
Automatic Differentiation with Scala

By John Mount 6-15-2020, permanent url:

http://www.win-vector.com/blog/2010/06/automatic-differentiation-with-scala/

This article is a worked-out exercise in applying the Scala type system to solve a small scale
optimization problem. For this article we supply complete Scala source code (under a GPLv3 license)
and some design discussion.

Usually we work using a combination of databases, Java, optimization libraries and analysis suites (like
R). The reason is that, for our typical problems, Java hits a sweet spot of trading off runtime performance
against ease of development and maintenance. In the tens of gigabytes range (data sets larger than the
Wikipedia but smaller than the Web) Java outperforms the scripting languages (Ruby, Python ...) and is
much easer to develop in and document than C++. This sweet spot is both subjective and situational- if
the tasks were smaller and in a services framework Python is a better choice, if performance is
paramount then C or C++ (with the STL) and Hadoop are a better choice, if pre-built statistical libraries
are needed then R becomes a better choice. For the type problem we present here Scala is a very good
choice.

Our Example Problem

Our small scale problem is this: we have a number of target points on a map and we want to pick a
central point to directly connect to all of these points with wire. Our goal is to minimize the total
amount of wire used. This problem is called the "Geometric Median". So we are trying to find a point
that minimizes the sum of distances from our chosen center to every target point. If we were trying to
minimize the sum of squared distances from our chosen center to every target point the answer would
be obvious: the average or mean (which by Hooke's law is also the point where a set of identical springs
would relax to). The mean is in fact a fairly good guess, but you can do better (which could important if
the "wire" is expensive, such as cutting irrigation or drainage ditches). For example given the three target
points (20,0), (-1,-1) and (-1,1) the optimal point is (-0.42,0) not the mean (6,0) and the choice of
optimal point represents an over 19% savings in total wiring distance (see figure).

http://www.win-vector.com/blog/2010/06/automatic-differentiation-with-scala/
http://www.scala-lang.org/
http://www.win-vector.com/dfiles/ScalaDiff.jar
http://en.wikipedia.org/wiki/Geometric_median

This is a substantial saving in cost.

The problem changes as we consider variations. If indirect connections (such as routing one point
through another, which may or may not be possible for reasons of capacity or safety) and multiple new
centers are allowed we then have an instance of the Steiner Tree Problem which is harder to solve (since
it is known to be NP complete). If no new centers are allowed (all routing must be between pre-existing
target points) then we have a Spanning Tree Problem- which admits very quick solutions.

We bring up the geometric median as a mere example. We don't intend for our code to solve only the
geometric median problem and we don't intend to touch on the literature of specialized methods for
solving the geometric median problem. Instead we are trying to demonstrate the speed you can develop
prototype solutions if you have a few good tools (like various optimizers) available in your toolkit.
Numeric optimizers may sound exotic, but they often are the kind of thing you want to experiment with
and link directly into your code.

Optimization as General Tool

Now that we have the example problem we can describe a solution strategy. In this case the solution
uses code "we wished we had lying around" before we started on the problem. We will pretend we have
the tools we want ready to solve our problem and then we will pay our debt and build the required
tools. The issue is that there is not an obvious closed form for the solution of the geometric median
problem. So we are forced to work a bit harder. In this case harder means we need to solve an
optimization problem. Consider the contour plot of the total wiring cost as function of where we choose
to place our center. Our optimal point (-0.42,0) had wiring cost of 22.73 and the contour plot given
here shows concentric regions of solution positions with higher cost.

http://en.wikipedia.org/wiki/Steiner_tree_problem

In general it is unwise to throw an optimizer at an arbitrary problem and hope to find the globally best
solution. But in this case (and in many similar situations) we can prove that a simple local optimizer will
in fact find the unique best solution. This is a property of the problem not of the optimizer. The
concentric regions shown in the contour plot have a very nice shape: they are convex. That is: they
have no intrusions- for any two points drawn from one of these shapes the straight line segment between
these points stays inside the given shape. We don't have to depend on observation- we can actually
prove this is always the case for this problem. The wiring cost from a proposed center to any single
target point is a convex function of where we choose to place our center (a convex function is a
function whose graph never reaches above the secant line drawn between any two points on its graph).
The total wiring cost is just the sum of the wiring costs to each target point. And to finish: the sum of a
collection of convex functions is itself a convex function. Since the contour plot of a convex function
has only convex shapes and we have proven the statement.

But how does this help us? There is a standard technique to find "local minima" of a function by
inspecting a function for places where the gradient is zero (points where there is no obvious down hill
direction on the contour plot). This technique usually can only be guaranteed to find local minima
(places where no small change improves your situation). But there is no guarantee that the local
minimum you find is in fact the global minimum (the best possible solution). Except when you are
dealing with a convex function. When a function is convex then all of the local minima are always
grouped together into a single convex connected shape (if not a line drawn between two remote minima
would violate the convexity definition). And if the function is never flat then this set is a single unique
point: the unique best solution. Our inspection technique will be a gradient driven optimizer- that is an
optimizer that when the gradient is non-zero improves its objective by running down hill and halts
when the gradient is zero.

The stated function to minimize is to sum the distance from our proposed center to each target point.
We can write this as the sum of the distances:

http://en.wikipedia.org/wiki/Convex_set
http://en.wikipedia.org/wiki/Convex_function

(which is the traditional Euclidean or L2 distance). This function actually has
one one subtle flaw that we will deal with in the appendix (see: Fixing Smoothness).

Using Scala to Apply the Optimization Solution

To find our optimal center placement using Scala we first write our cost or objective as a Scala function:

 valval dat::Array[Array[Double]] = ArrayArray(
 ArrayArray(20, 0.0),
 ArrayArray(-1.0, 1.0),
 ArrayArray(-1.0, -1.0)
)

 defdef fx(p::Array[Double])::Double = {
 valval dim == p.length
 valval npoint == dat.length
 varvar total == 0.0
 forfor(k <-<- 0 to (npoint-1)) {
 varvar term == 0.0
 forfor(i <-<- 0 to (dim-1)) {
 valval diff == p(i) - dat(k)(i)
 term == term + diff*diff
 }
 total == total + scala.math.sqrt(term)
 }
 total
 }

Scala is succinct and it is a great connivence to have a function definition capture data from its
environment. What we would like to do is generate an initial guess as the solution (we use the mean as
our initial guess) and then call an optimizer (in this case a conjugate gradient optimizer) to do all the
work:

 valval p0::Array[Double] = mean(dat)
 valval (pF,fpF) == CGCG.minimize(fx,p0)

At this point we would be done, except the conjugate gradient method (which is superior to gradient
descent and many the non-gradient methods) requires a gradient. We could provide a numeric estimate
of the gradient by the following divided difference method:

 defdef gradientD(f::Array[Double]=>=>Double,p::Array[Double])::Array[Double] = {
 valval xdim == p.length
 valval p2 == copy(p)
 valval base == f(p2)
 valval ret == newnew ArrayArray[Double](xdim)
 valval delta == 1.0e-6
 forfor(i <-<- 0 to (xdim-1)) {
 p2(i) == p(i) + delta
 valval fplus == f(p2)
 p2(i) == p(i)
 valval diff == (fplus-base)/delta
 ret(i) == diff
 }
 ret

 }

This numeric divided difference method often outperforms non-derivative optimization methods (like
Powell's Method and the Nelder-Mead Amoeba method). But the technique can run into numeric
difficulties. We can remedy this if we are willing to write our function in a slightly more general way. If
we re-encode our function in a generic manner we can use automatic differentiation (not to be confused
with numeric differentiation or with symbolic differentiation) to produce a reliable gradient for
optimization. What we need to do is re-write our function to work over an abstract field of numbers
instead of only the machine supplied doubles. In fact what we need to do is specify a generic function
that will work over any field, with the field to be determined later. The code to do this in Scala is very
similar to the non-generic code:

 valval genericFx == newnew VectorFNVectorFN {
 defdef apply[Y <:<: NumberBase[Y]](p::Array[Y])::Y = {
 valval field == p(0).field
 valval dim == p.length
 valval npoint == dat.length
 varvar total == field.zero
 forfor(k <-<- 0 to (npoint-1)) {
 varvar term == field.zero
 forfor(i <-<- 0 to (dim-1)) {
 valval diff == p(i) - field.inject(dat(k)(i))
 term == term + diff*diff
 }
 total == total + smoothSQRT(term)
 }
 total
 }
 }

Notice that code is very similar to the "def fx()" code. The key differences are that we had to define
genericFx as extending a trait (a type of Scala interface) called VectorFN and inside this trait extension
we defined a parameterized function name apply(). apply() is a generic function that is willing to work
over any type Y where Y is at least of type NumberBase[Y] (we will get more into what that means in a
moment). The difference in notation is that while the Scala function syntax can not specify a generic
function with free type parameters (the incompletely specified Y) the Scala semantics are strong enough
to implement this. In fact standard function definitions (such as "def fx()") are just syntactic sugar for
extending the Scala built-in Function1 trait. With a generic objective function in hand all we need is
conjugate gradient code that is expecting a VectorFN (and willing to call apply() instead of just using
naked function parenthesis) and some type NumberBase[Y] that can compute gradients for us. The Scala
compiler can specialize our genericFx() into one version for quick calculation and another for gradients.
How this is done is what we will discuss next. From our point of view our problem is solved with the
following one line of code:

valval (pF,fpF) == CGCG.minimize(genericFx,p0)

This should always be your goal- build sufficient preparation so your last step is a "obvious one liner."

What Tools we Wish we Had Lying Around

We supply in our example some workable conjugate gradient code, but that is standard so we will not
discuss it. What is of interest (and facilitated by Scala's parametrized type system) is the implementation
of dual numbers as a framework to supply automatic differentiation. An implementation of dual numbers
as a NumerBase[DualNumber] type is the core of our demonstration.

Dual numbers are an algebraic structure written as pairs of real numbers "(a,b)". The arithmetic table for
dual numbers is given below:

(a,b) + (c,d) = ((a+c) , (b+d))

(a,b) - (c,d) = ((a-c) , (b-d))

(a,b) * (c,d) = ((a*c) , (a*d+b*c))

(a,b) / (c,d) = ((a/c) , ((b*c-a*d)/(a*a)))

In a dual number (a,b) "a" is the "large" or "standard" part of the number. You can check from the
arithmetic table that the pair of dual numbers (a,0) and (c,0) behave just as we would expect the real
numbers a and c to behave. In the dual number (a,b) "b" is the "small" or "ideal" portion of the number.

http://en.wikipedia.org/wiki/Automatic_differentiation
http://www.scala-lang.org/docu/files/api/scala/Function1.html
http://en.wikipedia.org/wiki/Dual_number

From the multiplication rule above we can observe two rules: (0,b) * (c,0) = (0,b*c) (something small
times anything else is small) and (0,b)*(0,d) = (0,0) (two small things become zero when multiplied).
Essentially the dual numbers are carrying around the first two terms of a Taylor series, so if we evaluate a
function over the dual numbers (instead of over the reals) we get as a result both the function value and
the function derivative. We can check that these numbers obey the usual laws of arithmetic (associative,
commutative, distributive, identities and inverses). The punchline is that over the dual numbers the
divided difference estimate of f'(x) (the derivative of f() evaluated at x) is in fact exact in the sense that
f((x,1)) = (f(x),f'(x)) (or f((x,0)+(0,1)) - f((x,0)) = (0, f'(x))). Implementing the DualNumber class is little more
than transcribing the above arithmetic table into Scala.

We have already seen how to write code that uses NumberBase[Y] types (genericFx() itself is an
example). A more complicated example is the CG.minimize() code which not only accepts a generic
function (in the form of VectorFN) but then specializes it to NumberBase[DualNumber] to compute
gradients and also specializes to NumberBase[MDouble] for quick calculation during line searches
(MDouble is just an adapter for machine Doubles, used for speed). The ability to re-specialize a function
is one of the advantages of a parameterized type system. The DualNumbers are an example of forward
automatic differentiation. We could also use the same object framework to capture a representation of
the computation path and apply more sophisticated methods such as reverse automatic differentiation.

We give a link to a jar containing complete Scala source code including this example, the DualNumber
implementation, a conjugate gradient implementation and some JUnit tests (all under a GPLv3 license)
and will go on to describe some of the design decisions. The code is the bulky part of this work, so we
will move on to discuss something more compact: types.

Types

If code is ever beautiful it is only when it is succinct. Among the most succinct forms of code are
individual type signatures and interfaces (though the indiscriminate repetition of type signatures is
rightly considered ugly bloat, which Scala works to avoid). Since we are distributing complete source
we will describe only types and method signatures. The entry points to the code are the JUnit tests
(organized in the ScalaDiff/test source directory and depending on JUnit which was not included) and
the demo program in ScalaDiff/src/demo/Demo.scala).

To be a usable arithmetic type (like DualNumber or MDouble) you must extend the following
parameterized abstract class:

abstractabstract classclass NumberBaseNumberBase[NUMBERTYPE <:<: NumberBase[NUMBERTYPE]] {
 // basic arithmetic
 defdef + (that:: NUMBERTYPE)::NUMBERTYPE
 defdef - (that:: NUMBERTYPE)::NUMBERTYPE
 defdef unary_-()::NUMBERTYPE
 defdef * (that:: NUMBERTYPE)::NUMBERTYPE
 defdef / (that:: NUMBERTYPE)::NUMBERTYPE // that not equal to zero
 // more complicated
 defdef pow(that::Double)::NUMBERTYPE
 defdef exp::NUMBERTYPE
 defdef log::NUMBERTYPE // this is positive
 // comparison functions
 defdef > (that:: NUMBERTYPE)::Boolean
 defdef >= (that:: NUMBERTYPE)::Boolean
 defdef == (that:: NUMBERTYPE)::Boolean
 defdef != (that:: NUMBERTYPE)::Boolean
 defdef < (that:: NUMBERTYPE)::Boolean
 defdef <= (that:: NUMBERTYPE)::Boolean
 // utility
 defdef field::Field[NUMBERTYPE]
}

In particular DualNumber extends NumberBase[DualNumber]. This deliberate circular reference has a
big purpose: it allows publicly visible contravariant return types (returning nearly the exact type we
really are instead of a base type). This allows us to have strict type arguments so that trying to add a
MDouble to DualNumber is a type error (even though they both extend the same base class). The
automatic differentiation technique encapsulated in the DualNumber class only works if all of the
calculation is in the DualNumber types and this strict type enforcement allows the compiler to help
prevent results sneaking in and out through other types. All of the methods on NumberBase are
obviously related to arithmetic except the field() method. This method gives us access to a Field object

http://www.win-vector.com/dfiles/ScalaDiff.jar

which is responsible for carrying around the runtime type information (this is a common problem in
Java and Scala, that some type information known at compile type such choice of template types is not
easily accessed at runtime). The Field class is as follows:

abstractabstract classclass FieldField [NUMBERTYPE <:<: NumberBase[NUMBERTYPE]] {
 defdef zero::NUMBERTYPE // return canonical zero in field
 defdef one::NUMBERTYPE // return canonical one in field
 defdef inject(v::Double)::NUMBERTYPE // return canonical representation of number in field
 defdef project(v::NUMBERTYPE)::Double // return standard-number represented in field
 defdef array(n::Int)::Array[NUMBERTYPE] // return an array of this typetype

The Field class is where we have factories for numbers (zero, one, arrays, injection from standard
Doubles), casting (projection back to standard Doubles).

With these types defined we can actually read intent off some of the method signatures.

For example our conjugate gradient optimizer is accessed through the following method signature:

 defdef minimize(fn::VectorFN,x0::Array[Double])::(Array[Double],Double) // return x,f(x)

The above can be read as: CG.minimize() requires a VectorFN (our trait representing single argument
functions with a free type parameter) and an initial point (in standard Doubles). The code will the return
a pair of the optimum point and the function evaluated at the optimum point. From the type signature
we can see that CG.minimize() expects to re-specialize the function "fn" to types of its own choosing
(else it could have accepted a parameterized argument instead of our custom trait) and will handle all
up-conversion and down-conversion between machine Doubles and NumberBase[Y]'s itself. This sort of
type information is hard to express (let alone enforce) in a dynamically typed language.

A slightly more complicated example is the lineMinD() method:

defdef lineMinD[Y<:NumberBase[Y]](field::Field[Y],
 f::Array[Y]=>=>Y,
 xm::Array[Double],
 di::Array[Double])::(Array[Double],Double)

Notice it is willing to work with any type parameterized function (which means it is willing to let the
caller pick the actual type of NumberBase[Y] and work with that). Most callers will call with
Y=MDouble (the wrapper for machine Doubles) and lineMin() will then work with that (without ever
really knowing the actual underlying type).

A lot of fans of dynamic languages consider type systems to be mere hairshirt penance. But that is not
so. Broken type systems (like Java's collections before erasure parameters were introduced in Java 1.5)
are indeed more trouble than they are worth. Working type systems (like C++ Templates/STL, Java 1.5+
and Scala) allow you to solve problems (and enforce decisions) during the design phase (which is much
much cheaper than during the deployment phase). You can't set your types in stone (you are likely going
to have them subtly wrong for the first few iteration). You must be willing to think like a "language
lawyer" to find out what parts of your work can be specified and enforced in the language type system.
To use an analogy: static types are your blueprint or your underpainting.

Tests

One argument against static types is that you can get much of their benefit from unit tests. My opinion is
you never have enough unit tests, so putting more pressure on your test suite is not wise. Static types
plus tests are strictly more powerful than static types alone or tests alone.

Even for this example toy-scale project we have include a JUnit test set to pursue a number of goals:

Confirm our number implementations (DualNumber and MDouble) correctly model machine
Doubles (perform parallel calculations and compare).
Confirm DualNumber obeys expected laws of algebra composition and cancellation including
the portions that can not be modeled in machine Doubles.
Confirm DualNumbers compute gradients.
Confirm operations of optimizers and optimizer components.

Many of these tests are related, but they don't all imply each other and give different perspective on the
errors they catch. For example no amount of parallel computation between DualNumbers and machine
Doubles is going to confirm the infinitesimal portion of the DualNumber is propagating correctly (since
this is not a property of machine Doubles). So we add extra tests that expect DualNumber to obey

algebraic relations like: a*(b+c) = a*b + a*c hold. It is then another step to confirm that whatever the
DualNumbers calculate is not only self-consistent, but also models a truncated Taylor Series or
differentiation.

Conclusion

We hope we have demonstrated how the complexity of a mathematical programming problem can be
managed by breaking the problem into an objective function that is separate from the optimizer
(allowing the optimizer to be both good and hidden) and a static type system (such as Scala) to help
enforce required properties of a calculation (such as all numbers being routed though a required
representation). With these sort of tools available many formerly hard problems (that are often,
unfortunately solved by over-specifying direct inefficient iterative improvement techniques) become "if I
can write a reasonable objective function this may already by solved by an optimizer in my library." The
more of these tools you have (either in your code or in your reference library) the more of these
problems become easy (this is the topic of my earlier paper: The Local to Global Principle).

Appendix: Fixing Smoothness

Our chosen example objective function is very nice (i.e. convex) but it has a small (but correctable)
problem. The derivative or gradient or gradient has some jump discontinuities that could cause an
optimizer to exit prematurely (not at the global optimum). Consider the simple form of this for wiring a
center to a single point at the origin (even in 1 dimension). The wiring cost function is sqrt(x*x) has a
cost graph as shown here.

This is convex- but derivative is not smooth as we see in the included graph of the derivative of
sqrt(x*x).

http://www.win-vector.com/blog/2009/11/the-local-to-global-principle/

So: in this case if the optimizer stops at one of the target points we can't be sure that it stopped at the
global optimum (it may have stopped due to the discontinuity in the gradient). For some simple
problems the optimum is necessarily at a target point. For example on the number line take the target
points 0,1 and x. As long as x!0 and x"1 the optimum placement will be x itself.

One way to defend against this is to use some sort of smoothed version of sqrt() that essentially
decreases a little faster near the origin. Our cost function becomes:

where s() is our suitable approximation of the sqrt() function. Two candidates are s(x) = (x+tau)^(1/2)
and s(x) = x^(1/2 + tau); where tau is a small constant. As long as tau is greater than zero we have no
derivative discontinuity in s(x^2) and convexity is preserved (even made a bit stricter). Other ways to
deal with this include adding additional coordinates to the problem and small perturbations on these
coordinates. Finally, a point found by optimizing with respect to s(x) can be "polished" by re-starting the
optimization at the first found solution and using sqrt(x) as the new objective (if the original point is not
near any of the target points).

