

The

Gerber File Format

 Specification

A format developed by Ucamco

Revision 2016.04

Copyright Ucamco NV ii

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Table of Contents

Preface ... 8

1 Introduction .. 9

1.1 About this document ... 9

 Scope and Target Audience ... 9

 Questions and Feedback.. 9

 References ... 9

1.2 Copyright and Intellectual Property ... 10

1.3 History of the Gerber File Format .. 11

 Standard Gerber ... 11

 Extended Gerber .. 11

 The Great Reform... 11

 The Second Extension ... 12

 Standard Gerber Revoked.. 12

 Further Clarification .. 12

1.4 Record of Revisions .. 13

 Revision 2016.04 .. 13

 Revision 2016.01 .. 13

 Revision 2015.10 .. 13

 Revision 2015.07 .. 13

 Revision 2015.06 .. 13

 Revision J4 ... 14

 Revision J3 ... 14

 Revision J2 ... 14

 Revision J1 ... 14

 Revision I4 .. 14

 Revision I3 .. 14

 Revision I2 .. 14

 Revision I1 .. 15

1.5 About Ucamco ... 16

2 Overview of the Gerber Format .. 17

2.1 File Structure ... 17

2.2 Processing a Gerber File .. 18

2.3 Graphics Objects ... 20

2.4 Apertures ... 21

2.5 Draw and Arc Objects ... 22

2.6 Contours .. 23

2.7 Operation Codes ... 24

mailto:gerber@ucamco.com

Copyright Ucamco NV iii

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

2.8 Graphics State .. 25

2.9 Dark and Clear Polarity ... 27

2.10 Attributes ... 28

2.11 Processing Gerber File with Attributes ... 29

2.12 Conformance .. 31

2.13 Example Files ... 32

 Example: Two Square Boxes ... 32

 Example: Use of Polarities and Various Apertures 33

 Example: A Drill File ... 37

2.14 Glossary .. 40

3 Syntax ... 43

3.1 Conventions for Syntax Rules ... 43

3.2 File Extension, MIME Type and UTI ... 44

3.3 Character Set .. 45

3.4 Data Blocks ... 46

3.5 Commands .. 47

 Commands Overview ... 47

 Function Code Commands ... 49

 Extended Code Commands ... 50

3.6 Data Types .. 52

 Integers .. 52

 Decimals ... 52

 Coordinate Number .. 52

 Hexadecimal ... 52

 Names .. 52

 Strings .. 52

4 Graphics.. 54

4.1 Graphics Overview .. 54

4.2 Operations (D01/D02/D03) ... 56

 Coordinate Data Syntax ... 57

 D01 Command ... 58

 D02 Command ... 59

 D03 Command ... 59

 Example ... 60

4.3 Current Aperture (Dnn) ... 61

4.4 Linear Interpolation Mode (G01) ... 62

 G01 Command ... 62

 D01 Command ... 62

4.5 Circular Interpolation (G02/G03) and (G74/G75) .. 63

 Circular Arc Overview ... 63

 G02 Command ... 65

mailto:gerber@ucamco.com

Copyright Ucamco NV iv

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 G03 Command ... 65

 G74 Command ... 65

 G75 Command ... 65

 D01 Command ... 66

 Example: Single Quadrant Mode .. 68

 Example: Multi Quadrant Mode .. 69

 Numerical Instability in Multi Quadrant (G75) Arcs 70

 Using G74 or G75 May Result in a Different Image 70

4.6 Region Mode (G36/G37) ... 72

 Region Overview .. 72

 G36 Command ... 73

 G37 Command ... 73

 Example: A Simple Contour ... 73

 Example: How to Start a Single Contour .. 75

 Example: Use D02 to Start a Second Contour ... 75

 Example: Overlapping Contours ... 76

 Example: Non-overlapping and Touching ... 77

 Example: Overlapping and Touching ... 78

 Example: Using Polarity to Create Holes ... 79

 Example: A Simple Cut-in... 83

 Example: Power and Ground Planes ... 85

 Example: Fully Coincident Segments ... 86

 Example: Valid and Invalid Cut-ins ... 88

4.7 Comment (G04) .. 93

4.8 End-of-file (M02) ... 94

4.9 Coordinate Format (FS) .. 95

 Coordinate Format.. 95

 FS Command ... 95

 Examples .. 96

4.10 Unit (MO) .. 97

4.11 Aperture Definition (AD) .. 98

 AD Command ... 98

 Zero-size Apertures .. 99

 Examples .. 99

4.12 Standard Aperture Templates ... 99

4.13 Macro Aperture (AM) .. 105

 AM Command... 105

 Exposure Modifier... 107

 Rotation Modifier .. 108

 Primitives .. 111

 Syntax Details... 121

 Examples .. 125

4.14 Load Polarity (LP) ... 128

4.15 Step and Repeat (SR) .. 129

mailto:gerber@ucamco.com

Copyright Ucamco NV v

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4.17 Numerical Accuracy in Image Processing and Visualization 132

 Visualization ... 132

 Image Processing ... 132

5 Attributes .. 134

5.1 Attributes Overview ... 134

5.2 File Attributes .. 136

 TF Command.. 136

5.3 Aperture Attributes .. 137

 Aperture Attributes Overview .. 137

 TA Command ... 137

 TD Command ... 138

5.4 Standard Attributes ... 139

 Standard File Attributes .. 140

 Standard Aperture Attributes .. 148

5.5 Examples .. 155

6 Errors and Bad Practices .. 157

6.1 Errors .. 157

6.2 Bad Practices .. 159

7 Deprecated Elements ... 161

7.1 Deprecated Commands .. 161

 Axis Select (AS).. 162

 Image Name (IN) .. 163

 Image Polarity (IP) .. 164

 Image Rotation (IR) .. 164

 Load Name (LN) ... 165

 Mirror Image (MI) .. 166

 Offset (OF) ... 167

 Scale Factor (SF) ... 167

7.2 Coordinate Data without Operation Code ... 169

7.3 Rectangular Hole in Standard Apertures .. 170

7.4 Deprecated Options of the Format Specification .. 171

 Zero Omission .. 171

 Absolute or Incremental Notation ... 171

7.5 Using G01/G02/G03 in a data block with D01/D02 ... 172

7.6 Closing SR with the M02 ... 173

7.7 Deprecated Terminology ... 173

7.8 Revoked Standard Gerber (RS-274-D) ... 174

mailto:gerber@ucamco.com

Copyright Ucamco NV vi

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Figures
1. Gerber file processing diagram ... 19
2. Creating a draw: the aperture is aligned with line ... 22
3. Creating a draw: the aperture is not aligned with line ... 22
4. Superimposing objects with dark and clear polarities .. 27
5. Gerber file with attributes processing schema .. 29
6. Example: two square boxes .. 32
7. Example: various shapes ... 33
8. Example: drill file .. 37
9. Gerber file commands .. 48
10. Arc with a non-zero deviation ... 64
11. Nonsensical center point .. 64
12. Circular interpolation example .. 67
13. Single quadrant mode example: arcs and draws .. 68
14. Single quadrant mode example: resulting image ... 69
15. Multi quadrant mode example: resulting image .. 70
16. Simple contour example: the segments ... 74
17. Simple contour example: resulting image.. 74
18. Use of D02 to start an new non-overlapping contour .. 76
19. Use of D02 to start an new overlapping contour ... 77
20. Use of D02 to start an new non-overlapping contour .. 78
21. Use of D02 to start an new overlapping and touching contour... 79
22. Resulting image: first object only .. 81
23. Resulting image: first and second objects .. 81
24. Resulting image: first, second and third objects .. 82
25. Resulting image: all four objects ... 82
26. Simple cut-in: the segments .. 84
27. Simple cut-in: the image ... 85
28. How not to create power and ground planes. ... 86
29. Fully coincident segments in contours: two regions ... 87
30. Fully coincident segments in contours: region with hole .. 88
31. Valid cut-in: fully coincident segments .. 90
32. Valid cut-in: resulting image ... 91
33. Invalid cut-in: overlapping segments ... 92
34. Circles .. 100
35. Rectangles .. 101
36. Obrounds ... 102
37. Polygons ... 103
38. Standard (circle) aperture with a hole above a draw ... 104
39. Macro aperture with a hole above a draw ... 107
40. Rotated triangle .. 109
41. Rotation of an aperture macro composed of several primitives ... 110
42. Circle primitive ... 112
43. Vector line primitive ... 113
44. Center line primitive ... 114
45. Outline primitive .. 115
46. Polygon primitive ... 117
47. Moiré primitive .. 119
48. Thermal primitive ... 120
49. Blocks replication with SR command ... 129
50. Standard (circle) aperture with a rectangular hole above a draw ... 170

mailto:gerber@ucamco.com

Copyright Ucamco NV vii

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Tables
Graphics state parameters ... 25
Relevance of graphics state parameters for operation codes .. 26
Gerber file commands .. 55
Effect of operation codes depending on graphics state parameters ... 57
Quadrant modes .. 63
Arithmetic operators .. 122
Standard file attributes .. 140
.Part file attribute values .. 140
Position values ... 141
.FileFunction attribute values ... 144
.FilePolarity attribute values .. 145
.AperFunction aperture attribute values ... 153
Reported errors .. 158
Poor/good practices ... 160
Deprecated Gerber file commands ... 162
Deprecated graphics state parameters ... 162

mailto:gerber@ucamco.com

Copyright Ucamco NV 8

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Preface

The Gerber file format is the de facto standard for printed circuit board (PCB) image data
transfer. Every PCB design system outputs Gerber files and every PCB front-end engineering
system inputs them. Implementations are thoroughly field-tested and debugged. Its widespread
availability allows PCB professionals to exchange image, drill and route data securely and
efficiently. It has been called “the backbone of the electronics fabrication industry”.

The Gerber file format is simple, compact and unequivocal. It describes an image with very high
precision. It is complete: one single file describes one single image. It is portable and easy to
debug by its use of printable 7-bit ASCII characters. Attributes attached to the graphics objects
transfer the meta-information needed by fabrication. A well-constructed Gerber file precisely
defines the PCB image and the function of the objects, resulting in a reliable and productive
transfer of PCB fabrication data from design to fabrication.

Ucamco continuously clarifies this document based on input from the field and adapts it to
current needs. Ucamco thanks the individuals that help us with comments, criticism and
suggestions. We urge Gerber software developers to monitor these revisions.

The current Gerber file format is RS-274X or Extended Gerber version 2. Standard Gerber or
RS-274-D is technically obsolete. It is revoked and superseded by RS-274X. Do not use
Standard Gerber any longer.

Unfortunately, some applications stubbornly continue to use painting (aka stroking) to create
pads and copper pours. While not technically invalid painted files require more manual work and
increase the risk of errors in fabrication. Painting is a relic of the days of vector photoplotters,
devices as obsolete as the electrical typewriter. The rationale for painting disappeared decades
ago, its disadvantages remain. We urge all users and developers to help to banish painting
from our industry.

Although other data formats have appeared they have not displaced Gerber. The reason is
simple. The problems in PCB fabrication data transfer are not limitations in the Gerber file
format but poor practices and poor implementations. The main culprits are painting and the use
of Standard Gerber. To quote a PCB fabricator: “If we would only receive proper Gerber files, it
would be a perfect world.” The new formats are more complex and less transparent to the user.
Poor practices in unfamiliar and more complex formats are more damaging than in a well-known
format. The new formats are sometimes promoted by pointing to Gerber files with syntactic or
semantic errors. This is of course a fallacy: the solution to bugs is to fix them and not to leap to
a new format. In fact, new implementations inevitably have more bugs. The remedy is worse
than the disease. The industry has not adopted new formats. Gerber remains the standard.

The emergence of Gerber as a standard for PCB fabrication data is the result of efforts by many
individuals who developed outstanding software for Gerber files. Without their dedication there
would be no standard format in the electronics fabrication industry. Ucamco thanks these
dedicated individuals.

Karel Tavernier

Managing Director,
Ucamco

mailto:gerber@ucamco.com

Copyright Ucamco NV 9

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

1 Introduction

1.1 About this document

 Scope and Target Audience

This document specifies the Gerber file format, a vector format for representing a 2D binary
(represented by two colors) image. It is intended for developers and users of Gerber software.

The Gerber format is the de facto standard in the printed circuit board (PCB) industry but it also
used in other industries. Standard meta-information is targeted at the PCB industry. A basic
knowledge of PCB CAD/CAM is helpful in understanding this specification.

 Questions and Feedback

Ucamco strives to make this specification easy to read and unequivocal. We are grateful for any
suggestion for improvement. If you find a part of this specification not clear or it still leaves a
question about the format, please ask. Your question will be answered and it will be taken into
account to improve this document.

The Gerber format includes a set of standard attributes to transfer meta-information in the PCB
industry. We are open to your suggestions for other new generally useful attributes.

We can be reached at gerber@ucamco.com.

See www.ucamco.com for more information about Gerber or Ucamco.

 References

American National Standard for Information Systems — Coded Character Sets — 7-Bit
American National Standard Code for Information Interchange (7-Bit ASCII), ANSI X3.4-1986

https://en.wikipedia.org/wiki/MD5

https://en.wikipedia.org/wiki/Unicode

http://en.wikipedia.org/wiki/ISO_8601

mailto:gerber@ucamco.com
mailto:gerber@ucamco.com
http://www.ucamco.com/
https://en.wikipedia.org/wiki/MD5
https://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/ISO_8601

Copyright Ucamco NV 10

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

1.2 Copyright and Intellectual Property
© Copyright Ucamco NV, Gent, Belgium

All rights reserved. No part of this document or its content may be re-distributed, reproduced or
published, modified or not, in any form or in any way, electronically, mechanically, by print or
any other means without prior written permission from Ucamco.

The information contained herein is subject to change without prior notice. Revisions may be
issued from time to time. This document supersedes all previous versions. Users of the Gerber
Format®, especially software developers, must consult www.ucamco.com to determine whether
any changes have been made.

Ucamco developed the Gerber Format®. The Gerber Format®, this document and all intellectual
property contained in it are solely owned by Ucamco. Gerber Format® is a Ucamco registered
trade mark. By publishing this document Ucamco does not grant a license to the intellectual
property contained in it. Ucamco encourages users to apply for a license to develop Gerber
Format® based software.

By using this document, developing software interfaces based on this format or using the name
Gerber Format®, users agree not to (i) rename the Gerber Format®; (ii) associate the Gerber
Format® with data that does not conform to the Gerber file format specification; (iii) develop
derivative versions, modifications or extensions without prior written approval by Ucamco; (iv)
make alternative interpretations of the data; (v) communicate that the Gerber Format® is not
owned by Ucamco or owned by anyone other than Ucamco. Developers of software interfaces
based on this format specification commit to make all reasonable efforts to comply with the
latest specification.

The material, information and instructions are provided AS IS without warranty of any kind.
There are no warranties granted or extended by this document. Ucamco does not warrant,
guarantee or make any representations regarding the use, or the results of the use of the
information contained herein. Ucamco shall not be liable for any direct, indirect, consequential
or incidental damages arising out of the use or inability to use the information contained herein.
No representation or other affirmation of fact contained in this publication shall be deemed to be
a warranty or give rise to any liability of Ucamco. All product names cited are trademarks or
registered trademarks of their respective owners.

mailto:gerber@ucamco.com
http://www.ucamco.com/

Copyright Ucamco NV 11

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

1.3 History of the Gerber File Format

 Standard Gerber

The Gerber file format derives its name from the former Gerber Systems Corp. A leading
supplier of vector photoplotters from the 1960s onwards, Gerber based its plotter input on a
subset of the EIA RS-274-D NC format, and in1980, it published a well-written specification
titled “Gerber Format: a subset of EIA RS-274-D; plot data format reference book”. The format
was so well suited for its task that it was widely adopted and became the de-facto standard
format for vector plotters, known as Standard Gerber.

 Extended Gerber

Vector photoplotters are NC machines, and Standard Gerber, which is dedicated to vector
photoplotters, is an NC format. As of the 1980s, vector photoplotters started losing ground to
raster plotters. Based on bitmap technology, these newer devices demanded rather more than a
simple NC format, so Gerber extended the original NC format with so called “Mass Parameters”,
converting it to a fully-fledged image file formats. This resulted in a family of effective image
description formats designed specifically to drive Gerber's PCB devices and raster plotters. In
1998 Gerber Systems Corp. was taken over by Barco and incorporated into its PCB division –
Barco ETS, now Ucamco. At this point, Barco drew all the variants in Gerber's family of formats
into a single standard image format.

On September 21, 1998 Barco-Gerber published the Gerber RS-274X Format User's Guide.
The format became known as Extended Gerber or GerberX. This is a full image description
format, which means that an Extended Gerber file contains the complete description of a PCB
layer, providing everything needed for an operator to generate a PCB image, and enabling any
aperture shape to be defined. Unlike Standard Gerber, it does not need the support of additional
external files, and it specifies planes and pads clearly and simply without the need for painting
or vector-fill. The Extended Gerber format quickly superseded Standard Gerber as the de facto
standard for PCB image data, and is sometimes called "the backbone of the electronics
industry". A sequence of revisions clarifying the specification was published over the years,
culminating in revision H of January 2012.

 The Great Reform

During the course of 2012, Ucamco reviewed the entire format in depth. A large number of
historic format elements that were rarely, if ever, used were deprecated. Light was shone into
the most remote corners of the format. Where there were conflicting interpretations of any part
of the format in the market, that part was either deprecated or its interpretation was clarified. As
part of this important work, over 10.000 files from all over the world were gathered into a
representative library to help establish current practice. The result was a powerfully clear and
simple format, without needless embellishments, focused on the current needs of the PCB
industry.

The specification document itself was re-organized, the quality of the text and the drawings
improved and many new drawings were added. Deprecated elements were relegated to a
separate chapter.

This resulted in The Gerber Format Specification, revision I1 published in December 2012.
Revisions I2, I3 and finally I4 from November 2013 further improved the document. The
backbone of the electronics industry was now supported by a first-rate up-to-date specification
document and was ready for the next step.

mailto:gerber@ucamco.com

Copyright Ucamco NV 12

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

This version of the Gerber Format was developed by Karel Tavernier and Rik Breemeersch.
They were assisted by an advisory group including Ludek Brukner, Artem Kostyukovich, Jiri
Martinek, Adam Newington, Denis Morin, Karel Langhout and Dirk Leroy. Grateful thanks are
extended to all those who helped the development of the revision by posting their questions,
remarks and suggestions on the Ucamco website. Particular thanks to Paul Wells-Edwards
whose insightful comments contributed substantially to the revision.

 The Second Extension

Until this point, Gerber was purely an image description format. Recognizing that a PCB image
must be supported with meta-information that describes, say, the function of an image file in the
layer structure, Ucamco realized that it could convey that information clearly and unequivocally
using attributes. Accordingly, and in June 2013, the company publicly proposed to extend the
Gerber format using attributes, and invited feedback on its proposal from the Gerber user
community.

The outcome of this was revision J1, completed in February 2014, during which Gerber got its
attributes. It was a major step forward for the format, at least on a par with the changes made
when Standard Gerber became Extended Gerber. Sometimes called the second extension, the
latest version of the Gerber format is known as Gerber version 2, or X2 (as opposed to X1,
which is Gerber without attributes). Gerber version 2 is fully backward compatible as attributes
do not affect the image at all. Subsequent revisions, J2 to J4, clarified the specification and
added new standard attributes.

Gerber version 2 was developed by Karel Tavernier, Ludek Brukner and Thomas Weyn. They
were assisted by an advisory group including Roland Polliger, Luc Samyn, Wim De Greve, Dirk
Leroy and Rik Breemeersch.

 Standard Gerber Revoked

In September 2014 Ucamco published an open letter declaring Standard Gerber obsolete and
revoking its specification. Standard Gerber deserves a place of honor in the Museum for the
History of Computing but it does not deserve a place in modern workflows.

 Further Clarification

Early in 2015, the entire specification was reviewed once again by Karel Tavernier, Thomas
Weyn and Artem Kostyukovich whose focus centered on making the specification easier to read
and understand, while taking great care to ensure consistent and precise terminology. Some
further elements were identified as superfluous, so they were deprecated, further simplifying the
format, and a number of overview tables and charts were added. Not least, special attention
was given to the 'Overview' chapter, with the aim of turning it into a tutorial that can be
understood by non-experts. The result of this work is revision 2015.06, published in June 2015.

mailto:gerber@ucamco.com

Copyright Ucamco NV 13

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

1.4 Record of Revisions

 Revision 2016.04

Added PressFit label to component drill and pad attributes; see ComponentPad and
ComponentDrill. Revoked default on current point.

Text improvements that do not change the format: Removed superfluous concept of level and
replaced ‘Level Polarity’ by ‘Load Polarity. Various others.

 Revision 2016.01

Added drill and pad functions for castellated holes. Added optional types break-out and tooling
on MechanicalDrill.

Deprecated closing an SR with the M02.

Text improvements that do not change the format: Clarified .AperFunction attribute values.
Clarified when to use of standard or user attributes. Clarified how aperture attributes can be set
on regions.

 Revision 2015.10

Added items to section Errors and Bad Practices.

Added file function attribute .FilePolarity.

Refined drawing .FileFunction attributes Replaced Mechanical by FabricationDrawing and
Assembly by AssemblyDrawing. Added definitions to the drawing types. Added mandatory
(Top|Bot) to .AssemblyDrawing, as suggested by Malcolm Lear. Added ArrayDrawing.

 Revision 2015.07

The superfluous and rarely, if ever, used macro primitives 2 and 22 were revoked. The
.AperFunction aperture attribute was simplified:

 Filled / NotFilled option is removed for the ViaDrill function

 ImpC / NotC option is removed from the Conductor function

 Revision 2015.06

The entire document was revised for clarity. The readability of the text was improved. The
terminology was made consistent. The glossary was expanded. A number of additional images
were added, including the Gerber file processing diagrams, command types diagram, aperture
macro rotation illustration. Some of existing images were recreated to improve the quality.
Several new tables were added to explain the relation between D code commands and graphics
state parameters. The glossary was updated. The sections were rearranged. Several new
sections (2.2, 2.6, 2.11, 4.3, 7.2, 7.4) and subsections (4.4, 4.5, 4.6, 5) were added.

The usage of G codes in a data block together with D codes was deprecated. The rectangular
hole in standard apertures was deprecated. Usage of less than 4 decimal positions and trailing
zero omission in the FS command was deprecated

mailto:gerber@ucamco.com

Copyright Ucamco NV 14

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

The number after D/G/M letter in function code commands was allowed to contain more leading
zeros. The mistakenly omitted rotation parameter of the circle macro primitive was restored.
Unicode escape sequences in strings are now possible.

New file attributes were specified: .GenerationSoftware (5.4.1.4), .CreationDate (5.4.1.5) and
.ProjectId (5.4.1.6).

As of now the revision numbering follows the yyyy.mm versioning scheme.

 Revision J4

The .AperFunction values “Slot”, “CutOut” and “Cavity” were added. The text on standard
attributes was made more explicit. An example of a poorly constructed plane was added.

 Revision J3

The .FileFunction values for copper and drill layers were extended to contain more information
about the complete job.

 Revision J2

Associating aperture attributes with regions was much simplified. A section about numerical
accuracy was added.

 Revision J1

This revision created version 2 of Gerber format by adding attributes to what was hitherto a pure
image format. See chapter 5. A shorthand for Gerber version 2 is “X2”, with “X1” being Gerber
without attributes. Gerber version 2 is backward compatible as attributes do not affect image
generation.

 Revision I4

The commands LN, IN and IP were deprecated. The possibility of re-assigning D codes was
revoked.

The regions overview section 4.6.1 was expanded and examples were added different places in
4.6 to further clarify regions. The chapters on function codes and syntax were restructured. The
constraints on the thermal primitive parameters were made more explicit. Wording was
improved in several places. The term ‘(mass) parameter’ was replaced by ‘extended code’.

 Revision I3

Questions about the order and precise effect of the deprecated commands MI, SF, OF, IR and
AS were clarified. Coincident contour segments were explicitly defined.

 Revision I2

The “exposure on/off” modifier in macro apertures and the holes in standard apertures are
sometimes incorrectly implemented. These features were explained in more detail. Readers and
writers of Gerber files are urged to review their implementation in this light.

mailto:gerber@ucamco.com

Copyright Ucamco NV 15

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 Revision I1

General. The entire specification was extensively reviewed for clarity. The document was re-
organized, the quality of the text and the drawings has been improved and many new drawings
were added.

Deprecated elements. Elements of the format that are rarely used and superfluous or prone to
misunderstanding have been deprecated. They are grouped together in the second part of this
document. The first part contains the current format, which is clean and focused. We urge all
creators of Gerber files no longer to use deprecated elements of the format.

Graphics state and operation codes. The underlying concept of the graphics state and
operation codes is now explicitly described. See section 2.8 and 2.7. We urge all providers of
Gerber software to review their implementation in the light of these sections.

Defaults. In previous revisions the definitions of the default values for the modes were scattered
throughout the text, or were sometimes omitted. All default values are now unequivocally
specified in an easy-to-read table. See 2.8. We urge all providers of Gerber software to review
their handling of defaults.

Rotation of macro primitives. The rotation center of macro primitives was clarified. See
4.13.3. We urge providers of Gerber software to review their handling of the rotation of macro
primitives.

G36/G37. The whole section is now much more specific. An example was added to illustrate
how to use of polarities to make holes in areas, a method superior to cut-ins. See 4.6. We urge
all providers of Gerber software to review their handling of G36/G37 and to use layers to create
holes in areas rather than using cut-ins.

Coordinate data. Coordinate data without D01/D02/D03 in the same data block create some
confusion. It therefore has been deprecated. See 7.2. We urge all providers of Gerber software
to review their output of coordinate data in this light.

Maximum aperture number (D-code). In previous revisions the maximum aperture number
was 999. This was insufficient for current needs and numerous files in the market use higher
aperture numbers. We have therefore increased the limit to the largest number that fits in a
signed 32 bit integer.

Standard Gerber. We now define Standard Gerber in relation to the current Gerber file format.
Standard Gerber is deprecated because it has many disadvantages and not a single advantage.
We urge all users of Gerber software not to use Standard Gerber.

Incremental coordinates. These have been deprecated. Incremental coordinates lead to
rounding errors. Do not use incremental coordinates.

Name change: area and contour instead of polygon. Previous revisions contained an object
called a polygon. As well as creating confusion between this object and a polygon aperture, the
term is also a misnomer as the object can also contain arcs. These objects remain unchanged
but are now called areas, defined by their contours. This does not alter the Gerber files.

Name change: level instead of layer. Previous revisions of the specification contained a
concept called a layer. These were often confused with PCB layers and have been renamed as
levels. This is purely narrative and does not alter the Gerber files.

mailto:gerber@ucamco.com

Copyright Ucamco NV 16

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

1.5 About Ucamco
Ucamco (former Barco ETS) is a market leader in PCB CAM software and imaging systems. We
have more than 25 years of continuous experience developing and supporting leading-edge
front-end tooling solutions for the global PCB industry. We help fabricators world-wide raise
yields, increase factory productivity, and cut enterprise risks and costs.

Today we have more than 1000 laser photoplotters and 5000 CAM systems installed around the
world with local support in every major market. Our customers include the leading PCB
fabricators across the global spectrum. Many of them have been with us for more than 20 years.

Key to this success has been our uncompromising pursuit of engineering excellence in all our
products. For 25 years our product goals have been best-in-class performance, long-term
reliability, and continuous development to keep each user at the cutting-edge of his chosen
technology.

For more information see www.ucamco.com.

mailto:gerber@ucamco.com
http://www.ucamco.com/

Copyright Ucamco NV 17

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

2 Overview of the Gerber Format

2.1 File Structure
The Gerber file format is a vector 2D binary image file format: the image is defined by
resolution-independent graphics objects.

A single Gerber file specifies a single image. A Gerber file is complete: it does not need external
files or parameters to be interpreted. One Gerber file represents one image. One image needs
only one file.

A Gerber file is a stream of commands. A command is either a function code (see 3.5.2) or an
extended code (see 3.5.3). Some commands control the graphics state (see 2.8), other
commands generate a stream of graphics objects (see 2.3) which combined produce the final
image. The graphics state determines how the operations create the graphics objects.

A Gerber file can be processed in a single pass. Names, parameters and objects must be
defined before they are used.

mailto:gerber@ucamco.com

Copyright Ucamco NV 18

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

2.2 Processing a Gerber File
The image below illustrates how a Gerber file is processed.

Syntax parser

Gerber file

Image plane

Stream of

commands

Stream of

graphics objects

Aperture templates

dictionary

AM command

M02 command

Graphics state

Graphics

object

Commands processor

Apertures dictionary

AD command

A

Legend

A B
Command As the result of Command execution A

forces B to change or perform a task

B A affects B

A B A passes stream of data to B

A B A processes B

mailto:gerber@ucamco.com

Copyright Ucamco NV 19

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

1. Gerber file processing diagram

A Gerber file is the input for the syntax parser. The parser reads the file and produces the
stream of commands for the commands processor. The commands processor is responsible for
handling the stream of commands and as the result it generates the stream of graphics objects.
All the created objects are superimposed on the image plane in order of their creation.

An important part of the commands processor is the graphics state. This is the internal object
manipulated by the processor itself. The processor executes the commands which explicitly or
implicitly change the graphics state (see 2.8). The graphics state holds the set of parameters
which influence the operation codes (see 2.7) and thus define the resulting graphics objects.

The AM command (see 4.13) results in creating a macro aperture template (see 2.4). The
template is generated by the commands processor and added to the aperture templates
dictionary. The dictionary is responsible for holding all the templates available for an aperture
instantiation. This includes standard (built-in) aperture templates (see 4.12) which are
automatically added to the dictionary before file processing is started, and also macro aperture
templates specified by AM commands in the file being processed. The templates are then used
by AD command for instantiating apertures – this is how the aperture templates dictionary
affects the apertures dictionary.

When the commands processor executes an AD command (see 4.11) it creates an aperture
that is added into the apertures dictionary. The aperture is created using an aperture template
from the templates dictionary.

The graphics state has the ‘current aperture’ parameter that is manipulated by Dnn command
(see 4.3). When the processor executes a Dnn command a referenced aperture from apertures
dictionary is set as the current aperture.

The graphics state also affects the generation of aperture templates and apertures: the
templates and apertures depend on ‘coordinate format’ and ‘unit’ graphics state parameters
(see 2.8).

The graphics object stream is without state. Objects are superimposed as they are, in their
order of appearance.

After processing the M02 command (see 4.8) the processor interrupts the syntax parser and
stops the graphics objects generation.

The image from above illustrates the processing of a Gerber file without attributes. For the
complete schema see 2.11.

mailto:gerber@ucamco.com

Copyright Ucamco NV 20

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

2.3 Graphics Objects
A Gerber file creates an ordered stream of graphics objects. A graphics object is a visual object
of a certain type that is represented by an image in the plane. It has a shape, a size, a position
and a polarity (dark or clear). The stream of the graphics objects forms the final image.

There are four types of graphics objects:

 A draw is a straight line segment, stroked with the current aperture. It has a thickness. The
line endings depend on the current aperture: line endings are round for circle apertures and
square or triangle for square apertures (see 2.5).

 An arc is circular segment, stroked with the current aperture. An arc has a thickness. Line
endings are always round as only stroking with a circle is allowed (see 2.5).

 A flash is a replication of an aperture at a given location. An aperture is a basic geometric
shape defined earlier in the file. An aperture is typically flashed many times. Any valid
aperture can be flashed (see 4.2.4).

 A region is an area defined by its contour (see 4.6.1). A contour is constructed with a
sequence of linear and circular segments (see 2.6).

Note: A track is a generic name for a graphics object that can either be a draw or an arc.

In PCB copper layers, draws and arcs are used to create conductive tracks, flashes to create
pads and regions to create copper areas (also called copper pours).

mailto:gerber@ucamco.com

Copyright Ucamco NV 21

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

2.4 Apertures
An aperture is a 2D geometric shape or figure, for example a circle with a diameter of 2mm.
Apertures are used for flashing or stroking (see 2.5 and 4.2).

The AD (Aperture Define) command creates an aperture based on an aperture template by
providing values for template parameters defining shape and size. It also assigns the D code or
aperture number to identify the aperture for later use in the command stream.

There are two kinds of apertures templates: standard apertures and macro apertures:

 Standard apertures are pre-defined: the circle (C), rectangle (R), obround (O) and regular
polygon (P) (see 4.12).

 Macro apertures are defined by means of AM (Aperture Macro) command. Any shape and
parametrization can be created. They are identified by their given name. (See 4.13).

An aperture has an origin. When an aperture is flashed its origin is positioned at the
coordinates in the D03 flash command (see 4.2). The origin of a standard aperture is its
geometric center. The origin of a macro aperture is the origin used in the AM command defining
it.

Standard apertures can be considered as built-in macro apertures with the center as origin.

Macros are a powerful and elegant feature of the Gerber format. Apertures of any shape can be
created. A file writer can easily define the apertures needed. A file reader can handle any such
aperture by implementing a small number of primitives. This single flexible mechanism, based
on a small number of simple primitives, replaces the need for a large - but always insufficient -
number of pre-defined apertures. New aperture types can be created without extending the
format and updating implementations.

mailto:gerber@ucamco.com

Copyright Ucamco NV 22

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

2.5 Draw and Arc Objects
A draw object is created by a command with D01 code in linear interpolation mode. The
command results in stroking a straight line segment with a solid circle or solid rectangle
standard aperture. If stroked with a circle aperture the draw has round endings and its thickness
is equal to the diameter of the circle. The effect of stroking a line segment with a rectangle
aperture is illustrated below.

If the rectangle aperture is aligned with the line being stroked the result is a draw with line
endings which have right angles:

2. Creating a draw: the aperture is aligned with line

If the rectangle is not aligned the result is as in the illustration below. The rectangle is not
automatically rotated to align with the line being stroked.

3. Creating a draw: the aperture is not aligned with line

The solid circle and the solid rectangle standard apertures are the only apertures allowed for
creating draw objects. Neither other standard apertures nor any macro apertures can be used to
create a draw, even if their effective shape is circle or a rectangle.

An arc object is created by a command with D01 code in circular interpolation mode. In this
case the command results in stroking an arc segment with a solid circle standard aperture. The
arc has round endings and its thickness is equal to the diameter of the circle. An arc object
cannot be created using a rectangle or any other aperture.

A circle aperture with diameter zero can be used for creating a draw or an arc. It creates
graphics objects without image which can be used to transfer non-image information, e.g. an
outline.

Zero-length draws and arcs are allowed. The resulting image is a replica of the aperture. This is
also the limiting image of a draw/arc when the draw/arc length approaches zero. Thus the
image is what is expected if a small draw/arc is accidentally rounded to a zero-length draw/arc.
Although the image is coincidentally identical to a flash of the same aperture the resulting
graphics object is not a flash but a draw/arc.

Note: Do not use zero-length draws to represent pads as pads must be represented by
flashes.

Line being stroked Aperture Draw

Line being stroked Aperture Draw

mailto:gerber@ucamco.com

Copyright Ucamco NV 23

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

2.6 Contours
A contour is an important concept in the Gerber format description. Contours are used to create
regions (see 4.6) and outline primitives in macro apertures (see 4.13.4.5).

A contour is a sequence of connected linear or circular segments. A pair of segments is said to
connect only if they are defined consecutively, with the second segment starting where the first
one ends. Thus the order in which the segments of a contour are defined is significant. Non-
consecutive segments that meet or intersect fortuitously are not considered to connect. A
contour is closed: the end point of the last segment must connect to the start point of the first
segment.

In Gerber format self-intersecting contours are not allowed. Segments cannot cross, overlap or
touch except:

 Consecutive segments connecting in their endpoints, needed to construct the contour

 Horizontal or vertical fully coincident linear segments, used to create holes in a region with
cut-ins; see 4.6.11. A pair of linear segments are said to be fully coincident if and only if the
segments coincide completely, with the second segment starting where the first one ends.

 Zero-length linear and circular segments are allowed and have no effect. (Avoid them as
they are useless and can only cause confusion.)

Any other form of self-touching or self-intersection is not allowed. For the avoidance of doubt,
not allowed are amongst other partially coinciding linear segments (linear segments not sharing
both vertices), diagonal fully coincident linear segments, fully coincident circular segments,
partially coinciding circular segments, circular segments tangent to another segment of any
form, vertices on a segment but not on its endpoints, vertices with more than two segments, full
360° circular segments.

If a contour violates any of the restrictions above it is considered invalid and thus the whole file
is invalid.

The segments are not graphics objects in themselves; segments are part of the contour which is
then used either to create a region graphics object, or to specify an outline aperture. The
segments have no thickness.

 Warning: Care must be taken that rounding errors do not turn a proper contour into a self-
intersecting one, leading to unpredictable results. The Gerber writer must also consider that the
reader unavoidably has rounding errors. Perfectly exact numerical calculation cannot be
assumed. This is especially important for circular segments, which are intrinsically fuzzy.
Construct contours defensively. Observe sufficient clearances between the circular segments. It
is the responsibility of the writer to avoid brittle contours that are only marginally valid and
become self-intersecting under normal rounding. Low file coordinate resolution is the most
frequent culprit for rounding problems, see 4.9.

 Warning: A circular segment can be validly interpreted by any curve within a range, see
Error! Reference source not found.. If any of these curves results in a self-intersecting c
ontour the file is invalid and the result is unpredictable.

mailto:gerber@ucamco.com

Copyright Ucamco NV 24

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

2.7 Operation Codes
D01, D02 and D03 are the operation codes. An operation contains the coordinate data followed
by a single operation code: each operation code is associated with a single coordinate pair and
vice versa. Operations create the graphics objects and/or change the current point by operating
on the coordinate data.

 Example:

X100Y100D01*

X200Y200D02*

X300Y-400D03*

The operation codes have the following effect.

 D02 moves the current point (see 2.8) to the coordinate pair. No graphics object is created.

 D01 creates a straight or circular line segment by interpolating from the current point to the
coordinate pair. When region mode (see 2.8) is off these segments are converted to draw
or arc objects by stroking them with the current aperture (see 2.5). When region mode is on
these segments form a contour defining a region (see 4.6).

 D03 creates a flash object by replicating (flashing) the current aperture. The origin of the
current aperture is positioned at the specified coordinate pair.

Only D01 and D03 operation codes result in a graphics object creation. The effect of the
operation codes depends on the graphics state (see 2.8).

mailto:gerber@ucamco.com

Copyright Ucamco NV 25

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

2.8 Graphics State
A Gerber file defines a graphics state after each command. The graphics state is a set of
parameters that determine the effect of the upcoming operation codes (see 2.7). A graphics
state parameter that affects an operation code must be defined before the operation code is
issued.

The most important graphics state parameter is the current point. The current point is a point in
the image plane that is set by any operation (D01, D02, D03: after performing an operation the
current point is set to the coordinates in that operation command.

All other graphics state parameters are set explicitly by corresponding commands. Their values
remain constant until explicitly changed.

The table below lists the graphics state parameters. The column ‘Fixed or changeable’ indicates
whether a parameter remains fixed during the processing of a file or whether it can be changed.
The column ‘Initial value’ is the default value at the beginning of each file; if the default is
undefined the parameter value must be explicitly set by a command in the file before it is first
used.

Graphics state
parameter

Value range Fixed or
changeable

Initial value

Coordinate format See FS command in 4.9 Fixed Undefined

Unit Inch or mm

See MO command in 4.10

Fixed Undefined

Current point Point in plane Changeable Undefined

Interpolation mode Linear, clockwise circular,
counterclockwise circular

See G01/G02/G03 commands in
4.4 and 4.5

Changeable Undefined

Quadrant mode Single-, multi-quadrant

See G74/G75 commands in 4.5

Changeable Undefined

Current aperture Standard or macro aperture

See AD in 4.11 and AM in 4.13

Changeable Undefined

Polarity mode Dark, clear

See LP command in 4.14

Changeable Dark

Region mode On/Off

See G36, G37 commands in 4.6

Changeable Off

Graphics state parameters

The graphics state determines the effect of an operation. If a parameter is undefined when it is
required to perform an operation the Gerber file is invalid. If a graphics state parameter is not
needed then it can remain undefined. For example, if the interpolation mode has been set by
G02 or G03 code command (circular interpolation) the quadrant mode is required to perform a
D01 code operation and thus must be defined; if the interpolation mode has been set by G01

mailto:gerber@ucamco.com

Copyright Ucamco NV 26

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

code command (linear interpolation) then the quadrant mode is not needed and may remain
undefined.

The relevance of the graphics state parameters for the operations is represented in the table
below.

Graphics state
parameter

Operation codes

D01 D02 D03

Coordinate format Yes Yes Yes

Unit Yes Yes Yes

Current aperture Yes if Region mode off

No if Region mode on

No Yes

Quadrant mode Yes if interpolation
mode is clockwise or

counterclockwise
circular interpolation

No if interpolation mode
is linear

No No

Interpolation mode Yes No No

Current point Yes (interpolation
starting point)

No No

Polarity Yes No Yes

Region mode Yes Yes. In region mode
D02 has the side effect
of closing the current

contour

Not used by the operation
if region mode is off

Not allowed if region
mode is on

Relevance of graphics state parameters for operation codes

If a table cell contains ‘Yes’ it means the graphics state parameter is relevant for the
corresponding operation. Thus the graphics state parameter must be defined before the
operation code is used in the file. If the parameter does not have an automatically assigned
initial value it must be explicitly set by the corresponding command.

The current aperture is not needed for image generation in region mode. However it can be
used to attach attributes to a region. If the current aperture is undefined, no attributes are
attached to the region. The region takes the attribute of the current aperture.

mailto:gerber@ucamco.com

Copyright Ucamco NV 27

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

2.9 Dark and Clear Polarity
The final image of the Gerber file is created by superimposing the objects in the order of their
creation. Objects have a polarity, either clear or dark. Objects can overlap. A dark polarity object
darkens its image in the plane. A clear polarity object clears its image in all objects beneath it
(generated before). Subsequent dark objects may again darken the cleared area. See
illustration below. Another example is in 4.6.10.

4. Superimposing objects with dark and clear polarities

An object is totally dark or totally clear. It cannot be partially dark and partially clear.

The order of superimposed objects with different polarities affects the final image.

The LP command sets the polarity mode, a graphics state parameter (see 4.14). Objects that
are created when the polarity mode is dark are dark; when the mode is clear the objects are
clear.

Dark polarity

Clear polarity

Dark polarity

Image plane Graphics objects

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

mailto:gerber@ucamco.com

Copyright Ucamco NV 28

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

2.10 Attributes

Attributes add meta-information to a Gerber file. These are akin to labels providing additional
information about the file or features within them. Examples of such meta-information conveyed
by attributes are:

 The function of the file: the file is the top solder mask, or the bottom copper layer etc.

 The part represented by the file: the file represents a single PCB, an array, or a coupon

 The function of a pad: the flash is an SMD pad, or a via pad, or a fiducial, etc.

The command below defines an attribute indicating that the file represents the top solder mask.

 Example:

%TF.FileFunction,Soldermask,Top*%

Attributes do not affect the image. If only the image is needed the Gerber reader can safely
ignore the attributes.

Attributes can be associated with either the file as a whole or with individual apertures.

The attribute syntax provides a flexible and standardized way to add meta-information to the
images, independent of the specific semantics or application.

Attributes are not needed when just the image is needed. However, attributes are needed when
PCB data is transferred from design to fabrication. The PCB fabricator needs more than just the
image: for example he needs to know which pads are via pads to manufacture the solder mask.
The attributes transfer this information in an unequivocal and standardized manner. They
convey the design intent from CAD to CAM. This is sometimes rather grandly called “adding
intelligence to the image”. Without these attributes the fabricator has to reverse engineer the
design intent of the features in the file, which is a time-consuming and error-prone process.

The attributes are described in detail in the chapter 5.

mailto:gerber@ucamco.com

Copyright Ucamco NV 29

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

2.11 Processing Gerber File with Attributes
The image below illustrates processing Gerber file with file and aperture attributes.

5. Gerber file with attributes processing schema

Syntax parser

Gerber file

Image plane

Stream of

commands

Stream of

graphics objects

Aperture templates

dictionary

Current attributes

dictionary

AM command

TA, TD commands

M02 command

Graphics state

File attributesTF command

A

Legend

A B
Command As the result of Command execution A

forces B to change or perform a task

B A affects B

A B A linked to B

A B A passes stream of data to B

A B A processes B

Graphics

object

Attributes

Commands processor

Aperture

attributes

Aperture

Apertures dictionary

AD command

mailto:gerber@ucamco.com

Copyright Ucamco NV 30

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

The schema is the extended version of the schema from the section 2.2.

The current attributes dictionary is responsible for holding all the currently defined aperture
attributes. The dictionary is updated by the commands processor as the result of execution TA
and TD commands (see 5.3.2 and 5.3.3).

When an aperture is added to the apertures dictionary it gets the attached set of aperture
attributes which come from the current attributes dictionary. When the aperture is set as a
current aperture and used for creating a graphics object, the aperture attributes are attached to
the resulting graphics object.

When the commands processor executes TF command (see 5.2.1) the corresponding file
attribute is attached to the resulting image.

mailto:gerber@ucamco.com

Copyright Ucamco NV 31

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

2.12 Conformance
If the interpretation of a construct is not specified or not obvious the construct is invalid. A file
violating any requirement of the specification or containing any invalid part is wholly invalid. An
invalid Gerber file is meaningless and does not represent an image.

A conforming Gerber file writer must write files according to this specification. A current
conforming Gerber file writer cannot use deprecated constructs. A writer is not required to take
into account limitations or errors in particular readers. The writer may assume that a valid file
will be processed correctly.

A Gerber file reader must render a valid Gerber file according to this specification. A current
reader may support some or all deprecated format elements as they can be present in legacy
files. To prepare for future extensions of the format, a Gerber file reader must give a warning
when encountering an unknown command or macro primitive; it must then continue processing
ignoring the unknown construct. Otherwise there is no mandatory behavior on reading an invalid
Gerber file. It is not mandatory to report any other errors – this would impose an unreasonable
burden on readers and may result in useless messages in some applications. It allowed to
generate an image on an invalid file, e.g. as a diagnostic help or in an attempt to reverse
engineer the intended image by ‘reading between the lines’; however, as an invalid Gerber file is
meaningless, it cannot be stated interpretation of the file is valid and another invalid. A reader
must also give a warning when it processes a file exceeding its implementation limits.

The responsibilities are obvious and plain. Writers must write valid and numerically robust files
and readers must process such files correctly. Writers are not responsible to navigate around
problems in the readers, nor are readers responsible to solve problems in the writers. Keep in
mind Postel’s rule: “Be conservative in what you send, be liberal in what you accept.”

Standard Gerber (RS-274-D) is obsolete and therefore non-conforming. The responsibility for
misunderstandings of its non-standardized wheel file rests solely with the party that decided to
use Standard Gerber rather than Extended Gerber. See 7.8.

This document is the sole specification of the Gerber format. Gerber viewers, however useful,
are not the reference and do not overrule this document.

mailto:gerber@ucamco.com

Copyright Ucamco NV 32

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

2.13 Example Files
These annotated sample files illustrate the use of the elements of the Gerber file format. They
will give you a feel for the Gerber file format if it is new to you and thus will make the formal
specification easier to read.

 Example: Two Square Boxes

This example represents a single polarity image with two square boxes.

6. Example: two square boxes

Syntax Comments

G04 Ucamco ex. 1: Two

square boxes*
A comment

%FSLAX25Y25*% Coordinate format specification:

Leading zero’s omitted

Absolute coordinates

Coordinates format is 2.5:

2 digits in the integer part
5 digits in the fractional part

%MOMM*% Unit set to mm

%TF.Part,Other*% Attribute: the file is not a layer of a PCB part - it is just an example

%LPD*% Set the polarity to dark

%ADD10C,0.010*% Define aperture with D-code 10 as a 0.01 mm circle

D10* Set aperture with D-code 10 as current aperture

X0Y0D02* Set current point to (0, 0)

G01* Set linear interpolation mode

X500000Y0D01* Create draw graphics object using the current aperture D10: start
point is the current point (0,0), end point is (5, 0)

Y500000D01* Create draw using the current aperture: (5, 0) to (5, 5)

X0D01* Create draw using the current aperture: (5, 5) to (0, 5)

mailto:gerber@ucamco.com

Copyright Ucamco NV 33

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Syntax Comments

Y0D01* Create draw using the current aperture: (0, 5) to (0, 0)

X600000D02* Set current point to (6, 0)

X1100000D01* Create draw using the current aperture: (6, 0) to (11, 0)

Y500000D01* Create draw using the current aperture: (11, 0) to (11, 5)

X600000D01* Create draw using the current aperture: (11, 5) to (6, 5)

Y0D01* Create draw using the current aperture: (6, 5) to (6, 0)

M02* End of file

 Example: Use of Polarities and Various Apertures

This example illustrates the use of polarities and various apertures.

7. Example: various shapes

Syntax Comments

G04 Ucamco ex. 2: Shapes* A comment statement

mailto:gerber@ucamco.com

Copyright Ucamco NV 34

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Syntax Comments

%FSLAX26Y26*% Format specification:

Leading zero’s omitted

Absolute coordinates

Coordinates format is 2.6:

2 digits in the integer part
6 digits in the fractional part

%MOIN*% Units are inches

%TF.Part,Other*% Attribute: the file is not a layer of a PCB part - it is just an
example

%LPD*% Set the polarity to dark

This command confirms the default and makes the intention
unequivocal

G04 Define Apertures* Comment

%AMTARGET125* Define the aperture macro ‘TARGET125’

6,0,0,0.125,.01,0.01,3,0.003,

0.150,0*%
Use moiré primitive in the macro

%AMTHERMAL80* Define the aperture macro ‘THERMAL80’

7,0,0,0.080,0.055,0.0125,45*% Use thermal primitive in the macro

%ADD10C,0.01*% Define the aperture: D10 is a circle with diameter 0.01 inch

%ADD11C,0.06*% Define the aperture: D11 is a circle with diameter 0.06 inch

%ADD12R,0.06X0.06*% Define the aperture: D12 is a rectangle with size 0.06 x 0.06
inch

%ADD13R,0.04X0.100*% Define the aperture: D13 is a rectangle with size 0.04 x 0.1
inch

%ADD14R,0.100X0.04*% Define the aperture: D14 is a rectangle with size 0.1 x 0.04
inch

%ADD15O,0.04X0.100*% Define the aperture: D15 is an obround with size 0.04 x 0.1
inch

%ADD16P,0.100X3*% Define the aperture: D16 is a polygon with 3 vertices and
circumscribed circle with diameter 0.1 inch

%ADD18TARGET125*% Define the aperture: D18 is the instance of the macro aperture
called ‘TARGET125’ defined earlier

%ADD19THERMAL80*% Define the aperture: D19 is the instance of the macro aperture
called ‘THERMAL80’ defined earlier

G04 Start image generation* A comment

D10* Set the current aperture: use aperture with D-code 10

X0Y250000D02* Set the current point to (0, 0.25) inch

G01* Set linear interpolation mode

mailto:gerber@ucamco.com

Copyright Ucamco NV 35

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Syntax Comments

X0Y0D01* Create draw using the current aperture

X250000Y0D01* Create draw using the current aperture

X1000000Y1000000D02* Set the current point

X1500000D01* Create draw using the current aperture

X2000000Y1500000D01* Create draw using the current aperture

X2500000D02* Set the current point. Since the X and Y coordinates are
modal, Y is not repeated

Y1000000D01* Create draw using the current aperture

The X coordinate is not repeated and thus its previous value of
2.5 inch is used

D11* Set the current aperture: use aperture with D-code 11

X1000000Y1000000D03* Create flash using the current aperture D11 at (1.0, 1.0). Y is
modal.

X2000000D03* Create flash using the current aperture D11 at (2.0, 1.0). Y is
modal.

X2500000D03* Create flash using the current aperture D11 at (2.5, 1.0). Y is
modal.

Y1500000D03* Create flash using the current aperture D11 at (2.5, 1.5). X is
modal.

X2000000D03* Create flash using the current aperture D11 at (2.0, 1.5). Y is
modal.

D12* Set the current aperture: use aperture with D-code 12

X1000000Y1500000D03* Create flash using the current aperture at (1.0, 1.5)

D13* Set the current aperture: use aperture with D-code 13

X3000000Y1500000D03* Create flash using the current aperture at (3.0, 1.5)

D14* Set the current aperture: use aperture with D-code 14

Y1250000D03* Create flash using the current aperture at (3.0, 1.25)

D15* Set the current aperture: use aperture with D-code 15

Y1000000D03* Create flash using the current aperture at (3.0, 1.0)

D10* Set the current aperture: use aperture with D-code 10

X3750000Y1000000D02* Set the current point. This sets the start point for the following
arc object

G75* Set multi quadrant mode

G03 Set counterclockwise circular interpolation mode

X3750000Y1000000I250000J0D01* Create arc using the current aperture D10. This creates a
complete circle

mailto:gerber@ucamco.com

Copyright Ucamco NV 36

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Syntax Comments

D16* Set the current aperture: use aperture with D-code 16

X3400000Y1000000D03* Create flash using the current aperture D16

X3500000Y900000D03* Create flash using the current aperture D16 again

D10* Set the current aperture: use aperture with D-code 10

G36* Enable region mode

X500000Y2000000D02* Set the current point to (0.5, 2.0)

G01* Set linear interpolation mode

Y3750000D01* Create linear segment of the contour

X3750000D01* Create linear segment of the contour

Y2000000D01* Create linear segment of the contour

X500000D01* Create linear segment of the contour

G37* Disable region mode

This creates the region by filling the created contour

D18* Set the current aperture: use aperture with D-code 18

X0Y3875000D03* Create flash using the current aperture D18

X3875000Y3875000D03* Create flash using the current aperture D18

%LPC*% Set the polarity to clear

G36* Enable region mode

X1000000Y2500000D02* Set the current point to (1.0, 2.5)

Y3000000D01* Create linear segment

G74* Set single quadrant mode

G02* Set clockwise circular interpolation mode

X1250000Y3250000I250000J0D01* Create clockwise circular segment with radius 0.25

G01* Set linear interpolation mode

X3000000D01* Create linear segment

G75* Set multi quadrant mode

G02* Set clockwise circular interpolation mode

X3000000Y2500000I0J-

375000D01*
Create clockwise circular segment with radius 0.375

G01* Set linear interpolation mode

X1000000D01* Create linear segment

G37* Disable region mode

This creates the region by filling the created contour

mailto:gerber@ucamco.com

Copyright Ucamco NV 37

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Syntax Comments

%LPD*% Set the polarity to dark

D10* Set the current aperture: use aperture with D-code 10

X1500000Y2875000D02* Set the current point

X2000000D01* Create draw using the current aperture

D11* Set the current aperture: use aperture with D-code 11

X1500000Y2875000D03* Create flash using the current aperture D11

X2000000D03* Create flash using the current aperture D11

D19* Set the current aperture: use aperture with D-code 19

X2875000Y2875000D03* Create flash using the current aperture D19

%TF.MD5,6ab9e892830469cdff7e3

e346331d404*%
Attribute: the MD5 checksum of the file

M02* End of file

 Example: A Drill File

This example is a drill file.

8. Example: drill file

Syntax Comments

mailto:gerber@ucamco.com

Copyright Ucamco NV 38

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Syntax Comments

%FSLAX26Y26*% Format specification:

Leading zero’s omitted

Absolute coordinates

Coordinate format is 2.6:

2 digits in the integer part
6 digits in the fractional part

%MOIN*% Units are inches

%TF.FileFunction,Plated,1,8,PTH*% Attribute: this drill file describes plated-through holes

%TF.Part,Single*% Attribute: the file is part of a single PCB

%LPD*% Set the polarity to dark

%TA.DrillTolerance,0.01,0.005*% Set the drill tolerance attribute to 10 mil in plus and 5 mil in
minus in the current attribute dictionary. It will be attached to
all aperture definitions until changed or deleted

%TA.AperFunction,ComponentDrill% Attribute indicates that the following apertures define
component drill holes.

%ADD10C,0.014000*% Define the aperture: a drill tool that will be used to drill plated
component drill holes with 10 mil positive and 5 mil negative
tolerance

%TA.AperFunction,Other,MySpecialD

rill*%
Attribute indicates that the following apertures are special
drill holes

%ADD11C,0.024000*% Define the aperture: a drill tool that will be used to drill plated
special drill holes with 10 mil positive and 5 mil negative
tolerance

%TA.DrillTolerance,0.015,0.015*% Change the drill tolerance attribute for the following
apertures to 15 mil in both directions

%TA.AperFunction,MechanicalDrill*

%
Change the tool function attribute in the dictionary to
mechanical

%ADD12C,0.043000*% Define the aperture: a circular aperture defining a drill tool
with a tolerance of 15 mil in both directions that will be used
for plated mechanical drill holes

%ADD13C,0.022000*% Define the aperture: another tool with the same attributes
but a smaller diameter

%TD.AperFunction*% Remove the .AperFunction aperture attribute from the
current attributes dictionary

%TD.DrillTolerance*% Remove the .DrillTolerance aperture attribute from the
current attributes dictionary

G01* Set linear interpolation mode

D10* Set the current aperture: use drill tool 10

X242000Y275000D03* Create several flash graphics objects using the current
aperture D10: drill plated component drill holes with Y325000D03*

mailto:gerber@ucamco.com

Copyright Ucamco NV 39

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Syntax Comments

X217000Y300000D03* diameter 14 mil at indicated coordinates

X192000Y325000D03*

X292000Y275000D03*

X192000D03*

X292000Y325000D03*

X267000Y300000D03*

D11* Set the current aperture: use drill tool 11

X124000Y0D03* Create several flash graphics objects using the current
aperture D11: drill plated special drill holes with diameter 24
mil at indicated coordinates

X0Y-124000D03*

X-124000Y0D03*

X88000Y88000D03*

X-88000D03*

X0Y124000D03*

X88000Y-88000D03*

X-88000D03*

D12* Set the current aperture: use drill tool 12

X792000Y350000D03* Create several flash graphics objects using the current
aperture D12: drill plated mechanical drill holes with
diameter 43 mil at indicated coordinates

X492000Y-350000D03*

D13* Set the current aperture: use drill tool 13

X767000Y-600000D03* Create several flash graphics objects using the current
aperture D13: drill plated mechanical drill holes with
diameter 22 mil at indicated coordinates

X567000D03*

X-233000Y200000D03*

Y400000D03*

Y0D03*

Y-200000D03*

Y-600000D03*

Y-400000D03*

X-33000Y-600000D03*

X167000D03*

X367000D03*

%TF.MD5,b5d8122723797ac635a1814c0

4c6372b%
Attribute: the MD5 checksum of the file

M02* End of file

 Note: One might be surprised to see drill files represented as Gerber files. Gerber is
indeed not suited to drive drilling machines, but it is the best format to convey drill information
from design to fabrication. After all, it defines where material must be removed, and this is
image information that Gerber files describe perfectly. For more information, see 5.4.1.1.

mailto:gerber@ucamco.com

Copyright Ucamco NV 40

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

2.14 Glossary

Absolute position: Position expressed in Cartesian coordinates relative to the origin
(0, 0).

Aperture: A shape that is used for stroking or flashing. (The name is historic; vector
photoplotters exposed images on lithographic film by shining light through an opening,
called aperture.)

Aperture macro: The content of an Aperture Macro (AM) command. Provides a
definition of a custom aperture that is created by combining a number of primitives.

Aperture template: A template that is used to instantiate an aperture. There are two
types of templates: standard (built-in) apertures and macro apertures. Templates are
added to aperture templates dictionary and later they are used by AD command for
creating apertures.

Aperture templates dictionary: The element of the Gerber file processing that is
responsible for holding all the defined aperture templates. Initially the dictionary
contains standard aperture templates only; additional macro aperture templates can be
added to the dictionary by AM command.

Apertures dictionary: The element of the Gerber file processing that is responsible for
holding all the defined apertures.

Arc: A graphics object created by D01 code command in a circular interpolation mode.

Attribute: Metadata that is associated with the file as a whole or with some of its
graphics objects; it provides extra information without affecting the image.

Binary image: A two-dimensional (2D) image represented by two colors.

Block: A stream of graphics objects that can be added to the final objects stream.

Circular interpolation: Creating a circular segment (circular arc) that (depending on
the region mode) is either converted to an arc graphics object or used as a circular
contour segment.

Clear: Clear the shape of a graphics object on the image plane; this happens when a
graphics object with clear polarity is added to the image.

Command: A higher-level element of a Gerber file that consists of one or more data
blocks. Any command contains a command code optionally with additional data
necessary for the command execution. Commands are responsible for manipulating
graphics state, creating graphics objects, defining apertures, managing attributes and
so on.

Command code: A code that identifies the command.

Contour: A closed a sequence of connected linear or circular segments. Contours are
used to create regions and outline primitives in macro apertures.

Coordinate data: A data that specifies a position (X and Y coordinates) of a point in
the image plane; when the data is used for circular interpolation it may also include the
distance or offset in the X and Y direction from the point.

Coordinate format: The coordinate data specification defined by FS command. The
effective coordinate format is stored as the value of the corresponding graphics state

mailto:gerber@ucamco.com

Copyright Ucamco NV 41

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

parameter.

Current aperture: The graphics state parameter that specifies the last aperture
selected by a Dnn command. Flashes, draws and arcs are always created using the
current aperture.

Current attributes dictionary: The element of the Geber file processing that is
responsible for holding all the currently defined aperture attributes.

Current point: The graphics state parameter that specifies the coordinates of a point
in the plane used as a begin point of a circular or linear interpolation.

Darken: Darken the shape of a graphics object on the image plane; this happens when
a graphics object with dark polarity added to the image.

Data block: The low level syntactical element of a Gerber file that is represented by a
sequence of characters ending with ‘*’ character. Data blocks are used to build
commands.

Draw: A graphics object created by D01 code command in linear interpolation mode.

Extended code: A command code consisting of two letters, e.g. ‘FS’.

Extended code commands: Commands defined by the extended codes and enclosed
in a pair of ’%’ characters, typically manipulating graphics state or attributes.

File image: A binary image that is the visual representation of a Gerber file. It is
created by superimposing the graphics objects in the plane.

Flash: A graphics object created by D03 code command. This command replicates
(flashes) the current aperture; an arc or draw that is the result of a zero length stroking
is not flash, although it is also a graphics object with the shape of the current aperture.

Function code: A command code consisting of a letter ‘D’, ‘G’ or ‘M’ followed by a
code number.

Function code commands: Commands defined by function codes. The D01, D02 and
D03 function code commands are called operations.

Gerber file: A file in the Gerber format.

Gerber format: The vector format defined by the current specification and used for
representing a binary image.

Graphics object: A graphics object is a 2D image in the image plane. It has a shape, a
size, a position and a polarity (dark or clear). It is of one of the following types: flash,
draw, arc or region. The file image is created by superimposing graphics objects on the
image plane.

Graphics state: The set of parameters that at each moment determine the effect of the
upcoming operation codes. The graphics state defines the graphics objects which are
being created.

Graphics state parameter: An element of the graphics state defining one specific
parameter that influences on the graphics object creation, e.g. interpolation mode.

Header: The part of the file from the file beginning to the point where the first operation
code is encountered.

Image plane: The 2D plane in which the image defined by the file is created.

mailto:gerber@ucamco.com

Copyright Ucamco NV 42

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Interpolation mode: The graphics state parameter defining the current interpolation
mode. See linear and circular interpolation.

Linear interpolation: Creating a straight segment that (depending on the region
mode) is either converted to a draw graphics object or used as a linear contour
segment.

Macro aperture: An aperture template defined using AM command.

Multi quadrant mode: A mode defining how circular interpolation is performed. In this
mode a circular arc is allowed to extend over more than 90°. If the start point of the arc
is equal to the end point the arc is a full circle of 360°.

Operation: A command containing one of the operation codes D01, D02 or D03 and a
coordinate data. The operation code defines the type of the operation that is performed
using the coordinate data. Operations may create graphics objects, create contours,
and change the current point of the graphics state.

Operation codes: The function codes D01, D02 or D03.

Polarity: A graphics state parameter that can take the value dark or clear. It
determines the polarity of the graphics objects generated. Dark means that the object
exposes or marks the image plane in dark and clear means that the object clears or
erases everything underneath it. See also ‘Darken’ and ‘Clear’.

Quadrant mode: The graphics state parameter defining the current quadrant mode.
See multi quadrant mode and single quadrant mode.

Region: A graphics object with an arbitrary shape defined by its contour.

Region fill: Creating a region by darkening or clearing a generated contour.

Region mode: The graphics state parameter defining if the region mode is currently
enabled or disabled. The region mode allows creating a region by defining its contour.

Resolution: The distance expressed by the least significant digit of coordinate data.
Thus the resolution is the step size of the grid on which all coordinates are defined.

Single quadrant mode: A mode defining how circular interpolation is performed. In
this mode a circular arc cannot extend over more than 90°. If the start point of the arc is
equal to the end point, the arc has length zero, i.e. covers 0°.

Standard aperture: A built-in aperture template that has pre-defined format.

Standard attribute: Pre-defined attribute conveying meta-information required for PCB
data transfer from design to fabrication.

Step and repeat: A method by which replications of an accumulated block are made to
produce multiple copies of a set of graphics objects. The current step and repeat
settings are defined by ‘Step & Repeat’ graphics state parameter.

Stroke: To create a draw or an arc graphics object using the current aperture.

Track: Either a draw or an arc. Typically used for a conductive track on a PCB.

Unit: The measurement unit ‘mm’ or ‘inch’ used to interpret the coordinate data. The
effective unit is stored as the value of the corresponding graphics state parameter.

User attribute: A third-party defined attribute to extend the format with proprietary
meta-information.

mailto:gerber@ucamco.com

Copyright Ucamco NV 43

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

3 Syntax

3.1 Conventions for Syntax Rules
 Syntax rules are written with bold font, e.g. <Elements set> = {<Elements>}

 Optional items enclosed in square brackets, e.g. [<Optional element>]

 Items repeating zero or more times are enclosed in braces, e.g. <Elements set> =
<Element>{<Element>}

 Alternative choices are separated by the ‘|’ character, e.g. <Option A>|<Option B>

 Grouped items are enclosed in regular parentheses, e.g. (A|B)(C|D)

 Examples of Gerber file content are written with mono-spaced font, e.g. X0Y0D02*

mailto:gerber@ucamco.com

Copyright Ucamco NV 44

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

3.2 File Extension, MIME Type and UTI
The Gerber Format has a standard file name extension, a registered mime type and a UTI
definition.

Standard file extension: .gbr or .GBR

Mime type: application/vnd.gerber

(see http://www.iana.org/assignments/media-types/application/vnd.gerber)

Mac OS X UTI:

<key>UTExportedTypeDeclarations</key>

<array>

 <dict>

 <key>UTTypeIdentifier</key>

 <string>com.ucamco.gerber.image</string>

 <key>UTTypeReferenceURL</key>

 <string>http://www.ucamco.com/gerber</string>

 <key>UTTypeDescription</key>

 <string>Gerber image</string>

 <key>UTTypeConformsTo</key>

 <array>

 <string>public.plain-text</string>

 <string>public.image</string>

 </array>

 <key>UTTypeTagSpecification</key>

 <dict>

 <key>public.filename-extension</key>

 <array>

 <string>gbr</string>

 </array>

 <key>public.mime-type</key>

 <string>application/vnd.gerber</string>

 </dict>

 </dict>

</array>

mailto:gerber@ucamco.com

Copyright Ucamco NV 45

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

3.3 Character Set
A Gerber file is expressed in the 7-bit ASCII codes 32 to 126 (i.e. the printable characters in
ANSI X3.4-1986) plus codes 10 (LF, Line Feed) and 13 (CR, Carriage Return). No other
characters are allowed. Gerber files are therefore printable and human readable.

The line separators CR and LF have no effect; they can be ignored when processing the file. It
is recommended to use line separators to improve human readability.

Space characters can only be used inside strings (see 3.6.6). They cannot be used inside or
between commands and data blocks, etc.

Gerber files are case-sensitive. Command codes must be in upper case.

mailto:gerber@ucamco.com

Copyright Ucamco NV 46

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

3.4 Data Blocks
Data blocks are building blocks for a Gerber file. Each data block ends with the mandatory end-
of-block character asterisk ‘*’. A data block may contain function code, coordinates data,
extended code, aperture primitive description, variable definition and so on.

 Example:

X0Y0D02*

G01*

X50000Y0D01*

%AMDONUTCAL*

1,1,$1,$2,$3*

$4=$1x0.75*

1,0,$4,$2,$3*%

Data blocks are the low level syntactical elements of a Gerber file. The data blocks can be
semantically interconnected and form a group representing a higher level element called a
command.

 Note: The pair of ‘%’ characters in the above example does not belong to any data block.
This pair is the special syntax of the extended code commands (see 3.5.3).

Tip: It is recommended to add line separators between data blocks for readability. Do not
put a line separator within a data block, except after a comma separator in long data blocks.
The line separators have no effect on the image.

mailto:gerber@ucamco.com

Copyright Ucamco NV 47

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

3.5 Commands

 Commands Overview

Commands are higher level semantic elements of a Gerber file.

A command consists of one or more data blocks. Most commands consist of a single data
block. Any command contains a command code optionally with additional data necessary for the
command execution.

Commands are responsible for manipulating graphics state, creating graphics objects, defining
apertures, managing attributes and so on.

A Gerber file consists of a stream of commands. There is no limitation on the number of
commands.

Command syntax:

<Command> = <Data Block>{<Data Block>}

For historic reasons there are two types of commands: function code and extended code
commands. The difference between them is that each extended code command must be
included into a separate pair of ‘%’ characters.

The commands can be divided into groups as represented on the image below.

mailto:gerber@ucamco.com

Copyright Ucamco NV 48

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

9. Gerber file commands

The function code commands are described in 3.5.2.

The extended code commands are described in 3.5.3.

The example below shows the stream of Gerber file commands of different types.

Function code

commands

Extended code

commands

D-code commands G-code commands 'End of file' command:

M02 code

'Region mode'

commands: G36,

G37 codes

Operations: D01,

D02, D03 codes

Select aperture'

command: Dnn code

'Interpolation mode'

commands: G01,

G02, G03 codes

'Comment'

command: G04 code

'Quadrant mode'

commands: G74,

G75

Aperture commands:

AD, AM codes

Attribute commands:

TF, TA, TD codes

Commands

Unit and coordinate

resolution

commands: FS, MO

codes

'Step & Repeat'

command: SR code

'Level polarity'

command: LP code

mailto:gerber@ucamco.com

Copyright Ucamco NV 49

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Example:

G04 Beginning of the file*

%FSLAX25Y25*%

%MOIN*%

%LPD*%

%ADD10C,0.000070*%

X123500Y001250D02*

…

M02*

 Function Code Commands

Function code commands are identified by a code letter G, D or M followed by a code number,

e.g. G02.

A code number is a positive integer number without preceding ‘+’. The available code numbers
are described in this specification. A code number can be padded with leading zeros, but the
resulting number record must not contain more than 10 digits.

 Example:

X100Y125D1*

X100Y125D01*

X100Y125D0001*

G002*

G0000074*

The conventional representation of a code number contains exactly two digits, so if the number
is less than 10, it is padded with one leading zero. This representation is used everywhere in the
specification.

 Example:

X100Y125D01*

X100Y125D02*

G01*

G74*

Function code commands are either

 Operations: commands identified by D01, D02, D03 function codes

 Other commands, that set a graphics state parameter

The codes D01, D02, D03 have a special function and are called operation codes. They are
used together with coordinate data to form commands called operations.

In the example below the command consists of a single data block with D01 function code
together with a coordinate pair and offset in X and Y.

 Example:

mailto:gerber@ucamco.com

Copyright Ucamco NV 50

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

X0Y100I-400J100D01*

Each operation must end with a one and only one operation code. The operation code defines
how the preceding coordinate data is used.

In the next example there are two operations. The first operation sets the current point to (300,
200). The second operation creates a graphics object (arc or draw, depending on the
interpolation mode) from the current point to the end point (1100, 200).

 Example:

X300Y200D02*

X1100Y200D01*

Operations are described in detail in chapter 4.2. Other function code commands are described
in chapters from 4.3 to 4.8.

 Extended Code Commands

Extended code commands are responsible for setting graphics state parameters, defining
macro aperture templates and instantiating apertures, manipulating attributes.

Extended codes commands affecting the entire image must be placed in the header of the file.
Other extended codes are placed at the appropriate location.

An extended code command consists of a two-character command code followed by command
data. The command code identifies the command. The structure and meaning of the command
data depends on the command code.

An extended code command is enclosed into a separate pair of delimiter ‘%’ characters. Usually
a command consists of a single data block ending with a ‘*’. The AM command however can
include more than one data block.

The ‘%’ must immediately follow the ‘*’ of the last data block without intervening line separators.
This is an exception to the general rule that a data block can be followed by a line separator.

 Example:

%FSLAX24Y24*%

%AMDONUTFIX*1,1,0.100,0,0*1,0,0.080,0,0*%

There can be only one extended code command between each pair of ‘%’ delimiters. It is
allowed to put line separators between data blocks of a single command.

The following example is an AM function code command built of three data blocks. The data
blocks of the AM command are separated by a newline character for better readability.

 Example:

%AMDONUTFIX*

1,1,0.100,0,0*

1,0,0.080,0,0*%

 Tip: For readability it is recommended to have one command per line; in case of AM
command it is recommended to have one data block per line.

mailto:gerber@ucamco.com

Copyright Ucamco NV 51

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

The syntax for an individual extended code command is:

<Command> = <Command code><Command data>*{<Additional command data>*}

Syntax Comments

Command code 2-character code (AD, AM, FS, etc…)

Command data The data necessary for the command. Normally it
includes:

required modifiers: must be entered to complete definition

optional modifiers: may be necessary depending on the
required modifiers

Additional command data Additional command data in the extra data blocks (used
for AM command only)

We distinguish two classes of extended codes:

 Graphics commands affect the image generation. They define how the function codes and
coordinates are processed. The graphics commands are described in the section 4.

 Attribute commands do not affect the image generation but attach attributes to either the
image as a whole or to the individual graphics objects. The attribute commands are
described in the section 5.

mailto:gerber@ucamco.com

Copyright Ucamco NV 52

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

3.6 Data Types

 Integers

Integers are a sequence of one or more digits optionally preceded by a ‘+’ or ‘-’ sign. They must
fit in a 32 bit signed integer.

 Decimals

Decimals are a sequence of one or more digits with an optional decimal point optionally
preceded by a ‘+’ or a ‘-’ sign. They must fit in an IEEE double.

 Coordinate Number

Coordinate numbers are integers conforming to the rules set by the FS command. See 4.9.1.
Coordinate numbers are used to express coordinates.

 Hexadecimal

An hexadecimal is a number expressed using a positional numeral system with a base of 16. It
is represented using sixteen distinct characters: 0–9 to represent values zero to nine, and
A, B, C, D, E, F (or alternatively a, b, c, d, e, f) to represent values ten to fifteen. Thus a
hexadecimal number is a sequence of characters that matches the regular expression:

[a-fA-F0-9]+

The letters in a hexadecimal number can be upper case or lower case characters. It means the
sequences 'A9' and 'a9' represent the same number.

 Names

Names consist of upper or lower case letters, underscores (‘_’), dots (‘.’), a dollar sign (‘$’) and
digits. The first character cannot be a digit.

Name = [a-zA-Z_.$]{[a-zA-Z_.0-9]+}

Names can be maximally 127 characters long.

Names are case-sensitive: Name ≠ name

Names beginning with a dot ‘.’ are reserved for standard names defined in the specification.
User defined names cannot begin with a dot.

The scope of a name starts at its definition and runs till the end of the file.

Note: The variable names within macro’s follow their own rules.

 Strings

Strings are made up of all valid characters except the reserved characters CR, LF, ‘%’ and ‘*’.

String = [a-zA-Z0-9_+-/!?<>”’(){}.\|&@# ,;$:=]+

Strings can be maximally 65,535 characters long (65,535 fits in an unsigned int 16).

Strings are case-sensitive: String ≠ string

mailto:gerber@ucamco.com

Copyright Ucamco NV 53

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Any character with a Unicode code lower than 65,536 can be included in a string by specifying
the Unicode character code in hexadecimal in the Unicode escape sequence:

\uXXXX

The four characters XXXX are a hexadecimal number (see 3.6.4) indicating the code of the
Unicode character represented by the escape sequence. For example, \u00a9 represents the
copyright symbol.

Unicode escape sequence must be six characters long. It means there must be exactly four
characters following \u. If the character code contains less hexadecimal digits, it must be
padded with leading zeros.

A hexadecimal number syntax allows upper case and lower case letters so both '\u00A9' and
'\u00a9' are allowed and represent the same character.

The Unicode escape sequence syntax conforms to the regular expression:

\\u[a-fA-F0-9]{4}

A literal backslash character ‘\’ inside a string shall be represented using the backslash
character code as \u005c, otherwise, if ‘\’ character and 5 next characters conform to the regular

expression \\u[a-fA-F0-9]{4}, the whole sequence will be interpreted as the Unicode

escape sequence.

For the string length the Unicode escape sequence is counted as one character.

 Note: The Unicode escape sequences can be used only inside strings.

mailto:gerber@ucamco.com

Copyright Ucamco NV 54

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4 Graphics

4.1 Graphics Overview
Processing the stream of commands creates a stream of graphics objects.

The table gives an overview of all the commands. They are explained in detail further in this
chapter.

mailto:gerber@ucamco.com

Copyright Ucamco NV 55

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Gerber file commands

Command Command description Comments

D01 Interpolate operation. See 4.2. If region mode is off D01 creates a draw or arc
object using the current aperture. When region
mode is on D01 creates a linear or circular contour
segment. The current aperture is not used. After the
D01 command the current point is moved to the
coordinate.

D02 Move operation. See 4.2. D02 does not create a graphics object but moves
the current point to the coordinate.

D03 Flash operation. See 4.2. With region mode is off D03 flashes the current
aperture. D03 is not allowed when region mode is
on. After the D03 command the current point is
moved to the coordinate.

Dnn
(nn≥10)

Sets the current aperture. Sets the current aperture to aperture nn. (Aperture
numbers are set by AD command, see 4.11)

G01 Sets the interpolation mode to linear. See 4.4. Used to alter the effect of the interpolate operation
(D01).

G02 Sets the interpolation mode to ‘Clockwise circular
interpolation’. See 4.5.

G03 Sets the interpolation mode to ‘Counterclockwise
circular interpolation’. See 4.5.

G04 Ignore data block. See 4.7. Used for comments.

G36 Sets region mode on. See 4.6. Used to create regions.

G37 Sets region mode off. See 4.6.

G74 Sets quadrant mode to ’Single quadrant’. See 4.5. A modifier of the circular interpolation mode.

G75 Sets quadrant mode to ’Multi quadrant. See 4.5.

M02 Indicates the end of the file. See 4.8. Every Gerber file must end in a M02. No data is
allowed after M02.

FS Sets the ‘Coordinate format’ graphics state
parameter. See 4.9.

These commands are mandatory and must be used
only once, in the header of a file.

MO Sets the ‘Unit’ graphics state parameter. See
4.10.

AD Assigns a D code number to an aperture
definition. See 4.11.

These commands can be used multiple times. It is
recommended to put them in header of a file.

AM Defines macro aperture templates. See 4.13.

LP Sets the ‘Polarity’ graphics state parameter. See
4.14.

These commands can be used multiple times over
the whole file.

SR Open or closes a ‘Step and Repeat’ statement.
See 4.14.

mailto:gerber@ucamco.com

Copyright Ucamco NV 56

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4.2 Operations (D01/D02/D03)
D01, D02 and D03 are the operation codes. Together with coordinate data the operation codes
define commands called operations. An operation operates on its coordinate data.

Syntactically an operation contains the coordinate data followed by its operation code. An
operation must contain a single (1) operation code: each operation code is associated with a
single coordinate pair and vice versa.

The operations have the following effect.

 Operation with D01 code is called interpolate operation. It creates a straight line segment or
a circular segment by interpolating from the current point to the operation coordinates. The
segment is then converted to a graphics object depending on the value of region mode
graphics state parameter.

 Operation with D02 code is called move operation. It moves the current point to the
operation coordinates. No graphics object is generated.

 Operation with D03 code is called flash operation. It creates a flash object by replicating the
current aperture at the operation coordinates.

 Note: The code representation 01, 02, 03 (with one leading zero) is conventional; it is
allowed to use a different number of leading zeros: 1, 001, 0002, etc. See 3.5.2 for more details.

The operations are controlled by the graphics state (see 2.8).

The D03 operation directly creates a flash object by replicating (flashing) the current aperture.
When the aperture is flashed its origin is positioned at the coordinates of the operation. The
origin of a standard aperture is its geometric center. The origin of a macro aperture is the origin
of the coordinates (the origin of the macro definition) used in the AM (Aperture Macro)
command.

Sequences of D01 and D02 operations create segments that are turned into a graphics objects
by one of two following methods:

 Stroking. The segments are stroked with the current aperture, see 2.5.

 Region building. The segments form contour that defines a region, see 4.6.

The region mode graphics state parameter determines which object generating method is used.
If the region mode is off the stroking is used to convert a segment into draw or arc graphics
object. If the region mode is on the region building is used: a segment becomes the linear or
circular contour segment then.

There is another graphics state parameter called interpolation mode that affects operations. It
defines the form of the interpolated segment: linear interpolation mode results in a draw or linear
contour segment; circular interpolation mode results in an arc or circular contour segment. This
is described in detail in the section 4.4.

The circular interpolation mode can be clockwise and counterclockwise. Also in circular
interpolation mode the quadrant mode parameter becomes relevant. It defines the arc angle.
See 4.5 for more details.

The table below summarizes the results of the operations depending on the graphics state
parameter values.

mailto:gerber@ucamco.com

Copyright Ucamco NV 57

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Operation
code

Graphics state parameters values

Region mode on (G36) Region mode off (G37)

Linear
interpolation
mode (G01)

Circular interpolation mode
(G02, G03) Linear

interpolation
mode (G01)

Circular interpolation mode
(G02, G03)

Single
quadrant

mode (G74)

Multi
quadrant

mode (G75)

Single
quadrant

mode (G74)

Multi
quadrant

mode (G75)

D01
Linear contour

segment

Circular
contour
segment

(0°≤α≤90°)

Circular
contour
segment

(0°<α≤360°)

Draw
Arc

(0°≤α≤90°)
Arc

(0°<α≤360°)

D02
Closes current contour and moves current

point
Moves current point

D03 Not allowed Flash

Effect of operation codes depending on graphics state parameters

The table describes only the parameters which have direct influence on the types of objects
created by the operation codes. The effect of the other parameters is described elsewhere.

 Coordinate Data Syntax

Coordinate data is the part of an operation. The syntax of the data is the following:

<Coordinate data> = [X<Number>][Y<Number>][I<Number>][J<Number>]

Syntax Comments

X, Y Characters indicating X or Y coordinates of a point

I, J Characters indicating a distance or offset in the X or Y direction

This data allowed only in D01 operations in circular interpolation mode (see 4.2.2)

<Number> Coordinate number - see section 3.6.3 - defining either a coordinate (X, Y) or an
offset or distance (I, J). The number must have at least one digit

The FS and MO commands specify how to interpret the coordinate numbers. The coordinate
numbers define points in the plane using a right-handed orthonormal coordinate system. The
plane is infinite, but implementations can have size limitations.

Coordinates are modal. If an X is omitted the X coordinate of the current point is used. The
same applies to Y.

Offsets are not modal. If I or J is omitted the default is zero (0). The offsets do not affect the
current point. It means when the current point value is changed the offsets are ignored and only
the values for X and Y are used.

 Examples:

X200Y200D02* point (+200, +200) operated upon by D02

mailto:gerber@ucamco.com

Copyright Ucamco NV 58

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Y-300D03* point (+200, -300) operated upon by D03

I300J100D01* point (+200, -300) and offset (+300, +100) operated upon by D01

Y200I50J50D01* point (+200, +200) and offset (+50, +50) operated upon by D01

X200Y200I50J50D01* point (+200, +200) and offset (+50, +50) operated upon by D01

X+100I-50D01* point (+100, +200) and offset (-50, 0) operated upon by D01

In an operation without explicit X and Y the coordinates of the current point are used. In the
example below D03 results in a flash at the current point.

 Example

D03*

 D01 Command

The D01 code (interpolate) operation syntax is as follows:

<D01 operation> = [X<Number>][Y<Number>][I<Number>][J<Number>]D01*

Syntax Comments

X<Number> Coordinate data defining the X coordinate of the interpolation end
point. For more details see 4.4.2 and 4.5.6

The X coordinate is then used to set the new current point

If missing then the previous X coordinate is used

<Number> is a coordinate number – see section 3.6.3

Y<Number> Coordinate data defining the Y coordinate of the interpolation end
point. For more details see 4.4.2 and 4.5.6

The Y coordinate is then used to set the new current point

If missing then the previous Y coordinate is used

<Number> is a coordinate number – see section 3.6.3

I<Number> Coordinate data defining the distance or offset in the X direction

This coordinate data is only allowed in circular interpolation mode

<Number> is a coordinate number – see section 3.6.3

J<Number> Coordinate data defining the distance or offset in the Y direction

This coordinate data is only allowed in circular interpolation mode

<Number> is a coordinate number – see section 3.6.3

D01 Interpolate operation code

The use of the coordinate data in D01 code operation depends on the interpolation mode. For
the additional details see 4.4.2 and 4.5.6.

mailto:gerber@ucamco.com

Copyright Ucamco NV 59

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 Example:

X200Y200D01*

X200Y200I50J50D01*

 D02 Command

The syntax for the D02 code (move) operation is the following:

<D02 operation> = [X<Number>][Y<Number>]D02*

Syntax Comments

X<Number> Coordinate data defining the X coordinate of the new current point

If missing then the previous X coordinate is used

<Number> is a coordinate number – see section 3.6.3

Y<Number> Coordinate data defining the Y coordinate of the new current point

If missing then the previous Y coordinate is used

<Number> is a coordinate number – see section 3.6.3

D02 Move operation code

The effect of D02 operation depends on the region mode (see 2.8). If the region mode is off the
operation sets the new value for the current point graphics state parameter. If the region mode
is on the operation closes the current contour and then sets the new value for the current point
graphics state parameter (see 4.6).

 Example:

X200Y1000D02*

 D03 Command

The syntax for the D03 code (flash) operation is the following:

<D03 operation> = [X<Number>][Y<Number>]D03*

mailto:gerber@ucamco.com

Copyright Ucamco NV 60

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Syntax Comments

X<Number> Coordinate data defining the X coordinate of the aperture origin.

If missing then the previous X coordinate is used.

<Number> is a coordinate number – see section 3.6.3.

Y<Number> Coordinate data defining the Y coordinate of the aperture origin.

If missing then the previous Y coordinate is used.

<Number> is a coordinate number – see section 3.6.3

D03 Flash operation code

 Warning: D03 operation is not allowed when the region mode is on.

 Example:

X1000Y1000D03*

 Example

The example shows a stream of commands in a Gerber file. Some of the commands are
operation codes, others are G code commands (G01, G03, G36, G37, G74, and G75). The G
code commands set the graphics state parameters that are relevant for the operations:
interpolation mode (G01 – see 4.4, G03 – see 4.5), region mode (G36, G37 – see 4.6),
quadrant mode (G74, G75 – see 4.5).

 Example:

G36*

X200Y1000D02*

G01*

X1200D01*

Y200D01*

X200D01*

Y600D01*

X500D01*

G75*

G03*

X500Y600I300J0D01*

G01*

X200D01*

Y1000D01*

G37*

mailto:gerber@ucamco.com

Copyright Ucamco NV 61

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4.3 Current Aperture (Dnn)
The command with code Dnn sets current aperture graphics state parameter.

The syntax is:

<Dnn command> = D<D-code number>*

Syntax Comments

D Command code

<D-code number> The D-code number (≥10) of an aperture from the
apertures dictionary

The aperture must be previously added in the
apertures dictionary by AD command

The allowed range of D-code is from 10 up to 2.147.483.647 (max int 32). The D-codes 0 to 9
are reserved and cannot be used for apertures.

The D01 and D03 commands use the current aperture to create track and flash graphics
objects. The current aperture must be explicitly defined before it is used – see 2.8.

 Example:

D10*

mailto:gerber@ucamco.com

Copyright Ucamco NV 62

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4.4 Linear Interpolation Mode (G01)
When linear interpolation mode is enabled a D01 code operation generates a straight line from
the current point to the point with X, Y coordinates specified by the operation. The current point
is then set to the X, Y coordinates.

To enable linear interpolation mode the G01 command is used.

 G01 Command

The syntax for the command to enable linear interpolation mode:

<G01 command> = G01*

Syntax Comments

G01 Sets interpolation mode graphics state parameter to ‘linear
interpolation’

 Example:

G01*

 D01 Command

The section 4.2.2 defines the general syntax of the D01 code operation. However in the linear
interpolation mode I and J coordinate parts are not allowed, so the D01 command syntax is:

<D01 operation> = [X<Number>][Y<Number>]D01*

Syntax Comments

X<Number> Coordinate data defining the X coordinate of the straight segment (if
the region mode is off – draw graphics object; if the region mode is on
– linear contour segment) end point

The X coordinate is then used to set the new current point

If missing then the previous X coordinate is used

<Number> is a coordinate number – see section 3.6.3

Y<Number> Coordinate data defining the Y coordinate of the straight segment (if
the region mode is off – draw graphics object; if the region mode is on
– linear contour segment) end point

The Y coordinate is then used to set the new current point

If missing then the previous Y coordinate is used

<Number> is a coordinate number – see section 3.6.3

D01 Interpolate operation code

 Example:

G01*

X200Y200D01*

mailto:gerber@ucamco.com

Copyright Ucamco NV 63

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4.5 Circular Interpolation (G02/G03) and (G74/G75)

 Circular Arc Overview

A circular arc is a circular segment created by a D01 (interpolate) operation with the graphics
state set to circular interpolation. When region mode is off a track is added to the graphics
object stream. When region mode is on a contour segment is added to the current region.

D01 code operation in circular interpolation mode generates a circular arc from the current point
to the point with X, Y coordinates specified by the operation; the center of the arc is specified by
the offsets I and J. The current point is then set to the X, Y coordinates specified by the
operation.

There are two orientations:

 Clockwise, set by G02 command

 Counterclockwise, set by G03 command

The orientation is defined around the center of the arc, moving from begin to end.

There are two quadrant modes:

 Single quadrant mode, set by G74 command

 Multi quadrant mode, set by G75 command

Quadrant mode Comments

Single quadrant
(G74)

In single quadrant mode the arc is not allowed to extend over more
than 90°. The following relation must hold:

0° ≤ A ≤90°, where A is the arc angle

If the start point of the arc is equal to the end point, the arc has length
zero, i.e. it covers 0°. A separate operation is required for each
quadrant. A minimum of four operations is required for a full circle.

Multi quadrant
(G75)

In multi quadrant mode the arc is allowed to extend over more than
90°. To avoid ambiguity between 0° and 360° arcs the following
relation must hold:

0° < A ≤ 360°, where A is the arc angle

If the start point of the arc is equal to the end point, the arc is a full
circle of 360°.

Quadrant modes

The commands with codes G74 and G75 allow switching between single- and multi-quadrant
modes. G75 command activate multi quadrant mode. Every operation following it will be
interpreted as multi quadrant, until cancelled by a G74 command. G74 command turns on single
quadrant mode.

 Warning: A Gerber file that attempts to interpolate circular arcs without a preceding G74 or
G75 code is invalid.

mailto:gerber@ucamco.com

Copyright Ucamco NV 64

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

For a strictly circular arc the distance of from the center to the start point must be exactly equal
to the distance to the end point. This distance is the radius and the interpretation of the arc is
then obvious.

However, as a Gerber file has a finite resolution, the center point generally cannot be positioned
such that the distances – radii - are indeed exactly equal. Furthermore the software generating
the Gerber file unavoidably adds rounding errors of its own. The two radii are unavoidably
different for almost all real-life arcs. We will call the difference the arc deviation. An exact circle
of course has only one radius, the same everywhere. This raises the question which curve is
represented by a “circular arc” with a non-zero deviation.

The arc defined as a continuous and monotonic curve starting at the start point and ending at
the end point, approximating the ring with the given center point and radii equal to the start
radius and end radius. See figure 10.

10. Arc with a non-zero deviation

The arc definition has fuzziness of the order of magnitude of the arc deviation. The writer of the
Gerber file accepts any interpretation within the fuzziness above as valid. If the writer requires a
more precise interpretation of the arc he needs to write arcs with lower deviation.

It is however not allowed to place the center point close to the straight line through begin and
end point except when it is strictly in between these points. When the center is on or outside the
segment between start and end point the construct is nonsensical. See figure 11.

11. Nonsensical center point

Note that self-intersecting contours are not allowed, see 2.6. If any of the valid arc
interpretations turns the contour in a self-intersecting one, the file is invalid, with unpredictable
results.

mailto:gerber@ucamco.com

Copyright Ucamco NV 65

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

The root cause of most problems with arcs is the use a low resolution. One sometimes attempts
to force arcs of size of the order of e.g. 1/10 of a mil in a file with resolution of 1/10. This is
asking for problems. Use higher resolution. See 4.9.1.

 G02 Command

The syntax for the command to enable clockwise circular interpolation mode:

<G02 command> = G02*

Syntax Comments

G02 Sets interpolation mode graphics state parameter to ‘clockwise
circular interpolation’

 Example:

G02*

 G03 Command

The syntax for the command to enable counterclockwise circular interpolation mode:

<G03 command> = G03*

Syntax Comments

G03 Sets interpolation mode graphics state parameter to
‘counterclockwise circular interpolation’

 Example:

G03*

 G74 Command

The syntax for the command to enable single quadrant mode:

<G74 command> = G74*

Syntax Comments

G74 Sets quadrant mode graphics state parameter to ‘single quadrant’

 Example:

G74*

 G75 Command

The syntax for the command to enable multi quadrant mode:

mailto:gerber@ucamco.com

Copyright Ucamco NV 66

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

<G75 command> = G75*

Syntax Comments

G75 Sets quadrant mode graphics state parameter to ‘multi quadrant’

 Example:

G75*

 D01 Command

The section 4.2.2 defines the general syntax of the D01 code operation. This section explains
the meaning of the coordinate data parts for the case when a circular interpolation mode is
enabled:

 <D01 operation> = [X<Number>][Y<Number>][I<Number>][J<Number>]D01*

Syntax Comments

X<Number> Defines the X coordinate of the circular arc (if the region mode is off
– arc graphics object; if the region mode is on – circular contour
segment) end point.

If missing then the previous X coordinate is used.

<Number> is a coordinate number – see section 3.6.3.

Y<Number> Defines the Y coordinate of the circular arc (if the region mode is off
– arc graphics object; if the region mode is on – circular contour
segment) end point.

If missing then the previous Y coordinate is used.

<Number> is a coordinate number – see section 3.6.3.

I<Number> In single quadrant mode: the distance between the circular arc
start point and the center measured parallel to the X axis. Number
is ≥ 0.

In multi quadrant mode: the offset or signed distance between the
circular arc start point and the center measured parallel to the X
axis.

If missing then a 0 distance is used.

<Number> is a coordinate number – see section 3.6.3.

J<Number> In single quadrant mode: the distance between the circular arc
start point and the center measured parallel to the Y axis. Number
is ≥ 0.

In multi quadrant mode: the offset or signed distance between the
circular arc start point and the center measured parallel to the Y
axis.

If missing then a 0 distance is used.

<Number> is a coordinate number – see section 3.6.3.

mailto:gerber@ucamco.com

Copyright Ucamco NV 67

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Syntax Comments

D01 Interpolate operation code

The coordinates of a circular arc endpoint and the center distances are interpreted according to
the coordinate format specified by the FS command and the unit specified by the MO command.

The following image illustrates how circular arc are interpolated.

12. Circular interpolation example

 Note: In single quadrant mode, because the sign in offsets is omitted, there are four
candidates for the center: (<Current X> +/- <X distance>, <Current Y> +/- <Y distance>). The
center is the candidate that results in an arc with the specified orientation and not greater than
90°.

 Example:

G74*

G03*

X700Y1000I400J0D01*

 Note: In multi quadrant mode the offsets in I and J are signed. If no sign is present, the
offset is positive.

 Example:

G75*

G03*

B axis

0,0 A axis

X

Y

J

End point

Start point
(current
point)

Arc center

I

mailto:gerber@ucamco.com

Copyright Ucamco NV 68

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

X-300Y-200I-300J400D01*

 Warning: If the center is not precisely positioned, there may be none or more than one
candidate fits. In that case the arc is invalid. The creator of the file accepts any interpretation.

 Example: Single Quadrant Mode

Syntax Comments

G74*

D10*

X1100Y600D02*

G03*

X700Y1000I400J0D01*

X300Y600I0J400D01*

X700Y200I400J0D01*

X1100Y600I0J400D01*

X300D02*

G01*

X1100D01*

X700Y200D02*

Y1000D01*

Set single quadrant mode

Set the current aperture to D10 aperture

Set the current point to (11, 6)

Set counterclockwise interpolation mode

Create quarter arc object (radius 4) to (7, 10)

Create quarter arc object (radius 4) to (3, 6)

Create quarter arc object (radius 4) to (7, 2)

Create quarter arc object (radius 4) to (11, 6)

Set the current point to (3 ,6)

Set linear interpolation mode

Create draw object to (11, 6)

Set the current point to (7, 2)

Create draw object to (7, 10)

13. Single quadrant mode example: arcs and draws

2

4

6

8

10

12

mailto:gerber@ucamco.com

Copyright Ucamco NV 69

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

14. Single quadrant mode example: resulting image

 Example: Multi Quadrant Mode

Syntax Comments

X300Y-200D02*

G75*

G03*

X-300Y-200I-300J400D01*

Set the current point to (3, -2)

Set multi quadrant mode

Set counterclockwise interpolation mode

Create arc object counterclockwise to (-3,-2). The
offsets from the start point to the center point are
3 for X and 4 for Y, i.e. the center point is (0, 2)

2

4

6

8

10

12

2 4 6 8 10 12

mailto:gerber@ucamco.com

Copyright Ucamco NV 70

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

15. Multi quadrant mode example: resulting image

 Numerical Instability in Multi Quadrant (G75) Arcs

In G75 mode small changes in the position of center point, start point and end point can swap
the large arc with the small one, dramatically changing the image.

This most frequently occurs with very small arcs. Start point and end point are close together. If
the end point is slightly moved it can end on top of the start point. Under G75, if the start point of
the arc is equal to the end point, the arc is a full circle of 360°, see 4.5.1. A small change in the
position of the end point has changed the very small arc to a full circle.

Under G75 rounding must be done carefully. Using high resolution is an obvious prerequisite.
See 4.9.1.

The Gerber writer must also consider that the reader unavoidably has rounding errors. Perfectly
exact numerical calculation cannot be assumed. It is the responsibility of the writer to avoid
unstable arcs.

Under G74 arcs are always less than 90° and this numerical instability does not exist. G74 is
intrinsically stable. Another option is not to use very small arcs, e.g. by replacing them with
draws - the error is very small and draws are stable.

 Using G74 or G75 May Result in a Different Image

An arc command can define a completely different image under G74 and G75. The two sample
files below differ only in G74/G75, but they define a dramatically different image.

End point (-3, -2) Start point (3, -2)

(0, 0)

Arc center (0, 2)

mailto:gerber@ucamco.com

Copyright Ucamco NV 71

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Syntax Comments

D10*

G01*

X0Y600D02*

G74*

G02*

X0Y600I500J0D01*

Set the current aperture to D10 aperture

Set linear interpolation mode

Set the current point to (0, 6)

Set single quadrant mode

Set clockwise circular interpolation mode

Create arc object to (0, 6) with radius 5

The resulting image is small dot, an instance of the aperture at position (0, 6)

Syntax Comments

D10*

G01*

X0Y600D02*

G75*

G02*

X0Y600I500J0D01*

Set the current aperture to D10 aperture

Set linear interpolation mode

Set the current point to (0, 6)

Multi quadrant mode

Set clockwise circular interpolation mode

Create arc object to (0, 6) with center (5,6)

The image is a full circle.

 Warning: It is mandatory to always specify quadrant mode (G74 or G75) if circular
interpolation mode (G02 or G03) is used.

mailto:gerber@ucamco.com

Copyright Ucamco NV 72

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4.6 Region Mode (G36/G37)

 Region Overview

A region is a graphics object defined by its contour(s) - see 2.6.

The G36 command turns region mode on and G37 turns it off. With region mode on the D01
and D02 commands create the contours. The first D01 encountered in region mode starts the
first contour by creating the first segment. Subsequent D01’s add segments to it. When a D02
command is encountered the contour is considered finished. (Note that a D02 without effect on

the current point, e.g. a D02*, still has the effect to finish the current contour.) A D02 is only

allowed if the preceding contour is closed. The next D01 command starts a new contour. Thus
an unlimited number of contours can be created between a single G36/G37 commands pair.

When G37 command is encountered region mode is turned off and a set of region graphics
objects is created by filling all the newly created contours. Each contour is filled individually. The
overall filled area is the union of the filled areas of each individual contour. The number of
region objects created by a single G36/G37 pair is intentionally not specified. It may depend on
the geometry of the contours - for example, two overlapping contours may be merged in a single
region object.

A G37 is only allowed when all contours are properly closed. A G37 automatically finishes the
last contour in the absence of a closing D02.

Using contours with horizontal or vertical fully coincident linear segments (see 2.6) it is possible
to create holes in a region with cut-ins (see 4.6.11).

D01 and D02 are the only D code commands allowed in region mode; in other words D03 and
Dnn (nn≥10) are not allowed. Extended codes are not allowed. The M02 (end-of-file) command
is not allowed. However, G code commands are allowed – they are needed to control the
interpolation modes.

A contour and its segments are not in themselves graphics objects –they define the regions
which are the graphics objects. The attributes from the current aperture, if defined, are attached
to the region objects. This is the only mechanism to attach aperture attributes are to regions.

 Warning: As the current aperture has no graphical effect in region mode it is easy to
overlook that it still transfers its attributes. When using attributes be careful to set the current
aperture correctly before issuing a G36.

 Warning: Use cut-ins only for simple configurations. Regions with many cut-ins are
complex and error-prone; numerical rounding can create self-intersection which make the file
invalid. See section 4.6.12 and 4.6.14 for examples on how not to use cut-ins.

 Warning: For professional PCB production planes the holes (anti-pads, clearances) must
be constructed by superimposing the flashing the anti-pads in clear polarity (LPC) and not by
using cut-ins. See 4.6.10.

 Note: In the 1960’s and 1970s, the era of vector plotters, the only way to produce a region
was by stroking its area with a number of draws. This produces the correct image. However, the
file size explodes. More importantly, such stroked data cannot be handled properly in PCB CAM
and it must be removed laboriously. A file with stroked areas and/or stroked pads is not really
suitable for PCB production.

mailto:gerber@ucamco.com

Copyright Ucamco NV 73

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 G36 Command

The syntax for the command to turn region mode on:

<G36 command> = G36*

Syntax Comments

G36 Sets region mode graphics state parameter to ‘on’

 Example:

G36*

 G37 Command

The syntax for the command to disable region mode off:

<G37 command> = G37*

Syntax Comments

G37 Sets region mode graphics state parameter to ‘off’

This creates the set of region graphics object by filling the contours
created since the previous G36 command.

 Example:

G37*

 Example: A Simple Contour

Syntax Comments

G36*

X200Y300000D02*

G01*

X700000D01*

Y100000D01*

X1100000Y500000D01*

X700000Y900000D01*

Y700000D01*

X200000D01*

Y300000D01*

G37*

Enable region mode

Set the current point to (2, 3)

Set linear interpolation mode

Create linear segment to (7, 3)

Create linear segment to (7, 1)

Create linear segment to (11, 5)

Create linear segment to (7, 9)

Create linear segment to (7, 7)

Create linear segment to (2, 7)

Create linear segment to (2, 3)

Create the region by filling the contour

mailto:gerber@ucamco.com

Copyright Ucamco NV 74

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

16. Simple contour example: the segments

17. Simple contour example: resulting image

2

4

6

8

10

12

2 4 6 8 10 12

2 4 6 8 10 12

2

4

6

8

10

12

mailto:gerber@ucamco.com

Copyright Ucamco NV 75

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 Example: How to Start a Single Contour

The first D01 starts the contour at the current point, independent of how the current point is set.

Below there are three examples of similar images; differences with the previous column are
highlighted and explained in the last table row.

Example 1 Example 2 Example 3

…

G01*

D11*

…

X300Y500D01*

G36*

X5000Y5000D02*

X6000D01*

Y6000D01*

X5000D01*

Y5000Y5000D01*

G37*

…

…

G01*

D11*

…

X300Y500D01*

X5000Y5000D02*

G36*

X6000D01*

Y6000D01*

X5000D01*

Y5000Y5000D01*

G37*

…

…

G01*

D11*

…

X300Y500D01*

X5000Y5000D01*

G36*

X6000D01*

Y6000D01*

X5000D01*

Y5000Y5000D01*

G37*

…

This sequence creates a square
contour after the linear segment
created by the operation:

X300Y500D01*

Swap D02 and G36 commands.
Exactly the same image.

Replace D02 by D01 command.
The same contour is created.
But the difference is that the
additional draw object is added
to the image by this operation:

X5000Y5000D01*

 Example: Use D02 to Start a Second Contour

D02 command can be used to start the new contour. All the created contours are converted to
regions when the command G37 is encountered. The example below creates two non-
overlapping contours which are then converted into two regions.

 Example:

G04 Non-overlapping contours*

%FSLAX24Y24*%

%MOMM*%

%ADD10C,1.00000*%

G01*

%LPD*%

G36*

X0Y50000D02*

Y100000D01*

X100000D01*

Y0D01*

X0D01*

Y50000D01*

X-10000D02*

mailto:gerber@ucamco.com

Copyright Ucamco NV 76

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

X-50000Y10000D01*

X-90000Y50000D01*

X-50000Y90000D01*

X-10000Y50000D01*

G37*

M02*

This creates the following image:

18. Use of D02 to start an new non-overlapping contour

Two different contours were created. Each contour is filled individually. The filled area is the
union of the filled areas.

 Example: Overlapping Contours

The example below creates two overlapping contours which are then converted into one region.

 Example:

G04 Overlapping contours*

%FSLAX24Y24*%

%MOMM*%

%ADD10C,1.00000*%

G01*

%LPD*%

G36*

X0Y50000D02*

Y100000D01*

X100000D01*

Y0D01*

X0D01*

Y50000D01*

X10000D02*

X50000Y10000D01*

mailto:gerber@ucamco.com

Copyright Ucamco NV 77

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

X90000Y50000D01*

X50000Y90000D01*

X10000Y50000D01*

G37*

M02*

This creates the following image:

19. Use of D02 to start an new overlapping contour

Two different contours were created. Each contour is filled individually. The filled area is the
union of the filled areas. As the second contour is completely embedded in the first, the effective
filled area is the one of the first contour. So the created region object is the same as would be
defined by the first contour only.

 Example: Non-overlapping and Touching

The example below creates two non-overlapping touching contours which are then converted
into one region.

 Example:

G04 Non-overlapping and touching*

%FSLAX24Y24*%

%MOMM*%

%ADD10C,1.00000*%

G01*

%LPD*%

G36*

X0Y50000D02*

Y100000D01*

X100000D01*

Y0D01*

X0D01*

Y50000D01*

mailto:gerber@ucamco.com

Copyright Ucamco NV 78

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

D02*

X-50000Y10000D01*

X-90000Y50000D01*

X-50000Y90000D01*

X0Y50000D01*

G37*

M02*

This creates the following image:

20. Use of D02 to start an new non-overlapping contour

As these are two different contours in the same region touching is allowed.

 Example: Overlapping and Touching

The example below creates two overlapping touching contours which are then converted into
one region.

 Example:

G04 Overlapping and touching*

%FSLAX24Y24*%

%MOMM*%

%ADD10C,1.00000*%

G01*

%LPD*%

G36*

X0Y50000D02*

Y100000D01*

X100000D01*

Y0D01*

X0D01*

Y50000D01*

D02*

mailto:gerber@ucamco.com

Copyright Ucamco NV 79

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

X50000Y10000D01*

X90000Y50000D01*

X50000Y90000D01*

X0Y50000D01*

G37*

M02*

This creates the following image:

21. Use of D02 to start an new overlapping and touching contour

As these are two different contours in the same region touching is allowed.

 Example: Using Polarity to Create Holes

The recommended way to create holes in regions is by alternating dark and clear polarity, as
illustrated in the following example. Initially the polarity mode is dark. A big square region is
generated. The polarity mode is set to clear and a circular disk is added to the object stream;
the disk is cleared from the image and creates a round hole in the big square. Then the polarity
is set to dark again and a small square is added to the stream, darkened the image inside the
hole. The polarity is set to clear again and a small disk added, clearing parts of the big and the
small squares.

 Example:

G04 This file illustrates how to use polarity to create holes*

%FSLAX25Y25*%

%MOMM*%

G01*

G04 First object: big square - dark polarity*

%LPD*%

G36*

X2500000Y2500000D02*

X17500000D01*

Y17500000D01*

X2500000D01*

mailto:gerber@ucamco.com

Copyright Ucamco NV 80

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Y2500000D01*

G37*

G04 Second object: big circle - clear polarity*

%LPC*%

G36*

G75*

X5000000Y10000000D02*

G03*

X5000000Y10000000I5000000J0D01*

G37*

G04 Third object: small square - dark polarity*

%LPD*%

G36*

X7500000Y7500000D02*

X12500000D01*

Y12500000D01*

X7500000D01*

Y7500000D01*

G37*

G04 Fourth object: small circle - clear polarity*

%LPC*%

G36*

G75*

X11500000Y10000000D02*

G03*

X11500000Y10000000I2500000J0D01*

G37*

M02*

Below there are pictures which show the resulting image after adding each object.

mailto:gerber@ucamco.com

Copyright Ucamco NV 81

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

22. Resulting image: first object only

23. Resulting image: first and second objects

mailto:gerber@ucamco.com

Copyright Ucamco NV 82

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

24. Resulting image: first, second and third objects

25. Resulting image: all four objects

mailto:gerber@ucamco.com

Copyright Ucamco NV 83

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 Example: A Simple Cut-in

The example below illustrates how a simple cut-in can be used to create a hole in a region. The
coinciding contour segments must follow the requirements defined in 2.6.

mailto:gerber@ucamco.com

Copyright Ucamco NV 84

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Syntax Comments

%FSLAX24Y24*%

…

G75*

G36*

X20000Y100000D02*

G01*

X120000D01*

Y20000D01*

X20000D01*

Y60000D01*

X50000D01*

G03*

X50000Y60000I30000J0D01*

G01*

X20000D01*

Y100000D01*

G37*

The 4 decimal positions is rather low precision. It is only used to
improve readability of this example. Always use a precision of 5
decimal positions or more in production files.

Set multi quadrant mode

Enable region mode

Set the current point to (2,10)

Set linear interpolation mode

Create linear contour segment to (12,10)

Create linear contour segment to (12, 2)

Create linear contour segment to (2, 2)

Create linear contour segment to (2, 6)

Create linear contour segment to (5, 6),1st fully coincident segment

Set counterclockwise circular interpolation mode

Create counterclockwise circle with radius 3

Set linear interpolation mode

Create linear contour segment to (2, 6), 2nd fully coincident segment

Create linear contour segment to (2, 10)

Create the region by filling the contour

26. Simple cut-in: the segments

2 4 6 8 10 12

2

4

6

8

10

12

mailto:gerber@ucamco.com

Copyright Ucamco NV 85

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

27. Simple cut-in: the image

 Example: Power and Ground Planes

The proper way to construct power and ground planes is as follows. First create the copper pour
with a region in dark polarity (LPD), and then erase the clearances by switching to clear polarity
(LPC) and flash the anti-pads:

 Example:

G04 We define the antipad used to create the clearances*

%TF.AperFunction,AntiPad*%

%AD11C….*%

….

G04 We now define the copper pour as a region*

LPD*

G36*

X…Y…D02*

X…Y…D01*

…

G37*

G04 We now flash clearances*

%LPC*%

D11*

X…Y…D03*

This is simple and clear. In the CAD layout the location of the anti-pads is known and it is
transferred directly to CAM. CAM needs to know the locations of the anti-pads.

2 4 6 8 10 12

2

4

6

8

10

12

mailto:gerber@ucamco.com

Copyright Ucamco NV 86

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Sometimes the clearances in power and ground planes are constructed with cut-ins, as below.

28. How not to create power and ground planes.

Don’t use this complex construction unless you have a very good reason, and then be very
careful, especially about rounding errors. A complex and hence error-prone algorithm is needed
to create the clearances using cut-ins. Numerical rounding gives plenty of opportunities for
errors and the inadvertent creation self-intersections, making the file invalid. Just creating an
image of such a plane is one thing, but CAM needs an equally complex algorithm to get rid of
the cut-in lines and recover the locations of the anti-pads, again with plenty of opportunities for
an error.

 Example: Fully Coincident Segments

The first example below illustrates how one contour may result in two regions. This happens
because there are two fully coincident linear segments which give the gap between filled areas.

 Example:

G04 ex1: non overlapping*

%FSLAX24Y24*%

%MOMM*%

%ADD10C,1.00000*%

G01*

%LPD*%

G36*

X0Y50000D02*

Y100000D01*

mailto:gerber@ucamco.com

Copyright Ucamco NV 87

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

X100000D01*

Y0D01*

X0D01*

Y50000D01*

G04 first fully coincident linear segment*

X-10000D01*

X-50000Y10000D01*

X-90000Y50000D01*

X-50000Y90000D01*

X-10000Y50000D01*

G04 second fully coincident linear segment*

X0D01*

G37*

M02*

This creates the following image:

29. Fully coincident segments in contours: two regions

The second example illustrates how one contour allows creating region with hole.

 Example:

G04 ex2: overlapping*

%FSLAX24Y24*%

%MOMM*%

%ADD10C,1.00000*%

G01*

%LPD*%

G36*

X0Y50000D02*

Y100000D01*

X100000D01*

Y0D01*

mailto:gerber@ucamco.com

Copyright Ucamco NV 88

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

X0D01*

Y50000D01*

G04 first fully coincident linear segment*

X10000D01*

X50000Y10000D01*

X90000Y50000D01*

X50000Y90000D01*

X10000Y50000D01*

G04 second fully coincident linear segment*

X0D01*

G37*

M02*

This creates the following image:

30. Fully coincident segments in contours: region with hole

 Example: Valid and Invalid Cut-ins

Contours with cut-ins are susceptible to rounding problems: when the vertices move due to the
rounding the contour may become self-intersecting. This may lead to unpredictable results. The
first example below is a cut-in with valid fully coincident segments, where linear segments which
are on top of one another have the same end vertices. When the vertices move due to rounding,
the segments will remain exactly on top of one another, and no self-intersections are created.
This is a valid and robust construction.

 Example:

G36*

X1220000Y2570000D02*

G01*

Y2720000D01*

X1310000D01*

Y2570000D01*

X1250000D01*

Y2600000D01*

mailto:gerber@ucamco.com

Copyright Ucamco NV 89

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

X1290000D01*

Y2640000D01*

X1250000D01*

Y2670000D01*

X1290000D01*

Y2700000D01*

X1250000D01*

Y2670000D01*

Y2640000D01*

Y2600000D01*

Y2570000D01*

X1220000D01*

G37*

This results in the following contour:

mailto:gerber@ucamco.com

Copyright Ucamco NV 90

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

31. Valid cut-in: fully coincident segments

This creates the following image:

mailto:gerber@ucamco.com

Copyright Ucamco NV 91

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

32. Valid cut-in: resulting image

The next example attempts to create the same image as the first example from above, but it is
invalid due to the use of invalid partially coinciding segments (see the description of a valid
contour in 2.6). The number of linear segments has been reduced by eliminating vertices
between collinear segments, creating invalid overlapping segments. This construction is invalid.
It is prohibited is because it is not robust and hard to handle: when the vertices move slightly
due to rounding, the segments that were on top of one another may become intersecting, with
unpredictable results.

 Example:

G36*

X1110000Y2570000D02*

G01*

Y2600000D01*

X1140000D01*

Y2640000D01*

X1110000D01*

Y2670000D01*

X1140000D01*

Y2700000D01*

X1110000D01*

mailto:gerber@ucamco.com

Copyright Ucamco NV 92

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Y2570000D01*

X1090000D01*

Y2720000D01*

X1170000D01*

Y2570000D01*

X1110000D01*

G37*

This results in the following contour:

33. Invalid cut-in: overlapping segments

mailto:gerber@ucamco.com

Copyright Ucamco NV 93

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4.7 Comment (G04)
The G04 function code is used for human readable comments. It does not affect the image.

The syntax for G04 is as follows.

<G04 command> = G04<Comment content>*

The <Comment content> must follow the syntax for strings in section 3.6.6.

 Example:

G04 This is a comment*

G04 The space characters as well as ‘,’ and ‘;’ are allowed here.*

Comments cannot start with “ #@!”. This is reserved for future use as standardized comments.

mailto:gerber@ucamco.com

Copyright Ucamco NV 94

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4.8 End-of-file (M02)
The M02 command indicates the end of the file.

The last data block in a Gerber file must be the M02 – this is mandatory. No data is allowed
after an M02.

Gerber readers are encouraged to give an error on a missing M02 as this is an indication that
the file has been truncated.

The syntax for M02 is as follows:

<M02 command> = M02*

 Example:

M02*

 Warning: M02 command is not allowed if the region mode is enabled. If a G36 command
was used to enable region mode then a G37 command must be used before M02 to explicitly
disable region mode.

mailto:gerber@ucamco.com

Copyright Ucamco NV 95

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4.9 Coordinate Format (FS)

Coordinate values are expressed as absolute coordinates.

The FS (Format Specification) command specifies the format of the coordinate number. It is
mandatory and must be used only once at the beginning of a file, before the first use of
coordinate data. It is recommended to put the FS command at the very first non-comment line.

A coordinate number in a Gerber file is represented by a sequence of digits without any
separator between integer and decimal parts of the number. The integer and decimal parts are
specified by their lengths in a coordinate number. The FS command defines the lengths of the
integer and decimal parts for all coordinate numbers in the file.

 Coordinate Format

The coordinate format specifies the number of integer and decimal places in a coordinate
number. For example, the “24” format specifies 2 integer and 4 decimal places. The number of
decimal places must be 4, 5 or 6. The number of integer places must be not more than 6. Thus
the longest representable coordinate number is ‘nnnnnn.nnnnnn’. The same format must be
defined for X and Y. Signs in coordinates are allowed; the ‘+’ sign is optional.

The unit in which the coordinates are expressed is set by the MO command (see 4.10).

The resolution of a Gerber file is the distance expressed by the least significant digit of
coordinate data. Thus the resolution is the size of grid steps of the coordinates.

Coordinate numbers are integers. Explicit decimal points are not allowed.

A coordinate number must have at least one character. Zero therefore must be encoded as “0”.

 Note: There are a number of files that have 7 decimal digits. Although this is invalid the
meaning is clear. It is advisable for readers to handle 7 or more digits. However, writers must
not normally generate more than 6 digits; if more digits would be necessary for a particular
application, it must be checked that the reader can handle such files.

 Warning: Using less than 4 decimal places is deprecated. For professional PCB production
data 6 decimal places in inch and 5 or 6 decimal places in mm must be used. A lower number
can lose vital precision.

If the FS command defines N places for integer part and M for decimal part it means the
maximum allowed length of a coordinate number is N+M. To interpret the coordinate string, it is
first padded with zero’s in front until its length is equal to N+M. And then first N digits are
interpreted as the integer part, and remaining M digits are interpreted as the decimal part.

For example, with the “24” coordinate format, “015” is padded to “000015” and therefore
represents 0.0015.

 FS Command

The syntax for the FS command is:

<FS command> = FSLAX<Format>Y<Format>*

mailto:gerber@ucamco.com

Copyright Ucamco NV 96

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Syntax Comments

FS FS for Format Specification

LA The predefined characters necessary for backwards
compatibility (see 7.4 for more details)

X<Format>Y<Format> Specifies the format of X and Y coordinate numbers. The format
of X and Y coordinates must be the same!

<Format> must be expressed as a number NM where

N - number of integer positions in a coordinate number

(0 ≤ N ≤ 6)

M - number of decimal positions in a coordinate number

(4 ≤ M ≤ 6)

 Examples

Syntax Comments

%FSLAX25Y25*% Coordinates has 2 integer and 5 decimal positions for both axes.

mailto:gerber@ucamco.com

Copyright Ucamco NV 97

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4.10 Unit (MO)
The MO (Mode) command sets the units used for coordinates and for parameters or modifiers
indicating sizes or coordinates. The units can be either inches or millimeters. This command is
mandatory and must be used only once at the beginning of a file, before the first use of
coordinate data. Normally MO command follows immediately after FS command (see 4.9).

 Note: The FS command sets the format (i.e. number of integer and decimal positions) of
the coordinate numbers.

The syntax for the MO command is:

<MO command> = MO(IN|MM)*

Syntax Comments

MO MO for Mode

IN|MM Units of the dimension data:

IN – inches

MM – millimeters

Examples:

Syntax Comments

%MOIN*% Dimensions are expressed in inches

%MOMM*% Dimensions are expressed in millimeters

mailto:gerber@ucamco.com

Copyright Ucamco NV 98

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4.11 Aperture Definition (AD)

 AD Command

The AD command creates an aperture and puts it into apertures dictionary. It starts with ‘AD’
letters, followed by

 ‘D’ letter and D-code number (or aperture number)

 the aperture template name

 optional modifiers

The D-code identifies the aperture. The Dnn command uses the D-code to select it as the
current aperture (see 4.3).

The AD command must precede the first use of the assigned aperture. It is recommended to
put all AD commands in the file header.

The allowed range of D-code is from 10 up to 2.147.483.647 (max int 32). The D-codes 0 to 9
are reserved and cannot be used for apertures. Once a D-code number is assigned it cannot be
re-assigned – thus apertures are uniquely identified by their D-code.

The syntax for the AD command is as follows:

<AD command> = ADD<D-code number><Aperture name>[,<Modifiers set>]*

<Modifiers set> = <Modifier>{X<Modifier>}

Syntax Comments

ADD ‘AD’ is the command code and ‘D’ for D-code

<D-code number> The D-code number being defined (≥10)

<Aperture name>[,<Modifiers set>] The aperture name, optionally followed by modifiers

The <Aperture name> is either a standard aperture template name (C, R ,O or P – see 4.12) or
a name of a macro aperture template previously defined by an AM command (see 4.13). AD
command uses the name to find the referenced aperture template in the aperture templates
dictionary (see 2.2).

The required modifiers in <Modifiers set> depend on the <Aperture name>. Modifiers are
separated by the ‘X’ character. All sizes are decimal numbers, units follow the MO command.
The FS command has no effect on aperture sizes.

 Note: Since this command is extended code command it shall be enclosed in a pair of ‘%’
characters (see 3.5.3).

mailto:gerber@ucamco.com

Copyright Ucamco NV 99

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 Example:

%ADD10C,.025*%

%ADD10C,0.5X0.25*%

 Zero-size Apertures

Zero-size C (circular) standard apertures are allowed. No other standard or macro aperture with
zero size is allowed, even if the non-zero shape would be a circle. Aperture size is the size of
the effective image represented by the aperture; consequently aperture parameter values
resulting in an empty image are not allowed, except for the C aperture.

Graphics objects created with a zero-size circular aperture are valid objects. They do not affect
the image. Attributes can be attached to zero-objects. Zero-objects can be used to provide
meta-information such as reference points or an outline

 Warning: Only add zero-objects to provide meta-information. Certainly do not abuse a
zero-object to indicate the absence of an object, e.g. by flashing a zero-size aperture to
indicate the absence of a flash. Needless zero-objects are not allowed as they direct the reader
to look for meta-information that is not there. If there is nothing there, put nothing.

 Examples

Syntax Comments

%ADD10C,.025*% Create aperture with D-code 10: a solid circle with
diameter 0.025

%ADD22R,.050X.050X.027*% Create aperture with D-code 22: a square with
sides of 0.05 and with a 0.027 diameter round hole

%ADD57O,.030X.040X.015*% Create aperture with D-code 57: an obround with
sizes 0.03 x 0.04 with 0.015 diameter round hole

%ADD30P,.016X6*% Create aperture with D-code 30: a solid polygon
with 0.016 outer diameter and 6 vertices

%ADD15CIRC*%

Create aperture with D-code 15: instantiate a
macro aperture described by aperture macro CIRC
defined previously by an aperture macro (AM)
command

4.12 Standard Aperture Templates

4.12.1.1 Circle

The syntax of the circle standard aperture template:

C,<Diameter>[X<Hole diameter>]

mailto:gerber@ucamco.com

Copyright Ucamco NV 100

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Syntax Comments

C Indicates that this is a circle aperture

<Diameter> Circle diameter, a decimal ≥0

<Hole diameter> Diameter of a round hole. If missing the aperture is solid

See section 4.12.1.5 for more details.

 Examples:

%ADD10C,0.5*%

%ADD10C,0.5X0.25*%

These commands define the following apertures:

34. Circles

4.12.1.2 Rectangle

The syntax of the rectangle or square standard aperture template:

R,<X size>X<Y size>[X<Hole diameter>]

mailto:gerber@ucamco.com

Copyright Ucamco NV 101

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Syntax Comments

R Indicates that this is a rectangle or square aperture

<X size>

<Y size>

X and Y sizes of the rectangle, both must be >0

If the <X size> equals the <Y size>, the aperture is square

Both numbers are decimals

<Hole diameter> Diameter of a round hole. If missing the aperture is solid

See section 4.12.1.5 for more details.

 Examples:

%ADD22R,0.044X0.025*%

%ADD22R,0.044X0.025X0.019*%

These commands define the following apertures:

35. Rectangles

4.12.1.3 Obround

Obround (oval) is a shape consisting of two semicircles connected by parallel lines tangent to
their endpoints. The syntax of the obround standard aperture template:

O,<X size>X<Y size>[X<Hole diameter>]

mailto:gerber@ucamco.com

Copyright Ucamco NV 102

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Syntax Comments

O Indicates that this is an obround aperture

<X size>

<Y size>

X and Y sizes of enclosing box. Both must be decimals - See 3.6.2

The smallest side is terminated by half a circle. If the <X size> is
larger than <Y size>, the shape is horizontal. If the <X size> is
smaller than <Y size>, the shape is vertical. If the <X size> is equal to
<Y size>, the shape is a circle

<Hole diameter> Diameter of a round hole. If missing the aperture is solid

See section 4.12.1.5 for more details.

 Example:

%ADD22O,0.046X0.026*%

%ADD22O,0.046X0.026X0.019*%

These commands define the following apertures:

36. Obrounds

4.12.1.4 Regular Polygon

The syntax of the polygon standard aperture template:

P,<Outer diameter>X<Number of vertices>[X<Rotation>[X<Hole diameter>]]

mailto:gerber@ucamco.com

Copyright Ucamco NV 103

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Syntax Comments

P Indicates that this is a polygon aperture

<Outer diameter> Diameter of the circumscribed circle, i.e. the circle through the
polygon vertices. Must be a decimal > 0

<Number of vertices> Number of polygon vertices, ranging from 3 to 12

<Rotation> A decimal number specifying the rotation in degrees of the
aperture around its center

Without rotation one vertex is on the positive X-axis through
the center. Rotation angle is expressed in decimal degrees;
positive value for counterclockwise rotation, negative value for
clockwise rotation

<Hole diameter> Diameter of a round hole. If missing the aperture is solid

See section 4.12.1.5 for more details.

The hole modifier can be specified only after a rotation angle;
set an angle of zero if the aperture is not rotated.

 Note: The orientation of the hole is not affected by the rotation angle modifier.

 Examples:

%ADD17P,.040X6*%

%ADD17P,.040X6X0.0X0.019*%

These commands define the following apertures:

37. Polygons

Outer diameter

Outer diameter

mailto:gerber@ucamco.com

Copyright Ucamco NV 104

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4.12.1.5 Round Hole in Standard Apertures

Standard apertures may have a round hole in them. When an aperture is flashed only the solid
part affects the image, the hole does not. Objects under a hole remain visible through the hole.
For image generation the area of the hole behaves exactly as the area outside the aperture. The
hole is not part of the aperture.

 Warning: Make no mistake: holes do not clear the objects under them.

For all standard apertures the round hole is defined by specifying its diameter as the last
modifier: <Hole diameter>

If <Hole diameter> is omitted the aperture is solid. If present the diameter must be ≥ 0.

The hole must fit within the standard aperture. It is centered on the aperture.

 Example:

%FSLAX26Y26*%

%MOIN*%

%ADD10C,10X5*%

%ADD11C,1*%

G01*

%LPD*%

D11*

X-10000000Y-2500000D02*

X10000000Y2500000D01*

D10*

X0Y0D03*

M02*

38. Standard (circle) aperture with a hole above a draw

Note that the draw is visible through the hole.

mailto:gerber@ucamco.com

Copyright Ucamco NV 105

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4.13 Macro Aperture (AM)
The AM command creates a macro aperture template and adds it to the aperture template
dictionary (see 2.2). A template is a parametrized shape. The AD command instantiates a
template into an aperture by suppling values to the template parameters.

Templates of any shape or parametrization can be created. Multiple simple shapes called
primitives can be combined in a single template. An aperture macro can contain variables
whose actual values are defined by:

 Values provided by an AD command referencing the template

 Arithmetic expressions with other variables

The template is created by positioning primitives in a coordinate space. The origin of that
coordinate space will be the origin of all apertures created with the state.

A template must be defined before the first AD that refers to it. The AM command can be used
multiple times in a file.

 AM Command

The syntax for the AM command is:

<AM command> = AM<Aperture macro name>*<Macro content>

<Macro content> = {{<Variable definition>*}{<Primitive>*}}

<Variable definition> = $K=<Arithmetic expression>

<Primitive> = <Primitive code>,<Modifier>{,<Modifier>}|<Comment>

<Modifier> = $M|< Arithmetic expression>

<Comment> = 0 <Text>

Syntax Comments

AM AM for Aperture Macro

<Aperture macro name> Name of the aperture macro. See 3.6.5 for the syntax rules.

<Macro content> Macro content describes primitives included into the aperture
macro. Can also contain definitions of new variables.

<Variable definition> Definition of a variable.

$K=<Arithmetic
expression>

Definition of the variable $K. (K is an integer >0.) An arithmetic
expression may use arithmetic operators described later,
constants and variables $X where the definition of $X precedes
$K.

<Primitive> A primitive is a basic shape to create the macro. It includes
primitive code identifying the primitive and primitive-specific
modifiers (e.g. center of a circle). All primitives are described in
4.13.4. The primitives are positioned in a coordinates system
whose origin is the origin of the resulting apertures.

<Primitive code> A code specifying the primitive (e.g. polygon).

mailto:gerber@ucamco.com

Copyright Ucamco NV 106

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Syntax Comments

<Modifier> Modifier can be a decimal number (e.g. 0.050), a variable (e.g.
$1) or an arithmetic expression based on numbers and
variables. The actual value for a variable is either provided by
an AD command or defined within the AM by some previous
<Variable definition>.

<Comment> Comment does not affect the image.

<Text> Single-line text string

 Note: Each AM command must be enclosed in a pair of ‘%’ characters (see 3.5.3).

Coordinates and sizes are expressed by a decimal number in the unit set by the MO command.

mailto:gerber@ucamco.com

Copyright Ucamco NV 107

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 Exposure Modifier

The exposure modifier that can take two values:

 0 means exposure is ‘off’

 1 means exposure is ‘on’

Primitives with exposure ‘on’ create the solid part of the macro aperture. Primitives with
exposure ‘off’ erase the solid part created earlier in the same macro definition. Exposure off is
typically used to create a hole in the aperture – see also 4.12.1.5. The erasing action of
exposure off is limited to the macro definition in which it occurs.

 Warning: When the macro aperture is flashed, the erased area does not clear the
underlying graphics objects. Objects under removed parts remain visible.

 Example:

%FSLAX26Y26*%

%MOIN*%

%AMSQUAREWITHHOLE*

21,1,10,10,0,0,0*

1,0,5,0,0*%

%ADD10SQUAREWITHHOLE*%

%ADD11C,1*%

G01*

%LPD*%

D11*

X-10000000Y-2500000D02*

X10000000Y2500000D01*

D10*

X0Y0D03*

M02*

39. Macro aperture with a hole above a draw

Note that the draw is still visible through the hole.

mailto:gerber@ucamco.com

Copyright Ucamco NV 108

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 Rotation Modifier

All primitives can be rotated.

The rotation is always around the origin of the macro definition, i.e. its point (0, 0). Note that the
origin may be different from the geometric center of the primitive – then the rotation is not
around the geometric center.

A rotation angle is expressed by a decimal number, in degrees. A positive value means
counterclockwise rotation, a negative value means clockwise rotation. The rotation angle of any
primitive is defined by the rotation modifier that is the last in the list of the primitive modifiers.

The following AM command defines an aperture macro named ‘TRIANGLE_30’. The macro is a
triangle rotated 30 degrees around the origin of the macro definition:

%AMTRIANGLE_30*

4,1,3,1,-1,1,1,2,1,1,-1,30*%

Syntax Comments

AMTRIANGLE_30 Aperture macro name is ‘TRIANGLE_30’

4,1,3 4 – Outline

1 – Exposure on

3 – The outline has three subsequent points

1,-1 1 – X coordinate of the start point

-1 – Y coordinate of the start point

1,1,2,1,1,-1 Coordinates (X, Y) of the subsequent points: (1,1), (2,1), (1,-1)

Note that the last point is the same as the start point

30 Rotation angle is 30 degrees counterclockwise

mailto:gerber@ucamco.com

Copyright Ucamco NV 109

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

40. Rotated triangle

The AD command using this aperture macro can look like the following:

%ADD33AMTRIANGLE_30*%

(0, 0)

Rotation center

mailto:gerber@ucamco.com

Copyright Ucamco NV 110

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

To rotate a macro composed of several primitives it is then sufficient to rotate all primitives.

The picture below illustrates how the set of primitives are rotated together using the same
rotation angle for each primitive in order to rotate the whole macro.

41. Rotation of an aperture macro composed of several primitives

(0, 0)

mailto:gerber@ucamco.com

Copyright Ucamco NV 111

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 Primitives

4.13.4.1 Comment, Primitive Code 0

The comment primitive has no image meaning. It is used to include human-readable comments
into the AM command. The comment primitive starts with the ‘0’ code followed by a space and
then a single-line text string. The text string follows the syntax rules for comments as described
in section 3.1.

 Example:

%AMRECTROUNDCORNERS*

0 Rectangle with rounded corners. *

0 Offsets $4 and $5 are interpreted as the *

0 offset of the flash origin from the pad center. *

0 First create horizontal rectangle. *

21,1,$1,$2-$3-$3,-$4,-$5,0*

0 From now on, use width and height half-sizes. *

$9=$1/2*

$8=$2/2*

0 Add top and bottom rectangles. *

22,1,$1-$3-$3,$3,-$9+$3-$4,$8-$3-$5,0*

22,1,$1-$3-$3,$3,-$9+$3-$4,-$8-$5,0*

0 Add circles at the corners. *

1,1,$3+$3,-$4+$9-$3,-$5+$8-$3*

1,1,$3+$3,-$4-$9+$3,-$5+$8-$3*

1,1,$3+$3,-$4-$9+$3,-$5-$8+$3*

1,1,$3+$3,-$4+$9-$3,-$5-$8+$3*%

In the example above all the lines starting with 0 are comments and do not affect the image.

mailto:gerber@ucamco.com

Copyright Ucamco NV 112

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4.13.4.2 Circle, Primitive Code 1

A circle primitive is defined by its center point and diameter.

Modifier number Description

1 Exposure off/on (0/1)

2 Diameter, a decimal ≥ 0

3 X coordinate of center position, a decimal

4 Y coordinate of center position, a decimal

5 Rotation angle.

The rotation angle is specified by a decimal, in degrees. The primitive is
rotated around the origin of the macro definition, i.e. the (0, 0) point of
macro coordinates.

The rotation modifier is optional. The default is no rotation. (Note that this
modifier is optional only with the circle primitive. The reasons are historic.
We recommend not using the default but always setting the angle
explicitly.)

42. Circle primitive

Below there is the example of the AM command that uses the circle primitive.

 Example:

%AMCIRCLE*

1,1,1.5,0,0,0*%

3, 4

 2

mailto:gerber@ucamco.com

Copyright Ucamco NV 113

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4.13.4.3 Vector Line, Primitive Code 20.

A vector line is a rectangle defined by its line width, start and end points. The line ends are
rectangular.

Modifier number Description

1 Exposure off/on (0/1)

2 Line width, a decimal ≥ 0

3 X coordinate of start point, a decimal

4 Y coordinate of start point, a decimal

5 X coordinate of end point, a decimal

6 Y coordinate of end point, a decimal

7 Rotation angle of the vector line primitive

The rotation angle is specified by a decimal, in degrees. The primitive is
rotated around the origin of the macro definition, i.e. the (0, 0) point of
macro coordinates

43. Vector line primitive

Below there is the example of the AM command that uses the vector line primitive.

 Example:

%AMLINE*

20,1,0.9,0,0.45,12,0.45,0*%

3, 4

 2

 5, 6

mailto:gerber@ucamco.com

Copyright Ucamco NV 114

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4.13.4.4 Center Line, Primitive Code 21

A center line primitive is a rectangle defined by its width, height, and center point.

Modifier number Description

1 Exposure off/on (0/1))

2 Rectangle width, a decimal ≥ 0

3 Rectangle height, a decimal ≥ 0

4 X coordinate of center point, a decimal

5 Y coordinate of center point, a decimal

6 Rotation angle

The rotation angle is specified by a decimal, in degrees. The primitive is
rotated around the origin of the macro definition, i.e. (0, 0) point of macro
coordinates.

44. Center line primitive

Below there is the example of the AM command that uses the center line primitive.

 Example:

%AMRECTANGLE*

21,1,6.8,1.2,3.4,0.6,30*%

2

 4, 5

3

mailto:gerber@ucamco.com

Copyright Ucamco NV 115

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4.13.4.5 Outline, Primitive Code 4

An outline primitive is an area enclosed by an n-point polygon defined by its start point and n
subsequent points. The outline must be closed, i.e. the last point must be equal to the start
point. There must be at least one subsequent point (to close the outline).

The outline of the primitive is actually the contour (see 2.6) that consists of linear segments
only, so it must conform to all the requirements described for contours.

 Warning: Make no mistake: n is the number of subsequent points, being the number of
vertices of the outline or one less than the number of coordinate pairs.

Modifier number Description

1 Exposure off/on (0/1)

2 The number of subsequent points n (n≥1)

3, 4 X and Y coordinates of the start point, decimals

5, 6 X and Y coordinates of subsequent point number 1, decimals

... X and Y coordinates of further subsequent points, decimals

3+2n, 4+2n X and Y coordinates of subsequent point number n, decimals

Must be equal to coordinates of the start point

5+2n Rotation angle of the outline primitive

The rotation angle is specified by a decimal, in degrees. The primitive is
rotated around the origin of the macro definition, i.e. the (0, 0) point of
macro coordinates.

45. Outline primitive

3, 4

5, 6
 7, 8

mailto:gerber@ucamco.com

Copyright Ucamco NV 116

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

The X and Y coordinates are not modal: both the X and the Y coordinate must be specified for
all points.

 Note: The maximum number of subsequent points n is 5000.

Below there is the example of the AM command that uses the outline primitive.

 Example:

%AMOUTLINE*

4,1,4,

0.1,0.1,

0.5,0.1,

0.5,0.5,

0.1,0.5,

0.1,0.1,

0*%

mailto:gerber@ucamco.com

Copyright Ucamco NV 117

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4.13.4.6 Polygon, Primitive Code 5

A polygon primitive is a regular polygon defined by the number of vertices n, the center point
and the diameter of the circumscribed circle.

Modifier number Description

1 Exposure off/on (0/1)

2 Number of vertices n, 3 ≤ n ≤ 12

3 X coordinate of center point, a decimal

4 Y coordinate of center point, a decimal

5 Diameter of the circumscribed circle, a decimal ≥ 0

6 Rotation angle of the polygon primitive

The rotation angle is specified by a decimal, in degrees. The primitive is
rotated around the origin of the macro definition, i.e. the (0, 0) point of
macro coordinates. The first vertex is on the positive X-axis through
the center point when the rotation angle is zero.

Note: Rotation is only allowed if the primitive center point coincides
with the origin of the macro definition.

46. Polygon primitive

Below there is the example of the AM command using the polygon primitive.

 Example:

%AMPOLYGON*

5,1,8,0,0,8,0*%

3, 4

5

First
vertex

mailto:gerber@ucamco.com

Copyright Ucamco NV 118

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4.13.4.7 Moiré, Primitive Code 6

The moiré primitive is a cross hair centered on concentric rings (annuli). Exposure is always on.

Modifier number Description

1 X coordinate of center point, a decimal

2 Y coordinate of center point, a decimal

3 Outer diameter of outer concentric ring, a decimal ≥ 0

4 Ring thickness, a decimal ≥ 0

5 Gap between rings, a decimal ≥ 0

6 Maximum number of rings, an integer ≥ 0

7 Cross hair thickness, a decimal ≥ 0

8 Cross hair length, a decimal ≥ 0

9 Rotation angle of the moiré primitive

The rotation angle is specified by a decimal, in degrees. The primitive is
rotated around the origin of the macro definition, i.e. the (0, 0) point of
macro coordinates

Note: Rotation is only allowed if the primitive center point coincides with
the origin of the macro definition

mailto:gerber@ucamco.com

Copyright Ucamco NV 119

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

47. Moiré primitive

The outer diameter of the outer ring is specified by modifier 3. The ring has the thickness
defined by modifier 4. Moving further towards the center there is a gap defined by modifier 5,
and then the second ring etc. The maximum number of rings is defined by modifier 6. The
number of rings can be less if the center is reached. If there is not enough space for the last ring
it becomes a full disc centered on the origin.

Below there is the example of the AM command that uses the moiré primitive.

 Example:

%AMMOIRE*

6,0,0,5,0.5,0.5,2,0.1,6,0*%

5

1, 2

 8

3

7

4

mailto:gerber@ucamco.com

Copyright Ucamco NV 120

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4.13.4.8 Thermal, Primitive Code 7

The thermal primitive is a ring (annulus) interrupted by four gaps. Exposure is always on.

Modifier number Description

1 X coordinate of center point, a decimal

2 Y coordinate of center point, a decimal

3 Outer diameter, a decimal > inner diameter

4 Inner diameter, a decimal ≥ 0

5 Gap thickness, a decimal < (outer diameter)/√2

6 Rotation angle of the thermal primitive

The rotation angle is specified by a decimal, in degrees. The primitive
is rotated around the origin of the macro definition, i.e. (0, 0) point of
macro coordinates. The gaps are on the X and Y axes through the
center when the rotation angle is zero

Note: Rotation is only allowed if the primitive center point coincides
with the origin of the macro definition.

48. Thermal primitive

Note: If the (gap thickness)*√2 ≥ (inner diameter) the inner circle disappears. This is not
invalid.

 4 3

 5

mailto:gerber@ucamco.com

Copyright Ucamco NV 121

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 Syntax Details

An AM command contains the following data blocks:

 The AM declaration with the macro name

 Primitives with their comma-separated modifiers

 Macro variables, defined by an arithmetic expression

Each data block must end with the ‘*’ character (see 3.4).

An aperture macro definition contains the macro name used to identify a template created by
the macro. An AD command uses the macro name that is the name of the corresponding
template in aperture templates dictionary.

An aperture macro definition also contains one or more aperture primitives described in 0.
Each primitive, except the comment, is followed by modifiers setting its position, size, rotation
etc. Primitive modifiers can use macro variables. The values for such variables is either
provided by an AD command or calculated with arithmetic expression using other variables.

A modifier can be either:

 A decimal number, such as 0, 2, or 9.05

 A macro variable

 An arithmetic expression including numbers and variables

A macro name must comply with the syntax rules in 3.6.5. A macro variable name must be a
‘$’ character followed by an integer >0, for example $12.

Each AM command must be enclosed into a separate pair of ‘%’ characters. Line separators
between data blocks of a single command can be added to enhance readability. These line
separators do not affect the definition of the macro.

4.13.5.1 Variable Values from an AD Command

An AM command can use variables whose actual values are provided by an AD command
that instantiates the template. Such variables are identified by ‘$n’ where n indicates the serial
number of the variable value in the list provided by an AD command. Thus $1 means the first
value in the list, $2 the second, and so on.

 Example:

%AMDONUTVAR*1,1,$1,$2,$3*1,0,$4,$2,$3*%

Here the variables $1, $2, $3 and $4 are used as modifier values. The corresponding AD
command should look like:

%ADD34DONUTVAR,0.100X0X0X0.080*%

In this case the value of variable $1 becomes 0.100, $2 and $3 become 0 and $4 becomes
0.080. These values are used as the values of corresponding modifiers in the DONUTVAR
macro.

4.13.5.2 Arithmetic Expressions

A modifier value can also be defined as an arithmetic expression that includes basic
arithmetic operators such as ‘add’ or ‘multiply’, constant numbers (with or without decimal
point) and other variables. The following arithmetic operators can be used:

mailto:gerber@ucamco.com

Copyright Ucamco NV 122

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Operator Function

+ Add

- Subtract

x (lowercase) Multiply

/ Divide

Arithmetic operators

The result of the divide operation is decimal; it is not rounded or truncated to an integer.

The standard arithmetic precedence rules apply. Below operators are listed in order from lowest
to highest priority. The brackets ‘(‘ and ‘)’ can be used to overrule the standard precedence
rules.

 Add and subtract: ‘+’ and ‘-‘

 Multiply and divide: ‘x’ and ‘/’

 Brackets: ‘(’ and ‘)’

 Example:

%AMRECT*

21,1,$1,$2-$3-$3,-$4,-$5,0*%

Corresponding AD command could look like:

%ADD146RECT,0.0807087X0.1023622X0.0118110X0.5000000X0.3000000*%

4.13.5.3 Definition of a New Variable

The AM command allows defining new macro variables based on previously defined
variables. A new variable is defined as an arithmetic expression that follows the same rules as
described in previous section. A variable definition also includes ‘=’ sign with the meaning
‘assign’.

For example, to define variable $4 as a variable $1 multiplied by 1.25 the following arithmetic
expression can be used: $4=$1x1.25

 Example:

%AMDONUTCAL*

1,1,$1,$2,$3*

$4=$1x1.25*

1,0,$4,$2,$3*%

The values for variables in an AM command are determined as follows:

 All variables used in AM command are initialized to 0

 If an AD command that references the aperture macro contains n modifiers then variables
$1,$2, ..., $n get the values of these modifiers

 The remaining variables get their values from definitions in the AM command; if some
variable remains undefined then its value is still 0

mailto:gerber@ucamco.com

Copyright Ucamco NV 123

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 The values of variables $1, $2, …, $n can also be modified by definitions in AM, i.e. the
values originating from an AD command can be redefined

 Example:

%AMDONUTCAL*

1,1,$1,$2,$3*

$4=$1x0.75*

1,0,$4,$2,$3*%

The variables $1, $2, $3, $4 are initially set to 0.

If the corresponding AD command contains only 2 modifiers then the value of $3 will remain 0.

If the corresponding AD command contains 4 modifiers. e.g.

%ADD35DONUTCAL,0.020X0X0X0.03*%

the variable values are calculated as follows: the AD command modifier values are first
assigned so variable values $1 = 0.02, $2 = 0, $3 = 0, $4 = 0.03. The value of $4 is modified by
definition in AM command so it becomes $4 = 0.02 x 0.75 = 0.015.

The variable definitions and primitives are handled from the left to the right in the order of AM
command. This means a variable can be set to a value, used in a primitive, re-set to a new
value, used in a next primitive etc.

 Example:

%AMTARGET*

1,1,$1,0,0*

$1=$1x0.8*

1,0,$1,0,0*

$1=$1x0.8*

1,1,$1,0,0*

$1=$1x0.8*

1,0,$1,0,0*

$1=$1x0.8*

1,1,$1,0,0*

$1=$1x0.8*

1,0,$1,0,0*%

%ADD37TARGET,0.020*%

mailto:gerber@ucamco.com

Copyright Ucamco NV 124

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Here the value of $1 is changed by the expression ‘$1=$1x0.8’ after each primitive so the value
changes like the following: 0.020, 0.016, 0.0128, 0.01024, 0.008192, 0.0065536.

 Example:

%AMREC1*

$2=$1*

$1=$2*

21,1,$1,$2,0,0,0*%

%AMREC2*

$1=$2*

$2=$1*

21,1,$1,$2,0,0,0*%

%ADD51REC1,0.02X0.01*%

%ADD52REC2,0.02X0.01*%

Aperture 51 is the square with side 0.02 and aperture 52 is the square with side 0.01, because
the variable values in AM commands are calculated as follows:

For the aperture 51 initially $1 is 0.02 and $2 is 0.01. After operation ‘$2=$1’ the variable values
become $2 = 0.02 and $1 = 0.02. After the next operation ‘$1=$2’ they remain $2 = 0.02 and $1
= 0.02 because previous operation changed $2 to 0.02. The resulting primitive has 0.02 width
and height.

For the aperture 52 initially $1 is 0.02 and $2 is 0.01 (the same as for aperture 51). After
operation ‘$1=$2’ the variable values become $1 = 0.01 and $2 = 0.01. After the next operation
‘$2=$1’ they remain $1 = 0.01 and $2 = 0.01 because previous operation changed $1 to 0.01.
The resulting primitive has 0.01 width and height.

Below are some more examples of using arithmetic expressions in AM command. Note that
some of these examples probably do not represent a reasonable aperture macro – they just
illustrate the syntax that can be used for defining new variables and modifier values.

 Example:

%AMTEST*

1,1,$1,$2,$3*

$4=$1x0.75*

$5=($2+100)x1.75*

1,0,$4,$5,$3*%

%AMTEST*

$4=$1x0.75*

$5=100+$3*

1,1,$1,$2,$3*

1,0,$4,$2,$5*

$6=$4x0.5*

1,0,$6,$2,$5*%

%AMRECTROUNDCORNERS*

21,1,$1,$2-$3-$3,-$4,-$5,0*

$9=$1/2*

$8=$2/2*

mailto:gerber@ucamco.com

Copyright Ucamco NV 125

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

22,1,$1-$3-$3,$3,-$9+$3-$4,$8-$3-$5,0*

22,1,$1-$3-$3,$3,-$9+$3-$4,-$8-$5,0*

1,1,$3+$3,-$4+$9-$3,-$5+$8-$3*

1,1,$3+$3,-$4-$9+$3,-$5+$8-$3*

1,1,$3+$3,-$4-$9+$3,-$5-$8+$3*

1,1,$3+$3,-$4+$9-$3,-$5-$8+$3*%

 Examples

4.13.6.1 Fixed Modifier Values

The following AM command defines an aperture macro named ‘DONUTFIX’ consisting of two
concentric circles with fixed diameter sizes:

%AMDONUTFIX*

1,1,0.100,0,0*

1,0,0.080,0,0*%

Syntax Comments

AMDONUTFIX Aperture macro name is ‘DONUTFIX’

1,1,0.100,0,0 1 – Circle

1 – Exposure on

0.100 – Diameter

0 – X coordinate of the center

0 – Y coordinate of the center

1,0,0.080,0,0 1 – Circle

0 – Exposure off

0.080 – Diameter

0 – X coordinate of the center

0 – Y coordinate of the center

An example of an AD command using this aperture macro:

%ADD33DONUTFIX*%

4.13.6.2 Variable Modifier Values

The following AM command defines an aperture macro named ‘DONUTVAR’ consisting of two
concentric circles with variable diameter sizes:

%AMDONUTVAR*

1,1,$1,$2,$3*

1,0,$4,$2,$3*%

Syntax Comments

mailto:gerber@ucamco.com

Copyright Ucamco NV 126

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

AMDONUTVAR Aperture macro name is ‘DONUTVAR’

1,1,$1,$2,$3 1 – Circle

1 – Exposure on

$1 – Diameter is provided by AD command

$2 – X coordinate of the center is provided by AD command

$3 – Y coordinate of the center is provided by AD command

1,0,$4,$2,$3 1 – Circle

0 – Exposure off

$4 – Diameter is provided by AD command

$2 – X coordinate of the center is provided by AD command (same
as in first circle)

$3 – Y coordinate of the center is provided by AD command (same
as in first circle)

The AD command using this aperture macro can look like the following:

%ADD34DONUTVAR,0.100X0X0X0.080*%

In this case the variable modifiers get the following values: $1 = 0.100, $2 = 0, $3 = 0, $4 =
0.080.

4.13.6.3 Definition of a New Variable

The following AM command defines an aperture macro named ‘DONUTCAL’ consisting of two
concentric circles with the diameter of the second circle defined as a function of the diameter of
the first:

%AMDONUTCAL*

1,1,$1,$2,$3*

$4=$1x0.75*

1,0,$4,$2,$3*%

Syntax Comments

AMDONUTCAL Aperture macro name is ‘DONUTCAL’

1,1,$1,$2,$3 1 – Circle

1 – Exposure on

$1 – Diameter is provided by AD command

$2 – X coordinate of the center is provided by AD command

$3 – Y coordinate of the center is provided by AD command

$4=$1x0.75 Defines variable $4 to be used as the diameter of the inner circle;
the diameter of this circle is 0.75 times the diameter of the outer
circle

mailto:gerber@ucamco.com

Copyright Ucamco NV 127

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

1,0,$4,$2,$3 1 – Circle

0 – Exposure off

$4 – Diameter is calculated using the previous definition of this
variable

$2 – X coordinate of the center is provided by AD command (same
as in first circle)

$3 – Y coordinate of the center is provided by AD command (same
as in first circle)

The AD command using this aperture macro can look like the following:

%ADD35DONUTCAL,0.020X0X0*%

This defines a donut with outer circle diameter equal to 0.02 and inner circle diameter equal to
0.015.

mailto:gerber@ucamco.com

Copyright Ucamco NV 128

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4.14 Load Polarity (LP)
The LP command sets the polarity mode to either dark or clear. The polarity mode is a graphics
state parameter and applies to all data until superseded by another LP command. This
command can be used multiple times in a file. See also 2.9.

An example can be found in 4.6.10.

The syntax for the LP command is:

<LP command> = LP(C|D)*

Syntax Comments

LP LP for Load Polarity

C|D Polarity:

C – clear polarity

D – dark polarity

Examples:

Syntax Comments

%LPD*% Set the polarity mode graphics state parameter to dark

%LPC*% Set the polarity mode graphics state parameter to clear

mailto:gerber@ucamco.com

Copyright Ucamco NV 129

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4.15 Step and Repeat (SR)
The purpose of the SR command is to replicate a set of graphics objects on the image plane
without duplicating the commands creating the graphics objects.

The SR command with a number of repeats greater than 1 in either X or Y starts a step & repeat
statements. All subsequent commands are part of the step & repeat statement until it is

terminated by an empty SR command %SR*%.

In a step & repeat statement all the graphics objects generated by the command stream are
collected in a block instead of being added the object stream directly. When another SR
command is encountered the block is step-repeated (replicated) in the image plane according to
the parameters in the opening SR command. Each copy of the block contains identical graphics
objects.

 Example:

%SRX3Y2I5.0J4.0*%

G04 Block accumulation started. All the graphics*

G04 objects created below added to the block*

…

G04 Block accumulation is about to finish*

%SR*%

G04 The block is finished and replicated*

49. Blocks replication with SR command

The SR command can be used multiple times in a file. Each time it is encountered a previously
accumulated block (if any) is closed and replicated; if the commands defines more than one
repeat in any direction the new block is initiated.

The number of repeats and the step distances can be different in X and Y. The number of
repeats along an axis can be 1, which is equivalent to no repeat. If the repeats number for an
axis is 1 it is recommended to set the step value to 0 for this axis.

Blocks are copied first in the Y direction and then in the X direction.

mailto:gerber@ucamco.com

Copyright Ucamco NV 130

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

A step & repeat block can contain different polarities (LPD and LPC – see 4.14).

Note that a block contains the graphics objects, not the Gerber source code. It is the graphics
objects that are copied. The graphics objects in each copy are always identical, even if the
graphics state is modified during the processing of the source. The reference point of a block is
its origin. The origin of a block is (0, 0) point of the image global coordinate space.

A clear object in a block clears all objects beneath it, including objects outside the block. When
repeats of blocks with both dark and clear polarity objects overlap, the step order affects the
image; the correct step order must therefore be respected: step the complete block first in Y and
then in X.

 Warning: It is prudent to avoid overlapping blocks containing clear and dark polarity
objects. The image depends on the order in which objects are handled. This is not always
correctly implemented in Gerber readers. (When all objects have identical polarity the behavior
is straightforward and it is safe to use overlapping blocks.)

The syntax for the SR command is:

<SR command> = SR[X<Repeats>Y<Repeats>I<Step>J<Step>]*

Syntax Comments

SR SR for Step and Repeat

X<Repeats> Defines the number of times the block is repeated along the X axis
<Repeats> is an integer ≥ 1

Y<Repeats> Defines the number of times the block is repeated along the Y axis

<Repeats> is an integer ≥ 1

I<Step> Defines the step distance along the X axis

<Step> is a decimal number ≥ 0, expressed in the unit of the MO
command

J<Step> Defines the step distance along the Y axis

<Step> is a decimal number ≥ 0, expressed in the unit of the MO
command

 Note: In addition to what is written in the comments column all the commands in the table
below also close and repeat the previously accumulated block, if any.

Examples:

mailto:gerber@ucamco.com

Copyright Ucamco NV 131

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Syntax Comments

%SRX2Y3I2.0J3.0*% Opens a step & repeat statement and starts block accumulation

When block accumulation is finished the block will be repeated 2 times
along the X axis and 3 times along the Y axis. The step distance
between X-axis repeats is 2.0 units. The step distance between Y-
axis repeats is 3.0 units

%SRX4Y1I5.0J0*% Opens step & repeat statement and starts block accumulation

When block accumulation is finished the block will be repeated 4 times
along the X axis with the step distance of 5.0 units. The step distance
in the J modifier is ignored because no repeats along the Y axis are
specified

%SR*% Closes the step & repeat statement and repeats the previously
accumulated block

mailto:gerber@ucamco.com

Copyright Ucamco NV 132

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

4.17 Numerical Accuracy in Image Processing and
Visualization

The coordinates of all points and all geometric parameters (e.g. a diameter) have an exact
numerical value. Graphics objects are therefore in principle defined with infinite precision, with
the exception of arcs, which are intrinsically slightly fuzzy (see Error! Reference source not f
ound..). A Gerber file specifies an image with infinite precision.

However Gerber file writers cannot assume that file readers will process their files with infinite
precision as this is simply impossible. Nemo potest ad impossibile obligari. This raises the
question to what a Gerber file reader is held, and what a Gerber writer can assume.

 Visualization

Gerber files are often used to visualize an image on a screen, a photoplotter, a direct imager.
Visualization is unavoidably constrained by the limitations of the output device. Nonetheless,
visualization must comply with the following rules:

 Each individual graphics object must be rendered within the stated accuracy of the output
device.

 No spurious holes may appear - solid objects must be visualized solid.

 No spurious objects may appear.

 Zero-size objects are not visualized.

 Graphics object can be rendered individually, without taking into account neighboring
objects. In other words, each graphics object is handled individually, regardless of context.

It is intentionally not specified if rendering must be “fat” or “thin” - fat meaning that features
below the device accuracy are blown up to be visible, thin meaning that they disappear.

These rules have a number of noteworthy consequences:

 Gerber objects separated by a very small gap may touch in the visualized image.

 Gerber objects that touch or marginally overlap may be separated by a gap in the
visualized image.

 Gerber objects smaller or thinner than the device resolution may totally disappear in the
visualized image.

 When what is intended to be a single object is broken down in a number of elementary
graphics objects, e.g. by stroking, and these elementary objects do not sufficiently overlap,
the resulting image may not be solid - it may have internal holes or even break up in pieces.
To avoid these effects the best and most robust approach is not to break up the single
object at all: the Gerber format has powerful primitives to create almost any shape with a
single graphics object or possible a succession of dark and clear objects.

Construct files robustly.

 Image Processing

Gerber files are also used to transfer PCB design data from CAD to CAM. In CAM the images
are subject to complex image processing algorithms: e.g. sophisticated etch compensation,
design rule checks and so on. These algorithms perform long sequences of numerical
calculations and rounding errors unavoidably accumulate. This means that all object positions
can move and their sizes can vary. We call these changes a perturbation. The specification

mailto:gerber@ucamco.com

Copyright Ucamco NV 133

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

imposes the restriction on the reader that the perturbation must be within [-0.5µm, +0.5 µm].
The writer can assume that the perturbation is within this limit.

The perturbation has some noteworthy consequences:

 Contours that are not self-intersecting by a margin of about 1µm can become self-
intersecting under a valid perturbation. Such contours are therefore invalid. See section 2.6.
Avoid such marginal contours like the plague.

 Objects that touch or overlap marginally can become separated under perturbation. This is
important for electrical connection. An electrical connection that is realized by touching
objects can get separated by a valid perturbation. Such marginal construction can be validly
interpreted as either isolating or connecting. Make proper and robust electrical connections,
with an overlap of the order of magnitude of at least the minimum conductor width.

If higher accuracy is required it must be checked that the applications downstream can handle
this. Higher accuracy cannot be blindly assumed.

Construct files robustly.

mailto:gerber@ucamco.com

Copyright Ucamco NV 134

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

5 Attributes

5.1 Attributes Overview
Attributes add meta-information to a Gerber file. These are akin to labels providing information
about the file or features within them. Examples of such meta-information conveyed by
attributes are:

 The function of the file. Is the file the top solder mask, or the bottom copper layer, etc?

 The part represented by the file. Does it represent a single PCB, an array, a coupon?

 The function of a pad. Is the flash is an SMD pad, or a via pad, or a fiducial, etc.

The attribute syntax provides a flexible and standardized way to add meta-information to the
files, independent of the specific semantics or application.

Attributes do not affect the image. A Gerber reader will generate the correct image even if it
ignores the attributes. If only the image is needed attributes can simply be ignored.

Each attribute consists of an attribute name and an optional attribute value:

<Attribute> = <AttributeName>[,<AttributeValue>]*

Attribute names must follow the naming syntax in section 3.6.5. Attribute value has the following
structure:

<AttributeValue> = <Field>{,<Field>}

This means an attribute value consists of one or more fields separated by comma. The fields
composing the attribute value must follow the string syntax in section 3.6.6 with the additional
restriction that a field must not contain commas. Consequently the whole attribute value also
follows the string syntax.

Each attribute is defined by an extended code command consisting of a single data block with
the TA, TF or TD command code. (Attribute commands start with a T as the A is taken by
aperture commands.)

In the following example the command TF defines an attribute with name “.FileFunction” and
value composed of two fields: “Soldermask,Top”.

 Example:

%TF.FileFunction,Soldermask,Top*%

There are two types of attributes separated by the domain they attach to:

 File attributes attaching metadata to the file as a whole.

 Aperture attributes attaching metadata to an aperture. All graphics objects inherit the
attributes from the current aperture when they are created. (The current aperture is the last
aperture selected by a Dnn command, with nn≥10, see 4.3).

There are two types of attributes by scope:

 Standard attributes. Standard attribute names, values and semantics are defined in this
specification. As they are standardized they can be used to exchange meta-information
across all applications.

 User attributes. User attributes can be chosen freely by users to extend the format with
meta-information for proprietary workflows. Users must agree on the names, values and

mailto:gerber@ucamco.com

Copyright Ucamco NV 135

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

semantics. Use these attributes only for unequivocally defined machine-readable
information. Do not use it for pure comment, use the G04 for comments.

In accordance with the general rule laid out in 3.6.5 standard attribute names must begin with a
dot ‘.’ while user attribute names cannot begin with a dot.

 Example of a user attributes:

%TFMyAttribute,Yes*%

%TFZap*%

%TFZonk*%

The syntactical difference with standard attributes is the absence of a dot. The dot is not the
separator between the command and the attribute name. The dot, if present, is part of the
attribute name and indicates that it is a standard attribute whose syntax and semantics are
defined in section 5.4.

mailto:gerber@ucamco.com

Copyright Ucamco NV 136

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

5.2 File Attributes
File attributes provide meta-information about entire files.

The semantics of a file attribute specifies where it must be defined, typically in the header of the
file. A file attribute can only be defined once. It cannot be redefined.

When a file attribute is defined it is attached directly to the image as shown in 2.11.

 TF Command

File attributes are set using the uppercase TF command using the following syntax

<TF command> = TF<AttributeName>[,<AttributeValue>]*

<AttributeValue> = <Field>{,<Field>}

The attribute name must follow the naming syntax in section 3.6.5. The fields composing the
attribute value must follow the string syntax in section 3.6.6 with the additional restriction: a field
must not contain commas.

mailto:gerber@ucamco.com

Copyright Ucamco NV 137

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

5.3 Aperture Attributes

 Aperture Attributes Overview

Each aperture attribute is attached to an aperture inherited by graphics objects as explained
below. The term aperture attribute is shorthand for graphics object attribute defined by aperture.

The current attributes dictionary contains all current aperture attributes. When an AD command
defines an aperture, all aperture attributes in the current dictionary are attached to that aperture.
The current aperture dictionary is defined after each command in the file according to the
following rules:

 Initially the current attribute dictionary is empty

 Aperture attributes are added or updated with the TA command

 Aperture attributes are deleted from it with the TD command

When a graphics object is created it inherits the attributes of the current aperture.

Attributes on regions. Although apertures are not needed to create a region, regions can carry
aperture attributes. A region inherits the attributes of the current aperture, as any other graphics
object. Note that the current aperture has no effect on the image of the regions, only on its
attributes. Strictly speaking, any aperture created to flash or stroke can be used to carry a
region’s attributes; we recommend creating dedicated dummy apertures to carry the region’s
attributes. As the shape of current aperture has no graphical effect on a region you can choose
any shape; we recommend using a zero-size circle standard aperture for dummy apertures.

Associating attributes to graphics objects via their apertures is elegant, compact and efficient.

The handling of aperture attributes is illustrated in the diagram in 2.11.

 TA Command

The TA command adds an aperture attribute into the current attributes dictionary. The syntax is
the same as for the TF command:

<TA command> = TA<AttributeName>[,<AttributeValue>]*

<AttributeValue> = <Field>{,<Field>}

The attribute name must follow the naming syntax in section 3.6.5. This name must be unique
and must not already be in use for a file attribute. The value of an aperture attribute can be
overruled by a TA command with the same name, but a new value.

The fields composing the attribute value must follow the string syntax in section 3.6.6 with the
additional restriction: a field must not contain commas.

The example below defines several attributes.

 Example:

%TA.AperFunction,ComponentPad*%

%TAMyApertureAttributeWithValue,value*%

%TAMyApertureAttributeWithoutValue*%

The next example shows how to overrule the value of an aperture attribute.

 Example:

mailto:gerber@ucamco.com

Copyright Ucamco NV 138

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

%TA.AperFunction,ComponentPad*%

%TA.AperFunction,ViaPad*%

 TD Command

The TD command deletes an attribute from the current attributes dictionary. Note that the
attribute remains attached to apertures and objects to which it was attached before it was
deleted.

<TD command> = TD[<AttributeName>]*

The <AttributeName> is the name of the attribute to delete. If omitted, the whole dictionary is
cleared.

 Warning: TD cannot be used on file attributes.

mailto:gerber@ucamco.com

Copyright Ucamco NV 139

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

5.4 Standard Attributes
Attributes are not needed when the image only needs to be rendered. However, attributes are
needed when transferring PCB data from design to fabrication. A PCB fabricator needs to
process the image in CAM to prepare it for production, and not just render the image. For
example, the fabricator needs to know whether an object is a via pad or a component pad to
handle the solder mask properly. The standard attributes transfer this information in an
unequivocal and standardized manner. Standard attributes are designed for the PCB CAD to
CAM workflow. They convey the design intent from CAD to CAM. This is sometimes rather
grandly called “adding intelligence to the image”. Without these attributes the fabricator has to
reverse engineer the design intent of the features in the file, a time-consuming and error-prone
process.

Note that the use of the standard attributes is not “all or nothing”. It is possible to use just one
attribute, use all of them or use none at all. That said it is strongly recommended to use
standard attributes as comprehensively as possible. Attributes provide vital information in a
standard way – information that must otherwise be gathered from various documents, unwritten
rules, conversations or reverse engineering, with all the risks of error and delay that this entails.
Developers of Gerber file output software that cannot provide all the attributes or are unsure of
their use are encouraged to provide all the attributes they are comfortable with. Partial
information is better than no information.

For professional PCB production the bare minimum is to set the .FileFunction attribute.

Note that standard attribute values typically contain a value “Other” to cater for requirements not
yet foreseen in the specification. The intention is to add new values as the need arises to
reduce the use of “Other” over time.

 Warning: Do not invent your own standard attribute names (names starting with a dot),
your own standard attribute values or your own semantics on them. This would defeat the
purpose of standardization. Files with such attributes are anyhow invalid. Standard attributes
can only be defined in this specification. If you need attributes not covered in this specification
there is no problem. The user attributes cater to this need. Feel free to invent any user attribute
you wish.

It may of course be that there is a need for standard meta-information for which there is no
attribute name or attribute value. Users are encouraged to contact Ucamco at
gerber@ucamco.com to request extending the standard attributes where needed. All requests
will be investigated. Authors will be properly acknowledged when their suggestions are included
in the standard.

mailto:gerber@ucamco.com
mailto:gerber@ucamco.com

Copyright Ucamco NV 140

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 Standard File Attributes

The Gerber file format specifies a number of standard file attributes. These are listed in the table
below and explained in detail subsequently. All standard attributes names and values are case-
sensitive.

Name Usage

.Part Identifies the part the file represents, e.g. a single PCB

.FileFunction Identifies the file’s function in the PCB

.FilePolarity Defines whether the files represents the presence or absence
of material in the PCB layer

.GenerationSoftware Identifies the software creating the file.

.CreationDate Formally defines the creation time of the file

.ProjectId Defines project and revisions

.MD5 Sets the MD5 file signature or checksum

Standard file attributes

5.4.1.1 .Part

The value of the .Part file attribute identifies which part is described.

.Part value Usage

Single Single PCB

Array A.k.a. customer panel, assembly panel, shipping panel,
biscuit

FabricationPanel A.k.a. working panel, production panel

Coupon A test coupon

Other,<mandatory

field>
None of the above. The mandatory field informally
indicates the part

.Part file attribute values

 Example:

%TF.Part,CustomerPanel*%

The attribute – if present - must be defined in the header.

mailto:gerber@ucamco.com

Copyright Ucamco NV 141

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

5.4.1.2 .FileFunction

The .FileFunction file attribute identifies the function of the file in the PCB. Of all the attributes it
is the most important.

The attribute value consists of a number of fields separated by ‘,’:

 Type. Such as copper, solder mask etc. See list in the table below.

 Position. Specifies where the file appears in the PCB layer structure. The syntax depends
on the file type:

Type Corresponding position substring

Copper layer L1, L2, L3…to indicate the layer position followed by Top, Inr or
Bot. L1 is always the top copper layer. E.g. L2,Inr

Extra layer, e.g. solder
mask

Top or Bot – defines the attachment of the layer

Drill/rout layer E.g. 1,4 – where 1 is the start and 4 is the end copper layer. The
pair 1,4 defines the span of the drill/rout file

Position values

 Example:

%TF.FileFunction,Copper,L1,Top*%

The attribute – if present - must be defined in the header.

The file functions are designed to support all file types in current use. If a type is missing please
contact us at gerber@ucamco.com.

The existence of all these file functions does not mean that all types listed should always be
included in PCB data sets. Include only the files that are required: no more, no less.

This specification does not differentiate between drilling and routing because these two
admittedly distinct fabrication processes are identical from the point of view of their image
descriptions: the image simply represents where material is removed.

Each drill span (from-to layers) must be put in a separate Gerber file. Although the PTH and
NPTH share the span they must also be split in two separate files. (With NC files the PTH and
NPTH drill holes are sometimes lumped together in the same file. With NC files this is bad
practice as it is hard to know which is which. With Gerber it is simply not allowed as it is then
impossible to specify which holes are plated and which not.)

 Note: It may come as a surprise that in CAD to CAM workflows drill information can and
indeed is better represented in Gerber than in an NC as they are used to represent it in an NC
format. Gerber files convey drill information perfectly – drill information is truly image
information, defining where material must be removed. Of course a Gerber file cannot be sent to
a drill machine, but this is not the issue here. No fabricator uses his client’s incoming design
files directly on his equipment. The design files are always read in a CAM system, and it is the
CAM system that will output drill files in an NC format, including feeds and speeds and all the
information exactly as needed by the driller. As the copper, mask, drill and route files are all
image files to be read into the CAM system, it is best to use the same format for them all,
thereby ensuring optimal accuracy, registration and compatibility. Mixing formats needlessly is
asking for problems. Most importantly, NC formats cannot handle attributes.

mailto:gerber@ucamco.com

Copyright Ucamco NV 142

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

.FileFunction value Usage

Copper,L<p>,(Top|Inr|Bot)[,<type>] A conductor or copper layer. L<p> specifies the
position in the stack. (p is an integer). The
mandatory mark (Top|Inr|Bot) specifies it as
the top, an inner or the bottom layer; this
redundant information helps in handling partial
data. Note that the top copper layer is L1; its

specification is “Copper,L1,Top[,label]”;

L0 does not exist!

The type is optional. If present it must take one
of the following: Plane, Signal, Mixed or
Hatched.

Soldermask,(Top|Bot)[,<index>] The image represents the solder mask
openings.

 The index is not present if there is only one
solder mask on a side. If there are more than
one solder masks the numerical index numbers
the masks on a side from the PCB surface
outwards, starting with 1 for the mask closest
to the surface.

Legend,(Top|Bot)[,<index>] A legend is printed on top of the solder mask to
show which component goes where. A.k.a.
‘silk’ or ‘silkscreen’.

See the Soldermask row for an explanation of
the index.

Goldmask,(Top|Bot[,<index>] See the Soldermask row for an explanation of
the index.

Silvermask,(Top|Bot)[,<index>] See the Soldermask row for an explanation of
the index.

Tinmask,(Top|Bot)[,<index>] See the Soldermask row for an explanation of
the index.

Carbonmask,(Top|Bot) [,<index>] See the Soldermask row for an explanation of
the index.

Peelablesoldermask,(Top|Bot)[,<inde

x>]
See the Soldermask row for an explanation of
the index.

Glue,(Top|Bot)[,<index>] See the Soldermask row for an explanation of
the index.

Viatenting,(Top|Bot) Indicates via’s that must be tented

Viafill Indicates via’s that must be filled

Heatsink,(Top|Bot)

mailto:gerber@ucamco.com

Copyright Ucamco NV 143

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

.FileFunction value Usage

Paste,(Top|Bot)

Keep-out,(Top|Bot)

Pads,(Top|Bot) A file containing only the pads (SMD, BGA,
component, …).

Scoring,(Top|Bot)

Plated,i,j,(PTH|Blind|Buried)

[,<label>]
Plated drill/rout data, from layer i to layer j. The
(PTH|Blind|Buried) is mandatory.

The label is optional. If present it must take one
of the following values: Drill, Route or Mixed.

NonPlated,i,j,(NPTH|Blind|Buried)

[,<label>]
Non-plated drill/rout data, from layer i to layer j.
The (NPTH|Blind|Buried) is mandatory.

The optional label is explained in the row
above.

Profile,(P|NP) The profile or outline. P indicates a plated
profile (this is exceptional). NP indicates a non-
plated profile (this is routine). The (P|NP) is
mandatory.

Drillmap A drawing with the locations of the drilled
holes. It often also contains the hole sizes,
tolerances and plated/non-plated info.

FabricationDrawing A drawing with additional information for the
fabrication of the bare PCB: the location of
holes and slots, the board outline, sizes and
tolerances, layer stack, material, finish choice,
etc.

ArrayDrawing A drawing of the array, aka biscuit, assembly
panel, shipment panel, customer panel.

AssemblyDrawing,(Top|Bot) A drawing with the locations and reference
designators of the components. It is mainly
used in PCB assembly.

Drawing,<mandatory field> Any other drawing. The mandatory field
informally describes its topic.

mailto:gerber@ucamco.com

Copyright Ucamco NV 144

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

.FileFunction value Usage

Other,<mandatory field> The value ‘Other’ is to be used if none of the
values above fits. By putting the value ‘Other’
rather than crudely omitting the attribute it is
made explicit that the value is none of the
above – an omitted attribute can be one of the
above. Certainly do not abuse existing values
by horseshoeing a file with a vaguely similar
function into that value that does not fit
perfectly – keep the identification clean by
using ‘Other’.

The mandatory field informally describes the
file function.

.FileFunction attribute values

Below is an example of file function attribute commands in a set of files describing a simple 4-
layer PCB. Only one attribute in each file of course!

 Example:

%TF.FileFunction,Legend,Top*%

%TF.FileFunction,Soldermask,Top*%

%TF.FileFunction,Copper,L1,Top*%

%TF.FileFunction,Copper,L2,Inr,Plane*%

%TF.FileFunction,Copper,L3,Inr,Plane*%

%TF.FileFunction,Copper,L4,Bot*%

%TF.FileFunction,Soldermask,Bot*%

%TF.FileFunction,NonPlated,1,4,NPTH,Drill*%

%TF.FileFunction,NonPlatd,1,4,NPTH,Route*%

%TF.FileFunction,Plated,1,4,PTH*%

%TF.FileFunction,Profile,NP*%

%TF.FileFunction,Drillmap*%

%TF.FileFunction,Drawing,Stackup*%

mailto:gerber@ucamco.com

Copyright Ucamco NV 145

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

5.4.1.3 .FilePolarity

The value of the .FilePolarity specifies whether the image represents the presence or absence
of material. This attribute can only be used when the file represents a pattern in a material layer,
e.g. copper, solder mask, legend. Together with.FileFunction it defines the role of that image in
the layer structure of the PCB. Note that the .FilePolarity attribute does not change the image -
no attribute does. It changes the interpretation of the image.

For example, in a copper layer in positive polarity a round flash generates a copper pad. In a
copper layer in negative polarity it generates a clearance. Negative copper is sometimes used
for copper plane layers. Note that there is no longer a reason to output copper layers in
negative. It is recommended to output copper layers in positive, but if you output them in
negative, please make this clear by setting this attribute.

Solder mask images usually represent solder mask openings and are then negative. This may
be counter-intuitive.

.FilePolarity value Usage

Positive The image represents the presence of material
(recommended)

Negative The image represents the absence of material

.FilePolarity attribute values

 Example:

%TF.FileFunction,Copper,L2,Inr,Plane*%

%TF.FilePolarity,Positive*%

The attribute – if present - must be defined in the header.

mailto:gerber@ucamco.com

Copyright Ucamco NV 146

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

5.4.1.4 .GenerationSoftware

The .GenerationSoftware file attribute identifies the software that generated the Gerber file.

The attribute – if present - must be defined in the header.The attribute value has the following
syntax:

<vendor>,<application name>[,<application version>]

 Example:

%TF.GenerationSoftware,Ucamco,Ucam*%

5.4.1.5 .CreationDate

The .CreationDate file attribute identifies the moment of creation of the Gerber file.

The attribute – if present - must be defined in the header. The attribute value must conform to
the full version of the ISO 8601 date and time format, including the time and time zone. A
formally defined creation date can be helpful in tracking revisions – see also 5.4.1.6

 Example:

%TF.CreationDate,2015-02-23T15:59:51+01:00*%

5.4.1.6 .ProjectId

Usually a Gerber file is part of a PCB project with a sequence of revisions. It is important to be
able to determine if different files belong to the same revision of a project, different revisions of
the same project or completely different projects. This is the purpose of the .ProjectId file
attribute. It uniquely identifies project and revision.

The attribute – if present - must be defined in the header. The attribute value has the following
syntax:

<project id>,<project guid>,<revision id>

The field <project id> defines the project id in a custom format, <project guid> defines the
project using a global unique ID and <revision id> specifies its revision. All parameters must
conform to the string syntax, with the additional restriction that the ‘,’ character cannot be used.
The <project guid> must be a random 32 digit hexadecimal number (see 3.6.4).

 Examples:

%TF.ProjectId,My Incredible PCB,fd82b6a0966042718f6aad92285b3de3,2*%

%TF.ProjectId,project#8,c919f25ccf844f1fb2560e9c46f85f5d,/main/18*%

mailto:gerber@ucamco.com

Copyright Ucamco NV 147

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

5.4.1.7 .MD5

The .MD5 file attribute sets a file signature (checksum, hash, digest) that uniquely identifies the
file and provides a high degree of security against accidental modifications. The 128 bit
signature is calculated with the MD5 algorithm and expressed as a 32 digit hexadecimal number
(see 3.6.4).

The signature is calculated over the bits from the beginning of the file up to but excluding the

.MD5 file attribute command. Note that this excludes the closing M02*. The complete .MD5 file

attribute command, with both ‘%’and ‘*’, is excluded. Any CR and LF are excluded from
signature calculation. As CR and LF do not affect the interpretation of the file but may be altered
when moving platforms excluding them makes the signature portable without sacrificing
security.

The signature, if present, must be put at the end of the file, just before the closing M02*.. Thus

the file can be processed in a single pass.

 Example:

Consider the following Gerber file segment, without checksum:

…

D11*

X1500000Y2875000D03*

X2000000D03*

D19*

X2875000Y2875000D03*

M02*

As the CR and LF characters are skipped the checksum is taken over the following data:

…D11*X1500000Y2875000D03*X2000000D03*D19*X2875000Y2875000D03*

With the checksum the file then becomes:

…

D11*

X1500000Y2875000D03*

X2000000D03*

D19*

X2875000Y2875000D03*

%TF.MD5,6ab9e892830469cdff7e3e346331d404*% <- Excluded from the MD5

M02* <- Excluded from the MD5

mailto:gerber@ucamco.com

Copyright Ucamco NV 148

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 Standard Aperture Attributes

5.4.2.1 .AperFunction

This aperture attribute defines the function or purpose of an aperture, or rather the graphics
objects created with that aperture. Gerber file creators are encouraged to identify the function of
all apertures. PCB CAM needs to know this information and if it is not defined by this attribute
CAM has to reverse engineer it.

If this is not possible to define the function of all apertures, define it for those where it is possible
- partial information is better than no information. The bare minimum is to identify the via pads –
the fabricator really cannot do his job properly if he does not know where the vias are. Without
attribute he must reverse engineer this information, and that is always a risk.

One function, one aperture. Create objects with different functions with separate apertures,
even if they are of the same shape and size. Mixed function attributes are hard to handle in
CAM. If you do use mixed attributes you cannot define their value - an aperture can only carry
one function attribute. It is invalid set one of its values only on a mixed function in an attempt to
convey partial information. For example, if an edge connector and SMD pads are created with
the same aperture it is wrong to give it the SMDPad value – this defines the edge connector as
SMD and could result in paste on your edge connector. The same considerations apply for drill
tools.

Stroking.The function of the stroked objects is set by the function of apertures used for stroking
to the object. For example, if you use aperture 21 to stroke SMD pads then the function of
aperture 21 is SMDPad. If you use aperture 50 to paint a conductive region, the function of
aperture 50 is conductor. Note that it is recommended not to use stroking, see 6.2.

Regions. Remarkably, regions can carry aperture attributes, see Attributes on regions. Use this
to define the function of the regions.

The values for this attribute are defined in the tables below. Note that the applicable functions
depend on the layer - for example, an SMD pad can only be defined on an outer copper layer.

mailto:gerber@ucamco.com

Copyright Ucamco NV 149

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Drill and rout files- .Filefunction Plated and/or NonPlated

AperFunction value Usage

ViaDrill A via hole. This is reserved for holes whose sole
function is to connect different layers. Not to be used
for component leads.

BackDrill A hole to remove plating in a hole over a depth by drilling
with a slightly larger diameter.

ComponentDrill[,PressFit] A hole for through-hole component leads.

The optional label PressFit indicates that the drill holes
are intended for press fit component leads. Press fit
leads are pressed in properly sized plated-through
holes to realize the electrical contact. It is an alternative
to soldering. It can only be applied on PTH holes. See
ComponentPad.

CastellatedDrill Plated holes cut- through by the board edge; used to
join PCBs.

 Image courtesy Eurocircuits.

MechanicalDrill[,<type>] A hole with mechanical function (registration, screw,
etc.) The specifier <type> is optional. If present it can
take one of the following values:

 BreakOut: Non-plated holes forming a break-

out tab used in break routing.

 Tooling: Tooling holes to attach the board or

panel temporarily to test fixtures during
assembly and test. Also called mounting holes.

 Other

Example:
.AperFunction,MechanicalDrill,Breakout

.AperFunction,MechanicalDrill

Slot PCB slots.

mailto:gerber@ucamco.com

Copyright Ucamco NV 150

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

CutOut PCB cut-outs. Can be viewed as holes in the profile.
Just as the profile, it can be present in all PCB layers.

Cavity Cavities in a PCB.

OtherDrill,<mandatory field> A hole, but none of the above. The mandatory field
informally describes the type.

Copper layers - .FileFunction Copper

AperFunction value Usage

ComponentPad[,PressFit] A pad for through-hole component leads. Only
applicable on outer layers. Non-electrical fixing
elements are not leads - use WasherPad for these.

The optional label PressFit indicates a press fit
component pad. See ComponentDrill.

Only trough-hole components, not for SMD and BGA.

SMDPad,(CuDef|SMDef) An SMD pad. Excluded BGA pads which have their
own type.

The specifier (CuDef|SMDef) is mandatory. CuDef
stands for copper defined; it is by far the most common
SMD pad; the copper pad is completely free of solder
mask; the area to be covered by solder paste is defined
by the copper pad. SMDef stand for solder mask
defined; the solder mask overlaps the copper pad; the
area to be covered by solder paste is defined by the
solder mask opening and not by the copper pad.
(CuDef is sometimes rather awkwardly called non
solder mask defined.)

Only applicable for outer layers.

Note: Edge connecters are not SMDs. Surely one does
not want solder paste on an edge connector. Use
ConnectorPad.

BGAPad,(CuDef|SMDef) A BGA pad. Only applicable for outer layers.

The specifier (CuDef|SMDef) is mandatory.CuDef
stands for copper defined, SMDef for solder mask
defined; see SMDPad.

ConnectorPad An edge connector pad. Only applicable for outer
layers. Through-hole or SMD connector pads are
classified as resp. through-hole or SMD pads.

HeatsinkPad Heat sink pad (typically for SMDs)

mailto:gerber@ucamco.com

Copyright Ucamco NV 151

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

ViaPad A via pad. It provides a ring to attach the plating in the
barrel. This is reserved for pads that have no other
function than making the connection between layers. If
the pad also has another function, e.g. test pad or
component pad then it takes the other function.

TestPad A test pad. Only applicable for outer layers.

Sometimes a test pad is drilled by a via drill and hence
also used as a via pad. Such a pad must be specified
as test pad. The fabricator must know it is a test pad
when fabricating the solder mask. This is consistent
with component pads: a component hole is often also
used as a via; the pad must however be specified as a
component pad as this is the more important function.

CastellatedPad Pads on plated holes cut- through by the board edge;
used to join PCBs.

 Image courtesy Eurocircuits.

FiducialPad,(Global|Local) A fiducial pad. The specifier (Global|Local) is
mandatory.

Local refers to a component fiducial; Global refers to a
fiducial on the entire image or PCB.

ThermalReliefPad A thermal relief pad, connected to the surrounding
copper while restricting heat flow.

WasherPad A pad around a non-plated hole that is not used for
component leads. Several applications, e.g. a pad that
strengthens the PCB where fixed with a bolt – hence
the name washer.

AntiPad A pad with clearing polarity (LPC) creating a clearance
in a plane. It makes room for a drill pass without
connecting to the plane. Note that setting the AntiPad
attribute itself has no effect on the image, and therefore
does not turn the pad into LPC as a side effect– this
must be done explicitly by an %LPC*% command.

OtherPad,<mandatory field> A pad not specified above. The mandatory field
informally describes the type.

Conductor

Copper whose function is to connect pads and possibly
to provide shielding, typically tracks and copper pours
such as power and ground planes. Note that conductive
copper pours can and should carry this attribute,
whether made properly by a G36/G37 or by stroking,–
see Regions and Stroking

mailto:gerber@ucamco.com

Copyright Ucamco NV 152

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

NonConductor Copper that does not serve as a conductor; typically
text and graphics without electrical function. This value
can only be applied to copper that is part of the PCB,
not to drawing elements; see NonMaterial

CopperBalancing Copper pattern added to balance copper coverage for
the plating process.

Border The copper border around a production panel.

OtherCopper,<mandatory

field>
Indicates another function. The mandatory field
informally describes the type.

mailto:gerber@ucamco.com

Copyright Ucamco NV 153

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

All layers

AperFunction value Usage

Profile Used to define PCB outline or profile. Profiles can be
present in all PCB layers. This does not mean we
recommend this, but we observe this happens and
therefore enable its identification.

A Profile cannot have holes. Use the Cut-out attribute for
this.

NonMaterial This is for objects that do not represent physical material,
that are not present in the PCB. For example the copper
pattern is sometimes surrounded by a border containing
information like a technical drawing rather than a data file.
This border is not part of the copper pattern, and does not
represent copper. It is strongly recommended to put this
information in a separate document rather than
combining it with the true copper pattern. But if you insist
on mixing a drawing with a data file use the NonMaterial
function to identify it.

Material Identifies the proper part of the data file, complementing
the nonmaterial above. For copper and drill layers this
function is split into more detailed functions.

This function cannot be used for copper and drill layers
as this value is split of much more specific functions.

Other,<mandatory field> The value ‘Other’ is to be used if none of the values
above fits. By putting the value ‘Other’ rather than crudely
omitting the attribute it is made explicit that the value is
none of the above – an omitted attribute can be one of
the above. Certainly do not abuse existing values by
horseshoeing an attribute with a vaguely similar function
into that value that does not fit perfectly – keep the
identification clean by using ‘Other’.

The mandatory field informally describes the aperture
function.

.AperFunction aperture attribute values

Functions on extra layers. The solder mask, paste and other extra layers openings cannot
take the pad values. Pad values are reserved for outer copper layers. The solder mask
openings and paste pads take their function from the underlying copper pads. The reason for
this is that a single solder mask opening may have multiple underlying copper pads – e.g. an
SMP pad with an embedded via pad - and hence multiple functions. Consequently, solder
mask openings have the aperture function ‘Material’. (Admittedly this is somewhat a misnomer
in this context as solder masks are usually negative, and the presence of image indicates
therefore the absence of material; this has nothing to do with the pad functions but with the
layer being negative.)

mailto:gerber@ucamco.com

Copyright Ucamco NV 154

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

5.4.2.2 .DrillTolerance

.DrillTolerance defines the plus and minus tolerance of a drill hole. Both values are positive
decimals expressed in the MO units. The attribute value has the following syntax:

<plus tolerance>,<minus tolerance>

 Examples:

%TA.DrillTolerance,0.01,0.005*%

mailto:gerber@ucamco.com

Copyright Ucamco NV 155

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

5.5 Examples
The example below shows the usage of a simple aperture attribute.

 Example:

G01*

%ADD13R,200X200*% G04 this aperture has no attribute*

D13*

%TAIAmATA*% G04 add attribute IAmATA in current attributes

dictionary*

X0Y0D03* G04 this flash object has no attribute*

%ADD11R,200X200*% G04 this aperture now has attached attribute

IAmATA*

%TDIAmATA*% G04 delete attribute IAmATA from current

attributes dictionary*

%ADD12C,5*% G04 this aperture does not have attribute IAmATA*

D11*

X100Y0D03* G04 this flash object has attribute IAmATA*

X150Y50D02*

D12*

X100Y150D01* G04 this draw object has no attribute*

The next example illustrates an aperture attribute definition and changing value.

mailto:gerber@ucamco.com

Copyright Ucamco NV 156

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 Example:

G01*

%TA.AperFunction,SMDPad*% G04 Adds attribute .AperFunction in the

current dictionary with value SMDPad to

identify SMD pads*

%ADD11…*% G04 Aperture with D-code 11 gets the

.AperFunction,SMDPad attribute attached*

%TA.AperFunction,Conductor*% G04 Changes the value of .AperFunction

attribute to define conductors*

%ADD20…*% G04 Aperture with D-code 20 gets the

.AperFunction,Conductor attribute attached*

%TACustAttr,val*% G04 Adds attribute CustAttr in the current

attributes dictionary and sets its value to

val*

%ADD21…*% G04 Aperture with D-code 21 is a conductor

with attached attribute CustAttr = val*

%TD.AperFunction*% G04 Deletes the .AperFunction attribute from

the current attributes dictionary*

%ADD22…*% G04 Aperture with D-code 22 has no attached

.AperFunction attribute, but has attribute

CustAttr = val*

%TDCustAttr *% G04 Deletes the CustAttr attribute from the

current attributes dictionary*

%ADD23…*% G04 Aperture with D-code 23 has no attached

aperture attributes*

…

D11* G04 Set current aperture to aperture 11*

X1000Y1000D03* G04 Flash an SMD pad*

D20* G04 Use aperture 20 for graphical objects &

attach it to regions*

X2000Y1500D01* G04 Draw a conductor*

G36* G04 Start a conductive region. The region

takes on the value of D20*

….

G37*

D21* G04 Set current aperture to aperture 21*

G36* G04 Start a conductive region with CustAttr

= val*

….

D22* G04 Set current aperture to aperture 22*

X2000Y2000D03* G04 A flash with CustAttr = val, but

undefined aperture function*

D23* G04 Set current aperture to aperture 23*

G36* G04 Start a region, without attributes*

….

G37*

mailto:gerber@ucamco.com

Copyright Ucamco NV 157

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

6 Errors and Bad Practices

6.1 Errors
Poor implementation of the Gerber format can give rise to invalid Gerber files or – worse – valid
Gerber files that do not represent the intended image. The table below lists the most common
errors.

Symptom Cause and Correct Usage

Full circles unexpectedly appear or
disappear.

The file contains arcs but no G74 or G75
commands. This is invalid because quadrant
mode is undefined by default. A G74 or G75
command is mandatory if arcs are used.

See 2.8 and 4.5.9.

Rotating aperture macros using
primitive 21 gives unexpected results.

Some CAD systems incorrectly assume that
primitive 21 rotates around its center. It does
not – it rotates around the origin.

See 4.13.4.4.

Unexpected image after an aperture
change or a D03.

Coordinates have been used without an
explicit D01/D02/D03 operation code. This
practice is deprecated because it leads to
confusion about which operation code to use.

Coordinate date must always be
combined with an explicit D01/D02/D03
operation code.

See 7.2.

Objects unexpectedly appear or
disappear under holes in standard
apertures.

Some CAD systems incorrectly assume the
hole in an aperture clears the underlying
objects. This is wrong; the hole has no effect
on the underlying image.

See 4.12.1.5.

Objects unexpectedly appear or
disappear under holes in macro
apertures.

Some systems incorrectly assume that
exposure off in a macro aperture clears the
underlying objects under the flash. This is
wrong, exposure off creates a hole in the
aperture and that hole has no effect on the
image.

See 4.13.2.

Clearances in planes disappear. This is typically the result of sloppy cut-ins in
contours. Only fully coincident segments are
allowed for cut-ins. Note that cut-ins are not
intended for complex planes; use LPC to
make clearances in a plane.

See 4.6 and 4.14.

mailto:gerber@ucamco.com

Copyright Ucamco NV 158

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Polygons are smaller than expected. Some CAD systems incorrectly assume the
parameter of a Regular Polygon specifies the
inside diameter. It does not: it specifies the
outside diameter.

See 4.12.1.4.

A single Gerber file contains more than
one image, separated by M00, M01 or
M02

This is invalid. A Gerber file can contain only
one image.

One file, one image. One image, one file.

The MI command is used to mirror a
file with macro’s but the result is not as
expected.

With the MI command mirroring is not applied
to aperture definitions. This exception is
unfortunately ignored by a number of input
and output implementations. Do not use this
deprecated command. Apply the
transformation directly in the aperture
definitions and object coordinates.

See 7.1.6.

%ICAS*% Some files contain %ICAS*%. One wonders
what this pseudo-command is supposed to
achieve. Anyhow, it is invalid.

%FSD….*% The only valid zero omission options in the
%FS are L and T. D is invalid. See 7.4.1.

%FSLAN2X26Y26% The N2 in the format statement is invalid. See
4.9 One wonders what it is supposed to do.

…X5555Y5555IJ001 .. Missing zero after the “I”. The number after I
must have at least one digit, see 4.9.1.

Reported errors

mailto:gerber@ucamco.com

Copyright Ucamco NV 159

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

6.2 Bad Practices
Some Gerber files are syntactically correct but are needlessly cumbersome or error-prone. The
table below summarizes common poor practices and gives the corresponding good practice.

Bad Practice Problems Good Practice

PCB fabrication data
sets without netlist.

PCB fabrication data is complex
geometric data with an infinite
number of variations. Differences in
the interpretation of image data is
very rare but does happen and then
is costly. A netlist is a powerful check
on the image data – it is akin to the
redundancy checks used in all data
transfer protocols. Omitting a netlist
is omitting a basic security check.

Always include a
netlist (IPC-D-356A)
in a PCB fabrication
data set.

Writing files with
deprecated
constructs.

Each construct was deprecated for a
reason. Many carry the risk of a
misinterpretation. Continuing to use
deprecated constructs is bad
corporate citizenship as it blocks the
industry from taking the next steps.

Generated files with
current constructs
only. (Note: it is OK for
readers to handle
deprecated constructs
to cater for legacy
files.)

Low resolution
(numerical precision)

Poor registration of objects between
PCB layers; loss of accuracy;
possible self-intersecting contours;
invalidated arcs; zero-arcs. These
can give rise to unexpected results
downstream such as missing
clearances.

Use 6 decimal places
in imperial and 5
decimal places in
metric for PCB
fabrication. See 4.9.

Do not sacrifice
precision to save a few
bytes.

The use of cut-ins to
construct clearances
in planes (anti-pads)

Using cut-ins for such complex
constructions can give rise to
rounding errors.

See section 4.6.12.

Construct planes and
anti-pads using dark
polarity for the plane
and clear polarity for
the holes (anti-pads).

Invalid and sloppy
cut-ins, e.g. resulting
in self-intersections.

The file becomes invalid with
undefined interpretation.

See section 4.6.12.

Avoid cut-ins for
complex images. If
you insist to use them,
be very careful,
especially with
rounding errors, to
construct them
correctly.

Multi quadrant mode
and rounding errors

In G75 mode and due to rounding, a
small arc suddenly becomes a full
circle as the start and end points end
up on top of one another.

Use G74 single
quadrant mode or take
care with rounding on
small arcs.

mailto:gerber@ucamco.com

Copyright Ucamco NV 160

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Imprecisely
positioned arc center
points

An imprecisely positioned center
makes the arc ambiguous and open
to interpretation. This can lead to
unexpected results.

See Error! Reference source not f
ound.

Always position arc
center points
precisely.

Stroked (painted)
pads

Stroked pads produce the correct
image but are very awkward and
time consuming for CAM software in
terms of DRC checks, electrical test
and so on. Stroking was needed for
vector photoplotters in the 1960s and
1970s, but these devices are as
outdated as the mechanical
typewriter.

Always use flashed
pads. Define pads,
including SMD pads,
with the AD and AM
commands.

Stroked (painted)
regions

As above, stroked regions produce
the correct image, but the files are
needlessly large and the data is very
confusing for CAM software.

Always use contours
(G36/G37) to define
regions.

Standard Gerber or
RS-274-D

Standard Gerber is deprecated. It
was designed for a workflow that is
as obsolete as the mechanical
typewriter. It requires manual labor to
process. It is not suitable for today’s
image exchange. Do not use it.

See 7.8.

Always use Extended
Gerber.

Using a non-standard
file extension

Using a non-standard file extension
for Gerber files makes it impossible
to determine the file type without
reading the file.

See 3.2.

Please use “.gbr” or
“.GBR” as file
extension for all your
Gerber files.

Poor/good practices

mailto:gerber@ucamco.com

Copyright Ucamco NV 161

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

7 Deprecated Elements

7.1 Deprecated Commands
The next table lists deprecated commands.

Code Function Comments

G54 Select aperture This historic code optionally precedes an aperture
selection D-code. It has no effect. It is superfluous
and deprecated.

G55 Prepare for flash This historic code optionally precedes D03 code. It
has no effect. It is superfluous and deprecated.

G70 Set the ‘Unit’ to inch These historic codes perform a function handled by
the MO command. See 4.10. They are superfluous
and deprecated. G71 Set the ‘Unit’ to mm

G90 Set the ‘Coordinate format’ to ‘Absolute
notation’

These historic codes perform a function handled by
the FS command. See 4.9. They are superfluous
and deprecated.

G91 Set the ‘Coordinate format’ to ‘Incremental
notation’

M00 Program stop This historic code has the same effect as M02. See
4.8. It is superfluous and deprecated.

M01 Optional stop This historic code has no effect. It is superfluous
and deprecated.

AS Sets the ‘Axes correspondence’ graphics
state parameter

These commands can only be used once, at the
beginning of the file.

IN Sets the name of the file image

IP Sets the ‘Image polarity’ graphics state
parameter

IR Sets ‘Image rotation’ graphics state
parameter

MI Sets ‘Image mirroring’ graphics state
parameter

OF Sets ‘Image offset’ graphics state parameter

SF Sets ‘Scale factor’ graphics state parameter

LN Has no effect on the image. It is no more
than a comment

Can be used many times in the file. It is
deprecated. To add a comment G04 command
can be used. See 4.7.

mailto:gerber@ucamco.com

Copyright Ucamco NV 162

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Deprecated Gerber file commands

Current Gerber writers must not use the deprecated commands. Gerber readers may implement
them to support legacy applications and files.

 Note: The function code commands with codes G54, G70 and G71 are still found from
time to time. The other deprecated function code commands are very rarely found.

The order of execution of the deprecated extended code commands is always MI, SF, OF, IR
and AS, independent of their order of appearance in the file.

 Note: There are a few legacy files with these deprecated extended codes but this is nearly
always, if not always, to confirm the default value; in other words they have no effect. It is a
waste of time to fully implement them. It is probably sufficient to handle them as an unsupported
command: give a warning, further ignore them and continue to process the file.

The table below contains deprecated graphics state parameters.

Graphics state
parameter

Values range Fixed Value at the beginning
of a file

Axes
correspondence

AXBY, AYBX

See AS command

Yes AXBY

Image mirroring See MI command Yes A0B0

Image offset See OF command Yes A0B0

Image polarity POS, NEG
See IP command

Yes Positive

Image rotation 0°, 90°, 180°, 270°

See IR command

Yes 0°

Scale factor See SF command Yes A1B1

Deprecated graphics state parameters

 Axis Select (AS)

The AS command is deprecated.

AS sets the correspondence between the X, Y data axes and the A, B output device axes. It
does not affect the image in computer to computer data exchange. It only has an effect how the
image is positioned on an output device.

This command affects the entire image. It can only be used once, at the beginning of the file.

7.1.1.1 AS Command

The syntax for the AS command is:

<AS command> = AS(AXBY|AYBX)*

mailto:gerber@ucamco.com

Copyright Ucamco NV 163

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Syntax Comments

AS AS for Axis Select

AXBY Assign output device axis A to data axis X, output device axis B to
data axis Y

AYBX Assign output device axis A to data axis Y, output device axis B to
data axis X

7.1.1.2 Examples

Syntax Comments

%ASAXBY*% Assign output device axis A to data axis X and output device axis B
to data axis Y

%ASAYBX*% Assign output device axis A to data axis Y and output device axis B
to data axis X

 Image Name (IN)

The IN command is deprecated. Use attributes to provide meta information about the file, see
chapter 5.

IN identifies the entire image contained in the Gerber file. The name must comply with the
syntax rules for a string (confusingly not for a name) as described in section 3.6.6. This
command can only be used once, at the beginning of the file.

IN has no effect on the image. A reader can ignore this command.

The informal information provide by IN can also be put a G04 comment.

7.1.2.1 IN Command

The syntax for the IN command is:

<IN command> = IN<Name>*

Syntax Comments

IN IN for Image Name

<Name> Image name

7.1.2.2 Examples

Syntax Comments

%INPANEL_1*% Image name is ‘PANEL_1’

mailto:gerber@ucamco.com

Copyright Ucamco NV 164

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

 Image Polarity (IP)

The IP command is deprecated.

IP sets positive or negative polarity for the entire image. It can only be used once, at the
beginning of the file.

7.1.3.1 Positive Image Polarity

Under positive image polarity, the image is generated as specified elsewhere in this document.
(In other words, the image generation has been assuming positive image polarity.)

7.1.3.2 Negative Image Polarity

Under negative image polarity, image generation is different. Its purpose is to create a negative
image, clear areas in a dark background. The entire image plane in the background is initially
dark instead of clear. The effect of dark and clear polarity is toggled. The entire image is simply
reversed, dark becomes white and vice versa.

In negative image polarity the first graphics object generated must have dark polarity and
therefore clears the dark background.

7.1.3.3 IP Command

The syntax for the IP command is:

<IP command> = IP(POS|NEG)*

Syntax Comments

IP IP for Image Polarity

POS Image has positive polarity

NEG Image has negative polarity

7.1.3.4 Examples

Syntax Comments

%IPPOS*% Image has positive polarity

%IPNEG*% Image has negative polarity

 Image Rotation (IR)

The IR command is deprecated.

IR is used to rotate the entire image counterclockwise in increments of 90° around the image (0,
0) point. All image objects are rotated.

The IR command affects the entire image. It must be used only once, at the beginning of the
file.

mailto:gerber@ucamco.com

Copyright Ucamco NV 165

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

7.1.4.1 IR Command

The syntax for the IR command is:

<IR command> = IR(0|90|180|270)*

Syntax Comments

IR IR for Image Rotation

0 Image rotation is 0° counterclockwise (no rotation)

90 Image rotation is 90° counterclockwise

180 Image rotation is 180° counterclockwise

270 Image rotation is 270° counterclockwise

7.1.4.2 Examples

Syntax Comments

%IR0*% No rotation

%IR90*% Image rotation is 90° counterclockwise

%IR270*% Image rotation is 270° counterclockwise

 Load Name (LN)

This historic command has no effect on the image and can be ignored. It is deprecated.

LN associates a name to the subsequent part of the file. It was intended as a human-readable
comment. Use the normal G04 command for human-readable comment.

The LN command can be used multiple times in a file.

7.1.5.1 LN Command

The syntax for the LN command is:

<LN command> = LN<Name>*

Syntax Comments

LN LN for Load Name

<Name> The name must comply with the syntax for a string, see section
3.6.6.

7.1.5.2 Examples

mailto:gerber@ucamco.com

Copyright Ucamco NV 166

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Syntax Comments

%LNVia_anti-pads*% The name ‘Via_anti-pads’ is to the subsequent file section

 Mirror Image (MI)

The MI command is deprecated.

MI used to turn axis mirroring on or off. When on, all A- and/or B-axis data is mirrored. MI does
not mirror macro apertures!

This command affects the entire image. It can only be used once, at the beginning of the file.

 Warning: Quite a number of Gerber input and output implementations implement MI
incorrectly: they overlook the restriction on macro apertures and assume they are mirrored too.
These incorrect implementation make is risky to use MI. Be careful when reading a file with MI
and macro’s as you do not know how the file was intended. We strongly recommended not to
use MI on output as you do know how the reader will interpret the file. If an image must be
mirrored, write out the mirrored coordinates and apertures.

7.1.6.1 MI Command

The syntax for the MI command is:

<MI command> = MI[A(0|1)][B(0|1)]*

Syntax Comments

MI MI for Mirror image

A(0|1) Controls mirroring of the A-axis data:

A0 – disables mirroring

A1 – enables mirroring (the image will be flipped over the B-axis)

If the A part is missing then mirroring is disabled for the A-axis data

B(0|1) Controls mirroring of the B-axis data:

B0 – disables mirroring

B1 – enables mirroring (the image will be flipped over the A-axis)

If the B part is missing then mirroring is disabled for the B-axis data

7.1.6.2 Examples

Syntax Comments

%MIA0B0*% No mirroring of A- or B-axis data

%MIA0B1*% No mirroring of A-axis data

Mirror B-axis data

%MIB1*% No mirroring of A-axis data

mailto:gerber@ucamco.com

Copyright Ucamco NV 167

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

Mirror B-axis data

 Offset (OF)

The OF command is deprecated.

OF moves the final image up to plus or minus 99999.99999 units from the imaging device (0, 0)
point. The image can be moved along the imaging device A or B axis, or both. The offset values
used by OF command are absolute. If the A or B part is missing, the corresponding offset is 0.
The offset values are expressed in units specified by MO command.

This command affects the entire image. It can only be used once, at the beginning of the file.

7.1.7.1 OF Command

The syntax for the OF command is:

<OF command> = OF[A<Offset>][B<Offset>]*

Syntax Comments

OF OF for Offset

A<Offset> Defines the offset along the output device A axis

B<Offset> Defines the offset along the output device B axis

The <Offset> value is a decimal number n preceded by the optional sign (‘+’ or ‘-’) with the
following limitation:

0 ≤ n ≤ 99999.99999

The decimal part of n consists of not more than 5 digits.

7.1.7.2 Examples

Syntax Comments

%OFA0B0*% No offset

%OFA1.0B-1.5*% Defines the offset: 1 unit along the A axis, -1.5 units along the B axis

%OFB5.0*% Defines the offset: 0 units (i.e. no offset) along the A axis, 5 units along
the B axis

 Scale Factor (SF)

The SF command is deprecated.

SF sets a scale factor for the output device A- and/or B-axis data. The factor values must be
between 0.0001 and 999.99999. The scale factor can be different for A and B axes. If no scale
factor is set for an axis the default value ‘1’ is used for that axis.

mailto:gerber@ucamco.com

Copyright Ucamco NV 168

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

All the coordinate numbers are multiplied by the specified factor value for the corresponding
axis. Note that apertures are not scaled.

This command affects the entire image. It can only be used once, at the beginning of the file.

7.1.8.1 SF Command

The syntax for the SF command is:

<SF command> = SF[A<Factor>][B<Factor>]*

Syntax Comments

SF SF for Scale Factor

A<Factor> Defines the scale factor for the A-axis data

B<Factor> Defines the scale factor for the B-axis data

The <Factor> value is an unsigned decimal number n with the following limitation:

0.0001 ≤ n ≤ 999.99999

The decimal part of n consists of not more than 5 digits.

7.1.8.2 Examples

Syntax Comments

%SFA1B1*% Scale factor 1

%SFA.5B3*% Defines the scale factor: 0.5 for the A-axis data, 3 for the B-axis data

mailto:gerber@ucamco.com

Copyright Ucamco NV 169

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

7.2 Coordinate Data without Operation Code
Previous versions of the specification allowed coordinate data without explicit operation code
after a D01. A D01 code sets the deprecated operation mode to interpolate. It remains in
interpolate mode till any other D code is encountered. In sequences of D01 operations this
allows omitting an explicit D01 code after the first operation.

 Example:

D10*

X700Y1000D01*

X1200Y1000*

X1200Y1300*

D11*

X1700Y2000D01*

X2200Y2000*

X2200Y2300*

The operation mode is only defined after a D01. The operation mode after a D02, D03 or an
aperture selection (Dnn with nn≥10) is undefined. Therefore a file containing coordinates without
operation code after a D03 or an aperture selection (Dnn with nn≥10) is invalid.

 Warning: However, coordinate data without explicit operation code saves a few bytes but
is not intuitive and lead to errors in the field. This risk far outweighs the meager benefit

mailto:gerber@ucamco.com

Copyright Ucamco NV 170

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

7.3 Rectangular Hole in Standard Apertures
In addition to the round hole described in the section 4.12 the previous versions of this
specification also allowed rectangular holes. Rectangular holes are now deprecated.

The syntax of a rectangular hole is common for all standard apertures:

<Hole> = <X-axis hole size>X<Y-axis hole size>

The modifiers specify the X and Y sizes of the rectangle and must be ≥ 0.

The hole must fit within the standard aperture. It is centered on the aperture.

 Example:

%FSLAX26Y26*%

%MOIN*%

%ADD10C,10X5X5*%

%ADD11C,1*%

G01*

%LPD*%

D11*

X-10000000Y-2500000D02*

X10000000Y2500000D01*

D10*

X0Y0D03*

M02*

50. Standard (circle) aperture with a rectangular hole above a draw

Note that the draw is visible through the hole.

mailto:gerber@ucamco.com

Copyright Ucamco NV 171

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

7.4 Deprecated Options of the Format Specification

This section describes deprecated options of the FS command (see 4.9).

The FS command could also be used to specify the following format characteristics:

 Zero omission

 Absolute or incremental coordinate notation

 Warning: Using less than 4 decimal places is deprecated.

 Zero Omission

Zero omission allows reducing the size of data by omitting either leading or trailing zero’s from
the coordinate values.

With leading zero omission some or all leading zero’s can be omitted but all trailing zero’s are
required. To interpret the coordinate string, it is first padded with zero’s in front until its length fits
the coordinate format. For example, with the “23” coordinate format, “015” is padded to “00015”
and therefore represents 0.015.

With trailing zero omission some or all trailing zero’s can be omitted but all leading zero’s are
required. To interpret the coordinate string, it is first padded with zero’s at the back until its
length fits the coordinate format. For example, with the “23” coordinate format, “15” is padded to
“15000” and therefore represents 15.000.

If the coordinate data in the file does not omit zero’s the leading zero omission must be
specified.

At least one character must be output in both modes as omitting a value indicates that the
previous value should be used. Zero therefore should be encoded as “0” in both modes.

The leading zero omission is specified by ‘L’ after FS code in the command.

The trailing zero omission is specified by ‘T’ after FS code in the command.

 Example:

%FSTAX25Y25*%

 Warning: Trailing zero omission is deprecated.

 Absolute or Incremental Notation

Coordinate values can be expressed either as absolute coordinates (absolute notation) or as
incremental distances from a previous coordinate position (incremental notation).

The absolute notation is specified by ‘A’ after FSL or FST in the command.

The incremental notation is specified by ‘I’ after FSL or FST in the command.

 Example:

%FSLIX25Y25*%

%FSTIX36Y36*%

 Warning: Currently the only allowed notation is absolute notation. The incremental notation
is deprecated.

mailto:gerber@ucamco.com

Copyright Ucamco NV 172

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

7.5 Using G01/G02/G03 in a data block with D01/D02
The function codes G01, G02, G03 could be put together with operation codes in the same data
block. The graphics state is then modified before the operation coded is executed, whatever the
order of the codes.

 Example:

G01X100Y100D01*

X200Y200D01*

G01 sets the interpolation mode to linear and this used to process the coordinate data
X100Y100 from the same data block as well as the coordinate data X200Y200 from the next
data block. This construction is a useless variation and now it is deprecated.

The syntax for G01, G02, G02 codes in operations with codes D01 and D02 was the following:

<Operation> = G(1|01|2|02|3|03)<Coordinate data>D(01|02)*

 Example:

G01*

X100Y100D01*

G01X500Y500D01*

X300Y300D01*

G01X100Y100D01*

mailto:gerber@ucamco.com

Copyright Ucamco NV 173

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

7.6 Closing SR with the M02
When an SR statement is not explicitly closed with an %SR*% command and the end-of-file

(M02) command is encountered the M02 closes and replicates the block. However it t is

recommended to close the statement explicitly with an %SR*% command.

7.7 Deprecated Terminology
Originally extended codes were called (Mass) Parameters, an awkward term.

In previous versions of this document:

 The “contour fill” was called “polygon fill”

 The “operation” was called “coordinate data block”

 The following synonyms for “darken” could be used: mark, expose, paint

 The following synonyms for “clear” could be used: unmark, rub, erase, scratch

 The term “paint” could also be used as the synonym of “stroke”

 Incremental position: position expressed as a distance in X and Y from the current point

mailto:gerber@ucamco.com

Copyright Ucamco NV 174

Having a question or remark about the spec? Please contact us at gerber@ucamco.com

7.8 Revoked Standard Gerber (RS-274-D)
The current Gerber file format is also known as RS-274X or Extended Gerber. There is also a
historic format called Standard Gerber or RS-274-D format.

Standard Gerber is revoked and superseded by Extended Gerber, which is the current Gerber
format. Consequently, Standard Gerber no longer complies with the Gerber specification. Files
in that format can no longer be correctly called Gerber files. Standard Gerber files are not only
deprecated, they are no longer valid.

Standard Gerber is technically obsolete, revoked and superseded by RS-274X.

It differs from the current Gerber file format (RS-274X), in that it:

 does not support G36 and G37 codes

 does not support any extended codes

Standard Gerber does not allow defining the coordinate format and aperture shapes. It is
incomplete as an image description format. It lacks the imaging primitives needed to
unequivocally transfer information from PCB CAD to CAM

The word “standard” is misleading here. Standard Gerber is standard NC format. It is not a
standard image format: image generation needs a so-called wheel file, and that wheel file is not
governed by a standard. The interpretation of a wheel files, and consequently of a Standard
Gerber files, is subjective. In Extended Gerber (RS-274X) image generation is fully governed by
the standard. Extended Gerber is the true image standard.

Standard Gerber has major drawbacks compared to the current Gerber file format and does not
offer a single advantage. Standard Gerber is obsolete. There is not a single valid reason to use
standard Gerber rather than Extended Gerber.

Always use Extended Gerber (RS-274X). Never use Standard Gerber.

 Warning: The responsibility of errors or misunderstandings about the wheel file when
processing a Standard Gerber file rests solely with the party that decided to use revoked
Standard Gerber, with its informal and non-standardized wheel file, rather than Extended
Gerber, which is unequivocally and formally standardized.

mailto:gerber@ucamco.com

	Preface
	1 Introduction
	1.1 About this document
	1.1.1 Scope and Target Audience
	1.1.2 Questions and Feedback
	1.1.3 References

	1.2 Copyright and Intellectual Property
	1.3 History of the Gerber File Format
	1.3.1 Standard Gerber
	1.3.2 Extended Gerber
	1.3.3 The Great Reform
	1.3.4 The Second Extension
	1.3.5 Standard Gerber Revoked
	1.3.6 Further Clarification

	1.4 Record of Revisions
	1.4.1 Revision 2016.04
	1.4.2 Revision 2016.01
	1.4.3 Revision 2015.10
	1.4.4 Revision 2015.07
	1.4.5 Revision 2015.06
	1.4.6 Revision J4
	1.4.7 Revision J3
	1.4.8 Revision J2
	1.4.9 Revision J1
	1.4.10 Revision I4
	1.4.11 Revision I3
	1.4.12 Revision I2
	1.4.13 Revision I1

	1.5 About Ucamco

	2 Overview of the Gerber Format
	2.1 File Structure
	2.2 Processing a Gerber File
	2.3 Graphics Objects
	2.4 Apertures
	2.5 Draw and Arc Objects
	2.6 Contours
	2.7 Operation Codes
	2.8 Graphics State
	2.9 Dark and Clear Polarity
	2.10 Attributes
	2.11 Processing Gerber File with Attributes
	2.12 Conformance
	2.13 Example Files
	2.13.1 Example: Two Square Boxes
	2.13.2 Example: Use of Polarities and Various Apertures
	2.13.3 Example: A Drill File

	2.14 Glossary

	3 Syntax
	3.1 Conventions for Syntax Rules
	3.2 File Extension, MIME Type and UTI
	3.3 Character Set
	3.4 Data Blocks
	3.5 Commands
	3.5.1 Commands Overview
	3.5.2 Function Code Commands
	3.5.3 Extended Code Commands

	3.6 Data Types
	3.6.1 Integers
	3.6.2 Decimals
	3.6.3 Coordinate Number
	3.6.4 Hexadecimal
	3.6.5 Names
	3.6.6 Strings

	4 Graphics
	4.1 Graphics Overview
	4.2 Operations (D01/D02/D03)
	4.2.1 Coordinate Data Syntax
	4.2.2 D01 Command
	4.2.3 D02 Command
	4.2.4 D03 Command
	4.2.5 Example

	4.3 Current Aperture (Dnn)
	4.4 Linear Interpolation Mode (G01)
	4.4.1 G01 Command
	4.4.2 D01 Command

	4.5 Circular Interpolation (G02/G03) and (G74/G75)
	4.5.1 Circular Arc Overview
	4.5.2 G02 Command
	4.5.3 G03 Command
	4.5.4 G74 Command
	4.5.5 G75 Command
	4.5.6 D01 Command
	4.5.7 Example: Single Quadrant Mode
	4.5.8 Example: Multi Quadrant Mode
	4.5.9 Numerical Instability in Multi Quadrant (G75) Arcs
	4.5.10 Using G74 or G75 May Result in a Different Image

	4.6 Region Mode (G36/G37)
	4.6.1 Region Overview
	4.6.2 G36 Command
	4.6.3 G37 Command
	4.6.4 Example: A Simple Contour
	4.6.5 Example: How to Start a Single Contour
	4.6.6 Example: Use D02 to Start a Second Contour
	4.6.7 Example: Overlapping Contours
	4.6.8 Example: Non-overlapping and Touching
	4.6.9 Example: Overlapping and Touching
	4.6.10 Example: Using Polarity to Create Holes
	4.6.11 Example: A Simple Cut-in
	4.6.12 Example: Power and Ground Planes
	4.6.13 Example: Fully Coincident Segments
	4.6.14 Example: Valid and Invalid Cut-ins

	4.7 Comment (G04)
	4.8 End-of-file (M02)
	4.9 Coordinate Format (FS)
	4.9.1 Coordinate Format
	4.9.2 FS Command
	4.9.3 Examples

	4.10 Unit (MO)
	4.11 Aperture Definition (AD)
	4.11.1 AD Command
	4.11.2 Zero-size Apertures
	4.11.3 Examples

	4.12 Standard Aperture Templates
	4.12.1.1 Circle
	4.12.1.2 Rectangle
	4.12.1.3 Obround
	4.12.1.4 Regular Polygon
	4.12.1.5 Round Hole in Standard Apertures

	4.13 Macro Aperture (AM)
	4.13.1 AM Command
	4.13.2 Exposure Modifier
	4.13.3 Rotation Modifier
	4.13.4 Primitives
	4.13.4.1 Comment, Primitive Code 0
	4.13.4.2 Circle, Primitive Code 1
	4.13.4.3 Vector Line, Primitive Code 20.
	4.13.4.4 Center Line, Primitive Code 21
	4.13.4.5 Outline, Primitive Code 4
	4.13.4.6 Polygon, Primitive Code 5
	4.13.4.7 Moiré, Primitive Code 6
	4.13.4.8 Thermal, Primitive Code 7

	4.13.5 Syntax Details
	4.13.5.1 Variable Values from an AD Command
	4.13.5.2 Arithmetic Expressions
	4.13.5.3 Definition of a New Variable

	4.13.6 Examples
	4.13.6.1 Fixed Modifier Values
	4.13.6.2 Variable Modifier Values
	4.13.6.3 Definition of a New Variable

	4.14 Load Polarity (LP)
	4.15 Step and Repeat (SR)
	4.16
	4.17 Numerical Accuracy in Image Processing and Visualization
	4.17.1 Visualization
	4.17.2 Image Processing

	5 Attributes
	5.1 Attributes Overview
	5.2 File Attributes
	5.2.1 TF Command

	5.3 Aperture Attributes
	5.3.1 Aperture Attributes Overview
	5.3.2 TA Command
	5.3.3 TD Command

	5.4 Standard Attributes
	5.4.1 Standard File Attributes
	5.4.1.1 .Part
	5.4.1.2 .FileFunction
	5.4.1.3 .FilePolarity
	5.4.1.4 .GenerationSoftware
	5.4.1.5 .CreationDate
	5.4.1.6 .ProjectId
	5.4.1.7 .MD5

	5.4.2 Standard Aperture Attributes
	5.4.2.1 .AperFunction
	5.4.2.2 .DrillTolerance

	5.5 Examples

	6 Errors and Bad Practices
	6.1 Errors
	6.2 Bad Practices

	7 Deprecated Elements
	7.1 Deprecated Commands
	7.1.1 Axis Select (AS)
	7.1.1.1 AS Command
	7.1.1.2 Examples

	7.1.2 Image Name (IN)
	7.1.2.1 IN Command
	7.1.2.2 Examples

	7.1.3 Image Polarity (IP)
	7.1.3.1 Positive Image Polarity
	7.1.3.2 Negative Image Polarity
	7.1.3.3 IP Command
	7.1.3.4 Examples

	7.1.4 Image Rotation (IR)
	7.1.4.1 IR Command
	7.1.4.2 Examples

	7.1.5 Load Name (LN)
	7.1.5.1 LN Command
	7.1.5.2 Examples

	7.1.6 Mirror Image (MI)
	7.1.6.1 MI Command
	7.1.6.2 Examples

	7.1.7 Offset (OF)
	7.1.7.1 OF Command
	7.1.7.2 Examples

	7.1.8 Scale Factor (SF)
	7.1.8.1 SF Command
	7.1.8.2 Examples

	7.2 Coordinate Data without Operation Code
	7.3 Rectangular Hole in Standard Apertures
	7.4 Deprecated Options of the Format Specification
	7.4.1 Zero Omission
	7.4.2 Absolute or Incremental Notation

	7.5 Using G01/G02/G03 in a data block with D01/D02
	7.6 Closing SR with the M02
	7.7 Deprecated Terminology
	7.8 Revoked Standard Gerber (RS-274-D)

