

A JIT Compiler
for Android’s Dalvik VM
Ben Cheng, Bill Buzbee
May 2010

Overview

• View live session notes and ask questions on Google Wave:
– http://bit.ly/bIzjnF

• Dalvik Environment
• Trace vs. Method Granularity JITs
• Dalvik JIT 1.0
• Future directions for the JIT
• Performance Case Studies
• Profiling JIT’d code
• Built-in Self-Verification Mode

3

Dalvik Execution Environment

• Virtual Machine for Android Apps
– See 2008 Google IO talk

• http://www.youtube.com/watch?v=ptjedOZEXPM

• Very compact representation
• Emphasis on code/data sharing to reduce memory usage
• Process container sandboxes for security

4

Dalvik Interpreter

• Dalvik programs consist of byte code, processed by a host-
specific interpreter
– Highly-tuned, very fast interpreter (2x similar)
– Typically less than 1/3rd of time spent in the interpreter
– OS and performance-critical library code natively compiled
– Good enough for most applications

• Performance a problem for compute-intensive applications
– Partial solution was the release of the Android Native

Development Kit, which allows Dalvik applications to call out to
statically-compiled methods

• Other part of the solution is a Just-In-Time Compiler
– Translates byte code to optimized native code at run time

5

A JIT for Dalvik - but what flavor of JIT?

• Surprisingly wide variety of JIT styles
– When to compile

• install time, launch time, method invoke time, instruction fetch time

– What to compile
• whole program, shared library, page, method, trace, single instruction

• Each combination has strengths & weaknesses - key for us
was to meet the needs of a mobile, battery-powered Android
device
– Minimal additional memory usage
– Coexist with Dalvik’s container-based security model
– Quick delivery of performance boost
– Smooth transition between interpretation & compiled code

6

Method vs. Trace Granularity

• Method-granularity JIT
– Most common model for server JITs
– Interprets with profiling to detect hot methods
– Compile & optimize method-sized chunks
– Strengths

• Larger optimization window

• Machine state sync with interpreter only at method call boundaries

– Weaknesses
• Cold code within hot methods gets compiled

• Much higher memory usage during compilation & optimization

• Longer delay between the point at which a method goes hot and the
point that a compiled and optimized method delivers benefits

7

Method vs. Trace Granularity

• Trace-granularity JIT
– Most common model for low-level code migration systems
– Interprets with profiling to identify hot execution paths
– Compiled fragments chained together in translation cache
– Strengths

• Only hottest of hot code is compiled, minimizing memory usage

• Tight integration with interpreter allows focus on common cases

• Very rapid return of performance boost once hotness detected

– Weaknesses
• Smaller optimization window limits peak gain

• More frequent state synchronization with interpreter

• Difficult to share translation cache across processes

8

9

Full Program
4,695,780 bytes

Hot Methods
396,230 bytes

Hot Traces
103,966 bytes

8% of Program

26% of Hot Methods
2% of Program

Hot vs. Cold Code: system_server example

Method JIT:
Best optimization window

Trace JIT:
Best speed/space tradeoff

The Decision: Start with a Trace JIT

• Minimizing memory usage critical for mobile devices
• Important to deliver performance boost quickly

– User might give up on new app if we wait too long to JIT
• Leave open the possibility of supplementing with method-
based JIT
– The two styles can co-exist
– A mobile device looks more like a server when it’s plugged in
– Best of both worlds

• Trace JIT when running on battery

• Method JIT in background while charging

10

11

Start

Update profile
count for this

location
Threshold?

Xlation
exists?

Interpret until
next potential

trace head

Interpret/build
trace request

No

Yes

Exit 0
Exit 1

Translation

Exit 0
Exit 1

Translation

Exit 0
Exit 1

Translation

No

Submit compilation
request

Install new
translation

Translation Cache

Compiler Thread

Yes

Dalvik Trace JIT Flow

Dalvik JIT v1.0 Overview

• Tight integration with interpreter
– Useful to think of the JIT as an extension of the interpreter

• Interpreter profiles and triggers trace selection mode when a
potential trace head goes hot

• Trace request is built during interpretation
– Allows access to actual run-time values
– Ensures that trace only includes byte codes that have

successfully executed at least once (useful for some
optimizations)

• Trace requests handed off to compiler thread, which
compiles and optimizes into native code

• Compiled traces chained together in translation cache

12

Dalvik JIT v1.0 Features

• Per-process translation caches (sharing only within security
sandboxes)

• Simple traces - generally 1 to 2 basic blocks long
• Local optimizations

– Register promotion
– Load/store elimination
– Redundant null-check elimination
– Heuristic scheduling

• Loop optimizations
– Simple loop detection
– Invariant code motion
– Induction variable optimization

13

Speedup relative to Dalvik Interpreter on Nexus One
CPU-Intensive Benchmark Results

• Linpack,
BenchmarkPI,
CaffeineMark &
Checkers from the
Android Market

• Scimark 3 run from
command-line shell

• Measurements
taken on Nexus One
running pre-release
Froyo build in
airplane mode

14

0

2

4

6

Linpack BenchmarkPi CMark SciMark3 Checkers

JIT Total Memory Usage (in kBytes)

0

100

200

300

Linpack BenchmarkPi CMark SciMark3 Checkers

Future Directions

• Method in-lining
• Trace extension
• Persistent profile information
• Off-line trace coalescing
• Off-line method translation
• Tuning, tuning and more tuning

15

Google Confidential

Solving Performance and Correctness Issues

• How much boost will an app get from the JIT?
– JIT can only remove cycles from the interpreter
– OProfile can provide the insight to breakdown the workload

• How resource-friendly/optimizing is the JIT?
– Again, OProfile can provide some high-level information
– Use a special Dalvik build to analyze code quality

• How to debug the JIT?
– Code generation vs optimization bugs
– Self-verification against the interpreter

16

Google Confidential

Case Study: RoboDefense

17

Lots of actions

Google Confidential

Case Study: RoboDefense

18

Performance gain from Dalvik capped at 4.34%

Samples % Module
15965 73.98 libskia.so

2662 12.33 no-vmlinux
1038 4.81 libcutils.so

937 4.34 libdvm.so
308 1.42 libc.so
297 1.37 libGLESv2_adreno200.so

Google Confidential

JIT <3 “Brain and Puzzle”
Case Study: Checkers

19

5.4x Speedup

965022 5231208

Google Confidential

Use OProfile to explain the speedup
Case Study: Checkers

20

Samples % Module

975 93.57 dalvik-jit-code-cache

30 2.88 libdvm.so

28 2.69 no-vmlinux

4 0.38 libc.so

3 0.09 libGLESv2_adreno200.so

96.45%
3%

97%

Google Confidential

Part 2/3
Solving Performance and Correctness Issues

• How much boost will an app get from the JIT?
• How resource-friendly/optimizing is the JIT?
• How to debug the JIT?

21

Google Confidential

kill -12 <pid>
Peek into the Code Cache Land

• Example from system_server (20 minutes after boot)
– 9898 compilations using 796264 bytes

• 80 bytes / compilation

– Code size stats: 103966/396230 (trace/method Dalvik)
• 796264 / 103966 = 7.7x code bloat from Dalvik to native

– Total compilation time: 6024 ms
• Average unit compilation time: 609 µs

22

Google Confidential

Set “dalvik.vm.jit.profile = true” in /data/local.prop
JIT Profiling

23

count % offset (# insn), line method signature

15368 1.15 0x0(+2), 283 Ljava/util/HashMap;size;()I

13259 1.00 0x18(+2), 858 Lcom/android/internal/os/
BatteryStatsImpl;readKernelWakelockStats;()Ljava/util/Map;

13259 1.00 0x22(+2), 857 Lcom/android/internal/os/
BatteryStatsImpl;readKernelWakelockStats;()Ljava/util/Map;

11842 0.89 0x5(+2), 183 Ljava/util/HashSet;size;()I

11827 0.89 0x0(+2), 183 Ljava/util/HashSet;size;()I

11605 0.87 0x30(+3), 892
Lcom/android/internal/os/BatteryStatsImpl;parseProcWakelocks;
([BI)Ljava/util/Map;

Google Confidential

Part 3/3
Solving Performance and Correctness Issues

• How much boost will an app get from the JIT?
• How resource-friendly/optimizing is the JIT?
• How to debug the JIT?

24

Google Confidential

A codegen bug is deliberately injected to the JIT
Guess What’s Wrong Here

• E/AndroidRuntime(84): *** FATAL EXCEPTION IN SYSTEM PROCESS:

android.server.ServerThread
E/AndroidRuntime(84): java.lang.RuntimeException: Binary XML file line #28: You
must supply a layout_width attribute.
E/AndroidRuntime(84): at android.content.res.TypedArray.getLayoutDimension(TypedArray.java:
491)
E/AndroidRuntime(84): at android.view.ViewGroup
$LayoutParams.setBaseAttributes(ViewGroup.java:3592)

25

E/AndroidRuntime(187): *** FATAL EXCEPTION IN SYSTEM PROCESS:
WindowManager
E/AndroidRuntime(187): java.lang.ArrayIndexOutOfBoundsException
E/AndroidRuntime(187): at java.util.GregorianCalendar.computeFields(GregorianCalendar.java:
661)
E/AndroidRuntime(187): at java.util.Calendar.complete(Calendar.java:807)
 :

E/AndroidRuntime(435): *** FATAL EXCEPTION IN SYSTEM PROCESS:
android.server.ServerThread
E/AndroidRuntime(435): java.lang.StackOverflowError
E/AndroidRuntime(435): at java.util.Hashtable.get(Hashtable.java:267)
E/AndroidRuntime(435): at
java.util.PropertyResourceBundle.handleGetObject(PropertyResourceBundle.java:120)
 :

Google Confidential

 Debugging and Verification Tools

26

Byte code binary
search

Call graph
filtering

Self-verification
w/ the

interpreter

Code generation ✓ ✓ ✓

Optimization ✓ ✓

Google Confidential

Bugs == Incorrect Machine States

27

Heap, stack, and control-flow

Stack

Heap

PC

Addr Data

Shadow Heap

Shadow Stack

PC

==

==

==

Google Confidential

Divergence detected
Step-by-Step Debugging under Self-Verification

~~~ DbgIntp(8): REGISTERS DIVERGENCE!
********** SHADOW STATE DUMP **********
CurrentPC: 0x42062d24, Offset: 0x0012
Class: Ljava/lang/Character;
Method: toUpperCase
Dalvik PC: 0x42062d1c endPC: 0x42062d24
Interp FP: 0x41866a3c endFP: 0x41866a3c
Shadow FP: 0x22c330 endFP: 0x22c330
Frame1 Bytes: 8 Frame2 Local: 0 Bytes: 0
Trace length: 2 State: 0

28



Google Confidential

Divergence details
Step-by-Step Debugging under Self-Verification

********** SHADOW TRACE DUMP **********
0x42062d1c: (0x000e) const/16
0x42062d20: (0x0010) if-ge
*** Interp Registers:
(v0) 0x      b5 X
(v1) 0x      55
*** Shadow Registers:
(v0) 0x      b6 X
(v1) 0x      55

29



Google Confidential

Replay the compilation with verbose dump
Step-by-Step Debugging under Self-Verification

Compiler: Building trace for toUpperCase, offset 0xe
0x42062d1c: 0x0013 const/16 v0, #181
0x42062d20: 0x0035 if-ge v1, v0, #4

TRACEINFO (141): 0x42062d00 Ljava/lang/Character;toUpperCase

-------- dalvik offset: 0x000e @ const/16 v0, #181
0x2 (0002): ldr     r1, [r5, #4]
0x4 (0004): mov     r0, #182
-------- dalvik offset: 0x0010 @ if-ge v1, v0, #4
0x6 (0006): cmp     r1, r0
0x8 (0008): str     r0, [r5, #0]
0xa (000a): bge     0x00000014

30



Google Confidential

Summary

• A resource friendly JIT for Dalvik
– Small memory footprint

• Significant speedup improvement delivered
– 2x ~ 5x performance gain for computation intensive workloads

• More optimizations waiting in the pipeline
– Enable more computation intensive apps

• Verification bot
– Dynamic code review by the interpreter

31



Q&A

• http://bit.ly/bIzjnF

32


