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Abstract

We give bounds on the average distance between two points uniformly and in-

dependently chosen from a compact convex subset of the s-dimensional Euclidean

space.

Let X be a compact convex subset of the s-dimensional Euclidean space Rs and assume
we choose uniformly and independently two points from X. How large is the expected
Euclidean distance ‖ ·‖ between these two points? In other words, we ask for the quantity

a(X) := E[‖x − y‖] =
1

λ(X)2

∫

X

∫

X

‖x − y‖ dλ(x) dλ(y),

where λ denotes the s-dimensional Lebesgue measure. This problem was stated already
in [1, 2, 4, 5]. Note that there is a close connection of this problem to the problem of
finding the moments of the length of random chords (see [8, Chapter 4, Section 2] or [9,
Chapter 2].

Trivially we have a(X) ≤ d(X), where d(X) = max{‖x − y‖ : x, y ∈ X} is the
diameter of X. The following results are well known from literature.

Example 1 1. For all compact convex subsets of R (the intervals) we have a(X) =
d(X)/3.

2. If X ⊆ Rs is a ball with diameter d(X), then

a(X) =
s

2s + 1
βsd(X),

where

βs =











23s+1((s/2)!)2s!
(s+1)(2s)!π

for even s,

2s+1(s!)3

(s+1)(((s−1)/2)!)2(2s)!
for odd s.

For a proof see [4] or [8]. Especially, if X is a disc in R2 with diameter d(X), then

a(X) = 64d(X)/(45π) = 0.45271 . . . d(X).

3. If X ⊆ R2 is a rectangle of sides a ≥ b, then we have (see [8])

a(X) =
1

15

[

a3

b2
+

b3

a2
+ d

(

3 − a2

b2
− b2

a2

)

+
5

2

(

b2

a
log

a + d

b
+

a2

b
log

b + d

a

)]

,

where d = d(X) =
√

a2 + b2. Especially, if X is a square, then we have

a(X) =
(

2 +
√

2 + 5 log(
√

2 + 1)
) d(X)

15
√

2
= 0.36869 . . . d(X).
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4. If X is a cube in Rs, then

a(X) =
1√
6

(

1 − 7

40s
− 65

869s2
+ . . .

)

d(X)

and

a(X) ≤ 1√
6

(

1 + 2
√

1 − 3/(5s)

3

)1/2

d(X).

For a proof of the asymptotic formula see [5] and for a proof of the upper bound
see [2].

5. If X ⊆ R2 is an equilateral triangle of side a, then (see [8])

a(X) =
3a

5

(

1

3
+

log 3

4

)

.

In the following we prove a general bound on a(X) for X with fixed diameter d(X) = 1.
Furthermore, we present two results which may be useful to give upper and lower bounds
on a(X).

Denote by M(X) the space of all regular Borel probability measures on X. It is well
known, that M(X) equipped with the w∗-topology becomes a compact convex space. For
x ∈ X let δx ∈ M(X) be the point measure concentrated on x. It is easy to show, that
the set {δx : x ∈ X} is the set of all extreme points of M(X) and hence from the Krein-
Milman theorem we find that M(X) is the w∗-closure of the convex hull of {δx : x ∈ X}.
Let F = { 1

n

∑n
i=1 δxi

: x1, . . . , xn ∈ X, n ∈ N}. Then one can show that F is the set of
all convex combinations with rational coefficients of extreme points of M(X). Now, since
Q is dense in R, we deduce from the above considerations that F is dense in M(X).

For any µ ∈ M(X) we define

I(µ) :=

∫

X

∫

X

‖x − y‖ dµ(x) dµ(y).

It is known that the mapping I : M(X) → R is continuous with respect to the w∗-topology
on M(X) (see [10, Lemma 1]). Note that a(X) = I(λ′) where λ′ is the normalized
Lebesgue measure on X.

Remark 1 Let X be a compact subset of Rs and let (xn)n≥0 be a sequence which is
uniformly distributed in X with respect to the normalized Lebesgue measure λ′ on X,
i.e., µN := N−1

∑N−1
i=0 δxi

→ λ′ with respect to w∗-topology on M(X). Then by continuity
of I we obtain

1

N2

N−1
∑

i,j=0

‖xi − xj‖ = I(µN) → I(λ′) = a(X).

Theorem 1 Let X be a compact subset of Rs with diameter d(X) = 1. Then we have

a(X) ≤
√

2s

s + 1

2s−2Γ(s/2)2

Γ(s − 1/2)
√

π
,

where Γ denotes the Gamma function. For s = 2 this bound can be improved to

a(X) ≤ 229

800
+

44

75

√

2 −
√

3 +
19

480

√
5 = 0.678442 . . . .
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Proof. We have
a(X) = I(λ′) ≤ sup

µ∈M(X)

I(µ).

Since I : M(X) → R is continuous with respect to the w∗-topology on M(X) and F is
dense in M(X) we obtain

sup
µ∈M(X)

I(µ) = sup
n∈N,x1,...,xn∈X

1

n2

n
∑

i,j=1

‖xi − xj‖.

It was shown by Nickolas and Yost [6] that for all x1, . . . , xn ∈ X ⊆ Rs with d(X) = 1 we
have

1

n2

n
∑

i,j=1

‖xi − xj‖ ≤
√

2s

s + 1

2s−2Γ(s/2)2

Γ(s − 1/2)
√

π
.

For s = 2 it was shown by Pillichshammer [7] that for all x1, . . . , xn ∈ R2 with ‖xi−xj‖ ≤ 1
we have

1

n2

n
∑

i,j=1

‖xi − xj‖ ≤ 229

800
+

44

75

√

2 −
√

3 +
19

480

√
5 = 0.678442 . . . .

The result follows from these bounds. 2

Remark 2 Note that it is not true in general that X ⊆ Y implies a(X) ≤ a(Y ). For
example, let, for h > 0, Ah denote the right triangle with vertices {(0, 0), (1, 0), (1, h)}.
Then we have

a(Ah) =
4

h2

∫ 1

0

∫ hx1

0

∫ 1

0

∫ hx2

0

√

(x1 − x2)2 + (y1 − y2)2 dy2 dx2 dy1 dx1

≥ 4

∫ 1

0

∫ 1

0

1

h2

∫ hx1

0

∫ hx2

0

|x1 − x2|rdy2 dy1 dx2 dx1

= 4

∫ 1

0

∫ 1

0

|x1 − x2|x1x2 dx2 dx1 =
4

15
.

On the other hand we have

a(Ah) ≤ 4

∫ 1

0

∫ 1

0

x1x2

√

(x1 − x2)2 + h2 dx2 dx1

and hence limh→0+ a(Ah) = 4/15. Thus for any ε > 0 there is a h0 > 0 such that for all
0 < h < h0 we have |a(Ah) − 4/15| < ε.

For l > 0 let Bl be the rectangle with vertices {(0, 0), (1, 0), (1,−l), (0,−l)}. Then
from Example 1 we have liml→0+ a(Bl) = 1/3. Thus for any ε > 0 there is a l0 > 0 such
that for all 0 < l < l0 we have |a(Bl) − 1/3| < ε.

Now let ε, δ > 0. Choose 0 < h < min{1, h0}, and 0 < l < min{1, l0} small enough
such that λ(Bl) < δλ(Ah) and let Ch,l := Ah ∪ Bl. Then we have

a(Ch,l) =
λ(Ah)

2

(λ(Ah) + λ(Bl))2
a(Ah) +

λ(Bl)
2

(λ(Ah) + λ(Bl))2
a(Bl)

+
2

(λ(Ah) + λ(Bl))2

∫

Ah

∫

Bl

‖x − y‖ dλ(x) dλ(y)

< a(Ah) +

(

δ

1 + δ

)2

a(Bl) +
3δ

1 + δ
<

4

15
+ ε + δ2

(

1

3
+ ε

)

+ 3δ.
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Hence if we choose 1/60 > ε > 0 and δ > 0 small enough we can obtain a(Ch,l) < 3/10.
Of course Bl ⊆ Ch,l, but

a(Bl) ≥
1

3
− ε ≥ 19

60
>

3

10
> a(Ch,l).

Lemma 1 1. Let X and Y be compact sets in Rs with X ∩ Y = ∅. Then we have

λ(X ∪ Y )a(X ∪ Y ) ≥ λ(X)a(X) + λ(Y )a(Y ).

2. Let X ⊆ Y be compact sets in Rs. Then we have

λ(X)a(X) ≤ λ(Y )a(Y ).

Proof. 1. We have

a(X ∪ Y ) =
λ(X)2

(λ(X) + λ(Y ))2
a(X) +

λ(Y )2

(λ(X) + λ(Y ))2
a(Y )

+2
λ(X)λ(Y )

(λ(X) + λ(Y ))2

1

λ(X)λ(Y )

∫

X

∫

Y

‖x − y‖ dλ(x) dλ(y).

For any regular Borel probability measures µ and ν on a subset A of the Euclidean
space Rs we have (see [10, Equation (∗∗)])

2

∫

A

∫

A

‖x − y‖ dµ(x) dν(y) ≥ I(µ) + I(ν).

Let now A = X ∪Y , let µ be the probability measure on A which is the normalized
Lebesgue measure on X and which is zero on Y and let ν be the probability measure
on A which is the normalized Lebesgue measure on Y and which is zero on X. Then
we have

2

λ(X)λ(Y )

∫

X

∫

Y

‖x − y‖ dλ(x) dλ(y) = 2

∫

A

∫

A

∫

Y

‖x − y‖ dµ(x) dν(y)

≥
∫

X∪Y

∫

X∪Y

‖x − y‖ dµ(x) dµ(y) +

∫

X∪Y

∫

X∪Y

‖x − y‖ dν(x) dν(y)

= a(X) + a(Y ).

Hence

(λ(X) + λ(Y ))2a(X ∪ Y ) ≥ λ(X)2a(X) + λ(Y )2a(Y ) + λ(X)λ(Y )(a(X) + a(Y ))

= (λ(X)a(X) + λ(Y )a(Y ))(λ(X) + λ(Y )).

2. This assertion follows from the first one.
2

Corollary 1 Let X ⊆ Rs be compact and convex and let r = r(X) be the in-radius and

R = R(X) be the circumradius of X. Then we have

πs/2

Γ(s/2 + 1)

2s

2s + 1
βsr

s+1 ≤ λ(X)a(X) ≤ πs/2

Γ(s/2 + 1)

2s

2s + 1
βsR

s+1

with equality if X is a ball. Especially, for s = 2 we have

128

45
r3 ≤ λ(X)a(X) ≤ R3128

45

with equality if X is a disc.
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Proof. Let Kin be the in-ball and let Kcirc be the circumscribed ball of X. From Lemma
1 we obtain λ(Kin)a(Kin) ≤ λ(X)a(X) ≤ λ(Kcirc)a(Kcirc) and the result follows from
Example 1 (note that the volume of an s-dimensional ball of radius t > 0 is given by
πs/2ts/Γ(s/2 + 1)). 2

Remark 3 It follows from a result of Blaschke [3] that for any plane compact convex
X ⊆ R2 we have

a(X) ≥ 128

45π

√

λ(X)

π

with equality if X is a disc. In many cases this bound is better than the lower bound from
Corollary 1 in the plane case (for example, in Example 2 below). For more information
see [8, Chapter 4, Section 2] or [9, Chapter 2, Eq. (2.55)].

Example 2 For n ∈ N, n ≥ 3, let Xn ⊆ R2 be the regular n-gon with vertices on the
unit circle. Then λ(Xn) = n

2
sin 2π

n
, R = 1 and r = cos π

n
. Hence we obtain

256

45

cos3 π
n

n sin 2π
n

≤ a(Xn) ≤ 256

45

1

n sin 2π
n

.

From Remark 3 we even obtain the lower bound a(Xn) ≥ 128
45π

√

n
2π

sin 2π
n

which is slightly

better than the lower bound above. Note that limn→∞
128
45π

√

n
2π

sin 2π
n

= limn→∞
256
45

cos3 π

n

n sin 2π

n

=

limn→∞
256
45

1
n sin 2π

n

= 128
45π

.

In some cases the following easy lemma gives better estimates than Corollary 1.

Lemma 2 Let X be a compact subset of Rs and let T : Rs → Rs be a linear mapping

with norm ‖T‖2. Then we have a(T (X)) ≤ a(X)‖T‖2.

Example 3 Let X be an ellipse x2 + y2/b2 ≤ 1 in the Euclidean plane with 0 < b ≤ 1.
Then X = T (K) where K is the disc with diameter 2 and center in the origin and where

T =

(

1 0
0 b

)

. It is easy to see that ‖T‖2 = max{1, |b|} = 1 and ‖T−1‖2 = 1/b. Then

from Lemma 2 we obtain

b
128

45π
= ba(K) ≤ a(X) ≤ a(K) =

128

45π

whereas from Corollary 1 we would just obtain

b2 128

45π
≤ a(X) ≤ 1

b

128

45π
.

From Remark 3 we obtain the lower bound a(X) ≥
√

b 128
45π

.
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