (decrease by approx. 50%) by our
method because we propagate information from the freezer
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Fig. 7. Object search performance
with hand-coded domain knowledge:
expected number of actions required
to find the object, relative to the opti-
mal solution (performance of 1 is op-
timal, performance of 2 means twice
as many actions required as in the
optimal solution)

and the shelf, respectively, “bottom-up” and, thus, guide the
robot immediately to the right rooms. Note that the difference
between the strategies would be even bigger if the scene had
more alternative locations to check. This becomes clear in the
knife scenario in which the number of drawers is huge and
only propagating information from the kitchen “top-down”
restricts this search space. Propagation decreases the number
of actions for finding the knife by a factor of approx. four.

The analysis of the search problems illustrate the strength
of our reasoning method: propagating information improves
search efficiency in suitable scenarios.

C. Evaluation on Real-World Domain Knowledge

We now investigate the performance of our method with
noisy domain knowledge (see Section [V-A4). We gather
spatial co-occurrence data for 46 typical household objects
(Fig.[8) and evaluate our method by searching for 15 objects.
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Fig. 8. A subset of the spatial co-occurrence probabilities used in our
experiments regarding the relations in, on and disjoint between the objects
on the y-axis and the objects on the x-axis

1) Results: The results for the 15 target objects are shown
in Figure [9] They confirm the contribution of propagation
to location reasoning. Without map the propagation strategy
dominates the greedy strategy except when searching for the
glass, the shirt and the shoes. With map propagation find
everything apart from the shoes quicker than greedy. The
propagation strategy performs optimally for three objects
(remote control, book and candle) and sub-optimally for the
other objects.

2) Discussion: Analyzing the results from the real-world
experiment, we identify three prototypical problem cases
which lead to poor performance:

a) Indistinguishable objects: Similar to the experiment
with hand-coded domain knowledge, the robot has no means
of distinguishing different objects of the same type in one
room. This is the case for knife (in one of four kitchen
drawers) or plate (in one of two kitchen cupboards). This
problem affects both strategies equally and may be solved
by including object attributes to distinguish locations of the
same type [8].

b) Ambiguous concepts: Ambiguous terms in language
lead to false co-occurrence information. ”Glass”, for exam-
ple, is ambiguous as it can be associated with a drinking
container, windows or glass tiles on a wall. Consequently,
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the query to the image search engine returns hits for all
of those meanings and, thus, the co-occurrence probabilities
are skewed (e.g., consider the high probability for “glass
in bathroom” in Fig. [8). We could solve this problem by
incorporating better sources for domain knowledge, such
as common sense databases (e.g., ConceptNet: http://
conceptnet5.media.mit.edu).

c) Misleading knowledge: In some cases, the spatial co-
occurrence knowledge contradicts the setup of our particular
scene. For example, according to our domain knowledge, the
most probable location of shoes is on the bed, although they
are located in the cabinet in the hallway. The same occurs
for the shirt, which we placed in a drawer in the bedroom
closet, but the domain knowledge identifies locations in the
bathroom and the kitchen as highly probable. Obviously, the
domain knowledge extracted from image tags lacks common
sense knowledge, as people tend to describe noteworthy
things rather than ordinary and mundane relations. Other
authors made similar observations [3], [11].

V. CONCLUSION

We presented a novel method to generate globally consis-
tent location hypotheses for object search. Our contribution
is a probabilistic model that is able to propagate spatial
information among dependent locations by exploiting the

consistency of the scene. We define five priors to assist
this propagation by constraining and informing information
flow. These priors capture structure inherent to the physical
world and relevant to the search problem: knowledge about
the structure of the specific arrangement of rooms and
objects in the environment, statistical information about co-
occurrence of objects, constraints on object locations based
on physics, constraints on beliefs about object locations
that must be satisfied in a physical world, and the robot’s
own observations. We present experiments in a simulated

environment to demonstrate that our method leverages the
information available in the priors and from observations of
the scene to improve the efficiency of object search, even
when using noisy and partially incorrect domain knowledge
extracted via web search.
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