The average distance between two points

Bernhard Burgstaller and Friedrich Pillichshammer

Abstract

We give bounds on the average distance between two points uniformly and independently chosen from a compact convex subset of the s-dimensional Euclidean space.

Let X be a compact convex subset of the s-dimensional Euclidean space \mathbb{R}^{s} and assume we choose uniformly and independently two points from X. How large is the expected Euclidean distance $\|\cdot\|$ between these two points? In other words, we ask for the quantity

$$
a(X):=\mathbb{E}[\|x-y\|]=\frac{1}{\lambda(X)^{2}} \int_{X} \int_{X}\|x-y\| \mathrm{d} \lambda(x) \mathrm{d} \lambda(y),
$$

where λ denotes the s-dimensional Lebesgue measure. This problem was stated already in $[1,2,4,5]$. Note that there is a close connection of this problem to the problem of finding the moments of the length of random chords (see [8, Chapter 4, Section 2] or [9, Chapter 2].

Trivially we have $a(X) \leq d(X)$, where $d(X)=\max \{\|x-y\|: x, y \in X\}$ is the diameter of X. The following results are well known from literature.

Example 1 1. For all compact convex subsets of \mathbb{R} (the intervals) we have $a(X)=$ $d(X) / 3$.
2. If $X \subseteq \mathbb{R}^{s}$ is a ball with diameter $d(X)$, then

$$
a(X)=\frac{s}{2 s+1} \beta_{s} d(X)
$$

where

$$
\beta_{s}= \begin{cases}\frac{2^{3 s+1}((s / 2)!)^{2} s!}{(s+1)(2 s)!\pi} & \text { for even } s, \\ \frac{2^{s+1}(s!)^{3}}{(s+1)(((s-1) / 2)!)^{2}(2 s)!} & \text { for odd } s .\end{cases}
$$

For a proof see [4] or [8]. Especially, if X is a disc in \mathbb{R}^{2} with diameter $d(X)$, then

$$
a(X)=64 d(X) /(45 \pi)=0.45271 \ldots d(X) .
$$

3. If $X \subseteq \mathbb{R}^{2}$ is a rectangle of sides $a \geq b$, then we have (see [8])

$$
a(X)=\frac{1}{15}\left[\frac{a^{3}}{b^{2}}+\frac{b^{3}}{a^{2}}+d\left(3-\frac{a^{2}}{b^{2}}-\frac{b^{2}}{a^{2}}\right)+\frac{5}{2}\left(\frac{b^{2}}{a} \log \frac{a+d}{b}+\frac{a^{2}}{b} \log \frac{b+d}{a}\right)\right],
$$

where $d=d(X)=\sqrt{a^{2}+b^{2}}$. Especially, if X is a square, then we have

$$
a(X)=(2+\sqrt{2}+5 \log (\sqrt{2}+1)) \frac{d(X)}{15 \sqrt{2}}=0.36869 \ldots d(X)
$$

4. If X is a cube in \mathbb{R}^{s}, then

$$
a(X)=\frac{1}{\sqrt{6}}\left(1-\frac{7}{40 s}-\frac{65}{869 s^{2}}+\ldots\right) d(X)
$$

and

$$
a(X) \leq \frac{1}{\sqrt{6}}\left(\frac{1+2 \sqrt{1-3 /(5 s)}}{3}\right)^{1 / 2} d(X)
$$

For a proof of the asymptotic formula see [5] and for a proof of the upper bound see [2].
5. If $X \subseteq \mathbb{R}^{2}$ is an equilateral triangle of side a, then (see [8])

$$
a(X)=\frac{3 a}{5}\left(\frac{1}{3}+\frac{\log 3}{4}\right) .
$$

In the following we prove a general bound on $a(X)$ for X with fixed diameter $d(X)=1$. Furthermore, we present two results which may be useful to give upper and lower bounds on $a(X)$.

Denote by $\mathcal{M}(X)$ the space of all regular Borel probability measures on X. It is well known, that $\mathcal{M}(X)$ equipped with the w^{*}-topology becomes a compact convex space. For $x \in X$ let $\delta_{x} \in \mathcal{M}(X)$ be the point measure concentrated on x. It is easy to show, that the set $\left\{\delta_{x}: x \in X\right\}$ is the set of all extreme points of $\mathcal{M}(X)$ and hence from the KreinMilman theorem we find that $\mathcal{M}(X)$ is the w^{*}-closure of the convex hull of $\left\{\delta_{x}: x \in X\right\}$. Let $\mathcal{F}=\left\{\frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}}: x_{1}, \ldots, x_{n} \in X, n \in \mathbb{N}\right\}$. Then one can show that \mathcal{F} is the set of all convex combinations with rational coefficients of extreme points of $\mathcal{M}(X)$. Now, since \mathbb{Q} is dense in \mathbb{R}, we deduce from the above considerations that \mathcal{F} is dense in $\mathcal{M}(X)$.

For any $\mu \in \mathcal{M}(X)$ we define

$$
I(\mu):=\int_{X} \int_{X}\|x-y\| \mathrm{d} \mu(x) \mathrm{d} \mu(y) .
$$

It is known that the mapping $I: \mathcal{M}(X) \rightarrow \mathbb{R}$ is continuous with respect to the w^{*}-topology on $\mathcal{M}(X)$ (see [10, Lemma 1]). Note that $a(X)=I\left(\lambda^{\prime}\right)$ where λ^{\prime} is the normalized Lebesgue measure on X.

Remark 1 Let X be a compact subset of \mathbb{R}^{s} and let $\left(x_{n}\right)_{n \geq 0}$ be a sequence which is uniformly distributed in X with respect to the normalized Lebesgue measure λ^{\prime} on X, i.e., $\mu_{N}:=N^{-1} \sum_{i=0}^{N-1} \delta_{x_{i}} \rightarrow \lambda^{\prime}$ with respect to w^{*}-topology on $\mathcal{M}(X)$. Then by continuity of I we obtain

$$
\frac{1}{N^{2}} \sum_{i, j=0}^{N-1}\left\|x_{i}-x_{j}\right\|=I\left(\mu_{N}\right) \rightarrow I\left(\lambda^{\prime}\right)=a(X)
$$

Theorem 1 Let X be a compact subset of \mathbb{R}^{s} with diameter $d(X)=1$. Then we have

$$
a(X) \leq \sqrt{\frac{2 s}{s+1}} \frac{2^{s-2} \Gamma(s / 2)^{2}}{\Gamma(s-1 / 2) \sqrt{\pi}},
$$

where Γ denotes the Gamma function. For $s=2$ this bound can be improved to

$$
a(X) \leq \frac{229}{800}+\frac{44}{75} \sqrt{2-\sqrt{3}}+\frac{19}{480} \sqrt{5}=0.678442 \ldots
$$

Proof. We have

$$
a(X)=I\left(\lambda^{\prime}\right) \leq \sup _{\mu \in \mathcal{M}(X)} I(\mu) .
$$

Since $I: \mathcal{M}(X) \rightarrow \mathbb{R}$ is continuous with respect to the w^{*}-topology on $\mathcal{M}(X)$ and \mathcal{F} is dense in $\mathcal{M}(X)$ we obtain

$$
\sup _{\mu \in \mathcal{M}(X)} I(\mu)=\sup _{n \in \mathbb{N}, x_{1}, \ldots, x_{n} \in X} \frac{1}{n^{2}} \sum_{i, j=1}^{n}\left\|x_{i}-x_{j}\right\| .
$$

It was shown by Nickolas and Yost [6] that for all $x_{1}, \ldots, x_{n} \in X \subseteq \mathbb{R}^{s}$ with $d(X)=1$ we have

$$
\frac{1}{n^{2}} \sum_{i, j=1}^{n}\left\|x_{i}-x_{j}\right\| \leq \sqrt{\frac{2 s}{s+1}} \frac{2^{s-2} \Gamma(s / 2)^{2}}{\Gamma(s-1 / 2) \sqrt{\pi}} .
$$

For $s=2$ it was shown by Pillichshammer [7] that for all $x_{1}, \ldots, x_{n} \in \mathbb{R}^{2}$ with $\left\|x_{i}-x_{j}\right\| \leq 1$ we have

$$
\frac{1}{n^{2}} \sum_{i, j=1}^{n}\left\|x_{i}-x_{j}\right\| \leq \frac{229}{800}+\frac{44}{75} \sqrt{2-\sqrt{3}}+\frac{19}{480} \sqrt{5}=0.678442 \ldots
$$

The result follows from these bounds.
Remark 2 Note that it is not true in general that $X \subseteq Y$ implies $a(X) \leq a(Y)$. For example, let, for $h>0, A_{h}$ denote the right triangle with vertices $\{(0,0),(1,0),(1, h)\}$. Then we have

$$
\begin{aligned}
a\left(A_{h}\right) & =\frac{4}{h^{2}} \int_{0}^{1} \int_{0}^{h x_{1}} \int_{0}^{1} \int_{0}^{h x_{2}} \sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}} \mathrm{~d} y_{2} \mathrm{~d} x_{2} \mathrm{~d} y_{1} \mathrm{~d} x_{1} \\
& \geq 4 \int_{0}^{1} \int_{0}^{1} \frac{1}{h^{2}} \int_{0}^{h x_{1}} \int_{0}^{h x_{2}}\left|x_{1}-x_{2}\right| r d y_{2} \mathrm{~d} y_{1} \mathrm{~d} x_{2} \mathrm{~d} x_{1} \\
& =4 \int_{0}^{1} \int_{0}^{1}\left|x_{1}-x_{2}\right| x_{1} x_{2} \mathrm{~d} x_{2} \mathrm{~d} x_{1}=\frac{4}{15} .
\end{aligned}
$$

On the other hand we have

$$
a\left(A_{h}\right) \leq 4 \int_{0}^{1} \int_{0}^{1} x_{1} x_{2} \sqrt{\left(x_{1}-x_{2}\right)^{2}+h^{2}} \mathrm{~d} x_{2} \mathrm{~d} x_{1}
$$

and hence $\lim _{h \rightarrow 0^{+}} a\left(A_{h}\right)=4 / 15$. Thus for any $\varepsilon>0$ there is a $h_{0}>0$ such that for all $0<h<h_{0}$ we have $\left|a\left(A_{h}\right)-4 / 15\right|<\varepsilon$.

For $l>0$ let B_{l} be the rectangle with vertices $\{(0,0),(1,0),(1,-l),(0,-l)\}$. Then from Example 1 we have $\lim _{l \rightarrow 0^{+}} a\left(B_{l}\right)=1 / 3$. Thus for any $\varepsilon>0$ there is a $l_{0}>0$ such that for all $0<l<l_{0}$ we have $\left|a\left(B_{l}\right)-1 / 3\right|<\varepsilon$.

Now let $\varepsilon, \delta>0$. Choose $0<h<\min \left\{1, h_{0}\right\}$, and $0<l<\min \left\{1, l_{0}\right\}$ small enough such that $\lambda\left(B_{l}\right)<\delta \lambda\left(A_{h}\right)$ and let $C_{h, l}:=A_{h} \cup B_{l}$. Then we have

$$
\begin{aligned}
a\left(C_{h, l}\right)= & \frac{\lambda\left(A_{h}\right)^{2}}{\left(\lambda\left(A_{h}\right)+\lambda\left(B_{l}\right)\right)^{2}} a\left(A_{h}\right)+\frac{\lambda\left(B_{l}\right)^{2}}{\left(\lambda\left(A_{h}\right)+\lambda\left(B_{l}\right)\right)^{2}} a\left(B_{l}\right) \\
& +\frac{2}{\left(\lambda\left(A_{h}\right)+\lambda\left(B_{l}\right)\right)^{2}} \int_{A_{h}} \int_{B_{l}}\|x-y\| \mathrm{d} \lambda(x) \mathrm{d} \lambda(y) \\
< & a\left(A_{h}\right)+\left(\frac{\delta}{1+\delta}\right)^{2} a\left(B_{l}\right)+\frac{3 \delta}{1+\delta}<\frac{4}{15}+\varepsilon+\delta^{2}\left(\frac{1}{3}+\varepsilon\right)+3 \delta .
\end{aligned}
$$

Hence if we choose $1 / 60>\varepsilon>0$ and $\delta>0$ small enough we can obtain $a\left(C_{h, l}\right)<3 / 10$. Of course $B_{l} \subseteq C_{h, l}$, but

$$
a\left(B_{l}\right) \geq \frac{1}{3}-\varepsilon \geq \frac{19}{60}>\frac{3}{10}>a\left(C_{h, l}\right)
$$

Lemma 1 1. Let X and Y be compact sets in \mathbb{R}^{s} with $X \cap Y=\emptyset$. Then we have

$$
\lambda(X \cup Y) a(X \cup Y) \geq \lambda(X) a(X)+\lambda(Y) a(Y)
$$

2. Let $X \subseteq Y$ be compact sets in \mathbb{R}^{s}. Then we have

$$
\lambda(X) a(X) \leq \lambda(Y) a(Y)
$$

Proof. 1. We have

$$
\begin{aligned}
a(X \cup Y)= & \frac{\lambda(X)^{2}}{(\lambda(X)+\lambda(Y))^{2}} a(X)+\frac{\lambda(Y)^{2}}{(\lambda(X)+\lambda(Y))^{2}} a(Y) \\
& +2 \frac{\lambda(X) \lambda(Y)}{(\lambda(X)+\lambda(Y))^{2}} \frac{1}{\lambda(X) \lambda(Y)} \int_{X} \int_{Y}\|x-y\| \mathrm{d} \lambda(x) \mathrm{d} \lambda(y) .
\end{aligned}
$$

For any regular Borel probability measures μ and ν on a subset A of the Euclidean space \mathbb{R}^{s} we have (see $[10$, Equation $(* *)]$)

$$
2 \int_{A} \int_{A}\|x-y\| \mathrm{d} \mu(x) \mathrm{d} \nu(y) \geq I(\mu)+I(\nu)
$$

Let now $A=X \cup Y$, let μ be the probability measure on A which is the normalized Lebesgue measure on X and which is zero on Y and let ν be the probability measure on A which is the normalized Lebesgue measure on Y and which is zero on X. Then we have

$$
\begin{aligned}
& \frac{2}{\lambda(X) \lambda(Y)} \int_{X} \int_{Y}\|x-y\| \mathrm{d} \lambda(x) \mathrm{d} \lambda(y)=2 \int_{A} \int_{A} \int_{Y}\|x-y\| \mathrm{d} \mu(x) \mathrm{d} \nu(y) \\
& \geq \int_{X \cup Y} \int_{X \cup Y}\|x-y\| \mathrm{d} \mu(x) \mathrm{d} \mu(y)+\int_{X \cup Y} \int_{X \cup Y}\|x-y\| \mathrm{d} \nu(x) \mathrm{d} \nu(y) \\
& =a(X)+a(Y)
\end{aligned}
$$

Hence

$$
\begin{aligned}
(\lambda(X)+\lambda(Y))^{2} a(X \cup Y) & \geq \lambda(X)^{2} a(X)+\lambda(Y)^{2} a(Y)+\lambda(X) \lambda(Y)(a(X)+a(Y)) \\
& =(\lambda(X) a(X)+\lambda(Y) a(Y))(\lambda(X)+\lambda(Y))
\end{aligned}
$$

2. This assertion follows from the first one.

Corollary 1 Let $X \subseteq \mathbb{R}^{s}$ be compact and convex and let $r=r(X)$ be the in-radius and $R=R(X)$ be the circumradius of X. Then we have

$$
\frac{\pi^{s / 2}}{\Gamma(s / 2+1)} \frac{2 s}{2 s+1} \beta_{s} r^{s+1} \leq \lambda(X) a(X) \leq \frac{\pi^{s / 2}}{\Gamma(s / 2+1)} \frac{2 s}{2 s+1} \beta_{s} R^{s+1}
$$

with equality if X is a ball. Especially, for $s=2$ we have

$$
\frac{128}{45} r^{3} \leq \lambda(X) a(X) \leq R^{3} \frac{128}{45}
$$

with equality if X is a disc.

Proof. Let $K_{\text {in }}$ be the in-ball and let $K_{\text {circ }}$ be the circumscribed ball of X. From Lemma 1 we obtain $\lambda\left(K_{\text {in }}\right) a\left(K_{\text {in }}\right) \leq \lambda(X) a(X) \leq \lambda\left(K_{\text {circ }}\right) a\left(K_{\text {circ }}\right)$ and the result follows from Example 1 (note that the volume of an s-dimensional ball of radius $t>0$ is given by $\left.\pi^{s / 2} t^{s} / \Gamma(s / 2+1)\right)$.

Remark 3 It follows from a result of Blaschke [3] that for any plane compact convex $X \subseteq \mathbb{R}^{2}$ we have

$$
a(X) \geq \frac{128}{45 \pi} \sqrt{\frac{\lambda(X)}{\pi}}
$$

with equality if X is a disc. In many cases this bound is better than the lower bound from Corollary 1 in the plane case (for example, in Example 2 below). For more information see [8, Chapter 4, Section 2] or [9, Chapter 2, Eq. (2.55)].

Example 2 For $n \in \mathbb{N}, n \geq 3$, let $X_{n} \subseteq \mathbb{R}^{2}$ be the regular n-gon with vertices on the unit circle. Then $\lambda\left(X_{n}\right)=\frac{n}{2} \sin \frac{2 \pi}{n}, R=1$ and $r=\cos \frac{\pi}{n}$. Hence we obtain

$$
\frac{256}{45} \frac{\cos ^{3} \frac{\pi}{n}}{n \sin \frac{2 \pi}{n}} \leq a\left(X_{n}\right) \leq \frac{256}{45} \frac{1}{n \sin \frac{2 \pi}{n}} .
$$

From Remark 3 we even obtain the lower bound $a\left(X_{n}\right) \geq \frac{128}{45 \pi} \sqrt{\frac{n}{2 \pi} \sin \frac{2 \pi}{n}}$ which is slightly better than the lower bound above. Note that $\lim _{n \rightarrow \infty} \frac{128}{45 \pi} \sqrt{\frac{n}{2 \pi} \sin \frac{2 \pi}{n}}=\lim _{n \rightarrow \infty} \frac{256}{45} \frac{\cos ^{3} \frac{\pi}{n}}{n \sin \frac{2 \pi}{n}}=$ $\lim _{n \rightarrow \infty} \frac{256}{45} \frac{1}{n \sin \frac{2 \pi}{n}}=\frac{128}{45 \pi}$.

In some cases the following easy lemma gives better estimates than Corollary 1.
Lemma 2 Let X be a compact subset of \mathbb{R}^{s} and let $T: \mathbb{R}^{s} \rightarrow \mathbb{R}^{s}$ be a linear mapping with norm $\|T\|_{2}$. Then we have $a(T(X)) \leq a(X)\|T\|_{2}$.

Example 3 Let X be an ellipse $x^{2}+y^{2} / b^{2} \leq 1$ in the Euclidean plane with $0<b \leq 1$. Then $X=T(K)$ where K is the disc with diameter 2 and center in the origin and where $T=\left(\begin{array}{ll}1 & 0 \\ 0 & b\end{array}\right)$. It is easy to see that $\|T\|_{2}=\max \{1,|b|\}=1$ and $\left\|T^{-1}\right\|_{2}=1 / b$. Then from Lemma 2 we obtain

$$
b \frac{128}{45 \pi}=b a(K) \leq a(X) \leq a(K)=\frac{128}{45 \pi}
$$

whereas from Corollary 1 we would just obtain

$$
b^{2} \frac{128}{45 \pi} \leq a(X) \leq \frac{1}{b} \frac{128}{45 \pi}
$$

From Remark 3 we obtain the lower bound $a(X) \geq \sqrt{b} \frac{128}{45 \pi}$.

References

[1] Alagar, V. S.: The distribution of the distance between random points. J. Appl. Probability 13 (1976), 558-566.
[2] Anderssen, R. S., Brent, R. P., Daley, D. J. and Moran, P. A. P.: Concerning $\int^{1}{ }_{0} \cdots \int^{1}{ }_{0}\left(x^{2}{ }_{1}+\cdots+x^{2}{ }_{k}\right)^{1 / 2} d x_{1} \cdots d x_{k}$ and a Taylor series method. SIAM J. Appl. Math. 30 (1976), 22-30.
[3] Blaschke, W.: Eine isoperimetrische Eigenschaft des Kreises. Math. Zs. 1 (1918), 5257.
[4] Dunbar, S. R.: The average distance between points in geometric figures. College Math. J. 28 (1997), 187-197.
[5] Gates, D. J.: Asymptotics of two integrals from optimization theory and geometric probability. Adv. in Appl. Probab. 17 (1985), 908-910.
[6] Nickolas, P. and Yost, D.: The average distance property for subsets of Euclidean space. Arch. Math. (Basel) 50 (1988), 380-384.
[7] Pillichshammer, F.: A note on the sum of distances under a diameter constraint. Arch. Math. (Basel) 77 (2001), 195-199.
[8] Santaló, L. A.: Integral geometry and geometric probability. Encyclopedia of Mathematics and its Applications, Vol. 1. Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976.
[9] Solomon, H.: Geometric probability. No 28 in CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia, 1978.
[10] Wolf, R.: On the average distance property and certain energy integrals. Ark. Mat. 35 (1997), 387-400.

Author's Address:

Bernhard Burgstaller,
Friedrich Pillichshammer, Institut für Finanzmathematik, Universität Linz, Altenbergstraße 69, A-4040 Linz, Austria. Email: gerhard.larcher@jku.at, friedrich.pillichshammer@jku.at

