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1 Introduction

Kinetic models arise in many applications such as rarefieddyaamics, plasma
physics, nuclear engineering, semiconductor device desiffic networking, and
swarming. Such models evolve the probability distribufienction of one or mul-
tiple species of particles, with or without forces from exi or self-consistent
fields. They can describe mesoscopic phenomena lying indastthe microscopic
particle dynamics governed by fundamental laws such as #éwgdh’s laws of mo-
tion, and macroscopic dynamics described by continuum modé@e numerical
challenges often come from high dimensionality, varioukision (or scattering)
operators which can be multi-fold integrals or singulad amultiple scales in time
or phase space.

In this work, we consider some simple one-dimensional lineaetic models
with either singular or continuous scattering operatongl, iavestigate mathemati-
cally and/or computationally the properties of severakdwetnistic numerical dis-
cretizations. They include first and second order discootis Galerkin methods, a
first order collocation method, a Fourier-collocation gpenethod, and a Nystrom
method. Lots of efforts have been put in the literature forugations of semicon-
ductor Boltzmann equations from algorithm and applicafiomts of view, for ex-
ample, computations by spectral methods [6], finite difieeemethods [4, 2], and
discontinuous Galerkin method [3]. In this paper, we aré@aarly concerned with
characterizing and examining how various numerical megtuagpture the equilib-
riums. Since only spatially homogeneous models are coresideshat we examine
here is essentially on how the scattering operators areogjppated numerically.
Such study is important for understanding numerical apprations for scattering
operators which are a key part in any collisional kinetic glp@nd can provide
insights into designing efficient algorithms for numerisahulations and also for
implicit discretizations of the problems in the presencenattiple scales.

Let’s start with the models. Consider a one-dimensionateda-phonon scatter-
ing model [8, 10, 5]

% =é[f](kat)=/_°; (S(k’,k)f(k’,t)—S(k,k’)f(k,t))dl(, 1)

which arises from semiconductor device design. Héket ) is the probability distri-
bution function of electrons with wavenumbeat timet, Sis the scattering operator,
andS(k,K') is the scattering kernel which gives the transfer rate aftedes scatter-
ing from statek to k'. Note that the space variabtés omitted and the equation (1)
is space homogeneous.

The first problem we will focus on is the governing equatioxtktat models both
the inelastic and elastic scattering, and the scatteringekes defined as

SkK)= 3 s(E(K). E(k’))é(E(k) —EWK) +vep). @)

ve{-1,0,1}
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HereE(k) is the energy of the electron with wavenumkes, (E(k),E(K')) is the
transfer rate fronk to k' by absorbing{= 1) or emitting { = —1) a phonon with an
energyep > 0, or by keeping the energy unchangee=(0). Andd(-) is the Diracé
function. It is assumed,(-,-) > 0 with v= £1, ands(+,-) > 0. We consider the
Kane energy band, with the energy functiB(k) satisfying

E(K)(1+aE(k) =k?/2 (3)
and the non-parabolicity facter > 0 is some constant parameter. We also define
Hq(E)=+/2E(1+ aE).

The energy functiorE (k) is non-negative and it is an even functionlofWhen
o =0, it corresponds to the quadratic energy band.
With T > 0 being any given lattice temperature, the following dimttion func-
tion
(k) = exp(—@) (4)

defines an equilibrium of our model, under the assumption

su(E(K) — £, E(K) =5 1(E(K), E(K) — gp)exp(— 2 ). (5)

This assumption is made throughout this paper, and it eashesdetailed balance
principleS(K’, k) f¢(k') = S(k, k') f¢(k). For the quadratic energy (3) with= 0, the
equilibrium (4) after normalization is a Gaussian disttibn. Following a similar
analysis as in [9], any equilibrium of our model is given by

fe(k) = FE(h(E(K)), (6)

whereh(E) is some periodic function of periag). The inclusion of argp-periodic
function factorh(E) in an equilibrium is due to thé-type scattering rule in (2).
The model we have described so far, defined in (1), (2), (3) thié assumption
(5), involves a scattering kernel withtype singularity. In this work, we will also
examine a model which is defined by (1) with a continuous sdatj kernel

S(k.K) = a(k,K)M(K) (7)

whereo (k,K') = o(k k) >0andM (k) = \/%Texp(—g). For any given temperature
T > 0, this model has a unique Gaussian-type equilibritk) (up to a constant
factor).

In [7], a first order finite volume method was introduced foe thhear kinetic
model (1) with (2), (3) and the assumption (5), when the enbend is quadratic
(o = 0) without the elastic collisions§y = 0). A detailed study of the scattering
matrix which approximates the scattering operator wasopewéd. In particular, the
eigenvalues of the scattering matrix were proven to be rasitige, showing the sta-
bility of the numerical scheme. The dependence of the gagmatltiplicity of the
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zero eigenvalue on the choice of the mesh grids was establishsed on linear al-
gebratools. Such theory was extended in [11] to more gemerdeéls, such as those
with general energy band (including Kane energy), with @tnigic scattering, and

in higher dimensions. Our aim in this paper is to perform agbhgh numerical study

of the model with either a singular or continuous scattekiemel by considering

more general methods, including higher order Galerkiretyethod, collocation

methods of low or high order accuracy. We are particularlyoeoned with the scat-

tering matrix resulted from different types of discretimat and the interpretation
of the numerical results when compared with their contirsucounterparts in the

models.

The rest of the paper is organized as follows. In Section€kihetic model (1)
with a singular scattering kernel (2)-(3) is consideredr&kpecifically, a first order
finite volume method as in [7, 11], which is also a first ordacdintinuous Galerkin
(DG) method, is formulated in Section 2.2.1. Mathematicalperties of the nu-
merical scheme as well as the scattering matrix are revigfeidwed with some
discussions. More general numerical methods, includirgarsd order DG method,
a first order collocation method, and a Fourier-collocasipactral method are for-
mulated in Sections 2.2.2, 2.2.3 and 2.2.4, respectivetyrihs out it is nontrivial
to extend the algebraic analysis in [7] to more general nigakdiscretizations.
Instead, we rely on extensive numerical experiments to nstaied these methods,
see Section 2.3. In Section 3, the kinetic model (1) with &ioous scattering ker-
nel (7) is considered, for which a Nystrom discretizatienntroduced and tested
numerically. A detailed summary and concluding remarkswede in Section 4.

2 Numerical methods for singular scattering kernels

In this section, the kinetic model (1) will be consideredhnt singular scattering
kernel (2) and (3). We will start with rewriting the equatidle then formulate a
first order discontinuous Galerkin (DG) method, which isoadsfirst order finite
volume method, a second order DG method, a first order cditotanethod, and
a Fourier-collocation spectral method. For the first ordér ethod, we will also
discuss the mathematical properties of the discrete stajteperator.

2.1 Reformulation of the model

Before introducing numerical methods, we first reformutate scattering terms in
our model to formally remove thé-type singularity. Details will be given only for
one term associated with the inelastic scattering, andehmining terms can be
treated similarly. Recall the definition of the compositwithe d-function with a
differentiable functiorx(-),
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8(2(3))v(x)dx = V)
[ iy 2T

and using this, one gets

fct) = [ Si(EK),ER)SER) — K+ &) T(K, 1)K

s1(E(k), E(k) f (k. t)
| :

N 8)
ke (ke E(K=E(K)—£p} |E' (k)

Notation wise, one should understand that for kmyith E(k) — &, < 0, the corre-
sponding term in (8) is excluded.
With E(k.) = E(k) — &p, one can easily verify

k. = £1/2E(k.)(1+ aE(k.)) = =44 (E(K) — &p), 9)

K. _ +Ha(E(k) —&p)
1+2aE(k.) 1+2a(E(k)—¢p)’
Combining (8)-(10), we have

E'(k.) = (10)

s1(E,E+&p)
Ha(E)/(1+2aE)

[f](k,t) = (f(Ha(E)0)+ F(—Ha(E)D) le—eme,

(11)

Following the similar derivation for other terms, our mog#)-(3) with the sin-
gular scattering kernel is reformulated as below,

2D 81k = 3 (k) 12
where _
Aolf](kt) = A ';;‘;E (t(a (~Ha(E).0)) -5
[ f] (k1) = 1+2aE (At (~Ha(E),1)) le=eqq

Ra|fl(kt) =—2f (k1) <%S(1$/(1si E;E) lE=EK)+ep

s 1(E+ &p, E) |
Ho(E)/(1+2aE) E-EW-2

So(E,E) | )
Ho(E)/(1+ 2aE) E-Ek

+
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2.2 Numerical methods

2.2.1 First order discontinuous Galerkin method

In this subsection, we will describe a discontinuous Gate(PG) method us-
ing piecewise constant discrete space to numerically appaie the reformulated
model (12). The method is also the first order finite volumehoeéstudied in [7, 11]
in the absence of the elastic scattering term, namely \gfenO.

We start with introducing some notation. LetKmax, Kmax] be the computational

domain, with the assumption that the exact solution is zetheé machine accuracy
level outside this domain. Let 8 ky/» < kzj2 < ... < kyi1/2 = Kmax be a parti-
tion of [0, Kmax], and deﬁndi = [kifl/ZakiJrl/Z]a AK = ki+1/2_ kifl/Zv Vie /+ =
{1,2,--- N}, andAk = max<j<n Ak;. For the left half domaifi—Kmax, 0], a “sym-
metric” mesh is introduced with_j = [K_j_1/2,K_i1/5], andk_j_1/o = —ki;1/2,
i € 4. In terms of the energy variable, we defiBgax = E(Kmax), Ei_12=
E(ki—1/2),i =1,--- ,N+1, Qi = [Ei_1/2,Ei11/0), AE = Ei11p — Ei_1jp,i € AT,
and AE = max<i<nAE;. We also useQ; £ &, ={E+¢p:E € Q} and 4 =
{-N,---,-2,-1,1,2,--- ,N}.

To formulate the method, we approximdtgk,t) by a piecewise constant func-
tion fu(k,t), namely,fn(-,t) € Vih = V2 = {g: g|;; € P°(li),Vi € ./}, satisfying

9 fn(kt) 2

/|- S gk = /| § ) (k1) @(K)dk = > [ Anltlkopdk ()

forany@ € ,, and anyi € 4. Here and below?" (1;) is the set of polynomials oh
of degree. This scheme, in its finite volume form, is also given as (1dhw =1,

R 4
/Iiafhﬁ(l(’t)dk:/liS[fh](k,t)dk:mzl/li%’m[fh](kat)dk (14)

1) Theschemein itsalgebraic form

Next, we will convert the scheme (14) into its algebraic fofimdo so, we repre-
sent the numerical solution dg(k,t)|; = fi(t), with fi(t) = Aiquli fn(k, t)dk which
approximates the cell average of the exact solufighit) overl;, Vi € /. It's
straightforward to get,

dfa(kt) .~ d .
/n LS dk= (8K fi(t). (15)
To proceed with the remaining terms related to the scagenperator, we will take

a change of variable frorkito E. With the relation between the velocikyand the
energyE in (3), we havadk= (14 2aE)/.#4(E) dE and
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1+ 20E

/Iiz(E(k))dk: sz(E)T(E)dE

for any given functiorg(-).
For the first term on the right-hand side of (14), we have

oy HEE R e g (WREL Ao (E.0) 0
- QIiI%_psl(E,EjLsp) 1%2(;)5 : 1Z?E(Ii+€5p) ,-EZ/VXQ“I(E)““)"E

= jEZ/V (o7, .
with

14+2aE 1+2a(E+¢p)
r; :/ s1(E,E+ &p) .
" (Q)i|—p)N Ly Pl Ha(E) Ha(E+€p)

dE.  (17)

Following similar derivation, we can further AftZm[fn] (k) dk= 3 jc 4 fj (t)ri(.'}‘),
m= 2,3 with
1+20E 1+2a(E—¢gp)
r = s_1(E,E—¢ .
") /(Qi+£p)ﬁ9|j| i °) Ha(E)  Ha(E—¢&p)
2 2
(3)_/ <1+20{E) s / <1+2aE>
i Q\i\mmSO( ) Ha(E) il QMSO( ) o (®)

and ; Za[fn(k,t)dk= —2f;(t)A;, with

;._/ <&(E,E+€p)(1+ZG(E+8p))+S1(E,E—sp)(1+2a(E—sp))>
o Qi

dE

Ha(E+€p) Ha(E—&p)

1+ 2aE 1+2aE\?

T dE EE)( == dE. 18
Fa(E) 15T o, PE )<%<E>> (18)

Hered;j is the Kronecke® function.

By combining what we have so far in (14)-(18), the proposest farder DG
scheme for the model (12) with the singular scattering Keimmeonverted to its
algebraic form,

d )
a(Akifi)z—Z)\i(Akifi)-i- z S,j(Akjfj), Vie AN, (19)
jenN

where
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D@ @) and A= S A (20)

S.j= A_l(j(ri7 i i 2K

2.) Propertiesof the scheme

With s,(+,-) > 0,v=+1andsy(-,-) > 0, one can easily see that all the coefficients
in the linear algebraic system (19) are non-negative, mueeiBcally,

$;>0, A>0, Vijes. (21)
They also have some symmetry property, namely,
Ai=Al, sj=sij=S_j=Si-j, Vijes (22)

due to that the enerdy(k) is an even function ik and the mesh is “symmetrically”
defined.
Now we introduce

A :diag{)‘lv"' AN, S= (SJ)i,je.A/ﬂ (23)

andf_ = [Akyf q,---,Aknf N]T, fo = [Akefr,---,Akn fn]T, then the proposed
scheme in (19) can be written as

d [f_ f_ ANDO S S|\ [f-
aln-ole]-(loal B[] e
The matrixS is the discrete matrix corresponding to the discrete stadgt®p-
erator. If we further defing = (f_ 4-f,)/2c RN, h = (f, —f_)/2 ¢ RN, and
M = 2(S—A), the linear system (24) can be decoupled into two systemaleét
size,

d d
G9=Mg.  gh=-22h (25)

Itis easy to see solving the proposed scheme (19) (or (2é)usralent to solv-
ing (25). In next lemma, we will summarize more propertieS,d andA.

Lemma2.1 1.)A is non-singular.

2.)The eigenvalues & consist of all eigenvalues of M and ef2A. Hence the
dimensions of kéB) and kefM) are the same.

3)gekerM) < [g',g"]" € ker(S).

The proof is straightforward, and it is omitted here. Basedh® properties in this
lemma, we can see that to address the types of questions ggam fhe scattering
matrix S, such as the dimension of the null spac&gathe sign of the real part of the
eigenvalues of, it is equivalent to ask similar questions to the reducedtadng
matrix M. On the other hand, to get numerical solutifyk,t) at any timet, one
would have to work with both equations in (25) or with equat{@4).



Study of Discrete Scattering Operators for Some Linear #éridodels 9

Next we will verify directly that the scheme given above haasmconservation
property. An important consequence is that the column sukh isfzero. This prop-
erty ensures zero is an eigenvaludfand it was also extensively used in analyzing
M in [7]. Such property is usually not possessed by collocatype methods. In-
stead with collocation methods, zero eigenvalue of thetex@ady operator can be
approximated by nonzero numerical eigenvalues (see noateesults in Section
2.3).

Lemma 2.2 Suppose the numerical solutiof(K,t) has compact support ir-Kmax, Kmax,
then the proposed schertiet) satisfies mass conservation, namely,

Kmax d
dt/Kmax dtiez/mqfi (t)=0. (26)

Moreoveryi. ,+Mj =0, Vje 4.

Proof. Based on the formulas feyj andAj in (20) as well as the symmetry relation
in (22), one can verify

NI =

sj= Y sj=A, Vies" (27)
eV SV

and henc§ic 4+ Mij =2(Jicy+S,j—Aj) =0forallVje 4"
With this and (19), we have

Kmax d
Akifi(t)=—2'% A(Akifi)+ s.j (AK; f;
dt/KmaX dtlezm |ezm |ez//164/
=23 Xi(Akifi) + Z(ZS,, (Akjfj
eV jen e
= -2 X(Akfi)+ Y 2Aj(Akifj (28)
eV jeV

O

In next theorem, we summarize the main results which wenegartor the (reduced)

scattering matriXM in [7, 11] whensy = 0. 59 being nonzero does not pose new

difficulty.

Theorem 2.3 1.)M;j > Ofori # j, Mj <0, and M" is weakly diagonally dominant.
Each nonzero eigenvalue of M has a negative real part.

2.)Mij > 0 < M;j > 0. In addition, there exists a unique positive integer s and a
permutation matrix P such that

My
M=P' P (29)
Mg
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where each Me R"*"i i =1,--- s is irreducible. Moreover rar(f;) =r; — 1,
and this implies rankM) = N — s and dintker(M)) = s. Letg; € null(M;) be
nonzero for any i, all entries @ have the same sign.

3.) The fact that dirtker(M)) = s can be equivalently characterized by the following
property of the mesh: there exis{ E- - E§ € [0,&p) with E1 < --- < Eg, such that

(B +16p B + T8 <Emax TEN} C{Ej_1/p:j=1,2,---N+1}, i=1-- s
(30)

From the theorem, one can see that there is no nonzero elgernfaVl with
real positive part, and this implies the stability of the escie and ensures the cor-
rect decay behavior of the numerical solution over long tpeeod. One can al-
ways find a set of basis for the null spaceMfsuch that each basis vector in non-
negative. In addition, the geometric multiplicity of zerigenvalue being, hence
dim(ker(M)) = s, can be fully characterized by the choice of the mesh grid$ufF
ther understand the mesh condition in (30), recall our madgiits infinitely many
equilibriums (6), and the presence of gaperiodic function factoh(E(k)) is due
to thed-type scattering rule in the model. With this, the behavadran equilibrium
fé(k) atk andk’ are related only whek (k) = E(K') + vep, withv=—1,0,1. The
statement in 3.) implies that the dimens®af the null space oM is the same as
the total number of decoupled subregions of the energy domaier the scatter-
ing rule on thenumericallevel. (This is best illustrated by Figure 1 in [7].) Such
resultis not hard to get intuitively, and it is mathematigaistified by the Theorem
above for the first order DG method. It turns out similar aselys non-trivial to
establish for other numerical discretizations consid@negection 2.2. Without any
analysis available, in order to understand how the scagetle determined by each
numerical discretization of the model decouples the endogyain, to what extent
the numerical discretization captures the equilibriumthefscattering operator, we
will numerically examine the null space b or the steady-state of the discretized
system, see Section 2.3.

Remark 2.4 In practice, uniform meshes in the energy variable E arerofteed
with AE; = AE,Vi € 4. In such situation, i, /AE =ne Z*, we have dirtker(M)) =
n; if £p/AE is not an integer, then difker(M)) = 1.

Remark 2.5 The mass conservation property is one of the keys for thétsesuhe
above theorem. Itis ensured by the relat{@@). To implement the proposed scheme,
if sij andA;,Vi, j € 4 are computed independently using numerical quadrature,
this relation will hold only up to the accuracy of the quadret formulas. In our
actual implementationys j }; jc. 4+ are computed first, thea; is obtained based
on (27), hence the mass conservation is enforced.

2.2.2 Second order discontinuous Galerkin method

Following the same notation for the computational domait the mesh as in Sec-
tion 2.2.1, we introduce the discrete space
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Vo=Vt ={g: g € PX(li),vi € A4} (31)

which consists of piecewise linear polynomials with reg¢pgeche mesh. We then
approximate the solutiofi(k,t) by f,(-,t) € W, satisfying

/ 9tk Y oydk = /S[fh (k) @(K)dk = z itk otk (32)
Ot
forany@ €V}, andi € /. This results in a (formally) second order DG method.
To convert our scheme into its algebraic form, suppg¥&) andgt(k) are the
basis functions oP(l;), and the numerical solution is representedig&,t)|, =
fO() @ (k) + fL(t) @ (k), with fO(t) and f(t) to be determined by the scheme (32).
With the test functiomp € \, in (32) taken to bep|;, = g°@° (k) + gl @t(k), the term
on the left-hand side becomes

[ 2D gk i [ ]

= [ Gl

For the first term on the right-hand side of (32), we have

with

1+ 2aE
(E)

ign(i) 4 ( E—H:p))dE

/ﬁlfh (k t)o(k)dk = / T[] (Ha (E),1)
|||

o(sign(i) #a(E))dE

= 1] (Ha(E+&p)t) ——————

Ha
1+20(E+&p) (
(1ner

Qj—¢&p Ha(E+&p)
B 1+2aE 1+2a(E+ép)
oy X EETR E) A
+ fn(—#a(E).1) ) o(sign(i) Ha(E+ sp>)dE. (33)
Note that
fn(Aa(E),t) + fh(—%(E),t)
z X, (E) (FP@)(K) + 01 (9) lk=sign() #a(E): (34)
then 0
JEATICEE RS { L. (35)
l JE/V
with

- (1+2aE) (1+2a(E+é&p)) [9(A)
s’j_/(qi,—s,g)m(zjsl(E’E—Hp) Ha(E) Ha(E+€p) { J



12 Yanping Chen, Zheng Chen, Yingda Cheng, Adrianna Gillfkangyan Li

andA = sign(j) #4(E), Ay = sign(i) 4 (E + &p). Similarly,

0
[ Fnitictomak= 5 6.6i1sT | L] (36)

jenN

form= 2,3, with

=

s 1(E,E—g) (1+2aE) (1+2a(E-gp)) [wf’m) 0(42) (01-1(4)20@2)

Q
/(Q|i|+8p)ﬂ91 Ha(E) . Ha(E—&p) Q’J'O(A)(Hl(AZ) Q’jl(A) L(Az)

1+2aE\2[¢P(A)g°(43) @ (L)@ (A
S%J:fSi,j/QiSo(EE)(%(g)) [z’oE 8 100) A ()

> >

P(8)gH(43) 9} (L) @ (4a)
andA; = sign(i) #4 (E — €p), Az = sign(i) %4 (E). Moreover

[l Oodk— 20891 | 1| @

with
o (@(83))?  @H(43) @ (43)
= oi@(E’{m"msmlms) (¢(45))2 ]dE'

_ (s1(E.E+&p)(14+-2a(E+¢p)) s 1(E.E—&p)(1+2a(E—¢p)) \ 1+20E 1+20E 2
Here® (£) = (SEE et =l + Bt ) L2 +so(E ) (7565
Now with S = §'; + §; + §;, and the test functiorp being arbitrary, the

scheme becomes

Wa[B]= ] sl er oo
dt fil I fil &y 5] le ’ .

Next we specify the local basis functiod® }ic » r—12 as Lagrangian basis,
given as

PR = 76 -0. G00= 3 k-k ). Hi>0  @9)

1 s
w0 =g kky) @)=y =k, <o (40)

2
With such choice, the local basis functions have certainnsgtry,
g (k)= ¢ (—k), r=01, i, (41)
and so are the element-wise matrices

Si=S-i=Sij=Si-j, A=A A=A, (42)
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If we introducef_ = [fO, 1, ... O, f1IT, fy = [, fL,--- 3, 3|7, the
scheme (38) can be written more compactly,

A0] d [f_ f_ N0 SS f_

o] =eli - (oA +RPIE] e
The matrixA € RN*2N (resp. A € RN*2N ) js aN x N block-diagonal matrix,
with its (i,i)-th block beingA; (resp./;). The matrixSe R?N*?N is aN x N block-

structured matrix, with itgi, j)-th block beingS j. And the scheme (43) can be
further decoupled into two systems of halved size,

d d
Adtg_ Mg, Adth = —2Ah. (44)
Hereg= (f_ +f.)/2,h=(f1 —f_)/2, andM = 2(S—A). We can verify directly
from the definition that boti and the mass matriX are invertible.

Similar as for the first order DG method, if we are only conegrwith the dis-
crete equilibrium such as the dimension of the null space@ttattering matri®
in (43), it is sufficient to simply conside‘k%g = Mg for the same question. For the
time evolving numerical solutioffi,(k,t), one needs to work with (43), or equiva-
lently the two equations in (44). On the other hand, it is trdvial to extend most of
the algebraic analysis in [7, 11] to this second order metfavdvhich the involved
matrices are of block-structure.

What we do know is that the column sumdfis zero, and this again is closely
related to the mass conservation of the method, as statexkinemma.

Lemma 2.6 Suppose the numerical solutiof(K,t) has compact support ir-Kmax, Kmax,
then the proposed schert®?) satisfies mass conservation, namely,

d Kmax
—/ fiu(k,t)dk = 0. (45)
dt —Kmax

In addition, the sum of each column of M is zero.

Proof. Based on the formulas fak andS j, the symmetry in (42), as well as the
equalityg® + @' = 1 onl;, one can verify

[1,1] <—2/\i + Sjj) =0 (46)
jenN

and the sum oM being 0.
Using (46) as well as (32) witla(k) = 1, we have
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d [Kmax B afh(k,t) B R

a/_Kmaxfh(k,t)dk—iezm/li o dk= 3 [ Skt
_ oA [ 12 C[f°
_iezﬂ[lyl] < w {f‘l] +jeZ/VS“ [fle

- ie;[l, 1] <—2/\i + jews,-’i> Hg] =0.

2.2.3 First order collocation method

So far, Galerkin-type methods are considered. In next twba@es, our attention will
be turned to collocation methods. In this subsection, weawsihstruct a first order
collocation scheme for (12). We start with introducing oonéaration pointé; € |;
from each cell, and the actual choices will be specified.l&tepllocation method of
the first order is then defined by requiring the piecewise orisiumerical solution
fn(k,t) € Vb =V satisfy

dfn(&i,t)

o =§fl(&,1), Vies. (47)
We definef,(&,t) = fi(t). Recall from Section 2.2.1,
fn(Ha(E).) + fo(—Aa(E).) = T Xa, (E)F(t) (48)
&
then the scheme becomes
%fi (t) = —2Aifi(t) + jez/ys,j fi(t). (49)

Here

s1(E,E+ &p)
S,j= <%(E)/(1+;GE)XQ|j|(E)> [E=E(&)-¢p

s 1(E,E—gp)
<%(E)/(1+22E)XQ“|(E)> lE=E(&)+ep

X, (E)> lE=E(&) (50)

S(E,E)
* (%(E>/<l+2aE>

and
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~ si(E—¢p,E) | N s_1(E+&p,E) |
'~ #4(E)/(1+2aE) E=E(&)+ep Ha(E)/ (14 2aE) E=E(&i)—ep

S(E,E)
Ho(E)/(L+ 2aE)|E=E(Ei)' (51)

Again, the terms involvinge = E(&;) — &, < 0 are excluded.
Note that all the coefficients in the linear algebraic eqmat{49) are non-
negative, more specifically,

§,j>0, Ai>0, Vi, j €N, (52)
If we further require the collocation points are chosen tsga
Gi=-¢&i, ies, (53)

then the energy functioB (k) being an even function implie€s(&) = E(&_i), and
the following symmetries hold

Ai=Al, Sj=S.ij=S-j=S.i-j vi,jen.
Now we let
A =diag{A1,--- AN}, S=(Sj)ijest (54)
andf_ =[f_q,---,f_\]T,fy = [f1,---, fn]T, then the proposed scheme in (49) can

be written as

d [f_ f_ N O SS f_

aln) ol -Cloal 3] e
Notef, andf_ are defined differently from those in section 2.2.1 and theyoit
contain the mesh parametghk; }i.

If we further defineg = (f_ +f)/2,h=(f; —f_)/2, andM = 2(S— A), then
the proposed scheme (55) can be decoupled into two systelnadvel size

d d

q9=M9 (56)
Just as for the DG methods in Sections 2.2.1 and 2.2.2, if eely concerned
with the properties of the scattering matixegarding the discrete equilibrium, it
is sufficient to simply considel%g = Mg.

Remark 2.7 Compared with Galerkin methods in Sections 2.2.1 and Z2l®ca-
tion methods proposed here and in next subsection are mogiesi to formulated
and to implement. On the other hand, collocation methodsimegal do not pre-
serve mass conservation property.
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2.2.4 Fourier-collocation spectral method

In this subsection, we will formulate a Fourier-collocatispectral method for
the linear kinetic model with a singular scattering kermgjch is now reformu-
lated into (12). It is assumed that the solutibfk,t) is zero outside the interval
[—Kmax, Kmay, thus can be extended periodically. For simplicity, we Kise Kmax
throughout this subsection.
We seek an approximating solutida(k, t) in the spac8y[—K, K] = spar{é %“k}‘n‘g,\,,

ie. N |

inkt)= 3 fat)dk™ (57)

n=—N

with the unknown coefficientf,(t),n=—N,--- N, to be determined. For any func-
tion g € By[—K, K], one can define its residual associated with the equation (1)

ag(k,t)

Ru(k,t;9) = e

& ag(k7t) 4
_ kt)= =2 —Y Znlg|(k,t).
Sallt) = =5~ = 3 Fnlgl (k)

In the Fourier-collocation method, we require that thedeal of the numerical
solution fy (k,t) vanishes at a set of collocation grid poititg } -n<j<n, defined as

"
) _N<j<N,

N =KoNT T <

Having this choice of the collocation points, the Fourieeffisients f,(t) of the
numerical solutiorfy (k,t) can be approximated by the discrete Fourier coefficients
fn(t) based on the trapezoidal rule,

- 1 N
fn(t) = 2N+1. >
2

i (kj, t)e kK (58)
N

Thus the numerical solutiofiy(k,t), as a trigopnometric polynomial, can also be
expressed as

<=
wheregj(k) (—N < j < N) is the Lagrange interpolation polynomial, given as

sin(ZL Z(k—k;p))
9 = N D) sin (k)

(60)

and satisfyingg;j(kn) = djn. Now the Fourier-collocation method can be stated as
follows. Look for fy (k,t) in the form of (59), such that
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Rul. ;o) =209 )0

. 4
SINGGY S gl =0, —N<j<N. (61
ot m=1

This yields N + 1 equations to determine théN2- 1 point valuesfy(kj,t), j =
—N,---,N, of the numerical solution.
Next we will convert the scheme to its algebraic form. From)(1

B0 = 5 e (FOAa(E)0 + 1)) e,

s1(E,E +&p) N
= A28, 2, o (k1. (01 (a (E)) + 01~ #a (E)) ) le—eiky) e

(62)

The remaining terms in (61) can be treated similarly. We @dfi@ solution vector
f by collecting all the unknown coefficients in (59),

f= [fN (ka;t)7 [ERE fN (k—l7t)a fN(kOat)7 fN(klat)7 [ERE fN (kNat)]T € R2N+l7
then the proposed Fourier-collocation method become®arisystem

df

5 =Sh (63)

whereS = —2A + Se RE@N+Lx(2N+1) “jith

N =diag{A_n,---, AN}, S= (S’],j)n.je{fN,m,N}’ (64)
and
A= si(E—€p,E) | n s_1(E+&p,E) |
" Xa(E)/(1+2aE) EEMtE T D (EY /(14 29E) BBk &
s(E,E)
* a(E)/(1+ 2aE) [E-Elk (65)
o3 = e g (91 Aa(E) 4 81~ A2 (D) e,
e (9 () + (- o E) -t va

* %(gfi?zaa (01(Aa(E)) + 01(~Ha(E)))leet)  (66)
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andn, j = —N,---,N. Given the notation is self-explained, the negative sulcies
are used for the entry @&for simplicity.

Similar to other collocation methods, our Fourier-colibaa scheme does not
satisfy mass conservation property. In terms of approximgahe equilibrium of the
scattering operator, this spectral method performs qufterently from the other
methods in previous sections, see numerical examples tio8§ec3.4.

2.3 Numerical experiments

In this section, we will demonstrate the performance of thmerical schemes when
they are applied to two examples with the following parameitwices.

e Parameter choice 1. We consider the parabolic energy band model with: O
in (3). There is no elastic collision, that &,= 0. In addition, we take the phonon
energysp = 0.1, lattice temperaturé = 0.0883, transfer rate parameten = 1,
and the maximum enerdsmnax= 8.

e Parameter choice2. We use the non-dimensionalized parameters for silicah, an
this involvesa = 0.01292 in the energy model (3), phonon eneggy- 2.43723,
lattice temperatur@ = 1, transfer ratesy = 0.26531 ands_; = 0.04432, and
the maximum energiémax= 16.

Throughout,; is the the eigenvalue d#l which has thej-th largest real part,
j = 1a 2a Tt

2.3.1 First order discontinuous Galerkin method

In this subsection, we shall verify the results of the firsteasrDG method. Notice
that this method has also been studied numerically in [7}Herparabolic energy
band model without the elastic term.

We use a uniform grid in the energy space with cell gl The method (25) is
implemented with backward Euler method applied in time Ahe: AE. The initial
data is randomly generated, and it is non-negative and Hzedao have the same
total mass as the exact equilibrium in (3). The criteria fopping the time evolution
is set to be |gold — g"®W |, ||h°!d — h"eW |, < 1077. The entries ofS are computed
using a mid-point rule quadrature, while the entrieg\cdire obtained based on the
column sum oM being zero.

Figures 1 and 2 contain comparison of one exact equilibrinchtae computed
equilibrium based on parameter choices 1 and 2. Here anbthedlgures through-
out Section 2.3, the exact equilibrium is takenf&&) = cf®(k), where the nor-
malized constant is chosen so as to achieve the same total mass as the numerical
solution. Figure 1 agrees well with the theory obtained Jr{d’so0 see Section 2.2.1).
WhenAE = gp/n, andn is not an integer on = 1, the matrix is irreducible, making
the computed equilibrium closer & (k) qualitatively. Whem > 1 is an integer, the
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scattering matriM (henceS) is reducible, and the dimension of its null space, also
called kernel space, is bigger than one, specificdiliy(ker(M)) = n. In this case,
the computed equilibrium distribution is no longer mon@ameach half of the do-
main. Just as observed in Figure 2 of [7], each monotone gidiref the computed
equilibrium involvesn points on the grid, and this implies that the computed equi-
librium is approximately in the form df(E (k)) £ (k), whereh(E) is approximating

a gp-periodic grid-based function defined on the mesh grid ofethergy domain,
and f&(k) is an approximation forf (k). In other words, the computed equilib-
rium captures the characteristics of the exact equilibsiu@omputations based on
parameter choice 2, which uses the Kane energy band moddleanelastic scat-
tering, as demonstrated in Figure 2 give a similar conchysierifying our claim in
Section 2.2.1 and the results in [11].

AE =ep/1 dim(ker(M))=1 AE =ep/2 dim(ker(M))=2
1.4 1.4
—— exact equlibrium —— exact equlibrium
—6— computed equlibrium —6— computed equlibrium
1.2 1.2
1 1
=4 =4
£0.8 £0.8
5 5
2 2
5 0.6 3 0.6
=l =l
0.4 0.4
0.2 0.2
b -2 0 2 4 % -2 2 4
k
(a) AE = ¢p (b) AE =¢p/2
AE =sp/2.5 dim(ker(M))=1 AE =ep/4 dim(ker(M))=4
1.4 1.4
—— exact equlibrium —— exact equlibrium
—6— computed equlibrium —6— computed equlibrium
1.2 1.2
1 1
c c
£0.8 £0.8
5 5
£ / £
0.6 . 0.6
=l =l
0.4 0.4
0.2 0.2
% -2 0 2 4 % -2 0 2 4
k k
(c) AE =¢gp/25 (d) AE =¢p/4

Fig. 1 The comparison of the exact equilibrium and the computedlibgum by DG method
with PP discrete space. The computed equilibrium is obtained byp#okward Euler method with
random initial data on uniform mesh Eiwith the indicated mesh size. Here and in all the figures
throughout Section 2.3, the exact equilibrium is takerf &%) = cf®(k) with some normalized
constant. Parameter choice 1.



20 Yanping Chen, Zheng Chen, Yingda Cheng, Adrianna Gillfkangyan Li

AE =ep/1 dim(ker(M))=1 AE =ep/2 dim(ker(M))=2
1.2 1.2
—— exact equlibrium —— exact equlibrium
—o— computed equlibrium —o— computed equlibrium
1 1
- 08 - 08
S S
206 206
8 8
o4 o4 \
0.2 0.2
% -4 -2 0 2 4 6 % -4 -2 0 2 4 6
k k
(a) AE =¢p (b) AE =¢p/2
AE =sp/2.5 dim(ker(M))=1 AE =ep/4 dim(ker(M))=4
1.2 1.2
—— exact equlibrium —— exact equlibrium
—o— computed equlibrium —o— computed equlibrium
1 1
0.8 0.8

distribution
o
(o2}
distribution
o
(o2}
-

(c) AE =¢gp/25 (d) AE =¢gp/4

Fig. 2 The comparison of the exact equilibrium and the computedlibgum by DG method
with PP discrete space. The computed equilibrium is obtained bjp#okward Euler method with
random initial data on uniform mesh Ewith the indicated mesh size. Parameter choice 2.

2.3.2 Second order discontinuous Galerkin method

In this subsection, we will present numerical experimeritis the DG method using
theP! discrete space introduced in Section 2.2.2. Particulagyyill investigate the
importance of sufficiently accurate numerical quadratuhesdimension oker(M),
and the accuracy of the scheme.

A close examination reveals that the integrals for compyitie entries of\ and
Sinvolve E~1/2-type singularity neaE = 0. In our implementation, the following
strategy is adopted to compusgj,Aj: When j < nginguias We apply a special 6th
order quadrature, obtained from the Trapzoidal rule witpe# correction to the
left end of the reference element [1]; Whep- Nginguias the standard 5-point Gauss
quadrature is applied. To illustrate the effect of numéigeedratures, we consider
the method implemented on a uniform meshkiand Ak = Kmnax/N. The first 3
eigenvalueg » 3 with the largest real part are reported in Table 1No# 80, and
Nsingular= N/8,2N/8,3N /8 and 4N /8 with parameter choice 2. One can see that
numerical quadratures with sufficiently larggnguare€nsures thati; is an accurate
approximation for the zero eigenvalue, instead of contitiigLto a non-trival grow-
ing mode. We further march the scheme with the equilibriud)ras the initial data
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and Trapezoidal method in time witht = Ak, and plot in Figure 3 the numerical
equilibriums compared with the exact one (again given bydgélimet = 7. The re-
sults confirm again the importance of using accurate enougterical quadratures.
In fact with nsinguiarb€ing large enough, the numerical eigenvalues, other tiaset
approximating zero, always have negative real part.

Table 1 Effect of numerical quadrature by taking different valuéignguiar Uniform mesh irk
with Ak = Kmnax/N andN = 80. Parameter choice 2.

Nsingular H Hz23

N/8, 2N /8|1.31e-04-1.02e-08+ 9.39e-09
3N/8 [2.27e-12-1.69e-08+ 1.30e-08
4N/8 |4.33e-13-1.69e-08+ 1.30e-08

ot
—6—numerical
12F -
Wt i
c
Sosf g
E
2
206 E
=l
0.4f g
0.2F -
o ‘ ‘ ‘
=6 ar -2 0 2 4 6
K
(@) Nsingular= N/4
ot
—6—numerical
120 -
Wt i
c
Sosf g
E
2
206 E
=l
0.4f g
0.2F -
o ‘ ‘ ‘
6 ar -2 0 2 4 6

k

(b) Nsingutar= 3N/8

Fig. 3 Effect of numerical integration. Uniform meshlkmwith Ak = Kiax/N andN = 80. Trape-
zoidal method in time witlAt = Ak. Initial condition is the exact equilibrium in (4) with pareeter
choice 2.
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Next we examine how well our scheme approximates the diroardgdiker(M).
Motivated by theP? results, we implement our DG method with tRé space on
uniform meshes ife andAE = g,/n. Both parameter choices are examined, with
Nsingular= N /8 for parameter choice 1 amdingyiar= 3N/8 for parameter choice 2.
Whenn = mis an integer, the dimension kér(M) is m; and whem = m+ % the
numericaldimension ofker(M) is 1 in the sense that; = O(10712-13) andy, =
O(10°3-5). This has been tested far=1,---,10. In Figure 4, we also plot the
numerical equilibrium computed from marching the schemtéie with backward
Euler method andit = AE, n=1,2,2.5. (Whenn = 2.5, the numerical dimension
of ker(M) is 1.) Though there is no mathematical analysis availahlenamerical
results seem to imply that the dependence of the (numedgaBnsion oker(M)
on the choice of the mesh grid iafor the DG method with th®! space is similar
to that with theP® space. The computed equilibrium also shows the charaiitsris
in (6) of the exact equilibriums. The setup for initializatiand the stoping criteria
is taken the same as in Section 2.3.1.

AE :spll dim(ker(M))=1 AE :splz dim(ker(M))=2
—— exact equlibrium —— exact equlibrium
—o— computed equlibrium —o— computed equlibrium
1.2 1.2
1.0 1
c c
208 208
5 5
2 2
206 206
o ©
0.4 0.4
0.2 0.2)
2 = 0 2 2 2 = 0 2 2
k k
(a) AE =¢p (b) AE =¢p/2

AE =£pl245 dim(ker(M))=0

—— exact equlibrium
—o— computed equlibrium

distribution

-4 -2 0 2 4
k

(c) AE=¢,/25

Fig. 4 The comparison of the exact equilibrium and the computedlibgum by DG method
with P! discrete space. The computed equilibrium is obtained bp#okward Euler method with
random initial data on uniform mesheskrwith the indicated mesh size. Parameter choice 1 and
Nsingular= N/8.
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Finally we turn to the accuracy of the scheme. In Table 2, penethel, er-
rors and convergence orders of the method at a fixedttin& for both parameter
choices. Uniform meshes ik are considered witlAk = Kmax/N, and the initial
condition is taken to be the exact equilibrium in (4). Secorder accuracy is con-
firmed. In addition, the leading eigenvalug of M is also reported. Although this
eigenvalue is not always negative, it converges to the Zzgemealue as meshes are
refined.

Table 2 Accuracy of the DG method witP discrete space at= 7. Uniform mesh ink with
Ak = Kmax/N. Trapezoidal method in time witht = Ak. Initial condition is the exact equilibrium
in (4). nsingular= N/8 for parameter choice 1 amdinguar= 3N /8 for parameter choice 2.

Parameter choice 1 Parameter choice 2
N [ L, error|orde L L, error|orde L
40 |4.83e-03 2.7125e-082.67e-03 - |6.0254e-10

80|1.81e-031.42| 4.4021e-097.56e-041.82| 2.2689e-12
160/4.68e-041.95|4.1503e-111.91e-04 1.98|-1.3997e-13
320/1.23e-041.92|-1.3055e-1P4.73e-0%2.02|-8.9108e-15
6403.01e-0%2.03|-4.4868e-1{11.22e-051.95 -

2.3.3 First order collocation method

In this subsection, we will perform numerical study of thetfiorder collocation
method as outlined in Section 2.2.3. We compute the eqiuifibusing the back-
ward Euler method, random initial data and stopping cetégP'd — g"||,, ||h°'d —
h"eW |, < 10~7. We consider both parameter choices 1 and 2 on uniform meshes
in E or k. Since the collocation method does not achieve mass catgmryall
computed equilibrium has been rescaled so JhdiAk; agrees with the exact equi-
librium. To investigate the detailed performance of thelrod{ we also obtain the
leading eigenvalues of the scattering maltvix

Figures 5 to 7 contain simulation results with parameteliagh@ on uniform
meshes irE. The collocation pointgé&;} are chosen such that they correspond to
midpoints in the computational grid for the energy varialteparticular, Figure 5
plots the results wheAE = g,/n, whenn is an integer; while Figure 6 plots the
solutions whem is not an integer. When compared with the first order Galerkin
method, we can see that the results are similar wihénan integer, i.e. any in-
tegern > 1 will yield the dimension of the kernel of the scattering maM to
be bigger than one, producing oscillatory numerical eftiiims. However, the
main difference occurs whamis a non-integer. From Figure 6, we can see when
n=1.7,2.2,2.7,3.2, unlike DG method® case, the collocation method still have
dim(ker(M)) > 1. Whenn = 2.5, we can observe even from Figure 7(d) that the
scattering matrix has several positive eigenvalues, wimiakes the time evolution
scheme not converge to a steady state. Preliminary nurhégita show similar
conclusions whem = 1.5,2.5/3.5...10.5. From our numerical tests, it seems that
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if n€ (Ny—0.5N,+ 0.5), whereN, is an integer, themlim(ker(M)) = N,. We
believe the different behavior of the collocation methodewltompared with the
Galerkin method is because of the point-based nature ofdlecation scheme.
However, due to the lack of theoretical studies, we leavel#iailed interpretation
of this result to future work.

The next set of numerical tests were performed on uniformhees E with
parameter choice 2. Figures 8 and 9 plot the equilibrium &edléading eigen-
values of the scattering matrix when=1,2,1.7,2.2. Those selective results show
dim(ker(M)) = 0 in all cases. However, for=1.7,2,2.2, there are two eigenvalues
that are very close to zero, see Figure 8(e) for details. tWemumerical dimension
of ker(M) being considered, the conclusion for parameter choice tharsame as
the ones for parameter choice 1.

Finally we plot the results for parameter choice 1 on unifonesh ink when
N = 40,80,120,160 in Figure 10. The collocation poin{g;} are chosen to be the
midpointin each cell in th& variable. Unlike the results for uniform mesh Bnthe
result for uniform mesh itk is not conclusive, i.e. this mesh choice does not imply
the scattering matrix to be reducible/irreducible.

In summary, the first order collocation method does not atope the first order
Galerkin scheme when measuring the qualitative behavittreofomputed equilib-
rium. The collocation method, though being more computatily efficient, does
not preserve mass conservation, and the results are highgndient upon the choice
of collocation points.

2.3.4 Fourier-collocation method

In this subsection, we will demonstrate the performancéefRourier-collocation
method defined in Section 2.2.4. This method behavies véfigréintly from those

we have examined so far, and it only captures the one-dimealsequilibrium
cf®(k) (with ¢ > 0 being a constant), given the computational domain is large
enough. We attribute this to the global nature of this spéatrethod. By looking
into the eigenvalues and corresponding eigenvectors afdhttering matrixs with
parameter choice 1 (in Table 3) and parameter choice 2 (ile Badind Table 5), the
following observations can be made.

e Parameter choicel

1. With the meshes being refined, the leading eigenvaluis approaching 0
exponentially ang, = O(10~3). WhenN = 34, this eigenvalue is zero at the
roundoff error level. The numerical dimension of the nukepis one. In this
case, we tak&max = 8 and henc&max = #4 (Emax) = 4.

2. The eigenvector correspondingtpapproximates the equilibriurff (k). For
comparison, the eigenvector is scaled such that the surs wéities at col-
location points is the same as that of the exact equilibriumTable 3, we
present errors of the computed eigenvectdfin® andl? vector norms. We
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Fig. 5 The comparison of the exact equilibrium and the computedibgum by first order collo-
cation method. The computed equilibrium is obtained by #ekivard Euler method with random
initial data on uniform mesh i& with the indicated mesh size. Parameter choice 1.

also plot the scaled eigenvector with= 34 in Figure 11, which captures the
equilibrium with an error at the level of 1@3.

3. The numerical equilibrium is also obtained by computimg $teady state of
the ODE system (63). The non-negative initial data is choaadomly, with
the stopping criteria a§f®'4 — ", < 100, In Figure 12, we compare the
computed and the exact equilibrium. Though both the congpedeilibriums
before and after normalization well capture the shape oéthelibrium, the
normalized one has a much smaller error at the level of10

Table 3 Eigenvaluegu; and L, together with the errors between the eigenvectors (nazedl
corresponding tey and the exact equilibriuni®(k). Parameter choice 1.

Errors of the eigenvector
N| Re() | Re(u?) I® It [

16|5.94e-04-8.07e-039.73e-02 1.80e-02 2.79e02
20[4.94e-0%-3.19e-033.16e-03 5.83e-04 9.03e-D4
30[1.77e-11-8.28e-031.78e-09 3.30e-10 5.11e-10
32/3.00e-13-9.07e-034.88e-11 9.02e-12 1.40e-11
34|1.04e-1%-6.80e-035.55e-13 1.03e-13 1.60e-13
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(d) AE = £,/3.2

Fig. 6 The comparison of the exact equilibrium and the computedibgum by first order collo-
cation method. The computed equilibrium is obtained by #ekivard Euler method with random
initial data on uniform mesh i& with the indicated mesh size. Parameter choice 1.

Parameter choice 2

We start with takingemax = 16 in the computation.

1. Similar to parameter choice 1, the eigenvalwef M is approaching 0 when
N increases, with the convergence speed seemingly fastetttatfor param-
eter choice 1. At the same timg; is O(10-3~4). The results in Table 4 are

reported foN up to 10.

2. The eigenvector correspondingpe approximates the equilibriurf®(k). In
Table 4, we report the errors between the scaled eigenvantbthe exact
equilibrium. ForN = 10, the eigenvector approximates the equilibrium with
an error at the level of ¢, as in Figure 13.

3. The numerical equilibrium is also obtained by computimg $teady state of
the ODE system (63). The non-negative initial data is choaadomly, with
the stopping criteria a§f°'d — f®¥|,, < 10~8. In Figure 14, we compare the
computed and the exact equilibria with parameter choicelaa 10. Again,
the computed equilibrium after normalization has a smateor at the level

of 1076,
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(€) AE =gp/2.

27

AE:sp/1.7 dim(ker(M))=2

OF s e m ok R R KR R R R RS EBIIO *
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Fig. 7 The distribution of the first 50 eigenvalues of the scatteriratrix by first order collocation
method on uniform mesh i@ with the indicated mesh size. Parameter choice 1.

Table 4 Eigenvaluegu; and L, together with the errors between the eigenvectors (ndzedl
corresponding te and the exact equilibriuni®(k). Parameter choice Epax = 16.

Re(u)

Errors of the eigenvect

'S

Re(y) [ 1° T 2

[
OOCO\ICDZ

6.45e-2
-1.19e-j
7.12e-6
-4.13e-7
1.76e-8

-1.24e-036.43e-4 1.82e-2 2.38e
-3.36e-032.26e-3 8.89e-4 1.18e
-3.89e-035.22e-4 1.29e-4 1.69e
-8.58e-047.73e-5 1.70e-5 2.47e
-7.62e-041.54e-5 3.15e-6 5.42e

2
3
4
5
6

The results we have shown here areNoup to 10. For some larger valuesf
it is observed that more than one computed eigenvalusah approach 0. There
can also be multiple eigenvalues which have positive regspahis is because the
computational domain is not chosen large enough. To seewhigurther test the
method on a larger computational domain wWihax = 32. Again, the method cap-
tures the equilibriumf & (k) with the eigenvector corresponding tr, as in Table
5 and Figure 15. WithN = 27, p; is O(1071%), and the scaled eigenvector corre-
sponding tou; approximated ©(k) with an error at the level of 10°.



28 Yanping Chen, Zheng Chen, Yingda Cheng, Adrianna Gillfkangyan Li

AE =ep/1 dim(ker(M))=0 AE =ep/2 dim(ker(M))=0
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—— exact equlibrium —— exact equlibrium
—o— computed equlibrium —o— computed equlibrium
1 1
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.08 .08
S S
206 206
X} kil
04 04
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% % 6
(c) AE =¢gp/1.7 (d) AE =¢p/2.2
n 1 H2 H3

1.7 | -3.271e-09 | -5.305e-08 | -0.0158
2 | -1.696e-10 | -3.377e-09 | -0.0151
2.2 | -1.136e-10 | -2.249e-10 | -0.0151

(e) Leading eigenvalues M: L1, Lo, i3 are
the eigenvalues with the three largest real
part.

Fig. 8 The comparison of the exact equilibrium and the computedlibum. The computed
equilibrium is obtained by the backward Euler method wittd@m initial data on uniform mesh
in E with the indicated mesh size. Parameter choice 2.

Table 5 Eigenvaluesu; and L, together with the errors between the eigenvectors (ndzedl
corresponding tqu and the exact equilibriuni®(k). Parameter choice 2. Larger domain size

Emax = 32.

Errors of the eigenvector:
N| Re(u1) | Re(u) [ It |

11]-2.45e-0%-8.43e-041.37e-02 3.58e-03 4.91e03
15| 1.47e-07 3.60e-048.08e-05 2.30e-05 3.00e05
20[-3.07e-121.49e-045.62e-08 6.89e-09 1.55e08
22| 9.58e-13-1.34e-046.38e-09 8.58e-10 1.91e-09
27[1.40e-15 1.86e-057.73e-10 9.54e-11 2.22e410
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Fig. 9 The distribution of the first 11 eigenvalues of the scatteriratrix by first order collocation
method on uniform mesh i@ with the indicated mesh size. Parameter choice 2.

3 A numerical method for continuous scattering kernels

In this section we consider the kinetic model (1) with a comtius scattering kernel
(7). If one follows the derivation in Section 2.2.1 to definérst order DG method
for this model, it is easy to show that the scattering masislivays irreducible
wheno(k,k') > 0. Instead, we choose a different discretization which it-sgted
for the model with a continuous scattering kernel.

Since the scattering kernglk, k') has Gaussian decay and we are concerned with
approximating the equilibrium solution, we assume theigte® constariax such
that

‘/w (S(K, K f (K1) — S(k.K) (K1) dl(—/j(max (SIK, K F(K,1) — Sk K) (K 1)) dK| < &

for a user prescribed toleranedor all k.

Equation (1) can now be discretized by applying numericadyature to the
truncated domain. This technique is calldgistom discretizatiorof the integral
differential equation. Specifically, Ie{ﬂq}i’“:1 denote the set of quadrature nodes in
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Fig. 10 The comparison of the exact equilibrium and the computedibgum. The computed
equilibrium is obtained by the backward Euler method wittd@m initial data on uniform mesh
in k with the indicated mesh size. Parameter choice 1.

N =34, error: L8 = 5.55e-13, L1 = 1.03e-13, L2 = 1.60e-13

1 T T T £ T
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0.4
0.3r
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0.1

Vet o 1

—s—exact
—0—eigenvector
2 3

=4

4

Fig. 11 The normalized eigenvector correspondingitdor N = 34 with exact equilibriun' (k).

Parameter choice 1.
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L8 =2.10e-01, L1 = 1.95e-02, L2 = 5.38e-02 L8 =1.96e-08, L1 =7.07e-09, L2 = 8.65e-09
12 —#—exact 12 —#—exact
N —6—computed J N —6—computed (normalized) J
0.8 1 0.8
0.6 1 0.6
0.4 1 04
0.2 1 0.2
0f 0
-02 - . - - - . - -02 - . - - - . -
-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4
(a) Computed equilibrium before normgb) Computed equilibrium after normaliza-
ization tion

Fig. 12 The comparison of the exact equilibriufi¥ (k) and the computed equilibrium, obtained
by the backward Euler method with random initial data anéreoice being .&— 10. N = 34.
Parameter choice 1.

N =10, error: L8 = 1.54e-05, L1 = 3.15e-06, L2 = 5.42e-06

1.4
—s—exact
—0—eigenvector
1.2r
1k
0.8r
0.6
0.4r
0.21
09—6—60—0—¢- —0—0—¢
-6 -4 -2 0 2 4

Fig. 13 The normalized eigenvector correspondingitdor N = 10 with exact equilibriunf (k).
Parameter choice Enqayx= 16.

the intervall—Kmax, Kmax] With corresponding weightsw; iN:l, then (1) is approxi-
mated by

af(k,t)
ot

N

=,Z(S(h,kﬁ(m,t)—S<k,lq>f‘<k,t>)wi (67)

where the solutiorf is an approximation to the exact solutibrof (1). The quadra-
ture points{k}\ ; will be the discretization points.

To arrive at a linear system, the solutidnis sought at the quadrature points
ki, j =1,...,N for all t. The result is the following discrete ordinary differemtia
equation

£k N R A
w:i;(s(ki’kj)f(k"t)_S(kj’ki)f(kjvt))wi (68)
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L8 = 1.18e-01, L1 = 2.39e-02, L2 = 4.45e-02 L8 = 1.84e-05, L1 = 3.87e-06, L2 = 6.73e-06

1.4 1.4
—*—exact —*—exact

1.2F 1 12r q

1r 11
0.8 4 0.8r
0.6 1 0.6p
0.4f 1 04r
0.21 1 021

9 ¢¢—¢4v -2 0 2 v4¢¢¢ 9 ¢¢—¢4v —i 6 é v4¢¢¢
(a) Computed equilibrium before norm#b) Computed equilibrium after normaliza-
ization tion

Fig. 14 The comparison of the exact equilibriufff (k) and the computed equilibrium, obtained by
the backward Euler method with random initial data and &olee being 2—8.N = 10. Parameter
choice 2 Epax = 16.

N =27, error: L8 = 7.73e-10, L1 = 9.54e-11, L2 = 2.22e-10, M= 1.40e-15

1 N
—+—exact
0.9 —o—eigenvector|
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
f(i() -5 0 5 10

Fig. 15 The normalized eigenvector correspondingidor N = 27 with exact equilibriunt (k).
Parameter choice 2. Larger domain deggyx = 32.

foreachj =1,...,N orin linear algebraic form
of 2 2
E(t):(S—/\)f(t):Mf(t) (69)
whereS; ; = S(kj, ki)w;j, f denotes the vector of unknowns such tﬁgt: f(k;,t),
A = diag{v} and the vectov has entries given by = 3 ; S(ki, kj)w;.

Remark 3.1 Applying the numerical quadrature scheme to (68) (i.e.raidttiply-
ing (69) byw/ wherewy = w;) shows that the discretization technique conserves
total mass in time.
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3.1 Numerical experiments

The performance of the numerical method is explored in thigien with two
choices ofa(k,K'). In Section 3.1.1, the choice af results in a problem with a
known solution while in Section 3.1.2 the choicemfyields a problem without a
reference solution.

For the numerical experiments, a ten-point composite Gamgsiadrature on eq-
uispaced panels is utilized to approximate the solutiom thesinterval —Kmax, Kmax] =
[—4,4]. Thus, the number of discretization poiftss ten times the number of pan-
els placed on the intervat-4,4].

3.1.1 An examplewith aknown solution

In this subsection, we illustrate the performance of the eital method when
o(k, k') = 1. With this choice ofc, the exact solution is known to biy(k) =

\/%Te*kz/z. Let f,, denote the vector whose entries deg evaluated at the dis-
cretization points.

Table 6 reports the number of discretization poiNi{ghe absolute errdeaps=

| f — foull2 and the relative erroe = % when computing the equilibrium
ex
solution, i.e. approximating solutions to (1) wi%{\ = 0. The numerical approxima-

tion is found by computing the null spaceMfin equation (69).

Table6 The number of discretization poinlt§ absolute erroEgpsand the relative errdgge when
applying the solution technique to equation (1) wattk, k') = 1.
N Eabs Erel
10 [9.49e-021.94e-01
20 [1.32e-031.36e-01
40 |4.13e-043.40e-04
80 [1.43e-048.51e-0f1
160|5.05e-052.13e-04
320(1.79e-055.32e-0
640|6.32e-061.33e-0¢
128(02.23e-063.33e-07
256(7.90e-078.31e-08

Next, the backward Euler method was applied to (67) with alftte= 320 num-
ber of discretization points and time step size 0.5. With this choice oN, Table
6 indicates that the expected converged accuracy shoulgfrexmately 1e-05.
Thus the iterative process is stopped when the norm of tliereifce between two
iterates is less than 1e-05. Figure 16(a) illustrates tipecimate solution at two
different times in addition to the exact solution. Figurél6llustrates the absolute
errorEgpsat each time step. At the thirty-third time step, the scheasedonverged
to the set tolerance.
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Fig. 16 (a) Approximate solutions after 5 and 10 time steps with @ siee ofh = 0.5. (b)

Absolute erroiEgpsin approximate solution at timte

3.1.2 An examplewith unknown solution

In this subsection, we consider (1) wittik, k') = (k—k’)2. For this choice otr, the
exact solution is unknown. In the first experiment, a coneeag study is performed
for the equilibrium problem. Lef\, denote the approximate solution obtained with
N discretization points. Table 7 reports the number of disza#on pointsN, the
absolute convergence errps= || fy — Lfoyl[2 whereL is a matrix that interpo-
latesf,y at the 2 discretization points to thid coarse discretization points and the

relative convergence errége = Hf‘—w‘ﬁf"f‘z—"“”z
2NIl2

Table7 The number of discretization poinlt§ absolute erroEgpsand the relative errdgge when
applying the solution technique to equation (1) wattk, k') = (k— kK')2.

N

Eabs

Erel

10

2.36e-01]

11.92e-01

20

2.47e-03

1.02e-03

20

7.77e-04

12.55e-04

}

80

2.69e-04

16.38e-0

160

9.50e-01

1.59e-04

320

3.36e-0]

3.99e-0

640

1.19e-04

9.97e-01

128

4.19e-0¢

2.49e-01

Again backward Euler method is employed with time step kize0.5 andN =
320 discretization points. We define the solution obtainesidiving the equilibrium
problem withN = 320 discretization points to be the reference solutiorakés 28
time steps for the approximate solution to converge to tfe¥eace solution. Figure
17(a) illustrates the approximate solution after 5 and tfetsteps. Figure 17(b)



Study of Discrete Scattering Operators for Some Linear #éridodels 35

illustrates the absolute approximate error giverEfy= || f 5,0 f (t) ]| wheref 55
is the approximate equilibrium solution whdh= 320 andf (t) is the approximate
solution at timd.

10"

10

107

t

(b)

Fig. 17 (a) Approximate solutions after 5 and 10 time steps with @ siee ofh = 0.5. (b)
Absolute erroiEgpsin approximate solution at timte

4 Concluding remarks

In this paper, we consider some one-dimensional space-yp@meous linear kinetic
models arising from semiconductor device simulations.fdlkas of our efforts is to
study the qualitative behaviors of the discrete scattevipgrators and the resulted
numerical approximations for steady state equilibrium.ré&gew and discuss the
mathematical results in [7, 11] for a first order finite volumethod when it is
applied to a model witld-type singularity with the Kane energy band and the addi-
tional elastic scattering. Moreover, we investigate themerical performance of first
and higher order Galerkin, a first order collocation methudiaFourier-collocation
spectral method for this model, as well as a Nystrom metbod kinetic model with

a continuous scattering kernel.

It seems to be non-trivial to generalize the analysis deaxdan [7, 11] to higher
order and collocation-type schemes to solve models Withipe singularity. For
second (or higher) order Galerkin methods, the scatteriatgixwill become block
structured, which requires additional tools in algebraialgsis. For collocation
schemes, the analysis breaks down because the methods laregeo mass con-
servative. The numerical study in this paper seems to iteliteat similar conclu-
sion as for the discontinuous Galerkin scheme withRfeliscrete space holds for
the discontinuous Galerkin scheme with fespace regarding how the properties
of the kernel of the discrete scattering operator dependhemtesh choices. The
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first order collocation method computes numerical equiliforthat is highly de-
pendent on the mesh, while the Fourier-collocation methaith, its global nature,
only captures a one-dimensional equilibrium associated %7 (k), and the result-
ing approximation is very accurate with the spectral aooycd the method. These
numerical results motivate our immediate future work onttiemretical analysis of
some of the methods. Another interesting future directmmststs of generalization
to higher dimensions. Real world applications call for ratiten to models in higher
dimensions with transport effect. Such models have diffeegjuilibria from the
space homogeneous case and the analysis will be more idvolve
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