

File: SORNers Version Date: July 15, 2016 6:15 pm

W. Kahan Page 1/8

Prof. W. Kahan’s Comments on SORN Arithmetic

What follows pertains to John L. Gustafson’s proposal
 “A Radical Approach to Computation with Real Numbers”

presented in two documents:
Unums2.0slides.pptx 48 numbered pages “Updated April 23 2016”
RadicalApproach.pdf 16 unnumbered pages undated

The .pdf file is “published with open access at SuperFri.org” but I could not find it there. A
version later than the one found on his web page on 18 May 2016 may exist; I know not where.

What are SORNs ?

These are

S

ets

O

f

R

eal

N

umbers upon which Gustafson’s proposal would perform arithmetic
indirectly by table-lookups to achieve higher speed than if performed by floating-point arithmetic.
Before describing how that would work, let’s describe his SORNs as briefly as possible.

They are subsets drawn from all Extended Real Numbers, which are the real numbers augmented
by one point at

∞

 whose sign is ignored. SORNs are best visualized as point-sets on the circle

Ω

 obtained by

Stereographic Projection

 from the real axis:

A motivation for doing this is that, regarded as a map from the circle

Ω

 to itself, each rational
function of just one real variable becomes infinitely differentiable despite any poles it may have.
Plotted on a torus, the function has an infinitely smooth graph. However, although those rational
functions constitute a

Field

, the Extended Reals do not. These cannot satisfy all of a Field’s
cancellation laws because of

Exceptions

 at

∞

±

∞

,

∞

/

∞

 and

∞

·0

, besides the usual 0/0

, that
would generate NaNs in IEEE 754 floating-point. (“NaN” means “

N

ot

a

N

umber”.)

Gustafson disparages NaNs, so he assigns the set of all Extended Reals — call it

Ω

 — as the
arithmetic result of those failures (.pptx p. 9); then he can boast that his SORN arithmetic has …

 “No exceptions (subnormals, NaNs, ‘negative zero’, …)” [p. 3 of .pptx, p. 2 of .pdf]
But his assignment of a value

Ω

 to those Field exceptions deprives SORN arithmetic of what I
have called

Algebraic Integrity

, to be explained in a moment. That lack deprives programmers of
confidence that the numerical evaluation of formulas derived via ordinary rational algebra will
produce predictable results or else signal malfunctions detectable and correctable by the program.

∞

0

0
+1

–1
–1/2

–1/2

2

2Ω

… …

∞ := (nonzero)/0 .

File: SORNers Version Date: July 15, 2016 6:15 pm

W. Kahan Page 2/8

What is

Algebraic Integrity

 ?

Absent roundoff, if several different expressions for the same rational function produce different
values when evaluated numerically in IEEE floating-point, at most two different values can be
produced, and either the two values are

±∞

 or else at least one is a NaN, which is easy to detect.

SORN arithmetic has no such integrity. SORN arithmetic’s evaluations of different expressions
for the same function, though they may have different removable singularities, can produce any
number of different values, none of them recognizably exceptional. Here is an example:

u

(

t

)

 := 2t

/

(1 + t) ; v

(

t

)

 := 2 – (2/t)

/

(1 + 1/t) ;

x

(

t

)

 := (1 + u

(

t

)

2

)

/

(2 + u

(

t

)

2

) ; y

(

t

)

 := (1 + v

(

t

)

2

)

/

(2 + v

(

t

)

2

) ; z

(

t

)

 := 1 – 1

/

(2 + v

(

t

)

2

) ;

An automated algebra system would confirm that u = v and x = y = z as rational functions of t
disregarding removable singularities at t = 0 and t = –1

. However, SORN arithmetic yields

 x(0) = 1/2 , y

(

0

)

 =

{

0 < y

≤

∞

}

 , z

(

0

)

 =

{

1/2

≤

 z

≤

 1

}

 .

A program cannot sense something amiss with y

(

0

)

 or z

(

0

)

 since, ideally, SORN arithmetic
has no rounding errors according to p. 3 of .pptx, p. 2 of .pdf. Instead it may “lose information”
by producing undeserved intervals instead of single points. This has happened to y

(

0

)

 and z

(

0

)

.

Like interval arithmetic, SORN arithmetic is

Inclusion-Monotonic

; this means that if SORNs
X and Y overlap, then SORN evaluations of the same expression at X and at Y must produce
SORNs that overlap. Consequently, SORN evaluations of different expressions for the same

rational

 function cannot be arbitrarily different; their intersection must be non-empty.

Why would a programmer put different expressions for the same function into a program? It is a
common practice to enhance the reliability and/or accuracy of numerical software relying upon
that function. Over different parts of the function’s domain, different expressions may be less
sensitive to roundoff or “loss of information”; or different expressions may have different costs
of evaluation. On the boundaries of subdomains different expressions would be expected to agree
within roundoff. If one expression malfunctions, the program can try another,

but only if it detects the malfunction.

An arithmetic system that hides malfunctions must produce quite misleading results
occasionally. We shall see that happen to SORN arithmetic later below.

• • • • • • • • •

In several respects SORN intervals containing

∞

 resemble the

Exterior Intervals

 I advocated in
1968 during a Summer Course on Numerical Analysis (#6818) at the Univ. of Michigan at Ann
Arbor. These were intervals like X =

[

6, 8

]

/

[

–1, 2

]

 =

[

3, –6] = {x = ∞ or x ≥ 3 or x ≤ –6} .
They were introduced to help evaluate continued fractions, and were expected to exist rarely and
briefly. However, they complicated the implementation of interval arithmetic, perhaps more than
they were worth at the time. We shall see them complicate SORN arithmetic too, worsened by
its lack of Algebraic Integrity. Gustafson could have avoided that lack by a small change in his
definitions, but then he could not have boasted that SORN arithmetic had “No exceptions”.

File: SORNers Version Date: July 15, 2016 6:15 pm

W. Kahan Page 3/8

How does SORN arithmetic work?
It uses table-look-ups to act upon pointers to SORN values, not upon the values themselves,
in the hope of performing every arithmetic operation in a cycle or two on the CPU chip.

Let us consider pointers that are binary integers N bits wide. N is expected to be small, likely
16 or less. Each pointer has two integer values, a 2’s complement value j and an unsigned
value J . Context will determine which interpretation is used. It won’t be confusing:

 j = if J < 2N–1 then J else J – 2N ; J = if j ≥ 0 then j else 2N + j ;

J = +2N–1 just when j = –2N–1 .

Each even index j points to a single Extended Real value x(j) ordered monotonically so that

x(j+2) > x(j) except that x(±2N–1) = ∞ . SORN’s values x(j) inherit the sign-symmetry of their

indices: x(–j) = –x(j) except that x(±2N–1) = ∞ ; consequently x(0) = 0.0 . SORN’s values x(j)

occur in reciprocal pairs: x(j) = 1/x(sign(j)·2N–1 – j) except 0.0 = 1/x(±2N–1) = 1/∞ . Therefore

x(±2N–2) = ±1.0 respectively. Otherwise you may distribute SORN values x(j) as you please.

Each odd index j points to the open interval X(j) between adjacent single values x(j ± 1) ;

X(j) = {x(j–1) < X < x(j+1)} except X(2N–1 – 1) = {x(2N–1 – 2) < X < +∞} . Equivalently X(J)

is the open interval between x(J–1) and x(J+1) except X(2N–1) = {x(2N–2) < X < 0} . The
symmetries possessed by single values x(j) are inherited by the intervals X(j) . The exceptional
cases occur in different places for unsigned than for signed indices; this will matter later.

Thus the entire circle Ω of Extended Reals is covered once by a system that combines single
values x(even j) and intervals X(odd j) . Rational arithmetic operations on the system need two

tables, one for add/subtract, one for multiply/divide, with 2N rows and 2N columns and 22N
entries, each an arithmetical result. Unfortunately, except perhaps for some very small N , …

the system is not yet closed under rational arithmetic operations.

The arithmetical result of combining an x(j) or X(j) with an x(k) or X(k) need not be any of
these, but can overlap more than one of them. Gustafson describes such an overlap as “a loss of
information” on .pptx p. 10, .pdf p. 5. To close the system each arithmetical result in each
arithmetic operation’s table must be an interval on Ω . This interval can be represented by a pair
«I, ∆I» of unsigned integers pointing to an interval that runs counter-clockwise on Ω beginning
at x(I) or X(I) and ending at x(I+∆I) or X(I+∆I) . I think this is what Gustafson intended by
“run-length encoding” mentioned on .pptx pp. 36 and 47, described at the top of .pdf p. 15 but a

little incorrectly. The 2N pairs «I, 2N–1» are redundant; only one, say «2N–1, 2N–1» , is

needed for the whole circle Ω . Assign another arbitrarily, say «0, 2N–1» , to the empty set Ø .
Ignore unsigned integer overflow if it happens to I+∆I . (This is what unsigned indices are for.)

As a SORN computation proceeds, intervals will combine with intervals to yield usually wider
intervals each represented by a pair «I, ∆I» . Addition/subtraction requires two fetches from its
table, multiplication/division as many as four, followed by some further logic. SORN arithmetic
acting upon pairs «I, ∆I» is no less complicated than interval arithmetic with exterior intervals.

File: SORNers Version Date: July 15, 2016 6:15 pm

W. Kahan Page 4/8

Originally Gustafson came up with a simpler kind of SORN arithmetic suitable only for smaller
N , say N < 9 , which implements very low precision exterior interval arithmetic and more. Let

W be a word 2N bits wide representing an arbitrary subset of elements x(J) and X(J) on the
circle Ω : Bit #J of W is 1 if and only if x(J) (for even J) or X(J) (for odd J) belongs to the

SORN represented by W . There are such SORNs. A rational operation upon two SORNs,

represented by two such words, is selected from a table with 2N rows, 2N columns, and 22N

entries, each a word 2N bits wide, but wired together to put out their logical OR as one word.

Thus can each rational operation upon two arbitrary subsets of the points and intervals on Ω be
performed by a CPU’s chip in one cycle if N is small enough for the tables to fit on the chip.

SORN Arithmetic’s Cost vs. Benefit
Two ways to perform SORN arithmetic have been described. The faster way, acting upon words

W each 2N bits wide, requires on-chip tables occupying areas proportional to 23N
 . This has to

compete with other demands, like the cache, for that area. Besides, computations nowadays
tend to wait longer for memory management than for arithmetic. Why build an arithmetic unit so
fast that it spends most of its time waiting to be fed? I doubt that this way will ever be built.

The slower way to perform SORN arithmetic, acting upon pairs «I, ∆I» each 2N bits wide,

requires on-chip tables occupying areas proportional to N·22N plus some complicated logic that
will take at least two or three cycles. This runs about as fast as ordinary floating-point. SORNs
beat interval arithmetic with exterior intervals programmed in software on hardware of roughly
the same precision, somewhat less than N sig.bits, occupying an area on chip proportional to

N2
 . Consequently SORN computation can compete successfully against floating-point only if

its precision N is not too big, and then only if the value added to computation by interval
arithmetic offsets the higher cost of the greater area SORN hardware occupies on the CPU chip.

Low precisions N have sufficed for much of the world’s data. Engineers used slide rules (< 10
sig.bits) for most calculations for many decades before electronic computers and aircraft existed.
How much value does interval arithmetic, with or without SORNs, add to computation at low
precision without it? Gustafson advocates SORN/interval arithmetic as insurance against being
misled when computed results are corrupted by roundoff. History is not entirely on his side.

Long experience and some error-analyses support a rough rule-of-thumb that renders roundoff
extremely unlikely to causes embarrassment if all intermediate floating-point computations are
performed carrying a little more than twice the precision trusted in data and desired in results.
This advice has survived the test of time in statistics, optimization, root-finding, geometry,
structural analysis and differential equations, among other things. Of course exceptions exist;
their rarity has given rise to a wry joke among numerical analysts:

Nobody unlucky enough to have been betrayed by that rule-of-
thumb need concern us; he has already been run over by a truck.

SORN/interval arithmetic insures against that bad luck but invites a different kind of betrayal.

2
2N

File: SORNers Version Date: July 15, 2016 6:15 pm

W. Kahan Page 5/8

Excessively Wide Intervals
Gustafson knows that interval arithmetic can produce intervals that are too wide, sometimes by
orders of magnitude. He knows about two of the many ways that can happen: One is called “The
Wrapping Effect”; another is called “The Dependency Problem”. He asserts that his SORN
arithmetic is free from such shortcomings. He is mistaken.

The wrapping effect arises when a repetitive computation like a vector iteration xn+1 := ƒ(xn) is
programmed in interval arithmetic as Xn+1 := F(Xn) by transliterating a formula for ƒ directly
into an interval arithmetic program F . The effect occurs because coffin F(X) ⊇ ƒ(X) , which is
not often a coffin. Here a coffin, represented by a vector of d intervals in a d-dimensional

space, is a rectangular parallelepiped with d·2d–1 edges each parallel to a coordinate axis. Even
if the image ƒ(X) of a coffin X is merely a slightly tilted box, F(X) must be bigger than ƒ(X)

by some factor Λ > 1 , and then Xn must be too big by a factor Λn
 . Exponential growth.

Gustafson asserts on .pptx pp. 42-3 that SORN computation’s “Uncertainty grows linearly in
general” and displays about 30 steps of an orbit calculation drawn from p. 306 of his book
THE END OF ERROR — Unum Computing (2015, CRC press). There his word for a coffin is
“ubox”. The book’s elaborate computation resembles the numerical solution of the differential
equation for a two-body orbit but actually, by taking account of its conservation of energy and
angular momentum, the computation amounts to an iterative solution of a trigonometric equation.
See www.eecs.berkeley.edu/~wkahan/Math128/KeplerOrbits.pdf for details. Uncertainty for that
orbit should grow linearly. But Λ exceeds 1 by a little for each short step F of his method to
calculate orbits for three or more bodies. I don’t think he has done that for more than a few dozen
steps amounting to a tiny fraction of an orbit. Had he carried his calculation out for one or two
complete and stable orbits he would have seen linear turn into excessive exponential growth.

Since SORN arithmetic produces only coffins, it cannot avoid the wrapping effect. To attenuate
this effect the coffin X0 must be subdivided into smaller coffins at a cost in parallel computations
that grows exponentially with the dimension d . Attenuation is affordable only if d is small.

The dependency problem arises when an expression’s subexpressions are correlated but interval
arithmetic disregards their correlations while evaluating the expression numerically. Two simple
examples are Z := X – Y and Q := X/Y when an earlier assignment Y := X is disregarded.
Here are three program extracts that expose the mistake in Gustafson’s assertions, on .pptx pp.
44-6 and .pdf p. 12, that SORN arithmetic has no dependency problem:

 Y := ... independent of X ; Y := … accidentally matches X ; X := … ;
 … no change to X nor Y ; … no change to X nor Y ; … no X nor Y ;
 Z := X – Y ; Z := X – Y ; Z := X – X ;

What interval operations will the computer execute for the programs’ last subtractions? Normally
the width of an interval difference is the sum of the operands’ widths. Gustafson expects the
computer to treat the last program’s subtraction differently from the others, obtaining for Z an
interval narrower than X . Gustafson repeats the operation by iterating X := X – X to generate a
dwindling sequence that “Converges to the smallest open interval containing zero.” If a computer
is smart enough to perform a different operation for “ X – X ” than for other subtractions, why
not save time by simply “optimizing” X – X to zero as many an optimizing compiler would?

File: SORNers Version Date: July 15, 2016 6:15 pm

W. Kahan Page 6/8

Gustafson makes the same mistake when he starts X := [1/2, 2] and iterates X := X/X on .pptx
p. 46 to obtain convergence to (5/8, 8/5), not just 1.0 . Why does he make this mistake again?

Perhaps the algorithms he has in mind for SORN arithmetic are incorrect for SORNs that are
independent intervals. Has he programmed and compared them yet with interval arithmetic?

Closely related to the dependency problem is a third way for SORN/interval arithmetic to yield
vastly pessimistic over-estimates of a computed result’s uncertainty. It occurs when a numerically
precarious algorithm has been chosen to compute the desired result. For example, the result may
satisfy a system of equations whose coefficients depend upon a few parameters each uncertain
independently within small tolerances like, say, 0.1% . Consequently the coefficients will inherit
uncertainties, perhaps as little as 0.1% , but not independently; the coefficients’ uncertainties
will be correlated. Resist the temptation to carry only three or four sig.dec. while computing the
coefficients and solving the equations. The solution may be far more sensitive to uncorrelated
0.1% perturbations in the coefficients than to 0.1% perturbations in the parameters. It happens
to calculations of deflections under load of cantilevered elastic structures, especially wings and
shells supported only at their periphery, like the roof of a stadium unsupported by pillars that
would block the views of some spectators. It happens to computer-simulated crash tests of cars
and aircraft that derive much of their strength from their outer shells. The rule-of-thumb cited
above offers some protection against roundoff. SORN/interval arithmetic carrying only three or
four sig.dec. would produce intervals far wider than the uncertainties inherited from parameters
by the correct results, but a naive user could misinterpret those wide intervals as if they were
uncertainties inherent in the results, and then react inappropriately.

A simple didactic example of a geometrical problem whose solution is far less sensitive to small
perturbations of the data than to small perturbations in the linear equations the solution satisfies is
a tetrahedron’s incenter posted on p. 26 of www.cs.berkeley.edu/~wkahan/MathH110/Cross.pdf .

SORN Equation-Solving Without Algebraic Integrity
An important application of interval arithmetic locates all solutions z of an equation æ(z) = o
given a program Æ to compute a vector-valued function æ(x) in interval arithmetic at interval
vectors X (coffins) obtaining coffins Æ(X) ⊇ æ(X) . The program Æ has to be good enough
that width(Æ(X)) → 0 as width(X) → 0 except for rounding errors, so width(Æ(z)) must be
relatively tiny wherever æ(z) = o . Coffin X cannot contain a solution z if Æ(X) is an interval
that excludes o , in which case X is discarded. Otherwise X is partitioned into smaller coffins
X each of which is tested and either discarded or kept for further subdivision.

We hope that this process will ultimately converge to a collection of relatively tiny coffins Z at
none of which does interval Æ(Z) exclude o , and at some of which Æ(Z) includes o . Each
Z that includes o , if any, has located a solution z ∈ Z . Any other Z encloses a singularity
around which Æ(Z) is NaN . Gustafson calls this process “C-Solution” in his book.

For example take æ(ξ) := 3/(ξ+1) – 2/(ξ–1) + 1/(ξ–1)2 . Interval arithmetic, with or without
exterior intervals, produces NaN for Æ(X) when X = [0, 4] because of ∞ – ∞ ; but this X
must not be discarded lest it contain solutions z as well as singularities. Subsequent subdivisions
converge to tiny intervals around 1 , 2 and 3 . Evidently æ(2) = æ(3) = 0 but æ(1) is NaN .

File: SORNers Version Date: July 15, 2016 6:15 pm

W. Kahan Page 7/8

At every X around 1 , SORN arithmetic gets Æ(X) = æ(1) = Ω , which includes 0 . SORN
arithmetic alone does not reveal that æ(ξ) has a pole (goes to ∞), not a zero, at ξ = 1 .

Another more perplexing example is constructed from R(ξ, η) := (ξ – η)·(ξ + η)/(ξ2 + η2) . At

x = let æ(x) := , and try to find a C-Solution z of æ(z) = o using SORN

arithmetic to compute Æ(X) at coffins X each a rectangle with edges parallel to the coordinate

axes. At every X that encloses o we find that Æ(X) = , which encloses o . At every X

that does not enclose o but has one corner much closer to o than the others, Æ(X) is a finite
interval that encloses o . C-Solution converges convincingly onto an alleged solution z = o .

But “ æ(z) = o ” has no solution z .

It has no solution because –1 ≤ R(ξ, η) = –R(η, ξ) ≤ +1 except that R(0, 0) would be NaN in
interval arithmetic but not SORN arithmetic. Its lack of Algebraic Integrity has betrayed the C-
Solution process. That could be fixed by some small changes to SORN arithmetic.

Another contributor to betrayal by SORNs is not so easy to fix: …

Mathematically Sound?
Gustafson asserts that SORN arithmetic is “mathematically sound, with no rounding errors” on
p.3 of .pptx, p. 2 of .pdf. Instead of rounding errors, SORN/interval arithmetic produces overly
wide intervals, sometimes vastly too wide. A little too wide suffices to induce mathematically
unsound inferences. Let us re-examine the C-Solution process that was betrayed just above. It

involved expression R(ξ, η) := (ξ – η)·(ξ + η)/(ξ2
 + η2) = –R(η, ξ) = R(µ·ξ, µ·η) for any µ > 0 .

Another expression for the same function is S(ξ, η) := 1 – 2/(1 + (ξ/η)2) . SORN arithmetic,
with or without Algebraic Integrity, produces excessively wide intervals for R but not for S :

As µ → 0+ the rectangles X := (Ξ, Υ) shrink to o without enclosing it, and every Æ(X)
above includes o . The C-Solution process converges towards and is stopped at tiny rectangles
very near o though it is a singularity, not a solution z of “ æ(z) = o ”. SORN arithmetic is not
prevented by “no rounding errors” from producing mathematically misleading numerical results.

Ξ Υ R(Ξ, Y) S(Ξ, Y)

[µ, 2µ] [µ, 2µ] [–2, 2] [–3/5, 3/5]
[µ, 10µ] [µ, 10µ] [–90, 90] [–0.98, 0.98]
[µ, 10µ] [–µ, µ] [0, 121] [0, 1]
[µ, 2µ] [–µ, µ] [0, 9] [0, 1]
[µ, 2µ] [0, µ] [0, 6] [0, 1]

[10µ, 11µ] [0, 0] [0.826, 1.21] [1, 1]
[181µ, 192µ] [0, 0] [0.8887, 1.12524] [1, 1]

(0, µ] [0, 0] (0, ∞] [1, 1]

ξ
η

R ξ η,() 9 8⁄–

R η ξ,() 9 8⁄+

Ω
Ω

File: SORNers Version Date: July 15, 2016 6:15 pm

W. Kahan Page 8/8

Example: an Elbow Manipulator
A set of 12 equations has been chosen to illustrate the utility of SORN/interval arithmetic. Six
angles θ1, θ2, …, θ5, θ6 determine the posture of a robot arm with three elbow joints and three
wrist joints. A posture has been specified by six numerical values given for six polynomials in the

12 variables cj := cos(θj) and sj := sin(θj) , plus six more equations sj
2 + cj

2 = 1 to constitute

12 equations in the 12 variables. We seek the set {θj} of solutions of these equations. These

are exhibited on .pptx p. 12 and .pdf p.7, and solutions of low but adequate accuracy are offered
on .pptx p. 24 and .pdf p. 8. Unfortunately the second equations exhibited in .pptx and .pdf
differ in a term’s sign, so I have not tried to confirm the solutions offered. Still, the equations
illustrate well the utility of the C-Solution process using SORN/interval arithmetic because the
solution-set occupies a continuum in a 6-dimensional space. But the equations are not realistic.

They take no account of constraints that limit the angles to prevent wires from being torn and to
protect the robot arm from self-collisions. At the very least, constraints like |θj| ≤ 178° must be
imposed. Such constraints are awkward to impose upon the pairs {cj, sj} of variables appearing
in the 12 equations. Moreover, there are too many equations and variables; the problem really
requires only five equations in five unknowns. The equations determine θ1 immediately; it is
either 22.9181° or 22.9181° – 180° . Replacing one by the other replaces θj by ±180° – θj for
j = 2, 3, 4 and 5 , and θ6 by –θ6 , so only one value of θ1 need be considered. Replacing

cos(θj) and sin(θj) by tj := tan(θj/2) complicates the five remaining equations, replacing sj by

2·tj/(1 + tj
2) and cj by 2/(1 + tj

2) – 1 to turn polynomials into rational expressions. Their extra
cost is more than recompensed during the C-solution’s partition of coffins into smaller coffins,
of which there are far fewer in 5 dimensions than in 12 . And constraints like |θj| ≤ 178° turn
simply into |tj| ≤ tan(89°) . Solutions fill out a continuum whose dimension matters. What is it?

Loose Ends
SORNs, like Exterior Intervals, complicate the Order Relations {<, ≤, =, ≠, ≥, >} more than
ordinary interval arithmetic does with exclusively finite intervals. Is –2 < ∞ ? Not if +∞ = –∞ .
What is cos(∞) ? How does the empty set Ø compare with 3 ? Distinct intervals X and Y
with non-empty overlap X ∩ Y ≠ Ø must make “ X ≠ Y ” true even though they differ in just
one end-point. And X ⊇ Y cannot imply X ≈ Y despite what Gustafson’s book says. SORN
arithmetic is incomplete without coherent specifications for order relations and the Math library.

Conclusion
SORN arithmetic is a plausible alternative to Exterior Interval arithmetic implemented in software
on low-precision floating-point hardware. How much demand exists for that? Hard to say. The
temptation to use SORN arithmetic for lengthy computations upon data barely less precise than
the arithmetic should be resisted lest misleadingly over-sized uncertainties obscure the results.

6

1

