Renormalization: Our Greatly Misunderstood Friend

Andrew E. Blechman
September 17, 2002

Abstract

This is a web-paper write-up for a talk I gave for Intermediate Seminar at Johns
Hopkins Unversity (172.711-712). I will present a friendly, although slightly technical
introduction to the theory of renormalization. Examples from nonrelativistic quantum
mechanics and quantum electrodynamics will serve to introduce the concepts. The
“Algorithm of Renormalization” will then be presented and explored. Finally, I will
present an overview of Wilson’s Renormalization Group, and show how we can make
the ideas in this paper surprisingly quantitative.

1 Introduction and Example from Nonrelativistic Quan-
tum Mechanics

What is renormalization? It is a buzz word used by many people in all aspects of physics.
Popular science authors write about it all the time, and often in a negative light[1]. But
what is it really, and why do we need it?

To understand renormalization, we really have to go back and understand “normaliza-
tion”. In quantum mechanics (QM), you have a wavefunction described by Schrodinger’s
Equation, a second-order partial differential equation. Often, this equation is written in its
time-independent form as:

H|y) = E ) (1)

where H is the Hamiltonian of the system, E is a constant representing the energy and |4))
is the wavefunction. The hat over the Hamiltonian is to emphasize that it is not a number
but a linear operator. Once you have found the wavefunction for your system, you can use
it to discuss “the probability of measuring something”. I am sure many people have heard
of Schrodinger’s cat, where you are measuring whether the cat is alive or dead, but there



are many more practical things you can measure. For example, if your system is a group of
particles moving through space with some potential, the wavefunction tells you how probable
you are to measure the system with a certain energy.

For this interpretation to be consistent, we must be sure that when you sum over every-
thing, you get unity - there is a 100% chance that something (even nothing!) will happen.
That can be expressed by the following equation:
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This fixes the constant in front of the wavefunction. Equation (2) is called the normaliza-
tion condition.

Now I want to consider a special method of solving problems in QM called non-degenerate
perturbation theory[2]. When solving problems with this technique, you try to express the
Hamiltonian of your system in the following way:

= B0 17 (3)

where H® is the Hamiltonian of a system that we know exactly how to solve for, and A is
small in some sense. In such cases, we can think of the AV term as taking our known system
and perturbing it slightly. For that reason, this term is referred to as a “perturbation”. Since
we know how to solve for H(© T will explicitly write out the (normalized) solutions:

)2 {Q) ‘n(°)> = EO ‘n(°)> (4)
<n(0)‘n(°)> = 1.0 (5)

where |n(0)> and E are the wavefunction and energy for a state labeled by “n” in the limit
A—0.

Our goal is to find a solution to the entire problem, including the perturbation. In order
to do this, we write down the total wavefunction (and the total energy) as a sum of terms,
each a different order in A:

In) = |n(0)>+)\‘n(1)>+)\2|n(2)>+--- (6)

In the literature, this series is called a perturbation expansion. When doing calculations,
we terminate the series at a given order, depending on how accurate we want to be.

You may have noticed a problem at this point. I said that the zero-order states were
normalized acording to Equation (5). But the new terms are going to shift this normalization,
so that if we want to maintain the probabilistic interpretation of QM, we have to re-normalize:
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Equation (7) is referred to as the renormalization condition, or RC.
In nondegenerate perturbation theory, (n(®) [n(!)) = 0, so if we plug our perturbation
expansion (6) in to our renormalization condition (7), we quickly see:

Z=1+0()? (8)

In other words, renormalization enters the picture at second order in the perturbation expan-
sion. This result turns out to be true in many instances, as we will see in the next example
of Quantum Electrodynamics.

As a final point, realize that I have said nothing about whether or not a perturbation
expansion even makes sense mathematically. You are expanding the wavefunction and energy
in powers of a constant, and mathematicians might find this very disturbing. It turns out
that you are right to be disturbed, and it has been shown that a perturbation expansion
does not converge in general. However, it can be shown that in most cases it succeeds as an
“asymptotic expansion”, and hense makes sense as long as you don’t try to go out too far[3].
We will not worry about this point in this paper.

2 Example from Quantum Electrodynamics

Quantum Field Theory (QFT) is where renormalization becomes truly interesting, and a
little suspect! At a first glance, nearly all forms of field theory are sick. The reason is that
when you attempt to perform a perturbation expansion, you find that beyond the leading
order you calculate infinite quantities. Certainly it does not make sense to say that the
probability for a process to occur is not only greater than 1.0, but infinite; perhaps we
should just pack up and go home.

No one wins a Nobel prize this way! Instead, people began to realize that the reason
QFT results blow up is because you need to renormalize. In this section I will quote a
very straightforward example. Then in the rest of the talk, I will discuss how we go about
renormalizing our theory.

Consider one of the simplest processes in quantum electrodynamics (QED), the quan-
tum theory of radiation: an electron annihilating a positron (or antielectron) to create a
muon-antimuon pair. We write the process as e et — u~ ut. There is a beautiful technique
developed by Richard Feynman for writing down processes of this sort. Represent the par-
ticles by solid lines, and photons (the quanta of the electromagnetic field) as a swiggly line.
The only allowed vertex in QED is two particles connecting to a photon, so the Feynman
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Figure 1: e et — u ut at leading order

Figure 2: e"et — p~ut with one loop

diagram for this process is given by Figure (1), where time flows left to right and antiparticles
get backwards arrows by convention. Because of a lack of symmetry, this is the only way
this process can occur, so we need only write down this diagram. Each diagram represents
a complicated mathematical expression, called the amplitude for the process. The order
of these expressions can be inferred by the number of vertices in the diagram. In this case,
there are two vertices, and so this process is of order e2, where e is the charge of the particles.
Equivalently, we can say that this amplitude is order o, where a = % is the fine structure
constant in natural units (A =c = 1).

Now consider the next term in the perturbation expansion. In terms of Feynman di-
agrams, these terms can be thought of as diagrams with loops, so that they have more
vertices but do not change the external states. An example of such a diagram is in Figure
(2), but realize that this is not the only diagram. When you create a loop, you are creating
a particle-antiparticle pair. This pair has energy and momentum, and in the spirit of the
superposition principle of QM, you must integrate over all these momenta. This is where
the problem lies.

Each loop involves one integral over four-momenta, and each particle contributes a factor
of inverse four-momentum to the integrand. Hense a diagram of the form in Figure (2) has



an integral which goes as momentum squared, and this diverges as you integrate to infinity.

This kind of analysis is called “power counting”. It turns out not to be an acurate way
to decide whether an integral converges or not. For example, the above suggests that this
is a quadratic divergence, but if you actually did out the integral you would find that it
diverges logarithmically. However, power counting does give you a first guess behavior of
your integral, and in this case, it is true that the integral diverges.

Just because the integral diverges does not mean that we should give up! Rather, it
means that we must renormalize to get a finite result.

3 Algorithm of Renormalization

We have seen what renormalization is in the context of perturbation theory, and we have seen
how without renormalization, even the simplest processes in QED would blow up. Now we
must discuss renormalization itself - how is it accomplished, and how should it be interpreted.
It is the first of these questions I will try to answer in this section. In the next section, I will
discuss the interpretation.

The Algorithm of Renormalization proceeds in two steps. The first step is to perform the
integration and separate out the divergent pieces, and the second step is to get rid of these
divergences. The first step is often called regularization, since we are “regulating” the
divergence in the integral. This is opposed to the second step of removing the divergence,
which I will call renormalization. I would like to discuss each of these steps separately.

3.1 Regularization

The goal of regularization is to explicitly calculate the divergent integral:

I= /0 " BRE(R) ()

This can be done a number of ways. Furthermore, the end result should not depend on which
regularization scheme you chose. The idea will always be to reparametrize the integral in
terms of a parameter which I will call a regulator. After I have expressed the integral in
this way, I will take the physical limit where the result returns to the original integral. Terms
that vanish, I will ignore. Terms that blow up, I will need to get rid of. The end result will
be something finite.

In this talk I will present four different regularization schemes. There are many more,
but these are the most commonly used. Notice that every term in this section can also



depend on physical quantities such as mass, charge and external momenta. I am supressing
this dependence, as it is not relevant to the regularization scheme.

e Momentum Cutoff. We are evaluating integrals that have the form of Equation (9).
This integral diverges at the large limit. Then perhaps the most obvious choice for a
regularization scheme is not to integrate to infinity, but to a very large momentum,
parametrized by the greek letter A:

I =1\ = / ! d*kF (k) (10)

I, is certainly convergent, and becomes [ in the limit A — oco. We can do this integral
to get the general result:

IAZA(A)+B+C<%> (11)

where in the physical limit A — oo, A is divergent (either power-law or logarithmically),
C vanishes, and B is independent of A and hense remains finite. We can immediately
drop C, and we are left with a piece that diverges and a piece that is finite. If we can
only figure out a way to get rid of the divergent piece, we can take the limit and get a
finite answer. This is exactly what we will do in step 2. But before getting there, I'd
like to present a few more regularization schemes.

Although momentum cutoff regularization is probably the most obvious choice for a
regulator, it is rarely the best one. The reason is that the momentum cutoff dependence
almost always violates an important symmetry of the theory such as gauge invariance,
which is needed to make sure quantities cancel correctly. Therefore, unless we want
a qualitative understanding of the diagram, we almost never use momentum cutoff
regularization in practice.

e Dimensional Regularization. DimReg, as oposed to momentum cutoff, is one of
the most useful and least intuitive regulators. The reason for its usefulness is that it
preserves gauge invariance and keeps all the symmetries of the theory manifest.

In DimReg, we replace our integrals with:

I = /oo dkF (k) (12)



Figure 3: Pauli-Villars counterdiagram

where d is the dimension of our measure. This is not to be confused with extra dimen-
sions and string theory - the physical result corresponds to d = 4. To that end we can
perform the integral in d spacetime dimensions, and replace d — 4 — ¢, so that the
physical limit is € — 0. We are left with:

1
IezA(e)+B+C<—> (13)
€
This time, however, it is A which we can drop immediately in the physical limit. Again,
the goal of step 2 will be to find a way to remove the divergent piece, leaving the finite
piece over when we take the limit € — 0.

Pauli-Villars Regularization. PV regularization involves the intriguing philosoph-
ical assumption that there is more physics going on than we see. When writing down
the amplitude, assume that there is another diagram with a loop, this time with a
particle of mass M larger than anything else in the theory; see Figure (3). However,
this diagram enters with the wrong sign! Hense you are subtracting a diagram from
your theory. Diagrams with massive loops behave as %, so in the limit M — oo this
diagram does not contribute. However, while keeping M finite it will help to cancel
divergences. The logic works exactly like momentum cutoff regularization, where we
must remove terms that diverge with M and drop terms that vanish in the physical

limit, leaving a finite result.

Lattice Regularization. Lattice regularization is a very different beast than the
regulators we have been talking about, but I feel obligated to talk about it here because
it is truly very beautiful. In lattice regularization, you assume that the universe is not
a continuum, but rather a discrete lattice. Now all of the integrals are actually sums,
and you never integrate to infinity since there is a natural cutoff, namely the lattice



spacing a. After performing the finite sums, you take your theory off the lattice by
going to the physical limit @ — 0. Again, you get terms that diverge with a that you
must remove by the renormalization step.

Lattice regularization is very different from any of the other schemes because it is
not perturbative. In other words, you use lattice regularization when you are trying
to solve a problem without using perturbation theory. This is very useful in theo-
ries with the strong force described by quantum chromodynamics (QCD), since the
perturbative regime of QCD is very limited. Lattice QCD has been very successful
in predicting many results of low-energy QCD, including confinement, hadron masses
and form factors[4].

3.2 Renormalization

The technique of regularization gave us a way to “parametrize the infinities”. Now we must
develop a way to get rid of these infinities. This is the step of renormalization. For the sake
of notation, I will call my regulator A; this does not mean that I have used momentum cutoff
regularization.

Up to this point, the integral we have been considering can be denoted the following way:

I=1I(m,a,A) (14)

This quantity blows up in the physical limit. However, it turns out that we can capture this
divergence if we make a clever shift of the physical parameters:

m — m(A) =m+om(A) (15)
a — aA)=a+da() (16)
Ilm,a,A) — I(m(A),a(A)) (17)

There is nothing different about this result, except that I have absorbed all of the divergent
behavior into the physical parameters, so that I is no longer explicitly divergent, but merely
dependent on divergent but physical quantities.

Now I hear you say: “But now we’re worse off than before! After all, we know that the
electron is not infinitely massive or has infinite charge!” But what you are forgetting is that
I have not yet specified my renormalization conditions yet. In fact, if I chose for my RC:

m(A) — mpg a(A) = ag (18)



in the physical limit (the “R” stands for “renormalized”), then our final result is simply
I(mpg,ag) - a finite answer! mpg and ag are now just the quantities we measure for the
electron mass and charge respectively. We have litteraly “swept the infinities under the rug”
to extract the UV-finite solution.

Before you label this as ridiculous, realize that QED has used renormalization all the
time, and its results have been tested to as many as fourteen decimal places. That is the
best known confirmation of any theory of physics. Surely we must be doing something right!

As a final point, I wanted to mention that our final (finite) results cannot depend on the
regulator. However, you may be concerned about the process of absorbing the regulator into
the physical quantities. For example, do you absorb any of the finite part of your regulated
integral? Each regularization scheme gives you a different finite part, so how are you to know
what to drop and what to keep? The answer is that you must explicity state these details
when you give your final answer. This final step is often called the “subtraction scheme”.
So when you quote a final renormalized answer, you must state what subtraction scheme
you used to renormalize the obervable quantities. Some of the more common subtraction
schemes are pole subtraction (P), where you extract the mass directly from the amplitude
of a particle with zero momentum; minimal subtraction (M.S), where you subtract only the
divergent part of the amplitude; and modified minimal subtraction (MS), where you subtract
certain additional finite terms from the M.S scheme. There are many others. In practice,
you must be careful to be consistent with your subtraction scheme in your calculations.

4 Theory of Renormalization

You might still be bothered by many things in the previous section. When we renormalize
physical quantities such as charge and mass, you might be thinking that these quantities are
observable and are not infinte. So how can you get away with making them divergent and
then ignoring it?! The answer to that question is actually deeper than it first seems.

First of all, there is a flaw to the skeptic’s argument that the electron is not infinitely
massive or carries infinite charge. In fact, according to QFT, it does! The reason we don’t see
it is subtle but beautiful. If the electron has infinite charge, then it has an infinite amount
of energy from the electromagnetic field. This energy manifests itself by the uncertainty
principle which says that the field is allowed to create and destroy particles in very short
times; such particles are called “virtual particles”. With this huge amount of energy, the
field is able to produce many particles with charge all around the electron. But because
these virtual particles are charged, they line up with the field and dampen the strength,
analogously to dielectrics in classical electrodynamics. Hense as you go further away from
the electron, its effective charge becomes weaker due to this dielectric effect, thus lowering



the charge of the electron to the values we measure.

Ah, but in that case, shouldn’t the electron’s charge get larger and larger as we get closer
and closer to it, cutting through this quantum dielectric? The answer is yes, and perhaps
even more amazingly, this is precisely what happens! In the everyday world, we measure
a = 1;—7, but at high-energy accelerators such as the Tevatron at Fermilab, we measure
o = 1+ - this is a real effect[5].

If‘ihe past, this effect has been calculated directly by deriving the “Uehling Potential”
which is the quantum correction to the Coulomb potential. However, in the past thirty years
or so, physicists have developed a much more powerful technique for describing these results
in a beautifully elegant and intuitive way. This technique was pioneered by physicists K.
Wilson, M. Fisher, L. Kadanoff and others. The technique is called the Renormalization
group.

The renormalization group is a very complicated object, but I will just say a few things
about it. In general, the idea is to do everything that we have been doing, only now our
RC will generally depend on the scale of our experiment; call it . This scale is referred to
as a subtraction point; its value depends on the scale of the experiment as well as the
subtraction scheme. Then we can ask: “How do our physical parameters depend on our
subtraction point?” We can write down a set of differential equations, called the “renor-
malization group equations” that try to answer how our couplings and masses evolve with
changing subtraction point. This gives us the results I said above.

It is this technique that has led to the discovery of asymtotic freedom, the key quality
of QCD, where the forces get weaker as the subtraction point increases. This allows for
a perturbative analysis of QCD at high energies, when perturbation theory fails at low
energies[4]. In addition, the renormalization group has helped to solve a number of questions
in statistical mechanics, such as the behavior of magnets, liquid crystals and general phase
transitions, just to name a few[6].

5 Discussion

“Renormalization” is a word that has been given the evil eye by mathematicians, philosophers
and popular science writers ever since it was first used to regulate infinities prevalent in
quantum field theories. For a long time, many physicists have also looked down on it as
a necessary although unattractive proceedure. However, as quantum field theory becomes
time tested again and again, it becomes harder to simply write off renormalization as a bad
idea.

When Wilson, et al. published their derivation of the renormalization group, physics
underwent a spectacular shift in philosophy. No longer was renormalization a necessary evil,
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but a requirement! It provided an entirely new way of interpreting ultraviolet divergences.
The general philosophy of quantum field theorists is now that any given theory of physics
has some energy scale where the theory breaks down. Renormalization not only allows you
to perform calculations below that scale, but through the renormalization group equations,
tells us where that scale is! This allows people to predict where to find new physics. For
example, this is how people predicted the top quark mass.

Renormalization has not only helped us to explore the perturbative regime of quantum
field theories, but has also given us great insight into the nature of how physical theories
must scale with energy. It has given us a way to deeply probe the nature of the theory
itself. While mathematicians and philosophers continue to call it a problem, physicists have
learned that it truly is our deeply misunderstood friend.
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