
© 2014 Technologeeks.com – All Rights Reserved

Android Internals

For Motorola, Internal Use Only 2

Table of Contents

I. Introduction to the Android Architecture

Architectural overview of Android – from the applications, through
Dalvik and the native layers, all the way down to the Kernel and the
Android specific changes made to Linux.

II. Inside an Android

Demonstrating Android from a hands-on shell perspective. Commands such as adb,
procrank, top, dumpsys, and more

III. Booting Android

Explaining the Android boot process – from firmware through kernel boot to init

IV. Android System Services

A detailed discussion of every single Android service (native daemon)

V. Android Frameworks and Framework Services

Explaining the frameworks and services hosted by system_server

VI. Android Applications

Overview of the Android application model – intents, activities, events..
And a walk through of some sample applications.

VII. The NDK

The Android Native Development Kit – Working outside the Dalvik VM,
Programming with C/C++ and calling library functions. Wherein is also
discussed the ARM architecture, to give you the tools to disassemble native code

VIII. Native Level Debugging on Android

Discussion and demonstrations of the oh-so-many native debugging tools present out-
of-box in Android, as well as a few others which can be easily compiled and suited.

22Sample: For full course please email info@technologeeks

© 2014 Technologeeks.com – All Rights Reserved

Android Internals

For Motorola, Internal Use Only 33

IX. Building and Customizing Android

Covers getting the Android source, compiling it and adapting it to the
architecture of your choice (Intel, ARM, ARM64, MIPS), including building
specific components

X. Androidisms in the Kernel

Low level Android idiosyncrasies in the Linux kernel described in
detail: Ashmem, Pmem, logging, low memory killer, power management
timed GPIO, and the binder.

Appendices

The Technologeeks specialize in training and consulting services. Thi s, and many other training
materials, are created and constantly updated to re flect the ever changing environment of the IT
industry. Please browse our extensive course selec tion @ http://technologeeks.com/courses.jl

To report errata, provide feedback, or for more det ails, feel free to email Info@Technologeeks.com

Printed on 100% recycled paper. We hope you like th e course and keep the handout.. Else – Recycle!

© Copyright
版權聲明

This material is protected under copyright laws. Un authorized reproduction,
alteration, use in part or in whole is prohibited, without express permission from
the authors. Samples can be distributed freely, b ut not used commercially.

We put a LOT of effort into our work (and hope it s hows). Respect that.

Sample: For full course please email info@technologeeks

© 2014 Technologeeks.com – All Rights Reserved

Android Internals

For Motorola, Internal Use Only 44Sample: For full course please email info@technologeeks

© 2014 Technologeeks.com – All Rights Reserved

Android Internals

For Motorola, Internal Use Only 55

If you're reading this, you've already no doubt been exposed to Android – one of the most dominant
new platforms to have emerged in the last decade. barely five years old (at the time of writing), it has
already made a powerful impact on the mobile world, becoming the operating system of choice for
virtually all mobiles, save those of Apple and RIM (Blackberry).

Android was first devised by Android Systems, a startup that was acquired by Google back in 2005.
It became known to the public when theOpen Handset Alliance (a consortium including Google,
Broadcom, HTC, LG, Marvell, Nvidia, Sprint, T-Mobile, and others) announced it in late 2007.
When ARM joined the consortium, later, it gained widespread adoption – backed by big equipment
manufacturers such as Samsung, and HTC, Telcos like T-Mobile and Sprint, and both ARM and
NVidia – the leading Chipset manufacturers for mobile devices. Android 1.0 hit the market in late
2008, and has quickly sped past BlackBerry and Symbian, to contend with Apple's iOS for the top
spot.

As it is based on Linux, Android remains open source. Due to the Linux kernel license, all kernel
changes (modules excluded) must remain open source.

Android can be seen as a form of Embedded Linux. It standardizes an ARM based Linux distribution,
but also provides much more – a full operating environment, and rich APIs. Whereas most other
embedded Linux distributions, e.g. Montavista, only provided the barebones, in Android developers
find a ready-to-use environment with powerful graphic APIs and a full user-mode, java based
environment – ensuring them almost device-agnostic portability.

The Android Architecture

Sample: For full course please email info@technologeeks

© 2014 Technologeeks.com – All Rights Reserved

Android Internals

For Motorola, Internal Use Only 66

The Android Architecture

In the few years since it was introduced, Android has gone through a significant number of changes,
and many versions. The versions, starting with 1.5, are known by their code names, which are all
ordered alphabetically.

The table above lists the versions to date, with the important features they provide. Most of those
features are usability and UI features – e.g. exchange connectivity, various codecs and media types,
multi-touch interfaces, and others.Most of these features are also provided by the Java based runtime
environment. Our scope of discussion, however, will be focused on internal, native features. A full
list of features can be found at http://en.wikipedia.org/wiki/Android_version_history.

A key concept of Android versioning is that of API Levels. API levels are monotonically increasing
integer values, starting with 1 (for version 1.0) and currently at 14 (for version 4.0, “Ice Cream
Sandwich”). Generally, every version of Android raises the API level by one (with few exceptions,
such as versions 2.3.3 and 2.3.4, which held it at 10). This allows an application to declare what API
it expects (as part of the manifest, which we discuss next).

Sample: For full course please email info@technologeeks

© 2014 Technologeeks.com – All Rights Reserved

Android Internals

For Motorola, Internal Use Only

The advertised architecture of Android is overly simplified. Clean, elegant layers, which – like those
of iOS – are made simpler and more aesthetic than they are in practice.

7

The Android Architecture

Sample: For full course please email info@technologeeks

© 2014 Technologeeks.com – All Rights Reserved

Android Internals

For Motorola, Internal Use Only

In practice, however, Google’s diagram omits a key component of the architecture - the Java Native
Interface (JNI) , and also entirely ignores native (i.e. Linux ELF) binaries, which make up the
foundations of the runtime itself.

We next aim to cover the layers, starting at the Application layer, and moving downward. The
discussion, though more detailed than the average, is still only a point of departure, as the rest of this
course will delve deeper still into the intricacies and idiosyncrasies.

8

The Android Architecture

Sample: For full course please email info@technologeeks

© 2014 Technologeeks.com – All Rights Reserved

Android Internals

For Motorola, Internal Use Only 99

(Most) Android user applications are written in Java, using the publicly available Android SDK.
Using Java enables developers to be relieved of hardware-specific considerations and idiosyncrasies,
as well as tap into Java's higher-level language features, such as pre-defined classes.

Applications are comprised of code and resources. Generally, anything that is not code is a resource –
this usually means various graphics and configuration files, but also hard coded strings. The code is
fully decoupled from its resources, which allows for quick GUI modifcations, as well as
internationalization. When deployed, an application is really a single file – a “package” - in a format
called .apk. APK is really a modified Java Archive (JAR) file. The file contains the Java classes (in a
custom format called .dex – more on that later) which make up the application, as well as an
application manifest. This concept, which also exists in Microsoft .Net, is of a declarative XML file,
which specifies application attributes, required APIs and dependencies, and so forth.

For example, consider the following APK – notice that the standard “jar” utility can be used here.
Since .jar itself is .zip compatible, unzip could have done just as well.

The Android Architecture

[root@Forge ~]# jar tvf WidgetPreview.apk
539 Thu Feb 28 18:33:46 EST 2008 META-INF/MANIFEST.MF
581 Thu Feb 28 18:33:46 EST 2008 META-INF/CERT.SF
1714 Thu Feb 28 18:33:46 EST 2008 META-INF/CERT.RSA
2048 Thu Feb 28 18:33:46 EST 2008 AndroidManifest.xml
11564 Thu Feb 28 18:33:46 EST 2008 classes.dex
4773 Thu Feb 28 18:33:46 EST 2008 res/drawable-hdpi/ic_widget_preview.png
2790 Thu Feb 28 18:33:46 EST 2008 res/drawable-mdpi/ic_widget_preview.png
1152 Thu Feb 28 18:33:46 EST 2008 res/layout/activity_main.xml
2544 Thu Feb 28 18:33:46 EST 2008 resources.arsc

Classes, as a single .dex bundle

Resources (graphics, strings)
decoupled from the java code

Manifest file (fixed name)

Sample: For full course please email info@technologeeks

© 2014 Technologeeks.com – All Rights Reserved

Android Internals

For Motorola, Internal Use Only 1010

Application Frameworks are also written in Java, and are based on the low level core libraries -
which provide the basic subset of Java – java.io.*, java.util.*, etc.

Activity Manager – manages lifecycle of applications. Responsible for starting, stopping and
resuming the various applications.

Window Manager – Java abstraction of the underlying surface manager. The surface manager
handles the frame buffer interaction and low level drawing, whereas the Window Manager provides a
layer on top of it, to allow Applications to declare their client area, and use features like the status
bar.

Package Manager – installs/removes applications

Telephony Manager – Allowing interaction with phone, SMS and MMS services

Content Providers – Sharing data between applications – e.g. address book contacts.

Resource Manager – Managing application resources – e.g. localized strings, bitmaps, etc.

View System – Providing the UI primitives - Buttons, listboxes, date pickers, and other controls, as
well as UI Events (such as touch and gestures)

Location Manager – Allowing developers to tap into location based services, whether by GPS, cell-
tower IDs, or local Wi-Fi databases.

XMPP – Providing standardized messaging (also, Chat) functions between applications

The Android Architecture

Sample: For full course please email info@technologeeks

© 2014 Technologeeks.com – All Rights Reserved

Android Internals

For Motorola, Internal Use Only 1111

At the heart of Android's user-space lies Dalvik, Android's implementation of the Java Virtual
Machine. This is a JVM that has been adapted to the specifics of mobile architectures – systems with
limited CPU capabilities (i.e. slow), low RAM and disk space (no swapping), and limited battery
life. Under these constraints, the normal JVM – which guzzles memory and is very CPU intensive –
would show limited performance.

Enter: Dalvik. Named after a city in northern Iceland, Dalvik is a slimmed down JVM, using less
space and executing in those tighter constraints. This Virtual Machine works with its own version of
the Java ByteCode, pre-processing its input by using a utility called “dx”. This “dx” produces “.dex”
(i.e. Dalvik EXecutable) files from the corresponding Java “.class” files, which are more compact
than their counterparts, and offer a richer, 16-bit instruction set. Additionally, Dalvik is a register-
based virtual machine, whereas the Sun JVM is a stack-based one. Dalvik instructions work directly
on variables (loaded into virtual registers), saving time required to load variables to and from the
stack. Register based VMs allow for code that is up to half the size, and runs some 30% faster.

Dalvik code is thus more compact - Even though the instruction size is double that of a normal JVM,
.dex files, even when uncompressed, take less space than compressed Java .class files. This is also
due to some serious optimizations in strings and method declarations, which enable reuse. Most of
the space in Java classes is taken up by constants, which are often repeated, and which Dalvik
reduces to one single instance. Dalvik further optimizes code using inline linking, byte swapping,
and – as of Android 2.2 – Just-In-Time (JIT) compilation.

It's important to note that Dalvik is neither fully J2SE nor J2ME compatible. For one, due to DEX,
classes cannot be created on the fly. Swing and AWT are likewise not supported. The core
functionality in Java, however, is supported by Dalvik as well, implemented by the Apache open
source “Harmony” JVM implementation.

The Android Architecture

Sample: For full course please email info@technologeeks

© 2014 Technologeeks.com – All Rights Reserved

Android Internals

For Motorola, Internal Use Only 1212

The user or developer never see .dex – as far as they are concerned – it's all Java. The SDK allows
debugging applications with Eclipse as Java files, and the DEX layer is hidden. When deployed,
however, it is .dex code that makes it to the device. Dalvik maintains a cache at /data/dalvik-cache:

The Android Architecture

root@android:/data/dalvik-cache # ls -s
total 28547
24 system@app@ApplicationsProvider.apk@classes.dex
1359 system@app@Browser.apk@classes.dex
958 system@app@Contacts.apk@classes.dex
625 system@app@ContactsProvider.apk@classes.dex
99 system@app@DeskClock.apk@classes.dex
795 system@app@DownloadProvider.apk@classes.dex
13 system@app@DrmProvider.apk@classes.dex
1279 system@app@Email.apk@classes.dex
900 system@app@Exchange.apk@classes.dex
459 system@app@LatinIME.apk@classes.dex
593 system@app@Launcher2.apk@classes.dex
110 system@app@MediaProvider.apk@classes.dex
712 system@app@Mms.apk@classes.dex
230 system@app@Music.apk@classes.dex
235 system@app@OpenWnn.apk@classes.dex
610 system@app@Phone.apk@classes.dex
1134 system@app@QuickSearchBox.apk@classes.dex
...

root@android# file system\@app\@LatinIME.apk\@classes.dex
system@app@LatinIME.apk@classes.dex: Dalvik dex file
(optimized for host) version 036

Normal APK provided classes.dex files are Dalvik version 035 – generic Dalvik. Once deployed on
the device itself, they undergo further optimization for processor specific features, which is the
“version 0.36” you see, above.

Android contains a tool - /system/xbin/dexdump – which displays very detailed information about
dex files, from headers through complete disassembly (q.v. the chapter “Inside an Android”). We’ll
discuss this tool in detail later on, as well as a replacement (dexter) from Jonathan Levin’s “Android
Internals” book.

As of KitKat, Dalvik is superseded by the Android Runtime (ART) . This, though touted by Google
as a replacement, does not in fact replace Dalvik, but merely takes a different approach – Ahead of
time compilation (AOT), rather than Just-in-Time (JIT) . We discuss these differences, as well as
both runtime architectures, in great detail later.
.

Sample: For full course please email info@technologeeks

© 2014 Technologeeks.com – All Rights Reserved

Android Internals

For Motorola, Internal Use Only 1313

The Dalvik VM is but one of many Native Binaries. These are executables which are compiled
directly to the target processor (usually, ARM). Usually coded in C or C++, they can be created with
the Android Native Development Kit. The NDK contains a cross compiler, with a full toolchain to
create binaries from any platform.

The Android Native binaries are really just standard Linux binaries, and are thus ELF formatted. ELF
– the Executable and Library Format – is the default binary format for Linux and most modern
UN*X implementations (OS X notwithstanding). The binaries can be inspected using tools like
objdump and readelf.

As an example, consider the following: we begin by using the “adb” command , in the Android SDK,
to “pull” (copy to the host) a file from the Android system. In this case, /system/bin/ls. Then, we can
call “file” and “readelf” – even those these are running on an x86 host, the ELF file format is still
more than readable – revealing that this is really just an ARM-architecture binary:

The Android Architecture

[root@Forge ~]# adb pull /system/bin/ls
398 KB/s (81584 bytes in 0.200s)

[root@Forge ~]# ls -l ls
-rw-r--r-- 1 root root 81584 Jun 8 07:18 ls

[root@Forge ~]# file ls
ls: ELF 32-bit LSB executable, ARM, version 1 (SYSV), dynamically linked (uses
shared libs), stripped

Sample: For full course please email info@technologeeks

© 2014 Technologeeks.com – All Rights Reserved

Android Internals

For Motorola, Internal Use Only 1414

The Android Architecture

[root@Forge ~]# readelf -S ls
There are 25 section headers, starting at offset 0x13ac8:

Section Headers:
[Nr] Name Type Addr Off Size ES Flg Lk Inf Al
[0] NULL 00000000 000000 000000 00 0 0 0
[1] .interp PROGBITS 00008114 000114 000013 00 A 0 0 1
[2] .hash HASH 00008128 000128 000508 04 A 3 0 4
[3] .dynsym DYNSYM 00008630 000630 000bd0 10 A 4 0 4
[4] .dynstr STRTAB 00009200 001200 00079b 00 A 0 0 1
[5] .rel.plt REL 0000999c 00199c 0004f8 08 A 3 2 4
[6] .rel.dyn REL 00009e94 001e94 000068 08 A 3 2 4
[7] .plt PROGBITS 00009efc 001efc 000788 00 AX 0 0 4
[8] .text PROGBITS 0000a690 002690 00be9c 00 AX 0 0 16
[9] .rodata PROGBITS 0001652c 00e52c 004460 00 A 0 0 4
[10] .ARM.extab PROGBITS 0001a98c 01298c 000120 00 A 0 0 4
[11] .ARM.exidx ARM_EXIDX 0001aaac 012aac 000420 08 A 8 0 4
[12] .preinit_array PREINIT_ARRAY 0001b000 013000 000008 00 WA 0 0 1
[13] .init_array INIT_ARRAY 0001b008 013008 000008 00 WA 0 0 1
[14] .fini_array FINI_ARRAY 0001b010 013010 000008 00 WA 0 0 1
[15] .ctors PROGBITS 0001b018 013018 000008 00 WA 0 0 1
[16] .data.rel.ro PROGBITS 0001b020 013020 000558 00 WA 0 0 4
[17] .dynamic DYNAMIC 0001b578 013578 0000d8 08 WA 4 0 4
[18] .got PROGBITS 0001b650 013650 000314 00 WA 0 0 4
[19] .data PROGBITS 0001b964 013964 00000c 00 WA 0 0 4
[20] .bss NOBITS 0001b970 013970 005364 00 WA 0 0 16
[21] .ident PROGBITS 00000000 013970 000033 00 0 0 1
[22] .note.gnu.gold-ve NOTE 00000000 0139a4 000018 00 0 0 4
[23] .ARM.attributes ARM_ATTRIBUTES 00000000 0139bc 000029 00 0 0 1
[24] .shstrtab STRTAB 00000000 0139e5 0000e1 00 0 0 1

Key to Flags:
W (write), A (alloc), X (execute), M (merge), S (strings)
I (info), L (link order), G (group), x (unknown)
O (extra OS processing required) o (OS specific), p (processor specific)

Tools such as “ldd” in Linux will have issues figuring out dependencies or disassembling the Android
binaries. The cross-compiler toolchain tools, however, can work past these difficulties.

[root@Forge bin]# pwd
/root/src/android-ndk-r5b/toolchains/arm-eabi-4.4.0/prebuilt/linux-x86/bin
[root@Forge bin]# ls
arm-eabi-addr2line arm-eabi-g++ arm-eabi-gprof arm-eabi-readelf
arm-eabi-ar arm-eabi-gcc arm-eabi-ld arm-eabi-run
arm-eabi-as arm-eabi-gcc-4.4.0 arm-eabi-nm arm-eabi-size
arm-eabi-c++ arm-eabi-gcov arm-eabi-objcopy arm-eabi-strings
arm-eabi-c++filt arm-eabi-gdb arm-eabi-objdump arm-eabi-strip
arm-eabi-cpp arm-eabi-gdbtui arm-eabi-ranlib

Sample: For full course please email info@technologeeks

© 2014 Technologeeks.com – All Rights Reserved

Android Internals

For Motorola, Internal Use Only 1515

Before we go on to explain the system libraries, it's important to emphasize that application
developers can achieve native-level functionality as well, using the JNI - Java Native Interface

Using JNI enables a Java application to directly invoke a non-Java function, thereby bypassing the
JVM, and working on par with native code. Most developers won't ever need to go there, since the
runtime environment is so rich – but there are times when a developer might want to access specific
hardware functions, such as those of a specialized hardware driver. Doing so is possible, but at the
cost of breaking portability.

Good reasons to use JNI are:

• Efficiency: For specific applications, such as graphics or high processing applications
(e.g. video decoding). JNI can use processor specific features (e.g. ARM NEON),
whereas Dalvik usually does not

• Obfuscation: Since writing Java code, even when compiling into DEX, is tantamount
to open source – anyone can decompile the code very easily – compiling to native
code makes it significantly harder to reverse engineer. Code can still be disassembled
easily, but that does not offer the same visibility as decompilation does.

The last reason is actually a very important one. Most paid Android app developers opt to use JNI, so
that their application isn’t easily decompilable. An example is Angry Birds, wherein Rovio places
most of the logic inside a “libangrybirds.so”, rather than leave it inside the classes.dex.

JNI is discussed in depth in the “Native Binaries” section of this course.

The Android Architecture

Sample: For full course please email info@technologeeks

© 2014 Technologeeks.com – All Rights Reserved

Android Internals

For Motorola, Internal Use Only 1616

Android provides a rich assortment of runtime libraries. These libraries provide the actual
implementation (usually, via system call) of the Android APIs – meaning that when the Dalvik VM
wants to execute an operation, it calls on the corresponding library.

The runtime libraries are a collection of many libraries, all open source, which implement the low
level functionality provided by the runtime. A full list is maintained as part of the NDK in the
STABLE-APIS file.

The Android Architecture

Library As of.. Includes Links with

Bionic (libC) v1.5 <sys/system_properties>
<math.h>
<pthread.h>

-lc (default)

DL v1.5 <dlfcn.h> -ldl

JNI <jni.h>

Logging v1.5 <android/log.h> -llog

OpenGL ES 2.0 v2.0 <GLES/gl.h> and <GLES/glext.h> -lOpenGLES

OpenSL v2.3 <SLES/OpenSLES.h>
<SLES/OpenSLES_Platform.h>

-lOpenSLES

Zlib v1.5 <zlib.h> -lz

Sample: For full course please email info@technologeeks

© 2014 Technologeeks.com – All Rights Reserved

Android Internals

For Motorola, Internal Use Only 1717

An important note about libraries,is the prelink feature. Rather than dynamically link needed libraries
on binary loading, Android allows for the libraries to be preloaded into memory, so when a process is
loaded, it has access to all its libraries (as well as others it might not end up using). This allows for
faster load times, and really doesn't waste any memory – as the library code, being text, is all read-
only and backed by a single physical copy.

The file maintaining the map is prelink-linux-arm.map, in the build/core directory.

The Android Architecture

0xC0000000 - 0xFFFFFFFF Kernel
0xB0100000 - 0xBFFFFFFF Thread 0 Stack
0xB0000000 - 0xB00FFFFF Linker
0xA0000000 - 0xBFFFFFFF Prelinked System Libraries
0x90000000 - 0x9FFFFFFF Prelinked App Libraries
0x80000000 - 0x8FFFFFFF Non-prelinked Libraries
0x40000000 - 0x7FFFFFFF mmap'd stuff
0x10000000 - 0x3FFFFFFF Thread Stacks
0x00000000 - 0x0FFFFFFF .text / .data / heap

Note: The general rule is that libraries should be aligned on 1MB
boundaries. For ease of updating this file, you will find a comment
on each line, indicating the observed size of the library, which is
one of:
#
[<64K] observed to be less than 64K
[~1M] rounded up, one megabyte (similarly for other sizes)
[???] no size observed, assumed to be one megabyte
#
note: look at the LOAD sections in the library header:
#
arm-eabi-objdump -x <lib>
#

core system libraries
libdl.so 0xAFF00000 # [<64K]
libc.so 0xAFD00000 # [~2M]
libstdc++.so 0xAFC00000 # [<64K]
libm.so 0xAFB00000 # [~1M]
liblog.so 0xAFA00000 # [<64K]
libcutils.so 0xAF900000 # [~1M]
libthread_db.so 0xAF800000 # [<64K]
libz.so 0xAF700000 # [~1M]
libevent.so 0xAF600000 # [???]
libssl.so 0xAF400000 # [~2M]
libcrypto.so 0xAF000000 # [~4M]
libsysutils.so 0xAEF00000 # [~1M]

...

Sample: For full course please email info@technologeeks

© 2014 Technologeeks.com – All Rights Reserved

Android Internals

For Motorola, Internal Use Only 1818

Android uses a custom libC implementation, calledBionic. This is a deliberately stripped down
version of the standard libC, sacrificing some rarely used features to optimize on memory
requirements. Because most of the Applications do not access the library directly – but rather through
the Dalvik VM – it made sense to omit them. The list of features added and omitted is part of the
source tree, at libc/docs/OVERVIEW.TXT

For example, while Bionic supports threads (a mandatory feature, considering Dalvik threads are
backed by Linux threads), the pthread_cancel() API is not supported. Threads can thus not be
terminated directly. Another example is the lack of the UN*X standard System V Inter Process
Communication (IPC) primitives, such as message queues and shared memory (shmget/shmat/shmdt
APIs). Similarly, C++ exception handling is limited. But recall that most of these features aren’t
required by your average Dalvik based application.

Bionic is now without enhancements, however.:

One relatively simple enhancement is support for system wide “properties”. These are inherent to
Java programming (developers can call System.getProperty or setProperty to query/set JVM
parameters, or underlying operating system attributes). They are implemented by system-wide shared
memory (started by “init”, the user mode process which boots the system), accessible to all processes
and, of course, to Dalvik.

Bionic also replaces several /etc functions, most notably /etc/passwd, /etc/group, /etc/services and
/etc/nsswitch.conf – none of these files exist on Android, and Bionic provides alternative methods for
user/group management, getting service entries, and looking up DNSs (via system properties, or
/system/etc/resolv.conf).

The Android Architecture

Sample: For full course please email info@technologeeks

© 2014 Technologeeks.com – All Rights Reserved

Android Internals

For Motorola, Internal Use Only 1919

The Android Architecture

Sample: For full course please email info@technologeeks

A unique feature of Android is the Hardware Abstraction Layer – A special library (libhardware.so)
enabling the abstraction of various hardware devices, which would normally be implemented
differently by each vendor. The HAL aims to promote standardization by defining an adapter. it only
requires the vendor to drop the shim into /system/lib/hw, and the HAL - libhardware.so will
automatically load them. For example, this libraries, from a Samsung S5:

root@S5:/ # ls -l /system/lib/hw
-rw-r--r-- root root 9448 2014-03-09 18:21 audio.a2dp.default.so
-rw-r--r-- root root 5308 2014-03-09 18:21 audio.primary.default.so
-rw-r--r-- root root 116348 2014-03-09 18:21 audio.primary.msm8974.so
-rw-r--r-- root root 17708 2014-03-09 18:21 audio.r_submix.default.so
-rw-r--r-- root root 9476 2014-03-09 18:21 audio.usb.default.so
-rw-r--r-- root root 13552 2014-03-09 18:21 audio_policy.msm8974.so
-rw-r--r-- root root 1306732 2014-03-09 18:21 bluetooth.default.so
-rw-r--r-- root root 280728 2014-03-09 18:21 camera.msm8974.so
-rw-r--r-- root root 5412 2014-03-09 18:21 consumerir.default.so
-rw-r--r-- root root 17640 2014-03-09 18:21 copybit.msm8974.so
-rw-r--r-- root root 26260 2014-03-09 18:21 flp.default.so
-rw-r--r-- root root 21756 2014-03-09 18:21 gps.default.so
-rw-r--r-- root root 9736 2014-03-09 18:21 gralloc.default.so
-rw-r--r-- root root 14328 2014-03-09 18:21 gralloc.msm8974.so
-rw-r--r-- root root 107820 2014-06-06 13:32 hwcomposer.msm8974.so
-rw-r--r-- root root 5308 2014-03-09 18:21 keystore.default.so
-rw-r--r-- root root 5308 2014-03-09 18:21 local_time.default.so
-rw-r--r-- root root 65412 2014-03-09 18:21 nfc_nci.MSM8974.so
-rw-r--r-- root root 5316 2014-03-09 18:21 power.default.so
-rw-r--r-- root root 21924 2014-03-09 18:21 sensorhubs.msm8974.so
-rw-r--r-- root root 54640 2014-06-06 13:32 sensors.msm8974.so

© 2014 Technologeeks.com – All Rights Reserved

Android Internals

For Motorola, Internal Use Only 2020

The Android Architecture

All modern operating systems are based on a kernel, and Android is no exception. Android uses the
open source Linux Kernel as its own, albeit with some (open source) modifications.

For one, the kernel is compiled to mobile architectures. Predominantly, this means ARM instead of
the usual Intel (although Intel will surely not be left out of the mobile market for long).

The kernel is similar, though not identical, to the standard Linux kernel distribution, maintained at
http://www.kernel.org/ . Android strips down many of the drivers which are not applicable in mobile
environments, and the default architecture is ARM, rather than x86. Another feature that may be
lacking* is module support (though that is a simple #define, when compiling the kernel). The reason
for that is making the kernel smaller, and more secure: hardware vendors compile all their drivers
into the kernel, and really there is no need for on the fly module loading – which can lead to serious
security compromise, by injecting code directly into kernel space.

Although there have been some initiatives to do so, at the time of writing it is unlikely that Android
will be merged back into the Linux source tree. There are simply too many changes (and a fair
amount of clutter) to incorporate into the main source tree. What more, specific hardware vendors
further customize Android still, leading to divergence and excess branching.

* - Depending on how the kernel is built – Module support can easily be toggled in the kernel config.

Sample: For full course please email info@technologeeks

© 2014 Technologeeks.com – All Rights Reserved

Android Internals

For Motorola, Internal Use Only 2121

Android’s specific enhancements to the Linux Kernel have been dubbed “Androidisms”. These are
add-ons to the original kernel source, implementing features which are mobile specific, and generally
not as useful or applicable in a desktop or laptop system. Most are all implemented in the
/drivers/staging/android part of the source tree, though some – like memory management – are
implemented in the corresponding subsystem’s directory. The following table lists those features, as
well as where to find them in the source tree (if not in drivers/staging/android):

The Android Architecture

Feature In Used for

ashmem mm/ashmem.c Anonymous Shared Memory

binder binder.c Android’s implementation of OpenBinder, and the
underlying implementation of the RunTime AIDL

logging logger.c Android’s enhanced logging, via /dev/log/…. Specific
entries

Lowmem killer lowmemorykiller.c Layer on top of Linux’s “oom” to kill processes when the
system is out of memory

Pmem Drivers/misc/pmem.c Contiguous physical memory, for systems which need it

RAM console ram_console.c Implementation of RAM based physical console (during
boot)

Timed GPIO timed_gpio.c Timed GP I/O – Manipulate GPIO registers from user space

Timed output timed_output.c Timed output

Sample: For full course please email info@technologeeks

© 2014 Technologeeks.com – All Rights Reserved

Android Internals

For Motorola, Internal Use Only 22

Android has several important Memory Management extensions, which the standard kernel does
not. The first, ASHMem, is a mechanism for anonymous shared memory, which abstracts shared
memory as file descriptors. This mechanism, implemented in mm/ashmem.c,is used very heavily.

Pmem is a mechanism for allocation of virtual memory that is also physical contiguous. This is
required for some hardware, which cannot support virtual memory, or scatter/gather I/O (i.e. access
multiple memory regions at once). A good example is the mobile device camera.

The last extension, the Low Memory Killer , is built on top of Linux’s “OOM” (out-of-memory)
mechanism, a feature which was introduced into the Kernel somewhere around 2.6.27(?). This
feature is necessary, because remember most mobile devices do not have the luxury of swap – and
when the physical memory runs out, the applications using the most of it must be killed. Lowmem
enables the system to politely notify the App it needs to free up memory (by means of a callback). If
the App cooperates, it lives on. If not, it is killed.

The binder is Android’s underlying mechanism for IPC. It supports the runtime’s “AIDL”
mechanism for IPC by means of a kernel provided character device – we discuss this at length later.

The logging subsystemsallows separate logfiles for the various subsystems on Android – e.g. radio,
events, etc.. The logs are accessible from user mode in the /dev/log directory. On a standard Linux,
/dev/log is a socket (owned by syslog). These are really just standard ring buffers, very similar to the
standard kernel log, which is present in Android as well, and accessible via the dmesgcommand.

The RAM Console is an extension that allows the kernel – when it panics – to dump data to the
device’s RAM. In a normal Linux, panic data would go right to the swap file – but mobile devices
don’t have swap (because of Flash lifetime considerations). A RAM Console is a dedicated area in
the RAM where the panic data will be stored. Following a panic, the device performs a warm reboot,
meaning the RAM is not cleared. When the kernel next boots, this area is checked for the presence
of panic data (using a magic value), and – if found – the data is made accessible to user space via the
/proc file system (/proc/apanic_console and /proc/apanic_threads). The first user mode process, init,
usually collects these files, if they exist, into a persistent store on the file system, /data/dontpanic (an
obvious nod to the Hitchhiker’s Guide to the Galaxy).

Wakelocks and alarms are two Power management extensionsbuilt into Android. The Linux
kernel supports power management, but android adds two new concepts:“Alarms” are the underlying
implementation of the RunTime's “AlarmManager” - which enables applications to request a timed
wake-up service. This has been implemented into the kernel so as to allow an alarm to trigger even if
the system is otherwise in sleep mode.

The second concept is that of “wakelocks”,which enable Android to prevent system sleep.
Applications can hold a full or a partial wakelock – the former keeps the system running at full CPU
and screen brightness, whereas the latter allows scren dimming, but still prevents system sleep.
Though these are kernel objects, they are exported to user space via /sys/power files – wake_lock and
wake_unlock, which allow an application to define and toggle a lock by writing to the respective
files. A third file, /proc/wakelocks, to show all wakelocks. The runtime wraps these with a higher
level Java API using the PowerManager.

22

The Android Architecture

We discuss the nooks and crannies of these Android idiosyncrasies later on, in
great detail and at the level of the actual source code – in Module VII.

Sample: For full course please email info@technologeeks

© 2014 Technologeeks.com – All Rights Reserved

Android Internals

For Motorola, Internal Use Only 2323

The Android Architecture

Sample: For full course please email info@technologeeks

Android is a derivative of Linux, but has gone quite a way to distance itself and, in some ways,
become incompatible with its origins. From a high-level perspective, though it's hard to quantify
exactly how much the two OSes differ, a safe estimate would be that Android and Linux are about
95% alike at the kernel level (i.e save for “Androidisims”) , and about 55% or so at the user-mode
(accounting for the frameworks and Dalvik, as well as Bionic). X-Windows and the various desktop
environments are no longer – which is a good thing, since the multitude of APIs were hard to work
with, and entirely non-standardized.

It’s noteworthy that Android draws many of its most powerful features from Linux. It amalgamates
different Linux features – cgroups, the device mapper, SELinux and many others – most of which are
left unused in desktop distributions – in clever and innovative ways which provide performance,
encryption, and security.`

© 2014 Technologeeks.com – All Rights Reserved

Android Internals

For Motorola, Internal Use Only 2424

Android's chief adversary in the mobile world is Apple's “iOS”. There are as many similarities as
there are differences between the two.

Similarities can be found in the way Applications are handled by the operating system. In both cases,
applications are archived packages (Android: .apk, iOS: .ipa). Android's apps have “manifest” XML
files describing them. In iOS, a similar concept – of property lists – achieves the same functionality.

At the operating system level, both systems are UNIX based. iOS is based on Apple's Darwin (the
open source core of Mac OS X), and Android on Linux. Their filesystems are also somewhat
similarly structured (though the underlying implementation is different – HFSX in iOS, JFFS or Ext4
in Android). iOS has no Dalvik, though, and the frameworks therein are based on Objective-C –
mobile ports of Apple’s OS X frameworks.

Differences:

iOS, while based partially on open source (the xnu kernel) remains very much a closed system.
This is true for developers (who are expected to program only in user mode using Apple's tools, and
cannot modify core system functionality) as well as for its users (who must go to great lengths to
“jailbreak” their devices, to allow custom applications and modifications.

iOS apps are compiled to native code, whereas Android apps remain in Java form.

iOS also only works on very specific hardware – Apple's i-Devices (iPhone, iPod, iPad, Apple TV)
– all ARM based. Android, by comparison, is as customizable and portable as Linux is.

The Android Architecture

Sample: For full course please email info@technologeeks

© 2014 Technologeeks.com – All Rights Reserved

Android Internals

For Motorola, Internal Use Only

As you can see from the architectural diagram, below, the functionality of the layers in both OSes is
the same – though the implementation is different. For lack of Dalvik, there is no need for a virtual
machine – though iOS applications run, for the most part, in the Objective-C runtime. All layers
inaccessible to the developer, save for the Application layer.

25

Native
Binaries

Hardware

Public Frameworks

Applications (Obj-C)

Libraries

Objective-C/Swift
Runtime

XNU kernel (ARM, closed source)

Private Frameworks

Sample: For full course please email info@technologeeks

The Android Architecture

