Android Internals

Table of Contents

l. Introduction to the Android Architecture

Architectural overview of Android — from the applications, through
Dalvik and the native layers, all the way down to the Kernel and the
Android specific changes made to Linux.

Il Inside an Android

Demonstrating Android from a hands-on shell perspective. Commands such as adb,
procrank, top, dumpsys, and more

[ll. Booting Android

Explaining the Android boot process — from firmware through kernel boot to init

IV. Android System Services

A detailed discussion of every single Android service (native daemon)

V. Android Frameworks and Framework Services

Explaining the frameworks and services hosted by system_server

VI. Android Applications

Overview of the Android application model — intents, activities, events..
And a walk through of some sample applications.

VIl. The NDK

The Android Native Development Kit — Working outside the Dalvik VM,
Programming with C/C++ and calling library functions. Wherein is also
discussed the ARM architecture, to give you the tools to disassemble native code

VIIl. Native Level Debugging on Android

Discussion and demonstrations of the oh-so-many native debugging tools present out-
of-box in Android, as well as a few others which can be easily compiled and suited.

ample: For full course please email info@technolegk: 2 © 2014 Technologeeks.com — All Rights Resery

Android Internals

Appendices

IX. Building and Customizing Android

Covers getting the Android source, compiling it and adapting it to the
architecture of your choice (Intel, ARM, ARM64, MIPS), including building
specific components

X. Androidisms in the Kernel

Low level Android idiosyncrasies in the Linux kernel described in
detail: Ashmem, Pmem, logging, low memory killer, power management
timed GPIO, and the binder.

The Technologeeks specialize in training and consulting services. Thi s, and many other training
materials, are created and constantly updated tore flect the ever changing environment of the IT
industry. Please browse our extensive course selec tion @ http://technologeeks.com/courses.jl

To report errata, provide feedback, or for more det ails, feel free to email Info@Technologeeks.com

© Copyright This material is protected under copyright laws. Un authorized reproduction,
i FE 22 B alteration, use in part or in whole is prohibited, without express permission from
the authors. Samples can be distributed freely, b ut not used commercially.

We put a LOT of effort into our work (and hope its hows). Respect that.

O |

&

5

Printed on 100% recycled paper. We hope you like th e course and keep the handout.. Else — Recycle!

LA
K
L4

i

ample: For full course please email info@technolegk: 3 © 2014 Technologeeks.com — All Rights Reserv

Android Internals

Introduction
to
Android Architecture

ample: For full course please email info@technolegk: 4 © 2014 Technologeeks.com — All Rights Reserv

Android Internals The Android Architecture

Introduction to Android

Android

® Android is a sottrare stack for mobile devices

- Mot ust an operatiii¢ system, but an entire platform
® Devisea by Android Sveiems, acquired by Google
® Open sou ted and made freely available
® Adapted to hur.dreds of mobile nlatforms, mostly ARM

® One of many forins of embedded ..nux

If you're reading this, you've already no douk. bzen exposed & Android — onaraighéominant
new platforms to have emerged in the last deczue. barely fiveofd4et the time of writing), it has
already made a powerful impact on the mobile weild, becoming tiie apesgsiagn of choice for
virtually all mobiles, save those of Apple and RIM {&'ackberry).

Android was first devised by Android Systems, a steru'z that was actyi®cogle back in 2005.
It became known to the public when fBpen Handset Alliarce & consortium *acluding Google,
Broadcom, HTC, LG, Marvell, Nvidia, Sprint, T-Mobile, ar.(' nthers) annour calate 2007.
When ARM joined the consortium, later, it gained widesprez.t adoption —bbri«@g equipment
manufacturers such as Samsung, and HTC, Telcos like T-Mcl e and Smpibpty .ARM and
NVidia — the leading Chipset manufacturers for mobile devices. Android Itiehmurkat in late
2008, and has quickly sped past BlackBerry and Symbian, to cntz2nd with Applets HsStop
spot.

As it is based on Linux, Android remains open source. Due to the Lirux keereddi, all kernel
changes (modules excluded) must remain open source.

Android can be seen as a form of Embedded Linux. It standardizes an ARIMLioasedistribution,
but also provides much more — a full operating environment, and rich APIs. &8heost other
embedded Linux distributions, e.g. Montavista, only provided the barebones, in Andrdapdeve
find a ready-to-use environment with powerful graphic APIs and a fullraede, java based
environment — ensuring them almost device-agnostic portability.

ample: For full course please email info@technolegk: 5 © 2014 Technologeeks.com — All Rights Reserv

Android Internals The Android Architecture

Introduction to Android
ll

1.5 Cupcake 12009 2.6.27 Widgets, MPEG-4, .
1.6 Donut 4 [TVl 2.6.29 Text-To-Speech, speed, gestures
2.0/[.1)/2.1 Ecia’r 516/7 12/=00¢ 2.6.29 Bluetooth 2.1, misc Ul
2.2 Froyo 8 5/2017, 26.32 Speed, V8, JIT, USB Tethering
2.3.0-7 Gingerbr.ad 910 12/2010 2.6.35 Concurrent GC, Ul, power mgmt,ext4
3.0 11 2/2011 ..6.36 Tablet support, multi-core..
3.1 12 52011 Wi-Fi improvements, Better USB
3.2-3.2.2 13 712011 Improved hardware support
Honeycomb
4.0-4.0.3 14 11/2011 3.0.1 Fuse GB + HC: unify tablet/mobile
Ice Cream Sandwich 15 1/2012 WIiFi Direct, Social Stream, NFC
4.1.2-422 Jelly Bean 16-18 7-11/2012 3.0.31 ||, Search, smoother experience
4 .4 Kit Kat 19 ©1,2C013 340 Deep Search, simplified Ul, OS.

Ser.or and Timer batching
7L L Late 2011 277 Ma eriz] Design, Project Volta

In the few years since it was introduced, Ancionl has gone thicuch acsighiiumber of changes,
and many versions. The versions, starting witn 1.5, are known by’ weir code ndmcesare all
ordered alphabetically.

The table above lists the versions to date, with the wronrtant fedtesegrc vide. Most of those
features are usability and Ul features — e.g. exchange conngataniious codzcs and media types,
multi-touch interfaces, and others.Most of these feature's 7ure alddaut by (e Java based runtime
environment. Our scope of discussion, however, will be fcciused on intern u, nativeseA full

list of features can be found ltp://en.wikipedia.org/wiki/And: 1d_version histoiy

A key concept of Android versioning is thatA®Pl Levels. API levels eare monotonical'y increasing
integer values, starting with 1 (for version 1.0) and currently at 1¥{rsion 4.0, “lce _ream
Sandwich”). Generally, every version of Android raises the API I&yzone (with few exceptions,
such as versions 2.3.3 and 2.3.4, which held it at 10). This allows ar application ite dbebAPI

it expects (as part of the manifest, which we discuss next).

ample: For full course please email info@technolegk: 6 © 2014 Technologeeks.com — All Rights Reserv

Android Internals The Android Architecture

JNI

Android Architecture

Google grossly ovei=implifies the Android Architecture

| -
App’. .ions O Developers use Java to create applications

Frameno s O Dr~wing on frameworks supplied by system

2oL Y O Executing in Dalvik — a mobile optimized JVM

Native Libraries 0 Which in turn draws on native libraries

B the core »~f.vhich are “libC (bionic) and HAL

® To invoke sysc~'s to underlying Linux kernel

Hardware ﬂ O Which accessas faardware through drivers

The advertised architecture of Android is oveily simplified. Clecwaelelayers, which — like those
of IOS — are made simpler and more aesthetic *ien they are itg@rac

ample: For full course please email info@technolegk: 7 © 2014 Technologeeks.com — All Rights Reserv

Android Internals The Android Architecture

JNI

Android Architecture

A more accurate, though not as “slick” diagram would be:

Applications » Developers can also write native (C/C++):
= . ;
Frameworks ! 7. Using Java Native Interface
Dalvik VM

B Writing native (ELF) binaries

NI

o

———

Native Libraries

* Most syster frameworks have JNI components

Hardware

In practice, however, Google’s diagram omits a key componert of theeatohd - the Java Native
Interface JNI), and also entirely ignores native {.¢. Linux ELF) bireries, which mpkée
foundations of the runtime itself.

We next aim to cover the layers, starting at the Appiicatioerland mov.ng downward. The
discussion, though more detailed than the average, ic <ull only a point diepas the rest of this
course will delve deeper still into the intricacies and idiosvesasi

ample: For full course please email info@technolegk: 8 © 2014 Technologeeks.com — All Rights Reserv

Android Internals The Android Architecture

Introduction to Android

Android Architecture

Uscar Applications:

2 \Vritten in Java

Applications @ D.rloyed in “package” (.apk) files
<
FENSENE ® Comprised of individual components
Dalvik VM I Native
SN inaries
| N
Native Libraries _I

o |
Bionic i

Linux 2.6.21-3.x Kernel |

Hardware

(Most) Android user applications are written i1 vava, using the puohireijable Android SDK.
Using Java enables developers to be relievea <i hardware-specific catsideand idiosyncrasies,
as well as tap into Java's higher-level language =atures, suchdesirzal classes.

Applications are comprised of code and resources. Cenerally, anythiixg.dhaicode is a resource —
this usually means various graphics and configuration fi.es, but alsodded ctrings. The code is
fully decoupled from its resources, which allows for qui :k ‘SUlI modideestj o5 *vell as
internationalization. When deployed, an application is rez.yv a siitgle & “pac.kaje” - in a format
called .apk. APK is really a modified Java Archive (JAR) file. fileecontains the gava classes (in a
custom format called .dex — more on that later) which make "1 the ajopljcad we'. as an
applicationmanifest This concept, which also exists in Microsuft .Net, is of a deciarXiwe file,
which specifies application attributes, required APIs and depen Jermieso dorth.

For example, consider the following APK — notice that the standarti#.ity can be used here.
Since .jar itself is .zip compatible, unzip could have done just as weli.

[root@Forge ~]# jar tvf widgetPreview.apk Manifest file (fixed name)
539 Thu Feb 28 18:33:46 EST 2008 META-INF/MANIFEST.MF
581 Thu Feb 28 18:33:46 EST 2008 META-INF/CERT.SF

1714 Thu Feb 28 18:33:46 EST 2008 META-INF/CERT.RSA
2048 Thu Feb 28 18:33:46 EST 2008 Android™anifest.xml
11564 Thu Feb 28 18:33:46 EST 2008 classes.dex — | Classes, as a single .dex bundle

4773 Thu Feb 28 18:33:46 EST 2008 res/drawable-hdpi/ic_widget_preview.png
2790 _Thu Feh 28 18:33:46 FST 2008 res/drawable-mdpi/ic_widget_preview.png
1152 Resources (graphics, strings) [2008 res/layout/activity_main.xm]

2544 decoupled from the java code [2008 resources.arsc

ample: For full course please email info@technolegk: 9 © 2014 Technologeeks.com — All Rights Reserv

Android Internals The Android Architecture

Introduction to Android

Android Architecture

Apgchication Frameworks:

Z Provide pre-built functionality

Applications @ P.ck APlIs to access
— - 2! and multimedia features
Frameworks - rhone services
Dalvik VM NI IF Native - Location services
“I" tinaries .
—) _I - Content =ervices
Native Libraries ' - Notificatizn manager

o |
Bionic i

Linux 2.6.21-3.x Kernel |

Hardware

Application Frameworks are also written in Jav~, and are basd »nn the lowdevellibraries -
which provide the basic subset of Java — java.iz.*, java.util.*, et<.

Activity Manager — manages lifecycle of applicatioiis. Respons§iblstartir.g, stopping and
resuming the various applications.

Window Manager — Java abstraction of the underlyirg s'.-face manageurf=wegnanager
handles the frame buffer interaction and low level drawi 1. whelnead#/indow ivanager provides a
layer on top of it, to allow Applications to declare their clie:.. ared,use featu-os like the status
bar.

Package Manager — installs/removes applications

Telephony Manager — Allowing interaction with phone, SMS ard "MS services

Content Providers — Sharing data between applications — e.g. aacess boadis.conta~

Resource Manager — Managing application resources — e.g. localirgs. Iitmaps, etc.

View System — Providing the Ul primitives - Buttons, listboxes, datkeps; and other controls, as
well as Ul Events (such as touch and gestures)

Location Manager — Allowing developers to tap into location based serwbether by GPS, cell-
tower IDs, or local Wi-Fi databases.

XMPP — Providing standardized messaging (also, Chat) functions beappkcations

ample: For full course please email info@technolegk: 10 © 2014 Technologeeks.com — All Rights Reserv

Android Internals The Android Architecture

Introduction to Android

Android Architecture

Th= Dalvik Virtual Machine™:

® Cus*amized, optimized JVM
- B2ser on Apache "Harmony” JVM

Applications 4 ® Not tui v2SE or J2ME compatible
|
|

Frameworks ® 'uva compiles into DEX code

Dalvik VM [V e ® 16-hit opcodes

INEIE o ries ® Register, rather than stack-based

——

Native Libraries Dalvik, Iceland (photo by the author)

I
1 = DALVIK
Bionic il | T

\J |

Linux 2.6.21-3.x Kernel \

Hardware

* - Android L replaces Dalvik by the Android RunTime — but doe n.t ¢ 2t rid of it fully (more later)

At the heart of Android's user-space lies Deauvil, Android's imgiesientat the Java Virtual
Machine. This is a JVM that has been adaptez 1o the specifics 21 mubileeetures — systems with
limited CPU capabilities (i.e. slow), low RAM arz disk space (nu <mgppand limited battery
life. Under these constraints, the normal JVM — iz guzzles nyezawtis very CPU intensive —
would show limited performance.

Enter: Dalvik. Named after a city in northern Icelar.a, Calvik israreked dovn JVM, using less
space and executing in those tighter constraints. This \irtual Maghirkes »itr its own version of
the Java ByteCode, pre-processing its input by using a unity calkddThis “2x produces “.dex”
(i.e. Dalvik EXecutable) files from the corresponding Java “.class” files, wr.e . ere compact
than their counterparts, and offer a richer, 16-bit instructior: s=t. idwigity, Dalvik is a register-
based virtual machine, whereas the Sun JVM is a stack-bazc.u one. Bsthikticns work directly
on variables (loaded into virtual registers), saving time requiter dovimadables to «ur ¢ from the
stack. Register based VMs allow for code that is up to half thess7auns some 3C-5 faster.

Dalvik code is thus more compact - Even though the instruction size is doabtd & normal JVM,
.dex files, even when uncompressed, take less space than compressedsdailasclBhis is also
due to some serious optimizations in strings and method declarations, whighrenabl Most of
the space in Java classes is taken up by constants, which are oftesdregehtvhich Dalvik
reduces to one single instance. Dalvik further optimizes code usinglinkivey, byte swapping,
and — as of Android 2.2 — Just-In-Time (JIT) compilation.

It's important to note that Dalvik is neither fully J2SE nor J2ME coilleat~or one, due to DEX,
classes cannot be created on the fly. Swing and AWT are likewisappuirsed. The core
functionality in Java, however, is supported by Dalvik as well, implementéaebdpache open
source “Harmony” JVM implementation.

ample: For full course please email info@technolegk: 11 © 2014 Technologeeks.com — All Rights Reserv

Android Internals The Android Architecture

The user or developer never see .dex — as far as they are concematl Java. The SDK allows
debugging applications with Eclipse as Java files, and the DEXitkhetden. When deployed,
however, it is .dex code that makes it to the device. Dalvik maintaiash@ at /data/dalvik-cache:

root@android:/data/dr.'vik-cache # 1s -s

total 28547

24 system” (pp@Applicatic.isProvider.apk@classes.dex
1359 systemcanp@Browser. ark@classes.dex

958 systemCann@Contacts.ipl@rlasses.dex

625 system@:rnv@ContactsPrcvider.apk@classes.dex
99 system@apgenskClock.apl@-lasses.dex

795 system@appal.ownloadProvider.apk@classes.dex
13 system@app@L: mProvider.apk@-lasses.dex

1279 system@appCErail.apk@classes.dex

900 system@app@Exchsnge.apk@class’:s.dex

459 system@app@Lat’~IME.apk@classes.dex

593 system@app@Laun_nzr2.apk@clasz<<.dex

110 system@app@vedia® -ovider.apk@classes.dex
712 system@app@vms.ap<@_iasses.dex

230 system@app@usic.apk@classes.dex

235 system@app@openwnn.a~<@-lasses.dey

610 system@app@Phone.apkCc1isses.dex

1134 system@app@QuickSearchzax.apk@clas:es.dex

root@android# file system\@apz\LatinIME.ap'/\lclasses.dex
system@app@LatinIME.apk@classes dex: Dalvik ue:r file
(optimized for host) version 0:6

Normal APK provided classes.dex files are Dalvik version 035 — geDeaiwgk Once deployed on
the device itself, they undergo further optimization for urc cessoifepieatires, which is the
“version 0.36” you see, above.

Android contains a tool - /system/xbin/dexdump — which aispiays very detaitadation about
dex files, from headers through complete disassembly (g.v. th e chimside“an Android”). We'll
discuss this tool in detail later on, as well as a replacement (g&»ra Jonathan Lev r’s “Android
Internals” book.

As of KitKat, Dalvik is superseded by thadroid Runtime (ART) . This, though touted by Google
as a replacement, does not in fact replace Dalvik, but merely takdererdiipproach — Ahead of
time compilation AOT), rather than Just-in-Tim@IT) . We discuss these differences, as well as
both runtime architectures, in great detail later.

ample: For full course please email info@technolegk: 12 © 2014 Technologeeks.com — All Rights Resery

Android Internals The Android Architecture

Introduction to Android

Android Architecture

Netiiv2 Binaries access the system directly

W Coded in C or C++, compiled for ARM

Applications ® Standard Linux ELF binaries
=
Frameworks | ® |\ ked with various system libraries
Dalvik VM

NI

R ® May be created with the Android NDK

—
Native Libraries

Bionic e

Linux 2.6.21-3.x Kernel |

® Androuid NDK also contains EABI tools

Hardware 1

The Dalvik VM is but one of manipative Binaries These are exccor'tables which are compiled
directly to the target processor (usually, ARM). ‘Usually codedam - +, they can be created with
the Android Native Development Kit. The NDK centains a cross corailtr,a full toolchain to
create binaries from any platform.

The Android Native binaries are really just standard Lirux binaaigs are th::c ELF formatted. ELF
— the Executable and Library Format — is the default binary foilmndinux and m1ost modern

UN*X implementations (OS X notwithstanding). The bina 12¢ can be inspe sw=ltasls like
objdump andreadelf.

As an example, consider the following: we begin by using the ‘74" @mmin the Android SDK,
to “pull” (copy to the host) a file from the Android system. In this c&sestem/bin/ls. Tnan, we can
call “file’ and “readelf” — even those these are running on an x86 I.cst. the ELF file formidit is st
more than readable — revealing that this is really just an ARKMitacture uinary:

[root@Forge ~]# adb pull /system/bin/1s
398 KB/s (81584 bytes in 0.200s)

[root@Forge ~1# 1s -1 1s
-rw-r--r-- 1 root root 81584 Jun 8 07:18 Ts

[root@Forge ~]# file 1s
Is: ELF 32-bit LSB executable, ARM, version 1 (SYSV), dynamically Tlinked (uses
shared Tibs), stripped

ample: For full course please email info@technolegk: 13 © 2014 Technologeeks.com — All Rights Reserv

Android Internals

The Android Architecture

[root@Forge ~]# readelf -S 1s

There are 25 section headers, starting at offset Ox13ac8:

Section Headers:
[Nr] Name Type Addr off Size ES Flg Lk Inf Al
[0] NULL 00000000 000000 000000 00 0O 0 O
[1] .interp PROGBITS 00008114 000114 000013 00 A O O 1
[2] .hash HASH 00008128 000128 000508 04 A 3 0 4
[3] .dynsym DYNSYM 00008630 000630 000bd0 10 A 4 0 4
[4] .dynstr STRTAB 00009200 001200 00079 00 A O O 1
[5] .rel.plt REL 0000999c 00199c 0004f8 08 A 3 2 4
[6] .rel.dyn REL 00009e94 001e94 000068 08 A 3 2 4
[71 .plt PROGBITS Zu009efc 00lefc 000788 00 AX O 0 4
[8] .text PROGBITS 1002690 002690 00be9c 00 AX O 0 16
[9] .rodata PkTGBITS N501652c 00e52c 004460 00 A O 0 4
[10] .ARM.extab PP33NITS 0001a98c 01298c 000120 00 A O O 4
[11] .ARM.exidx AR —¥IDX 000'aaac 0l2aac 000420 08 A 8 0 4
[12] .preinit_array PRE_NT.T_ARRAY 0001b0N0 013000 000008 00 wA O O0 1
[13] .init_array INIT_ARPAY 00010008 013008 000008 00 wA O 0 1
[14] .fini_array FINI_A"RPAY 0001bu™3 013010 000008 00 wA O O 1
[15] .ctors PROGBITS 0001b012 013018 000008 00 wA O 0 1
[16] .data.rel.ro PROGBITS 0001b02¢ 013020 000558 00 wA O 0 4
[17] .dynamic DYNAMIC 0001b578 07..278 0000d8 08 WA 4 0 4
[18] .got PROGBITS 0001b650 05050 000314 00 wA O O 4
[19] .data PROGBITS 0001b964 01254 00000c 00 wA O 0 4
[20] .bss NOBITS 0001b970 01597V 005364 00 wA O O 16
[21] .ident PROGBITS 20000000 01397 000033 00 0O 0 1
[22] .note.gnu.gold-ve NOTE 0000000 0139:4 J00018 00 0 0 4
[23] .ARM.attributes ARM_ATTRIBUTES 907uy0000 0139bc 0(0029 00 0O 0 1
[24] .shstrtab STRTAB v00)0000 0139e5 uZNel 00 0 0 1

Key to Flags:
w (write), A (alloc), X (execute), M (merge), S (strings)
I (info), L (link order), G (group), x (unknov.)
0 (extra 0OS processing required) o (0S specific), p (processc. .pecific)

Tools such as “Idd” in Linux will have issues figuring ou” ('zpendencies a3®.siling the Android
binaries. The cross-compiler toolchain tools, however, ca work past thiese uh';.

[root@Forge bin]# pwd
/root/src/android-ndk-r5b/toolchains/arm-eabi-4.4.0/prebuilt/Tinux-x86,h"n
[root@Forge bin]# 1s
arm-eabi-addr21ine
arm-eabi-ar
arm-eabi-as
arm-eabi-c++
arm-eabi-c++filt
arm-eabi-cpp

7.w-eabi-readelf
cri—eabi-run
aim-+.abi-size
arm-e.bi-strings
arm-eabi-strip

arm-eabi-gprof
arm-eabi-1d
arm-eabi-nm
arm-eabi-objcopy
arm-eabi-objdump
arm-eabi-ranlib

arm-eabi-g++
arm-eabi-gcc
arm-eabi-gcc-4.4.0
arm-eabi-gcov
arm-eabi-gdb
arm-eabi-gdbtui

14

ample: For full course please email info@technolegks © 2014 Technologeeks.com — All Rights Reser\

Android Internals The Android Architecture

Introduction to Android

Android Architecture

Apgchucations can bypass JVM using JNI

2~ ava Native Interface for C/C++ libs

Applications ® 5 =imple as calling System.loadLibrary()
-~
F k ‘ g agegn - -
rameworks ® Provides same abilities as binaries
Dalvik VM NI !‘ Native
- inari
| """ | @ Escapes JVM, therefore less portable
Native Libraries _I

o |
Bionic i

Linux 2.6.21-3.x Kernel |

Hardware

Before we go on to explain the system librarics. it's important i enizghidiat application
developers can achieve native-level functionality as well, usingN*.c.Java Native Interface

Using JNI enables a Java application to directly ‘nvoke a non-Java runbgoehy bypassing the
JVM, and working on par with native code. Most arvelopers won't ever needhtergpdince the
runtime environment is so rich — but there are time«< waen a develggit e rant to access specific
hardware functions, such as those of a specialized hiro vare driver. Bwnapssible, but at the
cost of breaking portability.

Good reasons to use JNI are:

« Efficiency: For specific applications, such as yg'aphics or high processing agpigcati
(e.g. video decoding). JNI can use processor so :ific features RvoN&EON),
whereas Dalvik usually does not

» Obfuscation: Since writing Java code, even when comoiling into DEXK, i3 tantamount
to open source — anyone can decompile the code verv 2asily — compilinyé¢o nat
code makes it significantly harder to reverse engineer Codeiltée stisassembled
easily, but that does not offer the same visibility as decompilation does.

The last reason is actually a very important one. Most paid Android apjogers opt to use JNI, so
that their application isn’'t easily decompilable. An example isnABiyds, wherein Rovio places
most of the logic inside a “libangrybirds.so”, rather than leave it irlbielelasses.dex.

JNI is discussed in depth in the “Native Binaries” section of this eours

ample: For full course please email info@technolegk: 15 © 2014 Technologeeks.com — All Rights Reserv

Android Internals

The Android Architecture

Android Architecture

Applications

Frameworks

-

Dalvik VM

———

I
NI

Native Libraries _I

Introduction to Android

Thz P2untime libraries:

Z Provide C-level APIs for:

® Graphics — OpenGL/ES
“.dio — OpenSL/ES
CSL/TLS - OpenSSL
SQLte

Native
Einaries

o |
Bionic i

WebKit

<
°

°

® Native “olication API
e

® Media Cod~zcs

Linux 2.6.21-3.x Kernel |

Hardware

| ® Libraries may be pre-linked

Android provides a rich assortment of runtime liraries. These Lisrar@vide the actual
implementation (usually, via system call) of the Android APIs —mmgthat when the Dalvik VM
wants to execute an operation, it calls on the ccircsponding libraiv

The runtime libraries are a collection of many librancs alhageurce, wiicn implement the low
level functionality provided by the runtime. A full list 's maintaireedpart of t2 NDK in the

STABLE-APIS file.

Bionic (libC)

DL

JNI

Logging
OpenGL ES 2.0
OpenSL

Zlib

ample: For full course please email info@technolegk: 16

v1l.5

v1l.5

v1l.5
v2.0
v2.3

v1l.5

<sys/system_properties> -lc (defauly,
<math.h>
<pthread.h>

<dlfcn.h> -ldl

<jni.h>

<android/log.h> -llog
<GLES/gl.h> and <GLES/glext.h> -lOpenGLES
<SLES/OpenSLES.h> -lOpenSLES

<SLES/OpenSLES_Platform.h>

<zlib.h> -z

© 2014 Technologeeks.com — All Rights Reserv

Android Internals

The Android Architecture

An important note about libraries,is the prelink feature. Rather thamilyaldy link needed libraries
on binary loading, Android allows for the libraries to be preloaded into menwowhean a process is
loaded, it has access to all its libraries (as well as otheiglit mot end up using). This allows for
faster load times, and really doesn't waste any memory — abrdng lcode, being text, is all read-
only and backed by a single physize(copy.

The file maintaining the map is prelink i ux-arm.map, in the build/diectory.

0xc0000000
0xB0100000
0xB0000000
0xA0000000
0x90000000
0x80000000
0x40000000
0x10000000
0x00000000

OXFFF-F~TFF
OXBFF}'FFF
OXBOOFF - =F
OXBFFFFF -F
OX9FFFFFFE
OX8FFFFFFF
OX7FFFFFFF
OX3FFFFFFF
OXOFFFFFFF

Kernel

Thread 0 S*ark

Linker

orelinked System Libraries

rrelinked App Libraries
No1-prelinked Libraries
nimap'd stuff

Thread Stacks

.text / .data / heap

Note: The general rule is thce Tiwbraries should he aligned on 1MB
boundaries. For ease of updatiry this file, you will find a comment
on each 1line, indicating the ooservad size of che Tibrary, which is
one of:

[<64K] observed to be less than A4K
[~IM] rounded up, one megabyte (s°milarly for utuor sizes)
[???] no size observed, assumed *u “e one megab, + -

note: look at the LOAD sections in the 13brary header.

arm-eabi-objdump -x <1lib>

FoH o R H H H W H H R H R FH oo R H H KR

core system libraries

Tibdl.so OXAFF00000 [<64K]
Tibc.so OxAFD00000 [~2M]

Tibstdc++.so0 O0XAFC00000 [<64K]
Tibm.so O0xAFB00000 [~1M]

Tiblog.so OXAFA00000 [<64K]
Tibcutils.so 0xAF900000 [~1M]

Tibthread_db.so 0xAF800000

1ibz.so O0xAF700000 [~1M]
Tibevent.so 0xXAF600000 [??77]
Tibss1.so 0xAF400000 [~2M]

0xAF000000
OxXAEF00000

Tibcrypto.so
Tibsysutils.so

HHHFHFHFHFRHFHFHHF IR
m
A
(@]
S
~
—_

17

ample: For full course please email info@technolegks © 2014 Technologeeks.com — All Rights Reser\

Android Internals The Android Architecture

Introduction to Android

Android Architecture

Bicne:
Z 's Android's version of LibC
Applicatioiis @ | ariis some pretty important features
=
Frameworks | - "o Standard Template Library
Dalvik VM | r Nafive - Limited Pthread functionality
TN aries - No System V IPC (shmem, msg queues..)
| L
Native Libraries _I
Bionic |__"*- | @ Adds son'e pretty important features:
w) - Support fc, System Properties
Linux 2.6.21-3.x Kernel | - User/group m.aragement
Hardware | - Hard coded /etelservices

Android uses a custom libC implementation, caohic. This is & Jdzliberately stripped down
version of the standard libC, sacrificing some rzely used featuziinize on memory
requirements. Because most of the Applications ric not access the 4neatly — but rather through
the Dalvik VM — it made sense to omit them. The st of featudeled z.nC omitted is part of the
source tree, at libc/docs/OVERVIEW.TXT

For example, while Bionic supports threads (a mandatc:v featurededngi Oa.vik threads are
backed by Linux threads), the pthread _cancel() APl is nu* supported. Thas=tius not be
terminated directly. Another example is the lack of the UN*» sah&gstem V itz Process
Communication (IPC) primitives, such as message queues ind sharedyr@mget/shmat/shmdt
APIs). Similarly, C++ exception handling is limited. But rechhtt 1iost of these features aren’t
required by your average Dalvik based application.

Bionic is now without enhancements, however.:

One relatively simple enhancement is support for system wide “pie~oelhese are inherent to
Java programming (developers can call System.getProperty or setPtompiery/set JVM
parameters, or underlying operating system attributes). They pleniented by system-wide shared
memory (started by “init”, the user mode process which boots thensysaccessible to all processes
and, of course, to Dalvik.

Bionic also replaces several /etc functions, most notably /etc/pagte/droup, /etc/services and
/etc/nsswitch.conf — none of these files exist on Android, and Bionic proaitdesative methods for
user/group management, getting service entries, and looking up DNSg<t@m properties, or
/system/etc/resolv.conf).

ample: For full course please email info@technolegk: 18 © 2014 Technologeeks.com — All Rights Reserv

Android Internals

The Android Architecture

Applications

-

Frameworks :

Dalvik VM ;

NI Native
tinaries
L —
Native Libraries _I

—
Bonic A”

\
Linux 2.6.21-3.x Kernel |

Hardware

- f3raphics composer
- Sensors
- Audio devices

- GPS

Android Architecture

Thz rlardware Abstraction Layer

Z ‘'Jnique support for multiple vendors

o Myeiracts common devices, such as:

® VVendors preovide specific implementations

Introduction to Android

A unique feature of Android is the Hardware /Abstraction Layer - Aiapkbrary (libhardware.so)
enabling the abstraction of various hardware dzvices, which woi'u notmealtyplemented
differently by each vendor. The HAL aims to prcircte standardizaur:: nyirtpan adapter. it only
requires the vendor to drop the shim into /system.;v-w, and the H/L - libheechoawill
automatically load them. For example, this libraries, rom a SanS&ng

root@s5:/ # 1s -1 /system/1ib/hw
-rw-r--r-- root root 9448 2014-03-(9 18:21 audio.=2f/yv.default.so
-rw-r--r-- root root 5308 2014-03-v® 28:21 audio.primary.default.so
-rw-r--r-- root root 116348 2014-03-02 28-21 audio.pti*.ary.msm8974.so
-rw-r--r-- root root 17708 2014-03-09 13:21 audio.r_supmix.default.so
-rw-r--r-- root root 9476 2014-03-09 1R 2.1 audio.usb.d~rault.so
-rw-r--r-- root root 13552 2014-03-09 1c¢-21 audio_polic...nsm8974.so
-rw-r--r-- root root 1306732 2014-03-09 18.27 hluetooth.de ‘zult.so
-rw-r--r-- root root 280728 2014-03-09 18:21 camera.msm8974 . s
-rw-r--r-- root root 5412 2014-03-09 18:21 ccnsumerir.defcnit.so
-rw-r--r-- root root 17640 2014-03-09 18:21 cr.vbit.msm8974.so
-rw-r--r-- root root 26260 2014-03-09 18:21 tl1~.default.so
-rw-r--r-- root root 21756 2014-03-09 18:21 gps.default.so
-rw-r--r-- root root 9736 2014-03-09 18:21 gralloc.default.so
-rw-r--r-- root root 14328 2014-03-09 18:21 gralloc.msm8974.so
-rw-r--r-- root root 107820 2014-06-06 13:32 hwcomposer.msm8974.so
-rw-r--r-- root root 5308 2014-03-09 18:21 keystore.default.so
-rw-r--r-- root root 5308 2014-03-09 18:21 local_time.default.so
-rw-r--r-- root root 65412 2014-03-09 18:21 nfc_nci.MSM8974.so0
-rw-r--r-- root root 5316 2014-03-09 18:21 power.default.so
-rw-r--r-- root root 21924 2014-03-09 18:21 sensorhubs.msm8974.so
-rw-r--r-- root root 54640 2014-06-06 13:32 sensors.msm8974.so

ample: For full course please email info@technolegk: 19 © 2014 Technologeeks.com — All Rights Reserv

Android Internals The Android Architecture

Introduction to Android

Android Architecture

Thz Linux Kernel

% 's the kernel in Android, as well

Applications @ <rizped of non-applicable features
7
Frameworks - /\RM arch favored over x86
Dalvik VM o r Native - Driver support greatly reduced
"' Linaries - Mcdule support may be disabled
| A
Native Libraries _I ® Enhance~ with Android-specific features
Bionic
\J
Hardware W http://ancare.d.qgit.kernel.org/

All modern operating systems are based &arael and Android .c nn exception. Android uses the
open source Linux Kernel as its own, albeit witY, some (open soi'v.) modifecat

For one, the kernel is compiled to mobile architecturcs. Predominarum«hiss ARM instead of
the usual Intel (although Intel will surely not be left cui nf the mobilgketior long).

The kernel is similar, though not identical, to the standarc Cinux kerrtabdix~n, maintained at

. Android strips down many of the ariveis which are nur applicable in mobile
environments, and the default architecture is ARM, rather tkar x86. Arietttere that may be
lacking* is module support (though that is a simple #define, when compilingeth2!}. The reason
for that is making the kernel smaller, and more secure: hardwuariurs compile all th2ir drivers
into the kernel, and really there is no need for on the fly module icadingch wdun lead to serious
security compromise, by injecting code directly into kernel space.

Although there have been some initiatives to do so, at the time aiguitiis unlikely that Android
will be merged back into the Linux source tree. There are simply tog ofeanges (and a fair
amount of clutter) to incorporate into the main source tree. What moo#jcspardware vendors
further customize Android still, leading to divergence and excess branching.

* - Depending on how the kernel is built — Module pag can easily be toggled in the kernel config.

ample: For full course please email info@technolegk: 20 © 2014 Technologeeks.com — All Rights Reserv

Android Internals

The Android Architecture

Thz

Android Architecture

Introduction to Android

Linux Kernel - “Androidisms”

(\]

ASHmMem — Anonymous Shared Memory

IZev/binder — OpenBinder IPC
Sysiem Logging - /dev/log/... interfaces
Low Nemory Killer

Power Mo.nt — wakelocks and alarms

Applications
-
Frameworks :
Dalvik VM (.
JNI i SO
tinaries
 — AN
Native Libraries _I
Bionic
\
Hardware

Pmem — Cur*iguous physical memory

% Ram Consolz

1 ® ‘1ined GPIO/O+iput

Android’s specific enhancements to the Linui Kz2rnel have bec: fubbed “Andrdididrase are

add-ons to the original kernel source,

implemer.ung features whiziicdoée specific, and generally

not as useful or applicable in a desktop or laptcp zystem. Most ai otlmented in the
/drivers/staging/android part of the source tree, tncJugin some — like:pnemanagement — are
implemented in the corresponding subsystem’s directcry. The followd!qrifats those features, as
well as where to find them in the source tree (if not in driversrejéaidroid):

ashmem mm/ashmem.c
binder binder.c
logging logger.c

Lowmem Killer lowmemorykiller.c

Pmem Drivers/misc/pmem.c

RAM console ram_console.c

Timed GPIO timed_gpio.c

Timed output timed_output.c

ample: For full course please email info@technolegk:

Anonymous Shared Me.o .y

Android’s implementation ~ OpenBinder, and .
underlying implementation of the RunTime AIDL

Android’s enhanced logging, vi~. 1lev/log/.... Speci.ic
entries

Layer on top of Linux’s “oom” to kiu prcesses when the
system is out of memory

Contiguous physical memory, for systems which need it

Implementation of RAM based physical console (during
boot)

Timed GP 1/O — Manipulate GPIO registers from user space

Timed output

21 © 2014 Technologeeks.com — All Rights Reserv

Android Internals The Android Architecture

Android has several importalMlemory Management extensionswhich the standard kernel does
not. The firstASHMem, is a mechanism for anonymous shared memory, which abstracts shared
memory as file descriptors. This mechanism, implementedhirashmem.c,is used very heavily.

Pmemis a mechanism for allocation of virtual memory that is also physargiguous. This is
required for some hardware, whic1 v2.1not support virtual memory, or Sgattter /O (i.e. access
multiple memory regions at once). » good example is the mobile deatoera.

The last extension, tHeow' Memory KiilZ: . is built on top of Linux’s “OOM” (out-of-memory)
mechanism, a feature v'h'ch was introuuc2d into the Kernel somewbarel®.6.27(?). This
feature is necessary, bezause remembe; mast mobile devices do nbeHaxary of swap — and
when the physical memcry runs out, the arptications using the most of ibenkifed. Lowmem
enables the system to pol.weh notify the App it needs to free up mdimpmeans of a callback). If
the App cooperates, it lives 20. If not, it is killec.

Thebinder is Android’s underlying mechanism for 1" C. It supports the runtind/BL”
mechanism for IPC by means of a crnel provided character devieaisguss this at length later.

Thelogging subsystemsllows separatz logfiles for the various subsystems on Android —@iq,. ra
events, etc.. The logs are accessible fror. user mode in irc ‘dewdcigmt On a standard Linux,
/dev/log is a socket (owned by syslog). T'iese are really just stamag buffers, very similar to the
standard kernel log, which is present in Ancliv'd as well, and accegsililiedmesgcommand.

TheRAM Consoleis an extension that allows tie 'iernel — when it panics — to dump data to the
device’s RAM. In a normal Linux, panic data wou id jo right to the swap-fbut mobile devices
don’t have swap (because of Flash lifetime consios: ations). A RAM Cussolgedicated area in
the RAM where the panic data will be stored. Followirg a panic, tiea(g<rforms a warm reboot,
meaning the RAM is not cleared. When the kernel next bhoots, thissarkeacked for the presence
of panic data (using a magic value), and — if found — wnr: Qata is meesdoe L0 user space via the
/proc file system (/proc/apanic_console and /proc/apanic ‘ireads)rsthesér maode process, init,
usually collects these files, if they exist, into a persisteme s *ie file system, /fa@/dontpanic (an
obvious nod to the Hitchhiker’s Guide to the Galaxy).

Wakelocksandalarms are twoPower management extensionsuilt into Android. The 1 nux
kernel supports power management, but android adds two new cor'dgpiss” are the underlying
implementation of the RunTime's “AlarmManager” - which enables e# dins to request a timed
wake-up service. This has been implemented into the kernel so as te.alidarm to trigger even if
the system is otherwise in sleep mode.

The second concept is that efdkelocks”,which enable Android to prevent system sleep.
Applications can hold a full or a partial wakelock — the former keepsy$tem running at full CPU
and screen brightness, whereas the latter allows scren dimmingll lpnegents system sleep.
Though these are kernel objects, they are exported to user spaysAiawer files — wake lock and
wake _unlock, which allow an application to define and toggle a lock by wtditlie respective
files. A third file, /proc/wakelocks, to show all wakelocks. The runtimesithese with a higher
level Java API using the PowerManager.

We discuss the nooks and crannies of these Android idiosyncrasilater on, in
great detail and at the level of the actual source code —in ModuVII.

ample: For full course please email info@technolegk: 22 © 2014 Technologeeks.com — All Rights Resery

Android Internals The Android Architecture

Introduction to Android

Android vs. Linux

Andro’u Linux

Applications

Gnome/KDE/etc

AR A AT,

Dalvik VM

X-Windows

—
Native Libraries

Native Libraries

GlibC

Hardware Hardware

Android is a derivative of Linux, but has gonc aite a way to Giciencearselfin some ways,
become incompatible with its origins. From a rigin-level perspectwagh it's hard to quantify
exactly how much the two OSes differ, a safe estimate would b&i«iz4id and Linux are about
95% alike at the kernel level (i.e save for “Androidisinis”) , and abeut H5% at the user-mode
(accounting for the frameworks and Dalvik, as well as Bionic). X-Winuusthe various desktop
environments are no longer — which is a good thing, <u.ce the multituse@2ivere hard to work
with, and entirely non-standardized.

It's noteworthy that Android draws many of its most poweri*' reatfroes Linux. 't amalgamates
different Linux features — cgroups, the device mapper, SEL:nu, and otlaens — m<st of which are
left unused in desktop distributions — in clever and innovative ways which prov:usenance,
encryption, and security.”

ample: For full course please email info@technolegk: 23 © 2014 Technologeeks.com — All Rights Reserv

Android Internals The Android Architecture

Introduction to Android

Android vs. iOS

The two competing svstems are closer than you think:
— Both =7e UNIX bascu (Android's Linux vs. iOS's Darwin)
— Both piovide framewc. k< for most functions
— Application deployment is very similar (.apk vs. .ipa)
— Applicaticns implement fi..e u call-back entry points (“lifecycle”)
— Libraries prizioaded (Bionic's prelink vs. iOS's dyld cache)

But also light years 2oart:
— No Java in iOS, at all — everything raiive, Objective C.
— i0S is sealed tight, A~.droid is wide ozen

Android's chief adversary in the mobile worlc 1s Apple's “iIOS”. Ti»¥eas many similarities as
there are differences between the two.

Similarities can be found in the way Applications ai¢ randled by the orerating systbothlcases,
applications are archived packages (Android: .apk, iC=" .ipa). Android's apgsriaanrest” XML
files describing them. In i0S, a similar concept — of H)orLerty fisichieves tha same functionality.

At the operating system level, both systems are UNIX Lasedsi@&sed on £ uple's Darwin (the
open source core of Mac OS X), and Android on Linux. Their filesystemasare omewhat
similarly structured (though the underlying implementation ¢ uiffiereHFSX in 10S, JFFS or Ext4
in Android). iOS has no Dalvik, though, and the frameworks 'h2-ein are based mt@b{® —
mobile ports of Apple’s OS X frameworks.

Differences:

i0S, while based patrtially on open source (the xnu kernel) remain<. wety a closed system.
This is true for developers (who are expected to program only in user modgépple's tools, and
cannot modify core system functionality) as well as for its usene (must go to great lengths to
“jailbreak” their devices, to allow custom applications and modifocesti

I0S apps are compiled to native code, whereas Android apps remain iordava f

IOS also only works on very specific hardware — Apple's i-Deviéd®ofie, iPod, iPad, Apple TV)
—all ARM based. Android, by comparison, is as customizable and portahieuasd.

ample: For full course please email info@technolegk: 24 © 2014 Technologeeks.com — All Rights Reserv

Android Internals

The Android Architecture

As you can see from the architectural diagram, below, the functipoélihe layers in both OSes is
the same — though the implementation is different. For lack of Dahegketis no need for a virtual
machine — though iOS applications run, for the most part, in the Objectiuetide. All layers
inaccessible to the developer, save ‘o' the Application layer.

Applicaticis (Obj-C)

Dublic Franeworks

Privete Frameworks

Objecive-C/Swirt Native
Ehontime Binaries
Lioraries

XNU kernel (ARM, closed =ztrce)

Hardware

ample: For full course please email info@technolegk: 25 © 2014 Technologeeks.com — All Rights Resery

