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ABSTRACT
The classical low rank approximation problem is: given a
matrix A, find a rank-k matrix B such that the Frobenius
norm of A − B is minimized. It can be solved efficiently
using, for instance, the Singular Value Decomposition (SVD).
If one allows randomization and approximation, it can be
solved in time proportional to the number of non-zero entries
of A with high probability.
Inspired by practical applications, we consider a weighted

version of low rank approximation: for a non-negative weight
matrixW we seek to minimize

∑
i,j

(Wi,j ·(Ai,j−Bi,j))2. The
classical problem is a special case of this problem when all
weights are 1. Weighted low rank approximation is known to
be NP-hard, so we are interested in a meaningful parametriza-
tion that would allow efficient algorithms.
In this paper we present several efficient algorithms for the

case of small k and under the assumption that the weight
matrix W is of low rank, or has a small number of distinct
columns. An important feature of our algorithms is that
they do not assume anything about the matrix A. We
also obtain lower bounds that show that our algorithms
are nearly optimal in these parameters. We give several
applications in which these parameters are small. To the
best of our knowledge, the present paper is the first to provide
algorithms for the weighted low rank approximation problem
with provable guarantees.
Perhaps even more importantly, our algorithms proceed

via a new technique, which we call “guess the sketch”. The
technique turns out to be general enough to give solutions
to several other fundamental problems: adversarial matrix
completion, weighted non-negative matrix factorization and
tensor completion.
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1. INTRODUCTION
Low rank approximation is arguably one of the most well-

studied problems in randomized numerical linear algebra,
with diverse applications to clustering [19, 23, 38, 18], data
mining [5], distance matrix completion [13], information re-
trieval [45], learning mixtures of distributions [2, 32], recom-
mendation systems [20], and web search [1, 34]. In practice
one often has a low rank matrix which has been corrupted
with noise of bounded norm, and low rank approximation
allows one to approximately recover the original matrix. Low
rank approximation may also help explain a dataset, re-
vealing low dimensional structure in high dimensional data.
Given a low rank approximation, one can store a matrix
and compute a matrix-vector product much more efficiently
by storing the corresponding factorization. It can also be
used as a preprocessing step in applications, that is, by first
projecting data onto a lower-dimensional subspace one pre-
serves important properties of the input, but can now run
subsequent algorithms in the lower-dimensional space. For
example, it has been proposed to reduce the data dimension
in Non-Negative Matrix Factorization [35] (more on this
below), and Latent Dirichlet Allocation (LDA) [10].
The basic low rank approximation problem is: given

an n × n matrix A, find a matrix Â of rank at most k
for which ‖A − Â‖F is minimized, where for a matrix B,

‖B‖F =
(∑

i,j
B2
i,j

)1/2
is its Frobenius norm. This formu-

lation intuitively corresponds to the matrix Â capturing as
much of the variance of A as possible. It is well-known that
the optimal solution is given by Ak, which if UΣV > is the
singular value decomposition (SVD) of A, where U and V
are orthogonal matrices and Σ is a non-negative diagonal
matrix with Σ1,1 ≥ Σ2,2 ≥ · · · ≥ Σn,n, then Ak = UΣkV

>,
where Σk agrees with Σ on its first k diagonal entries and is
0 otherwise. Although the SVD is computable in polynomial



time, it is often acceptable to output a matrix Â for which
‖A− Â‖F ≤ (1 + ε)‖A−Ak‖F with high probability. In the
latter case, much more efficient algorithms are known, and
it is possible to compute such an Â in nnz(A) + n · poly(k/ε)
time, where nnz(A) denotes the number of non-zero entries
of A [16, 42, 44]. We note that for typical applications k and
1/ε are assumed to be much smaller than n, e.g., in [28] they
are treated as absolute constants.
Despite the large body of work on low rank approximation,

the weighted case is not well understood. In this case one
is given an n × n matrix A and an n × n matrix W with
Wi,j ≥ 0, and one seeks to solve:

min
rank-k matrices Â

‖W ◦ (A− Â)‖2F

= min
rank-k matrices Â

∑
i,j

W 2
i,j(Ai,j − Âi,j)2.

The classical low rank approximation is a special case in
which Wi,j = 1 for all i and j. However, in general there
may not be a good reason to weight all elements of the
approximation error A− Â equally, especially if one is given
prior knowledge about the distribution of the errors. For
example, suppose the columns of A each come from a low-
dimensional subspace but one of the columns is then shifted
by a fixed large vector so that its mean is different. One may
first want to recenter the data by subtracting off the mean
from each of the columns. While this is possible without
weighted low rank approximation, suppose instead that each
of the columns of A comes from a perturbation of columns
in a low dimensional subspace but one of the columns has
a much larger variance. Then if all weights were equal, it
would be enough for Â to fit this one single large variance
column, which fails to capture the entire low-dimensional
subspace. One way of fixing this is to reweight each entry of
A by the inverse of its variance. This is a common technique
used in gene expression analysis, where the error model
for microarray measurements provides entry-specific noise
estimates, or when entries of A represent aggregates of many
samples such as in word co-occurrence matrices and non-
uniform weights are needed to appropriately capture any
differences in the sample sizes; see [52] for a discussion, and
also the Wikipedia entry on weighted low rank approximation
for a brief introduction1.
While the extension of low rank approximation to the

weighted case goes back to work of Young in 1940 [55],
its complexity is not well-understood, partly because the
weighted case does not admit a solution via the SVD and
may have many local minima [52]. Early work by Shpak [51]
looked at gradient-based approaches while Lu et al. [40, 39]
looked at alternating minimization methods. These were
significantly sped up in practice by the work of Srebro and
Jaakkola [52], with success in various applications such as
color image restoration [41], though there are no provable
time bounds and in the worst case the running times could
be exponential or worse. In fact, weighted low rank approx-
imation is known to be NP-hard to approximate up to a
(1 ± 1/poly(n)) factor [24]. We note that this also follows
from the fact that matrix completion, arguably one of the
most important special cases of weighted low rank approxi-

1https://en.wikipedia.org/wiki/Low-rank_
approximation#Weighted_low-rank_approximation_
problems

mation in which case all weights are 0 or 1, which we discuss
more below, is also known to be NP-hard [46, 29]. Typically,
though, assumptions such as incoherence and randomly sam-
pled entries allow one to circumvent this hardness [12, 37].
There is some debate as to whether these assumptions are
valid, for instance in [50] an argument is made why randomly
missing entries may not hold for real-world datasets.
Many natural questions are left open from previous work.

In particular the main question as we see it is the following:

• for which weight matrices W is the problem tractable?
More generally, is it possible to identify a natural pa-
rameter of W and to obtain parameterized complexity
bounds in terms of that parameter?

• There are many variants of weighted low rank approxi-
mation, such as weighted non-negative matrix factoriza-
tion, matrix and tensor completion, bicriteria approx-
imations, etc. Can one obtain similar parameterized
bounds for these problems?

1.1 Our Results for Weighted Low Rank Ap-
proximation

In this paper we provide an answer to the above questions
by parameterizing the complexity of the problem in terms of
the rank of the weight matrix W and the number of distinct
columns of the weight matrix. Note that we make no assump-
tions about the input matrix A. Let OPT denote the quantity
minrank-k matrices Â ‖W ◦ (Â−A)‖2F . Our main theorems are
the following. For a function f , define f̃ = f · poly(log(f)).

Theorem 1.1. (Algorithm for Weighted Low Rank Ap-
proximation) Let r be the rank of W . There is an algorithm
running in time nO(k2r/ε) which outputs a factorization (into
an n× k and a k×n matrix) of a rank-k matrix Â for which

‖W ◦ (A− Â)‖2F ≤ (1 + ε)OPT,

with probability at least 9/10.

We also have the following theorem.

Theorem 1.2. (Algorithm for Weighted Distinct Columns)
Let r be the number of distinct columns of W . For every
ε > 0 and for an arbitrarily small constant γ > 0, there is
an algorithm running in time O((nnz(A) + nnz(W )) · nγ) +
n · 2Õ(k2r2/ε) which outputs a factorization (into an n × k
and a k × n matrix) of a rank-k matrix Â for which

‖W ◦ (A− Â)‖2F ≤ (1 + ε)OPT,

with probability at least 9/10.

Note that Theorem 1.2 does not make any assumptions on
the number of distinct rows, which is important for the
applications described below.
Let us point out two things here:

• Before only the case of W having rank 1 was known
to be provably solvable in polynomial time by a direct
reduction to the SVD2;

2Namely, in that case, we can rewrite the problem as
min

rank-k matrices Â
‖D(Â−A)E‖2F for diagonal matrices D and

E, from which we can replace A with DAE and solve the un-



• The result for at most r distinct columns implies that,
with respect to this parametrization, the weighted
low rank approximation problem is fixed-parameter
tractable.

We complement the above positive results by proving a lower
bound, which assumes the Exponential Time Hypothesis for
the average case hardness of random 4-SAT. We state the
assumption as follows.

Assumption 1.3. (“Random Exponential Time Hypothe-
sis”) Let c > ln 2 be a constant. Consider a random 4-SAT
formula on n variables in which each clause has 4 literals,
and in which each of the 16n4 clauses is picked independently
with probability c/n3. Then any algorithm which always out-
puts 1 when the random formula is satisfiable, and outputs
0 with probability at least 1/2 when the random formula is
unsatisfiable, must run in 2c

′n time on some input, where
c′ > 0 is an absolute constant.

We are not aware of prior work using this form of the Ex-
ponential Time Hypothesis, though both the Exponential
Time Hypothesis and Feige’s original assumption [22] that
there is no polynomial time algorithm for the problem in
Assumption 1.3 are commonly used. We do not know of any
better algorithm for the problem in Assumption 1.3 and have
consulted several experts3 about the assumption who do not
know a counterexample to it.

Theorem 1.4. (Weighted Low Rank Approximation Hard-
ness) Let r be an upper bound on the number of distinct
columns of W . Under Assumption 1.3, there is an absolute
constant ε0 ∈ (0, 1) for which any algorithm for solving the
weighted low rank approximation algorithm with ε ≤ ε0 and
for any k ≥ 1, with constant probability, requires 2Ω(r) time.
Further, this holds even if W also only has r distinct rows.

Note that for constant k and ε, and r ≥ C logn for a constant
C > 0, our upper bound assuming at most r distinct columns
is 2Õ(r2), which nearly matches our lower bound in Theorem
1.4 of 2Ω(r).

There are naturally arising applications in which the rank
of the weight matrix or the number of distinct columns is
small. Consider a matrix in which the rows correspond to
users and the columns correspond to ratings of a movie, such
as in the Netflix matrix. Further, suppose for each movie,
there are r columns, indicating different aspects of the movie
to be rated, such as acting, plot, sound effects, visual effects,
etc. For a given user, one can look at the distribution
of scores across movies along one of these aspects. These
distributions may have different variances for that user and
one can renormalize the scores by the reciprocal of their
variance. In this case, the weight matrix consists of r distinct
columns, one for each aspect, each copied n/r times, where
n/r is the total number of movies. Each entry of a column is
a variance for a certain user for that aspect. This naturally
generalizes to other applications for which the columns can
be clustered into r groups, such as in stochastic block models

weighted low rank approximation, obtaining an Â for which
we can then output D−1ÂE−1 if the diagonal entries of D
and E are non-zero. If they are zero we can first remove
rows and columns from A
3Personal communication with Russell Impagliazzo and Ryan
Williams.

or more general latent space models [13]. Also, in some of
these applications, one would want a low rank nonnegative
factorization, and we remark that we can achieve this below.
Suppose now that A has constant rank k. A consequence

of Theorem 1.1, which we elaborate on more below, is that
even if an adversary deletes up to O(1) entries in each column
of A in an arbitrary way, one can still recover a matrix Â of
rank at most k which agrees with A on all of the remaining
entries in poly(n) time. This is a form of adversarial matrix
completion, which was studied in [30, 50]. In these works
the authors had to make an incoherence assumption on the
entries of A, which may not always hold, e.g., in the presence
of outliers. Without this assumption the prior results would
not be able to recover such an Â even if a single adversarially
chosen entry was deleted in each column.

1.2 Other Results
Our techniques can be applied to weighted non-negative

factorization, a problem that has been extensively studied
both in the unweighted (see, e.g., [4, 43]) and weighted cases
(see, e.g., [27, 26, 33, 56, 54]). In this problem, one seeks
non-negative matrices U ∈ Rn×k and V ∈ Rk×n for which

∀i, j such that Wi,j > 0, Ai,j = (U · V )i,j ,

where the unweighted case corresponds to Wi,j = 1 for all i
and j. This problem naturally arises in applications such as
topic modeling in which negative entries do not make sense.
In a beautiful line of work [4, 43], an upper bound of nO(k2)

was established for the unweighted case. By combining their
techniques with ours, we obtain the first results for the
weighted case when the weight matrix W has rank at most r.
We defer the details to the full version of the paper.

Our results also apply to adversarial tensor completion.
Here we use the standard idea of “flattening” a tensor to a
matrix. Our algorithm follows that in [50] and flattens the
tensor multiple times, and each time solves an adversarial
matrix completion problem. We then introduce additional
polynomial constraints to put these solutions together to
recover a tensor agreeing with the original tensor on the
entries for which the corresponding weights are positive. We
defer the details to the full version of the paper.
Finally, there is a simple bi-criteria approximation algo-

rithm for weighted low rank approximation when the weight
matrix has entries that are all either 0 or 1. In this case
it is possible to obtain a rank-rk approximation to A in
nnz(A) + nnz(W ) + n · poly(rk/ε) time with cost at most
(1 + ε) times the cost of the best rank-k approximation. Here
r denotes the rank of the weight matrix. This has a better
dependence on r and could be useful when one does not need
to output a matrix of rank exactly k. This is given in the
full version of the paper.

1.3 Our Techniques
To prove Theorem 1.1, we first prove a structural theorem

about regression. Then our main new theme is what we call
“guessing a sketched matrix”.

Structural Regression Theorem .
Given any number t of multiple response regression in-

stances, i.e., instances of the form min
X1,X2,··· ,Xt

‖AiXi−Bi‖2F ,

where A1, . . . , At and B1, . . . , Bt are matrices and each Ai
has rank at most k, if one is interested in simultaneously



minimizing the sum of their costs, i.e., the objective func-

tion is min
X1,X2,··· ,Xt

t∑
i=1
‖AiXi −Bi‖2F , then one can choose a

Gaussian matrix S with O(k/ε) rows and if one solves the

problem min
Y 1,Y 2,··· ,Y t

t∑
i=1
‖SAiY i − SBi‖2F , then the minimiz-

ers Y 1, Y 2, · · · , Y t for this latter problem satisfy
t∑
i=1
‖AiY i−

Bi‖2F ≤ (1 + ε) min
X1,X2,··· ,Xt

t∑
i=1
‖AiXi − Bi‖2F with high con-

stant probability. Interestingly, the number of rows of S does
not depend on the number t of regression instances, and is
optimal already for t = 1 and when B1 only has a single
column [15]. This also generalizes affine embeddings in [16]
in which t = 1 and B1 may have multiple columns; we stress
that the design matrices Ai may be different. The proof uses
a novel observation that a Gaussian S is a subspace embed-
ding on average over i. This part uses a tail bound from [14]
for the condition number for a Gaussian matrix. Having
this, we bootstrap the approximation to (1 ± ε) using the
approximate matrix product property of a Gaussian matrix.

Guessing a Sketched Matrix .
Given our structural result, the main new theme of this

paper is to “guess a sketched matrix”. Suppose one is given
an optimization problem of the form

p1(x1, . . . , xv) ≥ 0, p2(x1, . . . , xv) ≥ 0, . . . , pm(x1, . . . , xv) ≥ 0,

where each pi is a polynomial of degree at most d, the
x1, . . . , xv are indeterminates over the reals, and we are are
interested in an assignment to x1, . . . , xv which simultane-
ously satisfies these c polynomial inequalities. Then this can
be solved in time (md)O(v) using generic solvers [49, 48, 47, 8],
and such techniques have been used in the context of database
theory [21], non-negative matrix factorization [4, 43], learn-
ing mixtures of Gaussians [36], computing approximate PSD
factorizations [6], and solving small-scale mixed-norm low
rank approximation instances [17]. There are two kinds of
algorithms for semi-algebraic sets: the ones from [47, 48, 8]
are able to determine if a given sem-algebraic set is empty
or not. The one from [49] is able to return a δ-approximate
solution to a given semi-algebraic formulae by paying an
extra factor of log( 1

δ
) in the running time. For weighted

low-rank approximation, there are two ways to output the
matrices. One is using the algorithm from [49] directly. An-
other option is to perform binary search using the algorithm
from [47, 48, 8] for the entries of Âij one by one.
Our main idea here is to use polynomial optimization for

large-scale non-convex optimization by combining it directly
with sketching. For example, suppose one is given the mul-
tiple response regression problem min

V
‖UV −A‖2F in which

the number of columns of U is small. The twist though, is
that both U and V are unknown! Then UV is just a low
rank approximation to A, and if we knew U we could solve
the sketched optimization problem min

X
‖SUV − SA‖2F , for

a random oblivious sketching matrix S, and our solution V
would be a good solution to the original problem. Since we
do not know U , we instead choose a random S and create
variables for S · U , which is small, and also compute S · A,
which we know. We then solve a regression problem for V
in terms of the variables that we created for S · U . Given

V , we can then plug it into the original regression problem
and solve for U in terms of V which is in turn in terms of
our variables for S · U . Finally we can verify the solution by
requiring that ‖UV −A‖2F is small, which is now a system
in a small number of variables. This verification step is es-
sential because our S only has a probabilistic guarantee that
it works for a fixed U with good probability, but crucially,
we know there exists a U for which it works, and so by doing
the verification step we will find such a U . We note there
are several issues with this approach which we discuss below.
While this may seem like an unnecessarily complicated

way of doing standard low rank approximation, this idea
proves crucial for weighted low rank approximation. In this
case, using say, the rank constraint on the weight matrix
W , and using our structural result on multiple instances
of regression, we are able to choose a single sketching ma-
trix S and create variables for only r regression problems,
SDW1U, . . . , SDWrU , where DW1 , . . . , DWr are diagonal ma-
trices with independent columns of W on each diagonal,
and U is a fixed optimal solution. We can then try to ex-
press all regression solutions min

Xi
‖DWiUXi −DWiAi‖22, for

i = 1, . . . , n and where Xi and Ai are the i-th columns of X
and A respectively, in terms of these variables, and hope to
carry out the procedure above.

Dealing with Linear Dependencies .
At this point another obstacle arises which is that when

the columns of a given DWiU are not linearly independent,
there is no way to write down the pseudoinverse of DWiU
in terms of the variables we have created. We also cannot
afford to create more than r · poly(k/ε) variables, since our
optimization procedure is exponential in this quantity, and
so we cannot create new variables for each i = 1, . . . , n. To
get around this, we observe that there is a solution U · V for
which for all i, the first min(|supp(DWi)|, k) columns of U
are linearly independent, where supp(DWi) denotes the set
of non-zero entries of Wi, and further the solution cost of
U · V is an arbitrarily small amount larger than that of the
optimal cost. This follows by a simple perturbation argument
applied to the optimal solution. This immediately gives an
algorithm with additive error when we parameterize W by
its rank.
In order to turn it into a relative error algorithm, we need

a lower bound on the cost assuming that the cost is non-zero.
The main idea here is that if we correctly guess which subsets
of columns are linearly independent for the different matrices
DWi , then we can set up a non-negative polynomial system
and provided this system has non-zero cost, we can apply
known lower bounds on the cost of polynomial optimazation
problems as a function of the degrees, number of variables,
number of constraints, and coefficient sizes [7]. While this
is not an algorithmic procedure, since we cannot afford to
make guess for each DWi without spending exponential in n
time, it suffices for lower bounding the cost. Given such a
lower bound, the above perturbation argument can then be
used to argue that we achieve relative error.
While this leads to our time bound in the case in which

we parameterize the weight matrix by its rank, in the case in
which we parameterize by the number of distinct columns of
W , this is too slow. The issue is that we have at least n con-
straints to enforce, namely, that the first min(supp(Wi), k)
columns of SDWiU are linearly independent. This would



lead to a running time of npoly(rk/ε) as opposed to the
poly(n) · 2poly(kr/ε) that we desire. We notice though that
when we have r distinct columns, there are only r constraints
to enforce, one for each distinct column. These are “not equal”
constraints but can be transformed to a single equality con-
straint of degree poly(rk/ε) by introducing a single auxiliary
variable. While this ultimately enables us to write down
all the entries of V using only a poly(rk/ε) number of vari-
ables, we are then faced with the task of writing down U
in terms of such a V . Here a priori we could have many
distinct rows in W , and may have n constraints to enforce.
We observe though that since the entries of W are integers
in {1, 2, . . . , poly(n)}, if we round them to the nearest power
of 1 + ε, the solution cost changes only by a (1 + ε)-factor.
Moreover, given that we have r distinct columns, for any row
it is entirely specified on these r columns and after rounding,
there are only O((logn)/ε)r choices for entries on these r
columns, which upper bounds the number of distinct rows.
This ultimately allows us to write down U in terms of V with
only O((logn)/ε)r not equal constraints. This ultimately
yields our improved running time when parameterizing W
by its number of distinct columns.

Dealing with Rational Functions .
There is a subtle problem with the above arguments. When

one solves for the i-th column V i of V in terms of SDWiU ,
the entries of V i are rational functions rather than polynomi-
als, and we cannot afford to clear the denominators of V i for
every i without blowing up the degree of the polynomials to
Ω(n), which would give a running time of npoly(kr/ε). While
this is not a problem when we parameterize the problem by
the rank of W , since we anyway spend this amount of time,
this is a problem when we parameterize by the number of dis-
tinct columns of W , in which we seek polynomial time even
for super-constant r (and constant k/ε). Instead, we write V
as V ′ ·D, where V ′ has entries which are polynomials, and D
is a diagonal matrix whose entries are 1

det(U>DWiS
>SDWiU) ,

given by Cramer’s rule. The entries of D are rational func-
tions, and we would like to make them polynomials. Since
W has at most r distinct columns, D has at most r distinct
entries and we can create r new variables for the entries of D.
However, when we try to solve for U in terms of V we face
the same problem again: we can write U as E ·U ′, where U ′
only has polynomial entries, but since we do not assume a
small number of distinct rows of W , it follows that E could
have n distinct entries 1

det(U>D
WiS>SDWiU) for i = 1, . . . , n,

where DW i is the diagonal matrix with the i-th row of W
on the diagonal. As mentioned above, we fix this problem
by rounding the entries of W to powers of 1 + ε, and then
observing that the number of distinct rows of W can only
be O((logn)/ε)r after rounding.

Other Methods .
Our techniques for weighted non-negative matrix factor-

ization and tensor completion largely follow these ideas as
well, where we combine our “guessing a sketched matrix”
approach with techniques of Arora-Ge-Kannan-Moitra [4]
and Moitra [43]. Our bi-criteria solution directly follows
from known sketching results.

1.4 Empirical Results
We perform some preliminary experiments in Section 10,

which show our algorithm may perform better than our
theory predicts.

2. PRELIMINARIES

Notation .
Let R denote the real numbers, and R≥0 denote the nonneg-

ative real numbers. Let ‖A‖ (and sometimes ‖A‖2) denote
the spectral norm of matrix A. Let ‖A‖2F =

∑
i,j
A2
i,j denote

the Frobenius norm of A. Let W ◦A denote the entry-wise
product of matrices W and A. Let ‖A‖2W =

∑
i,j
W 2
i,jA

2
i,j

denote the weighted Frobenius norm of A. Let nnz(A) de-
note the number of nonzero entries of A. Let det(A) denote
the determinant of a square matrix A. Let A> denote the
transpose of A. Let A† denote the Moore-Penrose pseudoin-
verse of A. Let A−1 denote the inverse of a full rank square
matrix A.
For the weight matrix W , we always use Wj to denote the

j-th column vector of W , and W i to denote the i-th row of
W . Let DWj denote the diagonal matrix with entries from
the column vector Wj and DW i denote the diagonal matrix
with entries from the row vector W i.

The following real algebraic geometry definitions are needed
when proving a lower bound for the minimum nonzero cost
of our problem. For a full discussion, we refer the reader to
Bochnak et al. [11]. Here we use the brief summary by Basu
et al.[9].

Definition 2.1 ([9]). Let R be a real closed field.
Given x = (x1, · · · , xv) ∈ Rv, r ∈ R, r > 0, we denote

Bv(x, r) = {y ∈ Rv|‖y − x‖2 < r2} (open ball),
B̄v(x, r) = {y ∈ Rv|‖y − x‖2 ≤ r2} (closed ball).

A set S ⊂ Rv is open if it is the union of open balls, i.e.,
if every point of U is contained in an open ball contained in
U .
A set S ⊂ Rv is closed if its complement is open. Clearly,

the arbitrary union of open sets is open and the arbitrary
intersection of closed sets is closed.

Semi-algebraic sets are defined by a finite number of poly-
nomial inequalities and equalities.

A semi-algebraic set has a finite number of connected com-
ponents, each of which is semi-algebraic. Here, we use the
topological definition of a connected component, which is a
maximal connected subset (ordered by inclusion), where con-
nected means it cannot be divided into two disjoint nonempty
closed sets.

A closed and bounded semi-algebraic set is compact.
A semi-algebraic set S ⊂ Rv is semi-algebraically con-

nected if S is not the disjoint union of two non-empty semi-
algebraic sets that are both closed in S. Or, equivalently, S
does not contain a non-empty semi-algebraic strict subset
which is both open and closed in S.

A semi-algebraically connected component of a semi-algebraic
set S is a maximal semi-algebraically connected subset of S.

Renegar [47, 48] and Basu et al. [8] independently provided
an algorithm for the decision problem for the existential
theory of the reals is to decide the truth or falsity of a
sentence (x1, · · · , xv)F (f1, · · · , fm) where F is a quantifier-
free Boolean formula with atoms of the form sign(fi) = σ
with σ ∈ {0, 1,−1}. Note that this problem is equivalent
to deciding if a given semi-algebraic set is empty or not.



Here we formally state that theorem. For a full discussion of
algorithms in real algebraic geometry, we refer reader to [9]
and [7].

Theorem 2.2 (Decision Problem [47, 48, 8]). Given
a real polynomial system P (x1, x2, · · · , xv) having v variables
and m polynomial constraints fi(x1, x2, · · · , xv)∆i0, ∀i ∈ [m],
where ∆i is any of the “standard relations”: {>,≥,=, 6=,≤
, <}, let d denote the maximum degree of all the polynomial
constraints and let H denote the maximum bitsize of the
coefficients of all the polynomial constraints. Then in

(md)O(v)poly(H)

time one can determine if there exists a solution to the poly-
nomial system P .

The key result we used for proving lower bound is the
following bound on the minimum value attained by an integer
polynomial restricted to a compact connected component
of a basic closed semi-algebraic subset of Rv defined by
polynomials with integer coefficients in terms of the degrees
and the bitsizes of the coefficients of the polynomials invovled.

Theorem 2.3 ([31]). Let T = {x ∈ Rv|f1(x) ≥ 0, · · · ,
f`(x) ≥ 0, f`+1(x) = 0, · · · , fm(x) = 0} be defined by polyno-
mials f1, · · · , fm ∈ Z[x1, · · · , xv] with n ≥ 2, degrees bounded
by an even integer d and coefficients of absolute value at most
H, and let C be a compact connected component of T . Let
g ∈ Z[x1, · · · , xv] be a polynomial of degree at most d and
coefficients of absolute value bounded by H. Then, the min-
imum value that g takes over C is satisfies that if it is not
zero, then its absolute value is greater than or equal to

(24−v/2H̃dv)−v2vdv ,

where H̃ = max{H, 2v + 2m}.

While the above theorem involves notions from topology,
we shall apply it in an elementary way. Namely, in our setting
T will be bounded and so every connected component, which
is by definition closed, will also be bounded and therefore
compact. As the connected components partition T the
theorem will just be applied to give a global minimum value
of g on T provided that it is non-zero.

3. MULTIPLE REGRESSION SKETCH

Theorem 3.1. Let A1, . . . , Am ∈ Rn×k be m matrices of
size n × k. Let b1, . . . , bm ∈ Rn×1 be m column vectors of
dimension n.

For 1 ≤ i ≤ m denote:

xi = argmin
x∈Rk×1

∥∥∥Aix− bi∥∥∥2

2

the solution of the i-th regression problem.
Let S ∈ Rt×n be a random matrix with i.i.d. Gaussian

entries with zero mean and standard deviation 1/
√
t. For

1 ≤ i ≤ m denote:

yi = argmin
y∈Rk×1

∥∥∥SAiy − Sbi∥∥∥2

2

the solution of the i-th regression problem in the sketch space.

We claim that for every 0 < ε < 1/2 one can set t = O(k/ε)
such that:

m∑
i=1

∥∥∥Aiyi − bi∥∥∥2

2
≤ (1 + ε) ·

m∑
i=1

∥∥∥Aixi − bi∥∥∥2

2
.

The rest of this section is devoted to the proof of this theorem.
For 1 ≤ i ≤ m we let Di ≥ 1 denote the smallest number

such that for every x ∈ Rk×1 and λ ∈ R one has:∥∥∥S(Aix+ λbi
)∥∥∥2

2
∈
[ 1
Di

;Di
]
·
∥∥∥Aix+ λbi

∥∥∥2

2
.

Claim 3.2. For every i∥∥∥Aiyi − bi∥∥∥2

2
≤
(
Di
)2 · ∥∥∥Aixi − bi∥∥∥2

2
.

Proof. This follows from the definition of Di.

Claim 3.3. One can set t = O(k/ε) such that for every i

PrS
[
Di ≥ 1.01

]
≤ 2−Ω(1/ε).

Proof. This follows from Theorem 2.1 from [53].

Claim 3.4. One can set t = O(k/ε) such that for every i

E
S

[∥∥∥Aiyi − bi
∥∥∥2

2
−
∥∥∥Aixi − bi

∥∥∥2

2

∣∣∣∣ Di ≤ 1.01
]

≤ ε·
∥∥∥Aixi−bi

∥∥∥2

2
.

Proof. This follows from the proofs of Theorem 2.8 and
Theorem 2.16 from [53] (adapted to Gaussian matrices).

Claim 3.5. One can set t = O(k/ε) such that for every i

ES
[(
Di
)2 ∣∣∣ Di ≥ 1.01

]
= O(1).

Proof. One can see thatDi is polynomially related to the
condition number of a random O(k/ε)× (k+ 1) matrix with
i.i.d. Gaussian entries; indeed it corresponds to the maximum
distortion of S applied to the vectors in the column span of
an n× (k + 1) orthonormal matrix U whose columns span
the space spanned by the columns of Ai together with bi. By
rotational invariance, S · U also has i.i.d. Gaussian entries.
To understand the condition number one can invoke the
main result from [14] which gives for all sufficiently large t:
PrS

[
Di ≥ t

]
= 1

tΘ(k/ε) . Thus,

ES
[(
Di
)2 ∣∣∣ Di ≥ 1.01

]
≤ O(1) +

∫ ∞
1.01

t2

tΘ(k/ε) dt = O(1).



Having these Claims, let us complete the proof. We have
for every 1 ≤ i ≤ m:

ES
[∥∥∥Aiyi − bi∥∥∥2

2
−
∥∥∥Aixi − bi∥∥∥2

2

]
= PrS

[
Di ≥ 1.01

]
· ES

[∥∥∥Aiyi − bi∥∥∥2

2
−
∥∥∥Aixi − bi∥∥∥2

2

∣∣∣∣ Di ≥ 1.01
]

+ PrS
[
Di ≤ 1.01

]
· ES

[∥∥∥Aiyi − bi∥∥∥2

2
−
∥∥∥Aixi − bi∥∥∥2

2

∣∣∣∣ Di ≤ 1.01
]

≤ 2−Ω(1/ε) · ES
[(
Di
)2 − 1

∣∣∣ Di ≥ 1.01
]
·
∥∥∥Aixi − bi∥∥∥2

2

+ PrS
[
Di ≤ 1.01

]
· ES

[∥∥∥Aiyi − bi∥∥∥2

2
−
∥∥∥Aixi − bi∥∥∥2

2

∣∣∣∣ Di ≤ 1.01
]

≤ 2−Ω(1/ε) · ES
[(
Di
)2 − 1

∣∣∣ Di ≥ 1.01
]
·
∥∥∥Aixi − bi∥∥∥2

2

+ ε ·
∥∥∥Aixi − bi∥∥∥2

2

≤ O(ε) ·
∥∥∥Aixi − bi∥∥∥2

2
,

where the second step is by Claim 3.2 and Claim 3.3, the
third step is by Claim 3.4, and the fourth step is by Claim 3.5.
Summing over i and applying the Markov’s inequality, we

are done.
While the above result is for Gaussian sketching matri-

ces, one can also combine a Gaussian random matrix with
a Count-Sketch matrix [16]. This way we are still getting
O(k/ε) rows, but now one can perform a matrix-vector mul-
tiplication in time proportional to the sparsity of the vector
plus poly(kr̃/ε), where r̃ is the dimension of the union of
column spaces of Ai (which is at most km in the worst case,
but is much smaller for our applications).

4. ADDITIVE APPROXIMATION
In this Section, to demonstrate the new technique, we

prove the following theorem.

Theorem 4.1. Given A,W ∈ Rn, 1 ≤ k ≤ n and 0 <
ε, τ < 0.1 such that:

• rank(W ) = r;

• all the non-zero entries of A and W are multiples of
δ > 0;

• all the entries of A and W are at most ∆ > 0 in
absolute value,

one can output a number Λ in time nO(k2r/ε) · logO(1) ∆
δτ

such
that OPT ≤ Λ ≤ (1 + ε)OPT + τ, where

OPT = min
U∈Rn×k,V ∈Rk×n

‖(UV −A) ◦W‖2F .

We first assume that W has no zero entries; later, we will
remove this assumption by being slightly more careful.

Lemma 4.2.

OPT ≤ poly(n,∆)

Proof. Set U and V to be the zero matrices.

Let us expand the objective function in two ways. On the
one hand:∥∥∥(UV −A) ◦W

∥∥∥2

F
=

n∑
i=1

∥∥∥U iV DW i −AiDW i

∥∥∥2

2
. (1)

On the other hand:∥∥∥(UV −A) ◦W
∥∥∥2

F
=

n∑
j=1

∥∥∥DWjUVj −DWjAj∥∥∥2

2
. (2)

We can sketch (1) and (2) using Gaussian matrices S′ ∈
Rn×t and S′′ ∈ Rt×n as follows:

n∑
i=1

∥∥∥U iV DW iS
′ −AiDW iS

′
∥∥∥2

2
.

and
n∑
j=1

∥∥∥S′′DWjUVj − S′′DWjAj∥∥∥2

2
.

Denote, for 1 ≤ i ≤ n, P i := V DW iS′ and for 1 ≤ j ≤ n
denote Qj := S′′DWjU .
The crucial observation is that we can encode all P i’s

and Qj ’s using linear functions of 2krt variables, since W
has rank r, and we can represent its rows/columns as linear
combinations of r fixed rows/columns.
For fixed P i’s we define:

Û := argmin
U∈Rn×k

n∑
i=1

∥∥∥U iP i −AiDW iS
′
∥∥∥2

2
.

Similarly, for fixed Qj ’s we define:

V̂ := argmin
V ∈Rk×n

n∑
j=1

∥∥∥QjVj − S′′DWjAj∥∥∥2

2
.

Let us use
∥∥∥(Û V̂ −A)◦W∥∥∥2

F
as a proxy for the objective

function. We need to argue that we can, in fact, minimize
the new objective function efficiently, and that it gives a
good approximation to the original objective function, if
t = Θ(k/ε), with high probability.

Optimization .
We assume that all P i’s and Qj ’s have the maximum rank

k. Later we will show that, since W has no zero entries, this
does not affect the quality of the solution found under this
non-degeneracy constraint.
Assuming non-degeneracy of P i’s and Qj ’s, we can express

Û and V̂ as follows:

Û i = AiDW iS
′(P i)>

(
P i(P i)>

)−1

and

V̂j =
(
Q>j Qj

)−1
Q>j S

′′DWjAj . (3)

Since the entries of P i’s and Qj ’s are linear functions of 2krt
variables, we can represent the entries of Û and V̂ as rational
functions over 2krt variables and of degree O(k) (we use
Cramer’s formula for that).



Finally, we can represent
∥∥∥(Û V̂ −A)◦W∥∥∥2

F
as a rational

function over 2krt variables of degree O(kn).
We can minimize the objective function using the algo-

rithm for checking the feasibility of a system of polynomial
inequalities from Theorem 2.2, together with a binary search
over the value of the objective function. Each iteration of
the binary search takes time

(#degree of the polynomials)O(#variables)·poly(input size).

Since the degree is O(nk), the number of variables is
O(rkt) = O(k2r/ε), and the input size is poly(n, log(∆/δ)),
the running time of a single iteration of the binary search is

nO(k2r/ε) · logO(1)(∆/δ).

Finally, to perform the binary search, we needO(log(n∆/τ)/ε)
iterations to check for the existence of a solution with cost
at most (1 + ε)OPT + τ (assuming that sketching and non-
degeneracy constraints on P i’s and Qj ’s increase the cost to
at most (1 + ε)OPT + τ , which we will show later), since, by
Lemma 4.2, OPT ≤ poly(n,∆). The overall running time is
thus: nO(k2r/ε) · logO(1) ∆

δτ
.

Near-optimality .
Here we show that one can set t = O(k/ε) so that, with

high probability,

min
P i,Qj

∥∥∥(Û V̂ −A)◦W∥∥∥2

F
≤ (1+ε)·min

U,V

∥∥∥(UV −A)◦W
∥∥∥2

F
+τ ′.

(4)
for every τ ′ > 0. This, together with the above discussion
about the optimization procedure, concludes the analysis of
the algorithm.
As such, (4) follows from Theorem 3.1. Indeed, if the

optimal solution is U∗V ∗, then set Qj := S′′DWjU
∗. Qj

may be degenerate, but, since W has no zero entries, we
can perturb U∗ by an arbitrarily small amount to make Qj
non-degenerate (with probability one over S′′). Then, with
high probability over S′′, we have∥∥∥(U∗V̂ −A)◦W∥∥∥2

F
≤ (1+ε)·

∥∥∥(U∗V ∗ −A)◦W
∥∥∥2

F
+τ ′ (5)

for an arbitrarily small τ ′ > 0. Similarly, we can set P i =
V̂ DW iS′ (again, it can be degenerate, but the same argument
as above for Qj applies), which gives, with high probability
over S′,∥∥∥(Û V̂ −A)◦W∥∥∥2

F
≤ (1+ε) ·

∥∥∥(U∗V̂ −A)◦W∥∥∥2

F
+τ ′ (6)

for an arbitrarily small τ ′ > 0.
Combining (5) and (6), we are done.

4.1 Handling Weight Matrices With Zero En-
tries

Here we prove the version of Theorem 4.1 for the case
when W is allowed to have zero entries. Let us first see what
breaks in the previous argument.
What does not work anymore is that (after a small pertur-

bation) Qj = S′′DWjU and P i = V DW iS′ can be assumed
to have the maximum possible rank k. Nevertheless, we can
assume that every Qj has rank equal to

tj = min(k, the number of non-zero entries of Wj).

Moreover, we can assume that the first tj columns of Qj are
linearly-independent. A similar argument applies to P i’s as
well.
The above argument allows us to express Û and V̂ as

before, but instead of Qj we use the first tj columns of Qj
(and, similarly for the P i’s).

5. MULTIPLICATIVE APPROXIMATION
In order to get a genuine multiplicative (1+ε)-approximation,

we need to lower bound OPT–provided that it is not equal
to zero–which would allow us to set τ ≤ ε · OPT in the
algorithm from the previous section.
We do this for the following optimization problem:

min
U,V :

‖UV ‖2F≤(∆/δ)poly(n)

‖(UV −A) ◦W‖2F .

Note that we assume ‖UV ‖F has an upper bound, as other-
wise we cannot write down U and V using poly(n) bits.

Using the approach outlined above, one can write down a
rational function p(x1, . . . , xl)/q(x1, . . . , xl) such that:

• l = O(k2r/ε);

• for every x such that q(x) 6= 0, one has p(x)/q(x) ≥
OPT;

• for every τ ′ > 0, there exists x∗ such that p(x∗)/q(x∗) ≤
(1 + ε)OPT + τ ′;

• both p and q are homogeneous, and their degrees are
O(kn);

• the coefficients of p and q are integers with absolute
values at most (∆/δ)poly(n);

• q(x) =
2n∏
i=1
g2
i (x), where every gi(x) is the determinant

polynomial.

Only the fifth item needs an explanation. If sketch matri-
ces S′ and S′′ were integer, then the last item would hold
automatically (by scaling up all the coefficients). But, in re-
ality, S′ and S′′ are Gaussian matrices. Fortunately, one can
show that it is possible to discretize them up to ±1/poly(n)
so that the multiple regression theorem (Theorem 3.1) still
goes through. Indeed, this just follows from the fact that dis-
cretization to ±1/poly(n) preserves condition number and
subspace embeddings (since one argues about preserving
lengths of unit vectors), and approximate matrix product
properties used in that theorem.

Lower Bound .
We use the same way explained in section 4 to create vari-

ables, write down the system in a small number of variables,
and also create some “ 6= 0” constraints. It will generate 2n
determinant polynomials, which are defined in the following
way,

gi(x) = det((SDWiU)>Pi(SDWiU)Pi), ∀i ∈ [n]
gi+n(x) = det((V DW iS)Qi((V DW iS)Qi))>),∀i ∈ [n]



where Pi and Qi are maximal linearly indepdent subsets.
Then we can write down the following optimization problem,

min
x∈Rl

p(x)/q(x)

s.t. g2
i (x) 6= 0, ∀i ∈ [2n],

q(x) =
2n∏
i=1

g2
i (x)

To lower bound p(x)/q(x), let us introduce a new vari-
able y. Lower bounding p(x)/q(x) is equivalent to lower
bounding p(x)y subject to q(x)y − 1 = 0. By assumption
‖U‖2F , ‖V ‖2F ≤ (∆/δ)poly(n)4, we know the upper bound of
all the variables we created except for y. In order to give
an upper bound for y, it suffices to show a lower bound for
q(x). By definition, q(x) is the square of the product of all
the determinant polynomials. Thus, for every determinant
polynomial gi(x), we need to show that if g2

i (x) is nonzero,
then it is at least something.
Define B to be an `2-ball with bounded radius, e.g., B =

{x ∈ Rl|
l∑
i=1
x2
i ≤ (∆/δ)poly(n)}. By [9], we know that B is

a closed and bounded semi-algebraic set. Thus B is also
compact. Let x∗ denote the optimal solution of the original
problem min

x∈Rl
g2
i (x) when all variables are bounded. Because

the radius of the ball B is large enough, x∗ ∈ B. Define
T1 = {x ∈ Rl|gi(x) ≥ 0} and let T = T1 ∩B. By definition
(see [9]), T1 is a basic closed semi-algebraic set. Thus, the
intersection of T1 and B is a semi-algebraic set with a finite
number of connected components. Because B is compact and
T1 is closed, each of these connected components is compact.
There must exist one compact connected component C which
contains the optimal soltuion x∗. Applying Theorem 2.3 on
system {T,C, g2

i (x)}, we conclude that if g2
i (x) is not zero,

then it is at least(
(∆/δ)poly(n))−kO(l)

= (∆/δ)−poly(n)2Õ(l)

= (∆/δ)−poly(n)

which immediately gives us an upper bound for y,

y ≤ ((∆/δ)poly(n))n = (∆/δ)poly(n).

Now, we are able to show a lower bound for p(x)y. Define

T1 = {x ∈ Rl, y ∈ R|
m∏
i=1

g2
i (x)y − 1 = 0}

Define B to be a bounded ball over l + 1 variables,

B = {(x, y) ∈ Rl+1|
l∑
i=1

x2
i + y2 ≤ (∆/δ)poly(n)}

By [9], B is a closed and bounded semi-algebraic set. Thus
B is also compact. Define T = T1 ∩B. Let (x∗, y∗) denote
the optimal solution of min

(x,y)∈T1
p(x)y, then (x∗, y∗) is also

the optimal solution of min
(x,y)∈T

p(x)y, because all variables

are bounded and the radius of the ball is large enough.
4A priori, we know only that ‖UV ‖2F is bounded. But we
can get that each of the matrices is bounded by taking an
optimal solution and orthonormalizing one of the matrices.

By definition (see [9]), T1 is a basic closed semi-algebraic
set. Thus, the intersection of T1 and B is a semi-algebraic set
with a finite number of connected components. Because B is
compact and T1 is closed, each of the connected components
is compact.
There must exist a compact connected component that

contains the optimal solution (x∗, y∗). Let C denote that
component. Applying Theorem 2.3 on system {T,C, p(x)y},
where the number of constraints is bounded by O(1), the max-
imum coefficient of absolute value is bounded by (∆/δ)poly(n),
the maximum degree is bounded by O(nk), the number of
variables is bounded by l = O(rk2/ε), we conclude that if
the minimum cost is not zero, then it is at least

((∆/δ)poly(n))−n
O(rk2/ε)

= exp
(
−nO(k2r/ε) logO(1)

(
∆
δ

))
. (7)

Hence, OPT is at least (7) as well.
Plugging τ � ε· (7) ≤ εOPT into the algorithm from

the previous section with an additional constraint ‖Û V̂ ‖2F ≤(
∆
δ

)poly(n), we do binary search to narrow down the range
of [Λ−,Λ+] until we reach Λ. During the jth step of binary
search, we use Theorem 2.2 to check if the following semi-
algebraic set is empty or not,

S = {x ∈ Rl|p(x) ≤ Λ+
j q(x), p(x) ≥ Λ−j q(x), q(x) 6= 0}

where Λ−1 is initialized to be τ and Λ+
1 is initialized to be

poly(n,∆). We obtain the following theorem.

Theorem 5.1. Given A,W ∈ Rn, 1 ≤ k ≤ n and 0 <
ε, τ < 0.1 such that:

• rank(W ) = r;

• all the non-zero entries of A and W are multiples of
δ > 0;

• all the entries of A and W are at most ∆ > 0 in
absolute value,

one can output a number Λ in time nO(k2r/ε) · logO(1) ∆
δτ

such
that OPT ≤ Λ ≤ (1 + ε)OPT, where

OPT = min
U∈Rn×k,V ∈Rk×n

‖UV ‖2F≤( ∆
δ )poly(n)

‖(UV −A) ◦W‖2F .

6. RECOVERING THE SOLUTION ITSELF
Here we show how to recover an approximate solution, not

only the value of OPT.
The idea is to recover the entries of U and V one by

one and use the algorithm from the previous section for
the corresponding decision problem. We initialize the semi-
algebraic set to be

S = {x ∈ Rl|q(x) 6= 0, p(x) ≤ Λq(x)}

We start by recovering the first entry of U . We perform
the binary search to localize the entry within an interval of
length δ′, which takes poly(n) · log

(
∆
δδ′

)
invocations of the

decision algorithm. For each step of binary search, we use 2.2
to determine if the following semi-algebraic set S is empty
or not,

S ∩ {U1,1(x) ≥ Û−1,1, U1,1(x) ≤ Û+
1,1}



After that, we declare the first entry of U to be any point
in this interval. This changes the cost of the solution by at
most δ′ ·

(
∆
δ

)poly(n). Then, we add an equality constraint that
fixes the entry of Û to this value, and add a new constraint
into S permanently, e.g. S ← S ∩ {U1,1(x) = Û1,1}. Next,
we repeat the same with the second entry of U and so on.
This allows us to recover a solution of cost at most (1 +

ε)OPT + τ in time

nO(k2r/ε) · logO(1)
(

∆
δτ

)
.

7. ADVERSARIAL MATRIX COMPLETION
Here we prove the following theorem.

Theorem 7.1. Let B ∈ Rn×n be a rank-k matrix with
entries that are multiples of δ > 0 bounded by ∆ > 0.

Let 1 ≤ r ≤ n be an integer parameter.
Let C be an n×n matrix, where in every column there are

at most r question marks and other entries are equal to the
corresponding entries of B.

Then, there is an algorithm that:

• receives C as an input;

• outputs a rank-k matrix that is τ -close to C in Frobe-
nius norm (restricted to the entries that are not replaced
with a question mark);

• has running time nO(k2r) · logO(1) ( ∆
δτ

)
.

A naive attempt is to use the algorithm from the previous
section with W equal to 0 for the missing entries and to 1
for the “surviving” entries. Unfortunately, setting W like
this does not work, since W may not have small rank.
We fix it by proving the following lemma.

Lemma 7.2. For every set system z1, z2, . . . , zn ⊆ [n] with
|zj | ≤ r there exists a rank-(2r + 1) integer matrix W such
that, for every 1 ≤ i ≤ n, the entry in the i-th column and
j-th row,

W j
i

{
= 0 if j ∈ zi
> 0 if j ∈ [n]\zi

Moreover, all the entries of W are bounded by nO(r) in abso-
lute value.

Recall that for the i-th column of W , zi denotes the set of
row indices that have zero entry. For the i-th column of W ,
define a polynomial pi(x) such that

pi(x) =
∏
`∈zi

(x− j)2 =
2|zi|+1∑
`=1

ai`x
`−1

where all ai` are integers. Since 2|zi|+ 1 is at most 2r + 1,
we can also think of pi(x) as a degree 2r polynomial,

pi(x) =
2r+1∑
`=1

ai`x
`−1

Then, we can use ai` to create a basis T ∈ Rn×(2r+1) which
has rank at most 2r + 1. Let T i` denote the entry of the i-th
row and `-th column, then set T i` = ai`, ∀i ∈ [n],∀` ∈ [2r+1].

Let T` denote the `-th column of matrix T , ∀` ∈ [2r+ 1]. To
guarantee a linear combination of those 2r+1 columns always
outputs a nonnegative vector, we can just choose coefficients
1, x, x2, · · · , x2r. Let S denote a set of all possible vectors
formed by the following linear combination,

T (x) =
2r+1∑
`=1

x`−1T` ∈ Rn×1

Moreover, we have

T (x) =
2r+1∑
`=1

x`−1T` =
2r+1∑
`=1

x`−1 [a1` a2` · · · an`
]>

=
[

2r+1∑̀
=1
x`−1a1`

2r+1∑̀
=1
x`−1a2` · · ·

2r+1∑̀
=1
x`−1an`

]>
=

[
p1(x) p2(x) · · · pn(x)

]>
,

where the second equality follows by the definition of T` and
the last equality follows by the definition of pi(x). Let T j(x)
denote the jth entry of column vector T (x) ∈ Rn×1. For any
column vector Wi, we assign T (i) to it,

Wi ← T (i)

which has the following property: for every 1 ≤ i ≤ n, the
entry at the i-th column and j−th row satisfies

W j
i =

{
T j(i) = pi(j) = 0 if j ∈ zi,
T j(i) = pi(j) > 0 if j ∈ [n]\zi.

Note that for any column vector Wi, we know that Wi ∈ S
and rank(S) = 2r + 1. Thus, rank(W ) = 2r + 1.

8. FEW DISTINCT COLUMNS
In this section we show how to improve the running time

from npoly(k,r,1/ε) to poly(n)·2poly(k,r,1/ε) under the following
assumptions: (1) ∆ = poly(n)δ; and (2) ‖UV ‖2F ≤ (∆/δ)n

γ

,
for an arbitrarily small constant γ > 0. In Section 8.1, as
a warmup we assume that W has r distinct columns and r
distinct rows, while in Section 8.2 and 8.3 we give our main
result assuming only that W has r distinct columns.
A crucial observation is that the term npoly(k,r,1/ε) shows

up in the “rank-r” algorithm due to the fact that the degree
of polynomials we optimize is Ω(n). The reason for this is
that entries of Û and V̂ are rational functions with Ω(n)
potentially different denominators. When we combine them
in a single rational function that corresponds to ‖(Û V̂ −A)◦
W‖2F , we get a denominator of degree Ω(n).

8.1 r distinct rows and columns
In this subsection, as a warmup we assume that W has r

distinct rows and r distinct columns. Then, we get rid of the
dependence on n in the degree. Indeed, now we have only 2r
distinct denominators (w.l.o.g., assume the first r columns
are distinct and the first r rows are distinct),

gi(x) = det((SDWiU)>Pi(SDWiU)Pi), ∀i ∈ [r]
fi(x) = det((V DW iS)Qi((V DW iS)Qi))>), ∀i ∈ [r]

where Pi and Qi are maximal linearly independent subsets.



Then we can write down the following optimization problem,

min
x∈Rl

p(x)/q(x)

s.t. g2
i (x) 6= 0, f2

i (x) 6= 0,∀i ∈ [r],

q(x) =
r∏
i=1

g2
i (x)f2

i (x)

where q(x) has degree O(rk), the maximum coefficient in
absolute value is (∆/δ)O(rknγ), and the number of variables
O(rk2/ε). Using the same argument as in the rank-r case
and applying Theorem 2.3, we can achieve the following

minimum nonzero cost: (∆/δ)−n
γ2Õ(rk2/ε)

. Now, using the
approach described in section 6, we can find the solution in
time

(nnz(A) + nnz(W ))nγ + n2Õ(rk2/ε) logO(1)(∆/δτ)

within a multiplicative factor of 1 + ε and additive factor of
τ .
One can adjust the lower bound on OPT accordingly, and

conclude that an algorithm for approximating OPT within
a multiplicative factor of 1 + ε can be done in time

(nnz(A) + nnz(W ))nγ + n2Õ(rk2/ε) logO(1)(∆/δ)

where

OPT = min
U,V

‖UV ‖2F≤(∆/δ)n
γ

‖(UV −A) ◦W‖2F .

8.2 r distinct columns, OPT = 0
This section, we explain how to find the solution to the

weighted low rank approximation problem when W has at
most r distinct columns and OPT = 0.
The key observation is that for any matrix A and W ∈

Rn×n≥0 , if there exists a solution of an n× k matrix U and a
k × n matrix V such that,

‖W ◦ (UV −A)‖2F = OPT,

then there exists another matrix W ′ ∈ {0, 1}n×n such that

‖W ′ ◦ (UV −A)‖2F = OPT

where W ′i,j = 0 if Wi,j = 0 and W ′i,j = 1 if Wi,j > 0.
The above observation states that modifying the weight

matrix to be Boolean does not change the optimal cost. Since
W has r distinct columns, now that it is Boolean it has at
most 2r distinct rows. Indeed, each row of W is completely
determined after fixing its values on the r distinct columns,
and there are only 2r possibly fixings. W.l.o.g. we assume
that the first r columns are distinct. Instead of having at
most 2r distinct denominators as in Section 8.1, we have at
most r + 2r distinct denominators. We create l variables for
{SDW1U, · · · , SDWrU}. Then we can write down V̂ in the
following way,

V̂j = (SDWj
U)† · SDWj

Aj

=
(

((SDWj
U)Pi )> · (SDWj

U)Pi
)−1

· ((SDWj
U)Pi )>SDWj

Aj

where Pi denotes a subset of rows. For all DWj s in the
group Zi, they share the same Pi, where for any j ∈ Zi,
DWj = DWi .
Thus to express V̂ , there are only r distinct denomina-

tors gi(x) which are the determinants of ((SDWjU)Pi)> ·
(SDWjU)Pi . In order to remove these denominators, we

can create a new variable xl+i and add a new equality con-
staint gi(x)xl+i − 1 = 0. Therefore, we do not have any
denominators in V̂ .
W.l.o.g., we assume that the first 2r rows ofW are distinct.

Using V̂ we can write down Û in the following way,

Ûj = AjDW j (V̂ DW j )†

= AjDW j ((V̂ DW j )Qi )>
(

(V̂ DW j )Qi ((V̂ DW j )Qi )>
)−1

where Qi denotes a subset of columns, where all DW j s in
the group Z′i can share the same Qi, and for any j ∈ Z′i,
DW j = DW i .
Thus, to express Û , there are only 2r distinct denomi-

nators fj(x) which are the determinants of the matrices
(V̂ DW j )Qi((V̂ DW j )Qi)>.

Finally, we can use a small number of variables to represent
all the entries of Û and V̂ . It allows us to write the following
optmization problem,

min
x∈Rl+r

p(x)/q(x)

s.t. gi(x)xl+i − 1 = 0, ∀i ∈ [r]
f2
j (x) 6= 0,∀j ∈ [2r]

q(x) =
2r∏
j=1

f2
j (x)

where q(x) has degreeO(2rk2), maximum coefficients bounded
in absolute value by (∆/δ)O(2rknγ), l = O(rk2/ε) and the
number of variables O(rk2/ε). Using the same argument as
for the rank-r case and applying Theorem 2.3, we have the

following minimum nonzero cost: (∆/δ)−n
γ2Õ(r2k2/ε)

.
Using the approach described in section 6, we can find the

solution achieving zero cost in time

(nnz(A) + nnz(W ))nγ + n2Õ(r2k2/ε) logO(1)(∆/δ)

8.3 r distinct columns, OPT 6= 0

Lower Bound .
Let U, V denote the optimal solution A,W , which gives

nonzero cost. We can modify W to a new matrix W ′ in
the following sense, W ′i,j = δ if Wi,j 6= 0 and W ′i,j = 0 if
Wi,j = 0. Then we know that

‖W ′ ◦ (UV −A)‖2F ≤ ‖W ◦ (UV −A)‖2F 6= 0

Note that if problem A,W ′ has a zero cost solution, then
problem A,W also has a zero cost solution, which contradicts
our assumption in this section. Thus problem A,W ′ does not
have a zero cost solution. It follows from previous sections
that the minimum nonzero cost of min

U,V
‖W ′ ◦ (UV −A)‖2F is

at least

(∆/δ)−n
γ2Õ(r2k2/ε)

.

Let U ′, V ′ denote the optimal solution of problem A,W ′.
Thus we have

‖W ◦(UV −A)‖2F ≥ ‖W ′◦(UV −A)‖2F ≥ ‖W ′◦(U ′V ′−A)‖2F

which is at least (∆/δ)−n
γ2Õ(r2k2/ε)

.



Algorithm .
For notational convenience, let δ = 1. Then each entry

of the input weight matrix W ′ is in {0, 1, 2, · · · , poly(n)}.
For each entry W ′i,j , we round it to the smallest (1 + ε)x
such that W ′i,j ≤ (1 + ε)x where x is an integer. Because
W ′ is bounded, the total number of choices for the power x
is O(log(n)/ε). Define W to be the matrix after rounding.
Define OPT to be minU,V ‖W ′ ◦ (UV −A)‖2F . Then W has
the following properties

1. W has r distinct columns,
2. W has R := (log(n)/ε)O(r) distinct rows,
3. OPT ≤ min

U,V
‖W ◦ (UV −A)‖2F ≤ (1 + ε)2OPT.

We prove the above three properties one by one.
The rounding is a deterministic procedure: if two values

are the same in W ′, then they are the same in W . Hence,
Property 1 holds.
To prove Property 2, take the r distinct columns i1, ..., ir.

Then every other column can be labeled j in {i1, ..., ir}. If
you fix the values on entries i1, ..., ir in a row, this fixes the
values on every other column. So the number of distinct rows
is the number of fixings to the values on i1, ..., ir. Each entry
has log1+ε poly(n) = O((logn)/ε) possibilities, so there are
O((logn)/ε)r distinct rows.
Because of the rounding procedure, each W ′i,j satisifies

that W ′i,j ≤Wi,j ≤ (1 + ε)W ′i,j , which implies Property 3.
We use the same approach as in Section 8.2 to create

variables, write down the polynomial systems and add not
equal constraints. Instead of having r + 2r distinct denomi-
nators, we have r +R, where R = O((logn)/ε)r. We create
l = O(rk2/ε) variables for {SDW1U, · · · , SDWrU}, then we
can write down V̂ with r distinct denominators gi(x). Each
gi(x) is non-zero in an optimal solution using the perturba-
tion argument in Section 4. We create new variables xi+l to
remove the denominators gi(x). Then the entries of V̂ are
polynomials as opposed to rational functions. Using V̂ we
can express Û with R = (log(n)/ε)O(r) distinct denomina-
tors fi(x), which are also non-zero by using the perturbation
argument in 4, and using that W has at most this number of
distinct rows. Finally we can write the following optimization
problem,

min
x∈Rl+r

p(x)/q(x)

s.t. gi(x)xl+i − 1 = 0, ∀i ∈ [r]
f2
j (x) 6= 0, ∀j ∈ [R]

q(x) =
R∏
j=1

f2
j (x)

We then determine if there exists a solution to the above semi-
algebraic set in time (k2R)O(rk2/ε) = (log(n)/ε)O(r2k2/ε).
Combining the binary search explained in section 5 and 6
with the lower bound we obtained, we can find the solution
for the original problem in time

(nnz(A) + nnz(W ))nγ + n2Õ(r2k2/ε) logO(1)(∆/δ).

Note that there is no log logn in the exponent 2Õ(r2k2/ε)

since either r2k2/ε = o(logn/ log logn), in which case this
term is dominated by n1+γ , or log(r2k2/ε) = Ω(log logn).

9. HARDNESS
The Maximum Edge Biclique problem [3] is defined as:
Input: An n by n bipartite graph G.
Output: A k1 by k2 complete bipartite subgraph of G.
Objective Function: Maximize k1 · k2.
We use the Maximum Edge Biclique problem under the

R4SAT assumption in [25], which extends the previous work
done by Feige [22] under the R3SAT assumption. That
hardness result [25] shows under the R4SAT assumption
there exist two constants ε1 > ε2 > 0 such that no efficient
algorithm is able to distinguish between bipartite graphs
G(U, V,E) with |U | = |V | = n which have a clique of size
≥ (n/16)2(1 + ε1) and those in which all bipartite cliques are
of size ≤ (n/16)2(1 + ε2). Using the reduction of [25], one
can show there exists a constant c such that for any instance
of R4SAT with ñ variables and cñ clauses, the corresponding
bipartite graph G created in [25] has at least tn2 edges with
large probability, for a constant t, e.g. t = 9/10.
To construct a weighted low-rank appoximation problem

from a given bipartite graph, for a given bipartite graph
G(U, V,E), we generate the matrix A andW as in [24]: Aij =
1 if edge (Ui, Vj) ∈ E, Aij = 0 if edge (Ui, Vj) /∈ E. Wij = 1
if edge (Ui, Vj) ∈ E, Wij = poly(n) if edge (Ui, Vj) /∈ E.
One can then show if there exists a biclique in G such the
number of remaining edges is at most tn2 − (n/16)2(1 + ε1),
then the solution to min ‖W ◦ Â−W ◦A‖2F has cost at most
tn2 − (n/16)2(1 + ε1). On the other hand, if there does not
exist a biclique that has more than (n/16)2(1 + ε2) edges,
which leads to the number of remaining edges being at least
tn2 − (n/16)2(1 + ε2), then any solution to min ‖W ◦ Â −
W ◦A‖2F has cost at least tn2 − (n/16)2(1 + ε2).

10. EXPERIMENTS
We experimentally evaluate the algorithm from Section 4.

We stress that this evaluation is very preliminary and mostly
serves to demonstrate that the algorithm is less impracti-
cal than it may look like. In particular, we only try the
smallest non-trivial case k = 1 and r = 2. We implement
the algorithm in Wolfram Mathematica using the built-in
“industrial-quality” polynomial solver. The implementation
is short enough to provide it fully below. We compare it with
the naive algorithm which encodes the target matrices using
O(kn) variables and minimizes the objective function (which
is a degree-2 polynomial) using the same built-in solver.
First, we set A to be the all-ones n× n matrix except the

first column, which we sample from i.i.d. centered Gaussians
with large (distinct) standard deviations. We setW to be the
all-ones n× n matrix except the first column, which we set
to be the inverses of the corresponding standard deviations.
The best unweighted rank-1 approximation is essentially to
take the first column of A and set everything else to zero,
while the best weighted approximation with weights W is
essentially the all-ones n × n matrix. See Figure 10 for
the results for the naive algorithm, our algorithm with the
sketch of size t = 1, and our algorithm with t = 2. Setting
t = 1 gives sub-optimal results, while t = 2 consistenly gives
near-optimal solutions. At the same time, our algorithm
scales much better than the naive solution. Let us point out
that the naive solution is able to exploit the structure of W
indirectly by using the built-in Mathematica’s solver (if one
sets W to a Gaussian random matrix, the time blows up).
Next, we choose A to be a random rank-1 matrix plus



noise, and let W be a random non-negative rank-2 matrix.
The magnitude of noise is inversely proportional to the cor-
responding entry of W . On this family of instances even if
we set t = 3 the accuracy ends up being around 1.3. On the
other hand, larger values of t blow-up the running time of
our algorithm by quite a bit. Despite that, when n increases,
our algorithm still scales better than the naive algorithm.
Namely, when n changes from 10 to 100, the running time
of the naive algorithm grows by three orders of magnitude,
while the running time of our algorithm grows by a factor
of two. And around n = 100 running times roughly match.
Unfortunately, we were not able to run the algorithms for
n > 100, since they require lots of RAM.
We conclude that our algorithms have potential to be prac-

tical, although that might require opening the polynomial
solver and combining exact algorithm and heuristics.

GenGaussian[m_,n_] :=
Table[RandomVariate[NormalDistribution[]], {m}, {n}];

FindBasis[W_] :=
Module[{Wt},

Wt = Select[Orthogonalize[W], Norm[#1] > 0.01 &];
Transpose[Wt.Transpose[W]]];

FastSolve[A_,W_,k_,t_] :=
Module[
{decompCols, decompRows, r, Scols, Srows, xx, yy,

U, V, res, n},
n = Length[A];
r = MatrixRank[W];
decompCols = FindBasis[Transpose[W]];
decompRows = FindBasis[W];
Scols = GenGaussian[t, n];
Srows = GenGaussian[n, t];
xx = Array[x, {r, t, k}];
yy = Array[y, {r, k, t}];
allReal = Map[Element[#1, Reals] &,

Flatten[{xx, yy}]];
U=Assuming[allReal,

Table[LeastSquares[
Transpose[(decompRows.yy)[[i]]],
((A * W).Srows)[[i, All]]], {i, 1, n}]];

V=Assuming[allReal,
Transpose[Table[LeastSquares[

(decompCols.xx)[[j]],
(Scols.(A * W))[[All, j]]], {j, 1, n}]]];

Minimize[Total[Flatten[((U.V - A) * W)^2]],
Flatten[{xx, yy}]]];
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