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This article gives an analog of Taylor’s trick in the context of motives for absolute Hodge

cycles. The aforementioned trick, first sketched by Taylor in a letter to Clozel, gives two

conditions ensuring that an mn-dimensional �-adic Galois representation is divisible

by m. We give a detailed proof of this result, and extend it to motives by using Tannakian

duality.

1 Introduction

Taylor’s trick originates in the following basic question: For a number field F , let

ρ : Gal(F̄ /F )→GLmn(Q̄�) be a continuous semisimple representation, unramified almost

everywhere. Which conditions ensure that ρ � ρ̃⊕m for some n-dimensional ρ̃? In a letter

to Clozel in 1991, Taylor showed that it is enough to assume (a) for unramified v, the

eigenvalues of ρ(Frobv) have multiplicity at least m, and (b) for some v|�, and some

τ : Fv ↪→ Q̄�, each Hodge–Tate number has multiplicity m. See Proposition 1 below. The

proof uses the Sen operator, introduced in [6], whose eigenspaces give the Hodge–Tate

decomposition.

This scenario occurs naturally when one wants to associate Galois representa-

tions with algebraic automorphic representations Π on GLn(AF ). In the setup of [3], one

takes a CM field F = E F+, where E is imaginary quadratic, F+ is totally real and imposes

further restrictions on Π . Namely, Π∞ should be cohomological (equivalently, regular
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2 C. M. Sorensen

algebraic), Π∨ �Πc, and Πv is square integrable for some finite place v. (This last condi-

tion has since been removed in [8].) By the work of Clozel and Labesse, one can descend

such a Π to a suitable unitary similitude group G/Q such that G(AE )=GLn(AF )× A×E .

That is, there is an automorphic representation π of G(AQ) such that BCE/Q(π)=Π ⊗ ψ
for some Hecke character ψ of E . Now, for each sufficiently small compact open sub-

group U inside G(AQ, f ), there is a smooth projective Shimura variety XU over F , of PEL

type. The weight of Π∞ defines an irreducible algebraic representation ξ of G ×Q Q̄�,

which in turn defines a Q̄�-sheaf Lξ on XU . Then

Hi(X,Lξ )= lim−→U

Hi(XU ×F F̄ ,Lξ )�⊕π f ι
∗π f ⊗ Ri

ξ,ι(π f )

is an admissible G(AQ, f )-module over Q̄�. Here ι : Q̄�→C is a fixed isomorphism. One can

show that our fixed π above is tempered, so that Ri
ξ,ι(π f )= 0 unless i = dim XU =n− 1.

One would hope that Rn−1
ξ,ι (π f ) is the desired Galois representation Rι(Π), but that is

simply not always true. A computation shows,

dimQ̄�
Rn−1
ξ,ι (π f )=mG · n, mG = τ(G) · #ker1

(Q,G),

where τ(G) ∈ {1,2} is the Tamagawa number (Is it one in this case?). Hard work in [3]

then verifies that Rn−1
ξ,ι (π f )

ss does indeed satisfy conditions (a) and (b) mentioned earlier,

after twsiting by ψ , and therefore, by Taylor’s trick (that is, Proposition 1 given later),

Rn−1
ξ,ι (π f )

ss � Rι(Π)
⊕mG ⊗ Rι(ψ).

A natural question then arises: whether the Rι(Π) are the �-adic realizations of a motive?

We are cautiously optimistic that one can show Rn−1
ξ,ι (π f ) comes from a motive, cut out

of the cohomology of a self-product of the universal abelian scheme AU over XU (for

suitable U ), when one imposes certain special hypotheses on F and π . To remove these

special hypotheses, a key input would then be a motivic analog of the usual patching

lemma, a direction we plan to pursue in the near future. The goal of this paper is to

provide a version of Taylor’s trick in the motivic setting. Unfortunately, in addition to

analogs of (a) and (b), we have to make a rather strong assumption on the Galois image

(implying that Gal(F̄ /F ) acts semisimply, for example), which, however, is expected to

be vacuous, as predicted by the Tate conjecture.
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Divisible Motives and Tate’s Conjecture 3

As motivation, no pun intended, let us mention that the motivic patching

lemma would also yield motives attached to certain automorphic representations Π on

GLn(AF+). This, in turn, would explain that the oddness (When n is odd, and Rι(Π) is irre-

ducible; this was proved by Taylor in [9] by giving another geometric realization of com-

plex conjugation. The same method should work when nis even and some component is a

discrete series.) of the book project Galois representations Rι(Π). Here, following Gross,

by odd we mean that Rι(Π)(cσ̃ ) is conjugate to φΠσ
( j) for every embedding σ : F+ ↪→C

(and every extension σ̃ to F̄ ). Here φΠσ
is the Langlands parameter, and j ∈WR such that

j2 =−1. When Πσ is cohomological, it is an isobaric sum of discrete series (and a char-

acter if n is odd); so in that case, odd simply means that trRι(Π)(cσ̃ ) ∈ {0,±1}
We now formulate the main result of this paper. First, we must establish some

notation. Throughout, we fix a number field F and a subfield L ⊂ Q̄, possibly of infinite

degree over Q. Let M=M+(t) be a pure motive over F , for absolute Hodge cycles, with

coefficients in L. Here M+ = (h(X), ε) is an effective motive. That is, X is a smooth pro-

jective variety defined over F , which is not necessarily connected, but for simplicity we

assume it is of pure dimension, so that

ε = ε2 ∈Endh(X)= C d
AH(X × X), d= dim(X),

where C d
AH is the finite-dimensional Q-space of absolute Hodge cycles of codimension d.

We refer to [1, 4] for the definitions. A succinct survey is given in [5]. We let r be the rank

of M (over L), and let w be its weight. The motive M has various realizations, related by

comparison isomorphisms:

(1) Betti: For each embedding σ : F ↪→C, one has an r-dimensional vector space

Mσ over L, endowed with a Hodge decomposition Mσ ⊗Q C=⊕
i+ j=w Mi, j

σ

into L ⊗Q C-submodules Mi, j
σ . Moreover, complex conjugation on the com-

plex variety σ X = X ×F,σ C defines involutive L-linear isomorphisms Frobσ :

Mσ →Mcσ such that Frobσ ⊗ 1 identifies Mi, j
σ with M j,i

cσ . Thus, when σ is real,

we get an infinite Frobenius Frobσ on Mσ .

(2) de Rham: One has a free L ⊗Q F -module MDR , of rank r, endowed with a

decreasing filtration Fili
(MDR) by L ⊗Q F -submodules, which are not neces-

sarily free. The Hodge filtration is exhaustive and separating.

(3) λ-adic: For each finite place λ of L, one has an r-dimensional vector space

Mλ over the completion Lλ, endowed with a continuous action ρM,λ of the

absolute Galois group Gal(F̄ /F ), which we denote by ΓF in what follows.
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4 C. M. Sorensen

(4) Complex comparison isomorphism: For each embedding σ : F ↪→C as men-

tioned already, one has a natural comparison isomorphism of L ⊗Q

C-modules,

I∞,σ : Mσ ⊗Q C→MDR⊗F,σ C,

which identifies
⊕

i≥i′ M
i,w−i
σ with Fili′

(MDR)⊗F,σ C, for all i′.

(5) λ-adic comparison isomorphism: For each extension σ̃ : F̄ ↪→C of the embed-

ding σ : F ↪→C, one has a natural comparison isomorphism

Iλ,σ̃ : Mσ ⊗L Lλ→Mλ.

They are compatible with the Galois action, in the sense that Iλ,σ̃ = ρM,λ(γ ) ◦
Iλ,σ̃ γ for all γ ∈ ΓF . Furthermore, when σ is a real embedding, and cσ̃ ∈ ΓF is

the complex conjugation, Iλ,σ̃ ◦ (Frobσ ⊗ 1)= ρM,λ(cσ̃ ) ◦ Iλ,σ̃ .

Our main result in this paper is the following motivic analog of Taylor’s trick.

Theorem 1. Let M be a motive over F , with coefficients in a number field L, of weight

w and rank mn. Assume M satisfies the following three hypotheses.

(i) The image ρM,λ(ΓF ) is Zariski dense in GF,M(σ )×Q Q̄�, for some embedding

σ : F ↪→C, where GF,M(σ ) is the corresponding reductive quotient of the

motivic Galois group. (In particular, ΓF acts semisimply.)

(ii) For all but finitely many v (and some finite place λ), each eigenvalue of

ρM,λ(Frobv) on Mλ ⊗Lλ Q̄� has algebraic multiplicity at least m.

(iii) There exists an embedding σ : F ↪→C such that dimC Mi, j
σ =m[L : Q] for each

of the n distinct Hodge types (i, j).

Then there is a motive M̃ over F , with coefficients in a finite extension L̃ of L, of weight

w and rank n (over L̃), unique up to isomorphism, such that

ML̃ =M ⊗L L̃ �m · M̃= M̃⊕m.

Moreover, M̃ is σ -regular. That is, dimC M̃i, j
σ = [L̃ : Q] for Hodge types (i, j). �

Here, up to isomorphism, M ⊗L L̃ can be described as follows: Pick an L-basis for

L̃. Look at the direct sum M ⊕ · · · ⊕ M, each summand corresponding to a basis element.
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Divisible Motives and Tate’s Conjecture 5

It has an obvious L̃-structure via the map L̃ ↪→EndL(L̃). We leave it to the reader to work

out the various realizations of M ⊗L L̃.

We stress that condition (i) is expected to hold always, as a consequence of the

Tate conjecture, see [7, question 3.2 on p. 379]. However, it may be difficult to check in

practice for a given M. One would proceed by showing that the image ρM,λ(ΓF ) is open

in GF,M(σ, Q̄�), and that it intersects every connected component, see [7, p. 386]. In fact,

we can get by with something slightly weaker. In Theorem 1, one can replace (i) and (ii)

with the following condition: For every semisimple g∈ GF,M(σ, Q̄�), every eigenvalue of g

on Mλ ⊗Lλ Q̄� has multiplicity at least m.

2 A Result in Representation Theory

Throughout this section, G denotes a fixed reductive algebraic group defined over an

algebraically closed field k of characteristic zero. We take G◦ to be its identity compo-

nent, which is a normal subgroup. The (finite) component group G/G◦ is denoted π0(G).

We let g be the Lie k-algebra of G◦. Then, our goal in this section is to prove the following

lemma on multiplicity removal for algebraic representations of G.

Lemma 1. Let r : G→GL(W) be an algebraic representation of G over k, of dimension

mn. Assume it satisfies the following two hypotheses.

(1) For every semisimple g∈G, each eigenvalue of r(g) on W has multiplicity at

least m. (In particular, r(g) has at most n distinct eigenvalues.)

(2) There exists a semisimple X ∈ g⊗k K, for some algebraically closed field K/k,

such that each eigenvalue of dr(X) on W⊗k K has multiplicity m. (In partic-

ular, dr(X) has precisely n distinct eigenvalues.)

Then there is an algebraic k-representation r̃ : G→GL(W̃), of dimension n, uniquely

determined up to isomorphism, such that

r �m · r̃ = r̃⊕m.

Moreover, r̃ has precisely n distinct weights for any maximal torus. �

Proof. We first fix a Borel pair (B, T) in G◦, and let N be its normalizer in G,

N = NG(B, T)= NG(B) ∩ NG(T).
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6 C. M. Sorensen

This is an algebraic subgroup of G, containing T as a normal subgroup, and N/T is

naturally identified with π0(G). Indeed, it is easy to see that

G = NG◦, T = N ∩ G◦,

since G◦ acts transitively on the set of Borel pairs, and NG◦(T)= T . We choose T such

that the semisimple element X in (2) belongs to its Lie algebra t⊗k K.

For each algebraic character λ ∈ X(T), we let Wλ denote the associated weight

space. The set of weights W consists of those λ for which Wλ �= 0. By simultane-

ous diagonalization, W=⊕
λ∈W Wλ. On the other hand, W is a completely reducible

G◦-module, since G is reductive, so we may also decompose W into a direct sum of simple

G◦-submodules. The latter are classified by their highest weights, relative to B. For each

B-dominant weight λ ∈ X(T)+, we let V(λ) be the usual simple Weyl module of highest

weight λ (recall that k has characteristic zero). Then W[λ] is defined to be the sum of all

simple G◦-submodules of W of highest weight λ. By Frobenius reciprocity, we have the

isotypic decomposition

W=
⊕

λ∈W+

W[λ], W[λ]� dimk WU
λ · V(λ), W+ =W ∩ X(T)+.

Here U is the unipotent radical of B, and WU
λ is the subspace of U-invariants.

Step 1: #W =n and dimk Wλ =m, for all λ ∈W.

We first observe that the inequality #W ≤n holds: Choose a t∈ T such that the

λ(t) are distinct, for all weights λ. Then r(t) has #W distinct eigenvalues on W. By (1) it

has at most n distinct eigenvalues, proving the inequality. To get the equality, note that

the eigenvalues of dr(X) on W⊗k K are of the form dλ(X), for λ ∈W. By (2), these must be

distinct, and #W =n. Finally, since the dλ(X) are all distinct, Wλ is the dλ(X)-eigenspace

of dr(X), which is m-dimensional by (2).

Step 2: dimk WU
λ =m, for all λ ∈W+ such that W[λ] �= 0.

We first prove the equality when λ ∈W+ is maximal. Pick t∈ T as in Step 1. Then

λ(t) is an eigenvalue of r(t), with multiplicity dimk WU
λ in W[λ]. Moreover, λ(t) is not an

eigenvalue on W[μ] for any μ �= λ, by maximality. Therefore dimk WU
λ ≥m, according to

(1). Next, we consider an arbitrary λ ∈W+, occurring in W, and show that dimk WU
λ =m,

assuming this is known for all μ> λ. As mentioned earlier, dλ(X) is an eigenvalue of

dr(X), with multiplicity dimk WU
λ in W[λ]⊗k K. If this is less than m, then dλ(X) must be

an eigenvalue on W[μ]⊗k K, for some μ> λ. By induction, the multiplicity of dλ(X) is at
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Divisible Motives and Tate’s Conjecture 7

least m in the latter space. However, by (2) the multiplicity of the eigenvalue dλ(X) in

W⊗k K equals m. This is a contradiction.

Thus, at least as a G◦-module, W is of the form m · W̃, where W̃�⊕V(λ), the sum

extending over all λ ∈W+ such that W[λ] �= 0. To achieve the analog for the G-action, we

need to understand how G permutes the simple G◦-submodules of W. Recall that N/T

acts on X(T), by letting gλ(t)= λ(g−1tg). Since N normalizes B, the subsets X(T)+ and W,

and hence W+, are invariant. In fact, as is easily checked, r(g)Wλ =Wgλ and r(g)W[λ]=
W[gλ]. Thus we introduce

W{λ} =
⊕

g∈N/Nλ

W[gλ].

Here Nλ is the stabilizer of λ in N; so we are summing over the N-orbit of λ. Then W{λ}
is the smallest G-invariant subspace of W containing W[λ], and

W=
⊕

λ∈N\W+

W{λ}.

It is therefore enough to show that each W{λ} is divisible by m.

Step 3: W{λ} � IndG
Gλ

W[λ], where Gλ = NλG◦.

First observe that there is a natural bijection N/Nλ �G/Gλ. Therefore,

W{λ} =
⊕

g∈G/Gλ

r(g)W[λ].

Comparing dimensions, we need only embed the induced representation into W{λ}. This

is done by mapping a function f to the tuple of all r(g) f(g−1).

We are now reduced to showing that each W[λ] is divisible by m, when viewed

as a Gλ-representation. This follows once we show that each copy of V(λ) in W is

Nλ-invariant, and that all copies are isomorphic as Gλ-modules. We will deduce this

from the following key step:

Step 4: Nλ acts on Wλ by a character, for all λ ∈W.

Fix some g∈ Nλ. Since a power of g lies in T , it is a semisimple element (Jordan

decomposition). We assume r(g) has at least two distinct eigenvalues on Wλ, and obtain

a contradiction. To do that, we consider the action of r(gt) on W, for varying t∈ T . It

preserves the decomposition W=Wλ ⊕W′λ, where we introduce W′λ =
⊕

μ�=λ Wμ. Let Λ be

an eigenvalue of r(g) on Wλ. Then λ(t)Λ is an eigenvalue of r(gt) on Wλ. The key point is
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8 C. M. Sorensen

to show, for suitable t∈ T ,

W′λ ∩ ker(r(gt)− λ(t)Λ · IdW)= 0.

Indeed, if we know this, the whole eigenspace ker(r(gt)− λ(t)Λ · IdW) is contained in

Wλ. By (1) the eigenspace is at least m-dimensional. Having two eigenvalues Λ, then

forces the lower bound dimk Wλ ≥ 2m, contradicting Step 1. It remains to show that the

earlier-mentioned intersection is trivial. For this purpose, we partition W into 〈g〉-orbits

O1, . . . ,Os. In this list, O1 = {λ}. Correspondingly, we let Wi =
⊕

μ∈Oi
Wμ, so that W′λ =⊕

i>1 Wi is a decomposition of W′λ into 〈g〉-invariant subspaces. We need to show that

λ(t)Λ is not an eigenvalue of r(gt)|Wi for any i > 1. Again, for suitable t∈ T . Suppose it is

an eigenvalue on Wi, and pick an eigenvector w=∑
μ∈Oi

wμ. Comparing components, we

see that:

μ(t) jr(gj)wμ = (λ(t)Λ) jwgjμ, ∀μ ∈Oi, ∀ j ∈Z≥0.

In particular, we see that wμ �= 0 for all μ ∈Oi. Let b= ordN/T (gT), so that gb ∈ T . Taking

j = b above, we deduce the following constraints,

Λbλ(t)b=μ(gb)μ(t)b, ∀μ ∈Oi.

If this holds for all t∈ T , we must have Λb=μ(gb) and λ=μ ∈Oi. But i > 1.

Step 5: Each simple G◦-submodule V ⊂W[λ] is Gλ-invariant.

Fix some g∈ Nλ, and a nonzero vector v ∈ VU
λ . A straightforward computa-

tion shows that r(g)v is a highest weight vector in r(g)V , which is again a simple

G◦-submodule of W[λ]. However, by Step 4, r(g)v is a nonzero multiple of v, and hence

the intersection V ∩ r(g)V is nonzero. Consequently, r(g)V = V .

Step 6: Any two simple G◦-submodules of W[λ] are isomorphic as Gλ-modules.

Let V and V ′ be two copies of V(λ) in W, and pick highest weight vectors v and v′.

Then there is a unique isomorphism of G◦-modules φ : V→ V ′ such that φ(v)= v′. We

show that φ is Nλ-equivariant: Fix some g∈ Nλ. Then r(g) ◦ φ ◦ r(g)−1 is an isomorphism

V→ V ′ of G◦-modules, mapping v to v′ by Step 4. By uniqueness, φ = r(g) ◦ φ ◦ r(g)−1. In

other words, φ is Gλ-equivariant.

We conclude that, as G-modules, W�m · W̃, where we may take the module

W̃=
⊕

λ∈N\W+

IndG
Gλ

V.
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Divisible Motives and Tate’s Conjecture 9

Here V is any copy of V(λ) in W. This shows the existence of the desired r̃.

Step 7: The representation r̃ is uniquely determined up to isomorphism.

The character of r̃ is uniquely determined, indeed tr(r)=mtr(r̃); so this follows

from the Jacobson density theorem applied to the group algebra of G. �

Remark. The earlier-mentioned proof was sketched in [3], as part of the proof of

Lemma I.2.2 on p. 27. However, we feel that some steps in the latter proof are a bit

imprecise. For example, there is no need to make the assumption that λ is a vertex of

the convex hull of the set of weights. Moreover, the last inductive step (involving the

complement Z ) seems somewhat unjustified. �

3 Some Zariski Closed Subsets of GLn

Let k be a fixed algebraically closed field. For positive integers m,n∈Z>0, we define

Xm,n to be the set of matrices g∈GLn(k) such that each eigenvalue of g has algebraic

multiplicity at least m. Our goal in this section is the following.

Lemma 2. Xm,n is a Zariski closed subset of GLn. �

Proof. Let pg(x)= det(xI − g) be the (monic) characteristic polynomial of g. Its coeffi-

cients are polynomials in the entries of g. Then Xm,n is the set of g such that pg ∈Xm,n,

the set of degree n monic polynomials p∈ k[x] such that each root of p has multiplicity

≥m. The set of all degree n monic polynomials is naturally identified with kn, and it

is sufficient to show that Xm,n⊂ kn is Zariski closed. To do that, take an arbitrary monic

polynomial p∈ k[x] of degree n. Then, a root α ∈ k has multiplicity at least m if and only if

p(α)= p′(α)= p′′(α)= · · · = p(m−1)(α)= 0.

Thus, any root of p(x) is a root of p(i)(x) for all 0≤ i <m, but possibly of a different

multiplicity. Since the multiplicities are at most n, we see that p(x) divides p(i)(x)n for

all 0≤ i <m. The converse is obvious. We conclude that

Xm,n= {p(x) such that p(x)dividesp(i)(x)n for all 0≤ i <m} ⊂ kn.

To see that this is Zariski closed, we argue as follows: By the division algorithm in R[x],

where R is the polynomial ring over k in the variables y0, . . . , yn−1 and z0, . . . , zd, there
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10 C. M. Sorensen

are unique polynomials q, r ∈ R[x] such that degx(r) <n and

zdxd+ · · · + z0 = q(x)(xn+ yn−1xn−1 + · · · + y0)+ r(x).

Thus, xn+ an−1xn−1 + · · · + a0 ∈ k[x] divides bdxd+ · · · + b0 ∈ k[x] if and only if all the coef-

ficients of r vanish when substituting yi = ai and zi = bi. This is a collection of polynomial

conditions on the coefficients ai and bi. We are done since the coefficients of p(i)(x)n are

polynomials in the coefficients of p(x). �

Remark. This is probably well known to the experts. A brief outline of the earlier-

mentioned argument is given in the first five lines of the proof of Lemma I.2.2 in [3].

Note that there is a typo there: The exponent should be an, not a. �

4 An Application to Galois Representations

We fix a number field F , an algebraic closure F̄ , and consider �-adic representations of

the Galois group ΓF =Gal(F̄ /F ). That is, continuous representations

ρ : ΓF →GL(W),

where W is a finite-dimensional vector space over Q̄�. For a finite place v, ρv = ρ|ΓFv
is

well-defined up to equivalence. We say ρ is unramified at v if ρv is trivial on the inertia

group IFv = ΓF ur
v

. Fix a lift Frobv of the geometric Frobenius in ΓFv . Then ρ(Frobv) is a

well-defined conjugacy class in GL(W). When v is a finite place of F dividing �, we say

that ρ is Hodge–Tate at v when

DHT(ρv)= (W⊗Q�
BHT)

ΓFv

is a free Q̄� ⊗Q�
Fv-module of rank dimQ̄�

W. Here BHT =
⊕

i∈Z CFv (i) , where CFv is the

completion of F̄v. For each embedding τ : Fv ↪→ Q̄�, we introduce the multiset HTτ (ρv) of

Hodge–Tate numbers, containing i with multiplicity

dimQ̄�
gri DHT,τ (ρv), DHT,τ (ρv)= DHT(ρv)⊗Q̄�⊗Q�

Fv,1⊗τ Q̄�.

As an application of the results in the previous two sections, we are able to remove the

multiplicity in Galois representations satisfying certain hypotheses. This is commonly
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Divisible Motives and Tate’s Conjecture 11

referred to as Taylor’s trick, since it was first described in a letter from R. Taylor to

Clozel in 1991, dated December 11.

Proposition 1. Let ρ : ΓF →GL(W) be a continuous semisimple representation on an

mn-dimensional vector space W over Q̄�. Assume ρ is unramified outside some finite set

of places S, and satisfies the following two hypotheses.

(a) For every v /∈ S, each eigenvalue of ρ(Frobv) on W has algebraic multiplicity

at least m. (In particular, ρ(Frobv) has at most n distinct eigenvalues.)

(b) There exists a place v above � such that ρ is Hodge–Tate at v, and for some

embedding τ : Fv ↪→ Q̄� the multiset HTτ (ρv) contains n distinct Hodge–Tate

numbers, each occurring with multiplicity m.

Then there is a continuous semisimple representation ρ̃ : ΓF →GL(W̃), on an

n-dimensional vector space W̃ over Q̄�, unique up to isomorphism, such that

ρ �m · ρ̃ = ρ̃⊕m.

Moreover, HTτ (ρ̃v) is a set of n distinct integers (for the v and τ above). �

Proof. Take G to be the Zariski closure of ρ(ΓF ) in GL(W), and consider the faith-

ful algebraic representation r : G ↪→GL(W) through which ρ factors. Each simple

ΓF -summand of W is clearly G-invariant (look at a suitable Levi subgroup); so r is

semisimple. Consequently, G is a reductive group, and Lemma 1 applies once we show

r satisfies (1) and (2). By Cebotarev, Σ = {Frobv}v /∈S is a dense subset of ΓF . Since ρ is

continuous, and Zariski closed implies �-adically closed, we infer that G is also the

Zariski closure of ρ(Σ). By assumption (a), in conjunction with Lemma 2, we deduce

that for every g∈G, each eigenvalue of r(g) has algebraic multiplicity at least m. This is

stronger than (1). To check condition (2), we invoke the Sen operator as follows: First, by

the Baire category theorem, there is a finite extension L/Q�, inside Q̄�, and a ΓF -invariant

L-structure WL inside W. By enlarging L if necessary, we may (and will) assume that L

contains τ(Fv) for every embedding τ : Fv ↪→ Q̄�. As a consequence thereof, for any embed-

ding μ : L ↪→ F̄v, its image μ(L) contains Fv (to see this, choose an extension of μ to an

isomorphism μ̃ : Q̄� ↪→ F̄v. Then its inverse μ̃−1 maps Fv into L, done). For each such μ,

it therefore makes sense to define τμ =μ−1|Fv . We view WL as a finite-dimensional vector

space over Q�, and we want to understand its Hodge–Tate decomposition. According to
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12 C. M. Sorensen

the L-action,

WL ⊗Q�
CFv �

⊕

μ:L↪→F̄v

WL ⊗L ,μ CFv .

For each fixed μ, a standard argument in p-adic Hodge theory shows that

WL ⊗L ,μ CFv �
⊕

i∈HTτμ (ρv)

CFv (−i).

Of course, here we take into account the multiplicity of i in the multiset HTτμ(ρv). Follow-

ing Sen, we look at the semisimple operator Φ ∈EndCFv
(WL ⊗Q�

CFv ) acting by multipli-

cation by i on each copy of CFv (i) in the Hodge–Tate decomposition. The main theorem of

[6], Theorem 1 on p. 164, says that the Lie algebra h of ρ(ΓFv ) is the smallest Q�-subspace

of EndQ�
(WL) such that h⊗Q�

CFv contains Φ. We denote by g the Q̄�-Lie algebra of G,

and let gL be the L-subalgebra, defined by WL , such that g= gL ⊗L Q̄�. Viewed as a Q�-Lie

algebra, gL contains h. In particular, by Sen’s theorem, Φ belongs to

gL ⊗Q�
CFv =

⊕

μ:L↪→F̄v

gL ⊗L ,μ CFv .

Then Φ corresponds to a tuple (Φμ), where Φμ acts by multiplication by i on each copy

of CFv (i) in the Hodge–Tate decomposition of WL ⊗L ,μ CFv . By assumption (b), Φμ has

n distinct eigenvalues, of multiplicity m, if we choose μ such that τ = τμ (such exists,

extend τ to an isomorphism τ̃ : F̄v ↪→ Q̄�, and check that the embedding μ= τ̃−1|L works).

Pick any extension of μ to an embedding μ̃ : Q̄� ↪→CFv . We take this to be the extension

in condition (2),

X =Φμ ∈ g⊗Q̄�,μ̃
CFv ↪→EndCFv

(W⊗Q̄�,μ̃
CFv ).

Finally, from Lemma 1 we get an algebraic representation r̃ : G→GL(W̃), of dimension

n over Q̄�, such that r � r̃⊕m. Then define ρ̃ = r̃ ◦ ρG , where ρG is the map ΓF →G such

that ρ = r ◦ ρG . Then ρ̃ is continuous, semisimple (since G is reductive), and it is easily

checked from the definitions that ρ � ρ̃⊕m. �

Remark. This Proposition is a key ingredient in the proof of Theorem C in [3]. Indeed,

what we did above is essentially just the proof of Proposition VII.1.8 on p. 226 in [3]. In

their setup, ρ is cut out of the cohomology of some compact unitary Shimura variety.

Condition (a), about the unramified places, is then a result of Kottwitz (Corollary V.6.3

on p. 193), and condition (b) follows from their Corollary VI.2.8 on p. 208. �
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Divisible Motives and Tate’s Conjecture 13

5 Proof of the Main Theorem

In this section, we give the proof of Theorem 1 from the introduction.

The motivic Galois group. This will be a crucial gadget in what follows. We

briefly review its definition and some of its basic properties. Take MF (L) to be the

true category of (pure) motives over F , for absolute Hodge cycles, with coefficients in

L. See [1] or [5] for its precise definition. The word true refers to the fact that one has

to modify the commutativity constraints by a sign (after passing to a pseudo-abelian

envelope, and then inverting the Lefschetz object). When L =Q we simply write MF . The

sign change makes MF into a neutral Tannakian category over Q. That is, a rigid abelian

Q-linear tensor category, for which there exists an exact faithful Q-linear tensor functor

ω : MF →VecQ. Such an ω is called a fiber functor. For example, for each complex embed-

ding σ : F ↪→C, we have a corresponding fiber functor ωσ : M �→Mσ . Tannakian duality

identifies MF with a category of representations,

ωσ : MF
∼→RepQGF (σ ), GF (σ )=Aut⊗(ωσ ).

The motivic Galois group GF (σ ) is an affine group scheme over Q. Its name stems from

the fact that, analogously, RepQΓF is equivalent to the category of Artin motives (those

coming from zero-dimensional varieties). For each extension σ̃ : F̄ ↪→C of σ , we may also

identify MF̄ with the category of representations of GF̄ (σ̃ ). The latter is a connected

pro-reductive group over Q,

1−→ GF̄ (σ̃ )−→ GF (σ )−→ ΓF −→ 1

is exact. In particular, GF̄ (σ̃ ) is the identity component of GF (σ ). Finally, the same holds

with coefficients L. For example, MF (L) is equivalent to the category of representations

of GF (σ )×Q L on finite-dimensional L-vector spaces.

Reductive quotients. For each M ∈Ob(MF ), we introduce MF,M, the smallest full

Tannakian subcategory of MF containing M. Objects in this subcategory are said to be

dominated by M. As mentioned earlier, by Tannakian duality, we have

ωσ : MF,M
∼→RepQGF,M(σ ), GF,M(σ )=Aut⊗(ωσ |MF,M ).
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14 C. M. Sorensen

Here GF,M(σ ) is a reductive algebraic group over Q, and relative to dominance,

GF (σ )= lim←−M

GF,M(σ ).

Moreover, by definition, there is a faithful representation GF,M(σ ) ↪→GL(Mσ ). One can

describe the image explicitly as follows: We use 1 to denote the trivial motive h0(SpecF ),

and for nonnegative integers r, s we let Tr,s(M) be the tensor product of r copies of M

and s copies of M∨. A tensor t∈ Tr,s(Mσ ) is said to be invariant if it comes from a mor-

phism 1→ Tr,s(M) of motives. We use the notation Tr,s
inv(Mσ ) for the subspace of such

t. It coincides with the space of GF (σ )-invariants in Tr,s(Mσ ). Then, by Deligne et al.

[1, Proposition I.3.1(c)],

GF,M(σ, R)� {g∈GL(Mσ ⊗Q R) : g(t⊗ 1)= t⊗ 1,∀t∈ ∪r,sT
r,s
inv(Mσ )},

for all commutative Q-algebras R. Taking R=Q�, and composing with the �-adic

comparison isomorphism I�,σ̃ for some σ̃ , we identify GF,M(σ )×Q Q� with the subgroup

of GL(M�) fixing all I�,σ̃ (t⊗ 1). However, these tensors are clearly fixed by ΓF since they

come from a morphism of motives 1→ Tr,s(M). Thus,

ρM,�(ΓF )⊂ GF,M(σ,Q�)⊂GL(M�).

Note that these subgroups do not depend on the choice of σ̃ , by the Galois-compatibility

of the I�,σ̃ . We take GM to be the Zariski closure of ρM,�(ΓF ) inside GL(M� ⊗Q�
Q̄�). We

just saw that GF,M(σ )×Q Q̄� contains GM. It is expected that the two are equal, see

[7, question 3.2 on p. 379]. Similarly, if we take R=C above, we identify GF,M(σ )×Q C

with a subgroup of GL(Mσ ⊗Q C). As usual, the Hodge decomposition defines a group

homomorphism

hM,σ : C∗ × C∗ →GL(Mσ ⊗Q C)

by letting hM,σ (z, z′) act by multiplication by ziz′ j on Mi, j
σ . The image of hM,σ is a

(connected) torus. By definition, the Mumford–Tate group MT(Mσ ) is the smallest Q-

subgroup of GL(Mσ ) such that the complexification contains the image of hM,σ . Since

invariant tensors must lie in the bidegree (0,0) component, it is easily checked that

G◦F,M(σ )×Q C contains MT(Mσ ). Conjecturally they are equal, see [7, question 3.4 on p.

380]. We leave it to the reader to make the appropriate adjustments when we allow

motives with coefficients.
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Divisible Motives and Tate’s Conjecture 15

p-adic Hodge theory. Let M be a motive as in the introduction, and let us fix a

complex embedding σ : F ↪→C. Once and for all, we fix an isomorphism ι : Q̄�→C. Then

σ corresponds to a pair (v, τ ), where v is a place of F dividing �, and τ : Fv ↪→ Q̄�. The

correspondence is determined by the equality σ = ι ◦ τF . We consider the action of ΓFv on

the space Mλ ⊗Lλ Q̄�, and we wish to relate the Hodge–Tate decomposition to the Hodge

components Mi, j
σ . Since

Mλ ⊗Lλ Q̄� � εHw+2t
et (X ×F F̄ , Q̄�(t)),

the main result from [2] shows that

L ⊗Q DDR,τ (Mλ ⊗Lλ Q̄�)�MDR ⊗F,τ Q̄� � (Mσ ⊗Q C)⊗C,ι−1 Q̄�.

By comparing the graded pieces, we see that

L ⊗Q gri DHT,τ (Mλ ⊗Lλ Q̄�)�Mi,w−i
σ ⊗C,ι−1 Q̄�.

In particular,

[L : Q] · dimQ̄�
gri DHT,τ (Mλ ⊗Lλ Q̄�)= dimC Mi,w−i

σ ,

so that condition (iii) in Theorem 1 implies condition (b) in Proposition 1.

Representations of the group GM. Recall that GM is defined to be the Zariski

closure of ρM,λ(ΓF ) inside GL(Mλ ⊗Lλ Q̄�). By the semisimplicity assumption in (i), which

should be vacuous, GM is reductive, and we may proceed as in the proof of Proposi-

tion 1. As in that proof, let r : GM ↪→GL(Mλ ⊗Lλ Q̄�) be the tautological representation.

Then the Sen operator trick, combined with Lemma 1, yields an algebraic representation

r̃ : GM→GL(W̃), of dimension n over Q̄�, such that r � r̃⊕m. At this point, we have to

invoke the full thrust of condition (i), namely that GM is all of GF,M(σ )×Q Q̄�, and view

r̃ as a representation of the latter. It can be defined over a number field L̃, which we

may enlarge so that it contains L, and so that the isomorphism r � r̃⊕m is defined over

L̃. Pulling back to the motivic Galois group, r̃ corresponds to a motive M̃ in MF (L̃) by

Tannakian duality, and M̃ has the desired properties.
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