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INTRODUCTION

Aureobasidum pullulans (De Bary) G. Arnaud is a black yeast-
like species that is particularly known for its biotechnological 
significance as a producer of the biodegradable extracellular 
polysaccharide (EPS) pullulan (poly-α-1,6-maltotriose). This 
component is a promising biomaterial (Rekha & Sharma 2007), and 
is currently used among others for the packaging of food and drugs 
(Singh et al. 2008). Its biotechnological potential is also seen in the 
production of a variety of hydrolytic enzymes (Federici 1982, Chi et 
al. 2006, Wang et al. 2007, Li et al. 2007, Ma et al. 2007, Zhiqiang 
et al. 2008). 

Aureobasidum pullulans was taxonomically characterised 
by de Hoog & Yurlova (1994) on the basis of its morphology and 
nutritional physiology. These authors noted some differences in 
growth with galactitol, glucono-δ-lactone, creatine and creatinine, 
and in gelatin liquefaction. Since the species shows considerable 
variability in its morphological and physiological properties, three 
varieties have been described during the last decades, viz. 
Aureobasidium pullulans var. pullulans (Viala & Boyer 1891), A. 
pullulans var. melanogenum Hermanides-Nijhof (1977), and A. 
pullulans var. aubasidani Yurlova (Yurlova & de Hoog 1997). The 
first two of these were distinguishable by culture discolouration, 
while the latter is unique in its production of aubasidan-like EPS 
(glucans with α-1,4-D-, ß-1,6-D- and ß-1,3-D-glycosidic bonds). 
Diagnostically, var. aubasidani is unique due to the absence of 
assimilation of methyl-α-D-glucoside and lactose and by N-source 
assimilation for the production of EPS. In a further study using PCR 
ribotyping (rDNA RFLP and UP-PCR/hybridisation), Yurlova et al. 
(1996) divided the Aureobasidium strains into four groups, which, 

however, do not correlate with morphological differences. Yurlova 
et al. (1999) also revealed close relationships between Kabatiella 
lini (Laff.) Karak., the teleomorph species Discosphaerina 
(Columnosphaeria) fagi (H.J. Huds.) M.E. Barr and Aureobasidium 
pullulans. 

Aureobasidum pullulans is a ubiquitous and widespread 
oligotrophe that can be found in environments with fluctuating 
water activities, such as the phyllosphere (Andrews et al. 1994), 
bathrooms, food and feeds (Samson et al. 2004). It can also 
be found in osmotically very stressed environments, such as 
hypersaline waters in salterns (Gunde-Cimerman et al. 2000), and 
rocks and monuments (Urzί et al. 1999). Due to the production of 
large quantities of yeast-like propagules, this fungus disperses 
globally, although thus far it has only rarely been reported in 
cold environments. This may be because most investigations 
on the occurrence and diversity of fungi in the cold have been 
limited to frozen Antarctic soils and Siberian permafrost, where 
basidiomycetous yeasts prevail (Abyzov 1993, Babjeva & 
Reshetova 1998, Deegenaars & Watson 1998, Golubev 1998, 
Ma et al. 1999, 2000, 2005, Margesin et al. 2002, Onofri et al. 
2004, Price 2000, Vishniac 2006, Vishniac & Onofri 2003). Thus 
far, no investigations of mycobiota in ice had been carried out. We 
recently investigated ice originating from glacial and subglacial 
environments of three different polythermal Arctic glaciers in 
Svalbard (Spitsbergen, Norway) (Butinar et al. 2007, 2008, Sonjak 
et al. 2006). During these studies, aureobasidium-like fungi were 
found among the dominant ascomycetous mycota. Given the 
known adaptive ability of A. pullulans to low water activity (aw) and 
oligotrophic conditions, it appeared likely that ice from cryocarstic 
formations and subglacial ice in polythermal glaciers constitute a 

Redefinition of Aureobasidium pullulans and its varieties

P. Zalar1*, C. Gostinčar1, G.S. de Hoog2, V. Uršič1, M. Sudhadham2 and N. Gunde-Cimerman1  

1Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia; 2CBS Fungal Biodiversity Centre, P.O. Box 85167, NL-3508 
AD Utrecht, The Netherlands

Correspondence: Polona Zalar, polona.zalar@bf.uni-lj.s

Abstract: Using media with low water activity, a large numbers of aureobasidium-like black yeasts were isolated from glacial and subglacial ice of three polythermal glaciers 
from the coastal Arctic environment of Kongsfjorden (Svalbard, Spitsbergen), as well as from adjacent sea water, sea ice and glacial meltwaters. To characterise the genetic 
variability of Aureobasidium pullulans strains originating from the Arctic and strains originating pan-globally, a multilocus molecular analysis was performed, through rDNA 
(internal transcribed spacers, partial 28 S rDNA), and partial introns and exons of genes encoding β-tubulin (TUB), translation elongation factor (EF1α) and elongase (ELO). 
Two globally ubiquitous varieties were distinguished: var. pullulans, occurring particularly in slightly osmotic substrates and in the phyllosphere; and var. melanogenum, mainly 
isolated from watery habitats. Both varieties were commonly isolated from the sampled Arctic habitats. However, some aureobasidium-like strains from subglacial ice from three 
different glaciers in Kongsfjorden (Svalbard, Spitsbergen), appeared to represent a new variety of A. pullulans. A strain from dolomitic marble in Namibia was found to belong 
to yet another variety. No molecular support has as yet been found for the previously described var. aubasidani. A partial elongase-encoding gene was successfully used as a 
phylogenetic marker at the (infra-)specific level. 

Key words: Arctic, Aureobasidium, black yeasts, elongase, glacier, ITS, LSU, phylogeny, polar environment, rDNA, sea ice, seawater, taxonomy, translation elongation factor, 
β-tubulin.
Taxonomic novelties: Aureobasidium pullulans var. subglaciale Zalar, de Hoog & Gunde-Cimerman, var. nov.; Aureobasidium pullulans var. namibiae Zalar, de Hoog & Gunde-
Cimerman, var. nov.



22

Zalar et al.

potential natural habitat. Since some of the Arctic aureobasidium-
like isolates deviated phenetically from the pan-global population, 
a taxonomic study into the genus Aureobasidium was performed. 
Isolates obtained from different niches in Arctic, temperate and 
tropical climates were compared by multilocus analyses of rDNA 
internal transcribed spacers (ITS), partial large subunit of rDNA 
(LSU), and partial introns and exons of genes coding β-tubulin 
(TUB), translation elongation factor (EF1α) and elongase (ELO). 
The main aims of the study were to describe the total diversity of 
A. pullulans, to redefine its entities, to describe potentially new 
varieties, and to correlate these with their ecology, focusing on the 
Arctic sampling area investigated.

MATERIALS AND METHODS

Arctic sampling sites and sample collection

Kongsfjorden is located at 79°N 12°E, and it is one of the larger 
fjords along the western coast of Spitsbergen, in the Svalbard 
Archipelago, Norway. The greater part of this drainage basin is 
covered by glaciers that calve into the fjord. The annual mean 
temperature is around −5 °C, the mean salinity of the sea water 
ranges from 34.00 to 35.00 PSU. Twenty-five samples of glacial 
and subglacial ice were collected aseptically in 2001 and 2003, 
as described previously (Gunde-Cimerman et al. 2003, Butinar 
et al. 2007). These originated from three polythermal glaciers 
(Copland & Sharp 2001): Conwaybreen, Kongsvegen and austre 
Lovénbreen. Ice was also collected from a moulin and from a 
glacial cave at Kongsvegen. The subglacial samples included 
sediment-rich and overlying clear basal ice. Some ice samples, 
particularly from Kongsvegen, were rich in gypsum inclusions. 

During summer, subglacial meltwaters from Kongsvegen and 
the austre Lovénbreen glaciers were also sampled directly. The 
supraglacial samples comprised two samples of snow/ ice mixtures 
from austre Lovénbreen and Kongsvegen, and eight samples of 
seasonal meltwaters on the glacier surfaces. During the summer 
season of 2001, samples of seawater and a mixture of snow and 
ice in the tidal area were collected from six different locations within 
the fjord. 

Physico-chemical parameters (pH, Na+, Mg2+ and K+ 
concentrations, and total phosphorus content) were determined for 
five basal ice samples (originating from Kongsvegen), a sample of 
subglacial meltwater, and three samples of seawater, as described 
by Gunde-Cimerman et al. (2003). 

Isolation and preservation 

Ice samples were transported to the laboratory, where they were 
processed. The surface layer of ice was aseptically melted at room 
temperature and discarded. The remaining ice was transferred to 
another sterile container and melted. The resulting water, as well 
as directly sampled glacier meltwater and seawater, were filtered 
immediately (Millipore membrane filters; 0.22-μm and 0.45-μm 
pore sizes) in aliquots of up to 100 mL. The membrane filters were 
placed on general-purpose isolation media [DRBC: Dichloran (2,6-
dichloro-4-nitroanilin) Rose Bengal Agar (Oxoid CM729) and Malt 
Extract Agar (MEA)], as well as on a medium for the detection of 
moderate xerophiles [18 % dichloran glycerol agar (DG18; Hocking 
& Pitt 1980)], and on selective media with high concentrations of 
salt (MEA with addition of 5 % to 15 % NaCl) or sugar (malt extract 
yeast extract with 20 %, 35 % and 50 % glucose). For prevention 
of bacterial growth, chloramphenicol (50 mg/L-1) was added to all 
of the media. One drop of the original water sample was applied 
onto a membrane and was dispersed with a Drigalski spatula. For 

Fig. 1. Detailed map of the sampling 
area in Svalbard, with sites of retrieved 
aureobasidium-like isolates marked.
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each sample and medium, at least four and up to 10 aliquots were 
filtered in parallel, and average numbers of colony forming units 
(CFUs) were calculated (Gunde-Cimerman et al. 2000). The plates 
were incubated for up to 14 wk at 4, 10 and 24 °C. 

Subcultures were maintained at the Culture Collection of 
Extremophilic Fungi (EXF, Department of Biology, Biotechnical 
Faculty, University of Ljubljana, Slovenia), while a selection have 
been deposited at the Centraalbureau voor Schimmelcultures 
(CBS, Utrecht, The Netherlands). Reference strains were obtained 
from the CBS, and were selected either on the basis of strain 
history, name, or on the basis of their ITS rDNA sequence. The 
strains were maintained on MEA and preserved for long periods 
in liquid nitrogen or by lyophilisation. The strains studied are listed 
in Table 1. A detailed map of the sampling area, with the sites of 
retrieved isolates marked, is shown In Fig. 1. 

Cultivation and microscopy

For growth rate determination and the phenetic description of 
colonies, the strains were point-inoculated onto potato-dextrose 
agar (PDA; Oxoid CM139), and Blakeslee’s MEA (Samson et al. 
2004), and then incubated at 25 °C for 7–14 d in darkness. Surface 
colours were rated using the colour charts of Kornerup & Wanscher 
(1978). For microscopic morphology, MEA blocks of about 1 × 1 
cm2 were cut out aseptically, placed on sterile microscope slides, 
and inoculated at the upper four edges by means of a conidial 
suspension (Pitt 1979). Inoculated agar blocks were covered with 
sterile cover slips and incubated in moist chambers for 2, 4, and 7 
d at 25 °C in the dark. The structure and branching pattern of the 
immersed hyphae were examined under magnifications of 100× and 
400× in intact slide cultures under the microscope without removing 
the cover slips from the agar blocks. For higher magnifications 
(400×, 1000×) the cover slips were carefully removed and mounted 
in 60 % lactic acid.

DNA extraction, sequencing and analysis

For DNA isolation, the strains were grown on MEA for 7 d. Their 
DNA was extracted according to Gerrits van den Ende & de 
Hoog (1999), by mechanical lysis of approx. 1 cm2 of mycelium. 
A fragment of rDNA including ITS region 1, 5.8S rDNA and ITS 2 
(ITS) was amplified using the ITS1 and ITS4 primers (White et al. 
1990). LSU (partial 28 S rDNA) was amplified and sequenced with 
the NL1 and NL4 primers (Boekhout et al. 1995). For amplification 
and sequencing of the β-tubulin (TUB) gene, primers Bt2a and Bt2b 
were used (Glass & Donaldson 1995). Translation elongation factor 
EF-1α (EF1α) was amplified and sequenced with the primers EF1-
728F and EF1-986R (Carbone & Kohn 1999). For amplification 
and sequencing of the partial elongase gene (ELO), the ELO2-F 
(5’-CAC TCT TGA CCG TCC CTT CGG-3’) and ELO2-R (5’-
GCG GTG ATG TAC TTC TTC CAC CAG-3’) primers were used, 
designed for Aureobasidium pullulans. Reactions were run in a 
PCR Mastercycler Ep Gradient (Eppendorf) with a profile of initial 
denaturation of 2 min at 94 °C, followed by 6 cycles of 15 s at 94 
°C, 15 s at 58 °C and of 45 s at 72 °C, and 30 cycles of 15 s at 
94 °C, 15 s at 56 °C and of 45 s at 72 °C, with a final elongation 
of 7 min at 72 °C. BigDye terminator cycle sequencing kits were 
used in sequence reactions (Applied Biosystems, Foster City, CA, 
U.S.A.). Sequences were obtained with an ABI Prism 3700 (Applied 
Biosystems). They were assembled and edited using SeqMan 
3.61 (DNAStar, Inc., Madison, U.S.A.). Sequences downloaded 

from GenBank are indicated in the gene trees by their GenBank 
accession numbers; newly generated sequences are indicated by 
their strain numbers (see also Table 1).

Phylogenetic analyses

Sequences were automatically aligned using ClustalX 1.81 
(Jeanmougin et al. 1998). Alignments were adjusted manually 
using MEGA4 (Tamura et al. 2007). Gene trees were generated 
with MrBayes software, applying Bayesian inference (Huelsenbeck 
& Ronquist 2001, Ronquist & Huelsenbeck 2003). Three parallel 
runs were performed for three million generations with mixed 
amino-acid models, the default temperature and five chains. The 
gene trees were sampled every 100 generations. Gene trees 
sampled before the analysis that reached stationarity of likelihood 
values, and those sampled before the mean standard deviation of 
the split frequencies decreased to under 0.5 % were excluded from 
the final analysis. The stationarity of likelihood values was checked 
using the Tracer software (Rambaut & Drummond: MCMC Trace 
Analysis Tool, version 1.4, 2003–2007). In phylogenetic analysis 
of LSU rDNA the LSU sequence of Elsinoe veneta (DQ678060) 
was selected as an outgroup, according to Schoch et al. (2006). 
Isolates were grouped on the basis of multilocus analyses and 
representative strains were selected for morphological analyses. 

RESULTS

Isolates from Arctic samples

The fresh isolates from Arctic samples are listed in Table 1. Subglacial 
ice samples without and with gypsum inclusions, incubated on MEA 
with 5 % NaCl at 10 °C, contained aureobasidium-like propagules 
in the highest CFU range (>30 CFU/mL). Strains were also isolated 
from gypsum crystals collected from soil bordering subglacial ice 
with gypsum inclusions. Lower CFU numbers of Aureobasidium 
(2–3 CFU/100 mL) were detected also in other ice samples: in sea 
ice and moulin ice, and in specimens from an ice cave. 

Phylogenetic analyses

Alignments for the phylogenetic analyses included 599 base 
pairs for LSU, 488 for ITS, 704 for ELO, 323 for EF1α, and 425 
for TUB. Internodes were considered strongly supported if they 
received posterior probabilities ≥95 % (Lutzoni et al. 2004). Good 
convergence of the runs was reached when constructing all of the 
gene trees with MrBayes. The likelihood values reached plateaus 
after approximately 24,000 (LSU), 4,000 (ITS), 6,000 (TUB), 7,000 
(EF1α) and 15,000 (ELO) generations, while the mean standard 
deviations of the split frequencies dropped below 1 % after 600,000 
(LSU), 300,000 (ITS), 800,000 (TUB), 300,000 (EF1α) and 200,000 
(ELO) generations. The first 6,000 (LSU), 3,000 (ITS), 8,000 (TUB), 
3,000 (EF1α) and 2,000 (ELO) trees were discarded as burn-in.

According to the LSU rDNA analysis (Fig. 2), a high level of 
support was evident for the clade containing A. pullulans (groups 
1–4) together with Selenophoma mahoniae A.W. Ramaley (CBS 
388.92), Kabatiella caulivora (Kirchn.) Karak (CBS 242.64) and 
Kabatiella microsticta Bubák (CBS 114.64). Group 7, consisting of 
Sydowia polyspora (Bref. & Tavel) E. Müll., Pringsheimia smilacis 
E. Müll., Delphinella strobiligena (Desm.) Sacc. ex E. Müll. & Arx 
and Dothichiza pithyophila (Corda) Petr., formed a well supported, 
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Fig. 2. Consensus phylogram (50 % majority rule) of 24000 trees resulting from a Bayesian analysis of the LSU sequence alignments using MrBayes v. 3.1.2. Bayesian posterior 
probabilities are indicated at the nodes, branches with posterior probabilities >95 in bold. The tree was rooted to the sequence of Elsinoe veneta (DQ678060). Ex-type and ex-
neotype strains are underlined; when known origin two digit country codes are listed after strain numbers. The colour marks stand for: 

- plant associated;

- originating from Arctic ice;

- originating from hyperosmotic environment;

- clinical strain.  

- water. 
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Fig. 3. Consensus phylograms (50 % majority rule) resulting from a Bayesian analysis of: A. ITS rDNA; B. elongase gene; C. translation elongation factor EF-1α gene; D. 
β-tubulin gene. Bayesian posterior probabilities are indicated at the nodes. The trees are not rooted. Ex-type and ex-neotype strains are underlined. 
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Fig. 4. Macromorphology of different Aureobasidium pullulans varieties incubated for 7 d at 25 ºC in the dark on MEA (left 2 columns) and on PDA (right two columns). a–h. A. 
pullulans var. pullulans: a, b. CBS 584.75 (MEA); c, d. CBS 584.75 (PDA); e. CBS 109810 (MEA); f, g. CBS 701.76 (MEA, PDA); h. MZKI B-700 (PDA). i–p. A. pullulans var. 
melanogenum: i, j. CBS 105.22 (MEA); k, l. CBS 105.22 (PDA); m. EXF-3382 (MEA); n. CBS 621.80 (MEA); o. EXF-924 (PDA); p. CBS 100225 (PDA). q–u. A. pullulans var. 
subglaciale: q, r. EXF-2481 (MEA); s. EXF-2481 after 14 d incubation (MEA); t. EXF-2481 (PDA);  u. EXF-2479 (PDA). v–y. A. pullulans var. namibiae. v, w. CBS 147.97 (MEA); 
x, y. CBS 147.97 (PDA). 
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but separate, clade. Separate well-supported clades (groups 5 
and 6) joined arctic strains of no affinity to any of the known taxa. 
Clade Aureobasidium pullulans was badly supported (85 posterior 
probability). Groups 1 and 2 within this clade were statistically 
supported, while groups 3 and 4 reached a poor posterior probability 
value. Group 1 contained the ex-neotype strain of A. pullulans var. 
pullulans (CBS 584.75), its supposed teleomorph Discosphaerina 
(Columnosphaeria) fagi, the ex-type strain of Kabatiella lini (CBS 
125.21), the ex-type strain of Dematoidium nigrescens Stautz 
(CBS 146.30), the ex-type strain of A. pullulans var. aubasidani 
(CBS 100524), and a strain of Kabatiella microsticta (CBS 342.66). 
Another strain of K. microsticta was placed on the basal branch as 
the sister taxon of K. caulivora (CBS 242.64) and Selenophoma 
mahoniae (CBS 388.92). Group 2 contained the ex-type strain of A. 
pullulans var. melanogenum. Group 3 contained exclusively Arctic 
strains, while group 4 consisted of one strain only (CBS 147.97). 
Analyses of the more variable ITS spacers (Fig. 3A), and ELO 
(Fig. 3B), EF1α (Fig. 3C), and TUB (Fig. 3D) introns and exons 
almost consistently supported the first three groups, with only 
a few exceptions. For example, several strains of group 2 were 
dispersed outside the clade of group 2 in ITS analysis, while in 
other analyses they formed a monophyletic group. In analyses of 
ITS and ELO, group 4 was supported, whereas based on TUB it 
was grouped together with group 2, but on a separate and long 
branch. The amplification of the EF1α gene failed in the only strain 
of group 4; therefore, its phylogenetic position concerning this gene 
is unknown. 

Morphology

The main difference observed among isolates was pigmentation 
of cultures (Fig. 4). Strains belonging to groups 1 and 3 remained 
pinkish for at least 1 w. The majority of strains from group 1 became 
pigmented only after 3 wk, or even later. The only exception among 
this group was the ex-type strain of Dematoidium nigrescens 
(CBS 146.30), which was darkly pigmented already after 1 wk of 
incubation due to melanised septated hyphae. This was also the 
only strain that was exclusively filamentous and formed no conidia. 
Strains of group 3 became melanised only at the margin, where 
dark pigmented, heavily branched hyphae developed, while the 
colony centre remained pinkish at least for 3 wk. All strains of group 
2 were green or black after 7 d of incubation, due to the production 
of melanised hyphae and conidia. Structures of cultures differed 
within different varieties, from almost entirely yeast-like to entirely 
filamentous, and also yeast-like with marginal or central aerial 
mycelium. Marginal areas of colonies were significantly different 
in at least two pink pigmented groups, consisting of arachnoid 
mycelium in group 1 and of thick and undulating hyphae in group 
3. Conidiogenesis seen in the groups of A. pullulans (groups 1−4) 
studied was synchronous, either on rather undifferentiated short 
denticles, intercalary or terminally on hyaline (groups 1, 3, 4) or 
melanised (group 4) hyphae. This kind of conidiogenesis was also 
seen on enlarged globose conidiogenous areas that developed 
laterally on hyphae, giving rise to multiple conidia, or on enlarged 
yeast cells, which were synchronously budding from both poles. 
Synchronous conidiogenesis was sometimes difficult to observe 
due to heavy yeast proliferation. More complex conidiophore-like 
structures were noted in group 3. Another mode of conidiation seen 
in all varieties was percurrent conidiogenesis alongside the hyphae. 
Conidia formed either synchronously or percurrently, and were 
budding secondarily in all groups; therefore, the size and shape 

of conidia in Aureobasidium in general was very variable. Conidia 
in groups 1 and 4 were almost exclusively non-pigmented, while in 
group 2, as well as 1-celled non-pigmented conidia, also melanised 
1−2-celled conidia were also abundant. Pigmented conidia were 
also seen with the strain CBS 100524, the ex-neotype strain of A. 
pullulans var. aubasidani. Endoconidia were seen in only some 
strains of groups 1 and 3. 

TAXONOMY 

Aureobasidium pullulans (de Bary) G. Arnaud var. pullulans 
– Annales École Nat. Agric. Montpellier 16: 39, 1918. MycoBank 
MB101771). Fig. 5. 

Synonyms: Dematium pullulans de Bary 1884 (MB 219317; NT = 
CBS 584.75)
Aureobasidium pullulans (de Bary) Arn. var. aubasidani Yurlova in 
Yurlova & de Hoog 1997 (MB 442903; T = CBS 100524)
Candida malicola D.S. Clark & R.H. Wallace 1955 (MB 294033; T 
= CBS 701.76)
Dematoidium nigrescens Stautz 1931 (MB 272259; T = CBS 
146.30)

Cultural characteristics: Colonies on MEA/PDA at 25 ºC attaining 
about 40/30 mm diam after 7 d, appearing smooth and slimy due 
to abundant sporulation, pinkish (pinkish white, 7A2) to yellowish 
(light yellow, 3A4), reverse yellowish (pale yellow (4A3) to light 
yellow (4A4)). Black sectors composed of dark pigmented hyphae 
or conidia develop in some isolates after 14 d. Margin composed of 
arachnoid mycelium, sometimes in sectors. No aerial mycelium. 
Deviations: White aerial mycelium at the edge of cultures present 
in some strains (CBS 109800, EXF-915), some strains entirely 
filamentous (dH 12637), some develop white, setae-like mycelial 
formations in colony centre and marginal leathery mycelium (CBS 
701.76). Strain CBS 146.30 was black and filamentous already 
after 1 wk of incubation.

Microscopy: Vegetative hyphae hyaline, smooth, thin-walled, 
4–12 µm wide, transversely septate, in older cultures sometimes 
locally converted to dark-brown hyphae. Conidiogenous cells 
undifferentiated, intercalary or terminal on hyaline hyphae. Conidia 
produced synchronously in dense groups from small denticles, and 
also formed percurrently on short lateral denticles. Conidia hyaline 
to dark brown. Hyaline conidia one-celled, smooth, ellipsoidal, 
very variable in shape and size, 7.5–16 × 3.5–7 µm, often with 
an indistinct hilum. Dark brown conidia (measured in strain CBS 
100524, developed after 2 wk) 1–2 celled, one celled 10–17 × 
5–7 µm, two celled slightly constricted at septum, 14–25 × 5–11 
µm. Budding of hyaline and dark brown conidia frequently seen, 
with the secondary conidia being smaller than the primary ones. 
Conidia in old cultures transfer to globose, brownish structures of 
10–15 µm diam. Endoconidia, about 6 × 3 µm occasionally seen 
in intercalary cells. 

Maximum tolerated salt concentration: 15 % NaCl. 

Cardinal temperatures: Minimum at 4 °C, optimum at 25 °C, 
maximum at 30 °C.

Specimens examined: France, fruit of Vitis vinifera, 1974, coll. and isol. E.J. 
Hermanides-Nijhof, ex-neotype culture CBS 584.75; for additional specimens, see 
Table 1.
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Fig. 5. Aureobasidium pullulans var. pullulans. a. Liberated conidia transforming to budding cells. b. Synchronous production of conidia on a transformed conidium – yeast cell. 
c. Short hypha synchronously producing conidia. d. Dark brown conidia. e–i, m. Poorly differentiated, terminal and intercalar conidiophors performing synchronous conidiation. 
k. Immersed hypha with lateral accumulation of conidia. l. Hypha with lateral scars – conidiogenous loci. j. Endoconidia. a–c, e–g, k–m. CBS 584.75 (ex-neotype strain); d. CBS 
100524; h–i, j, m. EXF-1702B. Scale bars: a–j, l–m= 10 µm; k= 20 µm. 

Aureobasidium pullulans (de Bary) G. Arnaud var. 
melanogenum Hermanides-Nijhof – Stud. Mycol. 15: 161, 1977. 
MycoBank MB352628. Fig. 6.

Synonyms:Torula schoenii Roukhelman 1937 (MB 445735; AUT = 
CBS 123.37) (Invalid; Art. 37 ICBN)
Pullularia fermentans Wynne & Gott var. schoenii (Roukhelman) 
Wynne & Gott 1956 (MB 352450)
Aureobasidium pullulans (de Bary) G. Arnaud var. melanogenum 
Hermanides-Nijhof 1977 (MB 352628; T = CBS 105.22)

Cultural characteristics: Colonies on MEA/PDA at 25 ºC attaining 
25 mm diam after 7 d, appearing smooth and slimy due to abundant 
sporulation and EPS formation, olive brown (4F3-4F8) to black in 
centre, towards margin mustard yellow (3B6), margin yellowish 
white (3A2); reverse olive-grey (3E2) at the centre, towards margin 
dull yellow (3B4), at the margin yellowish white (3A2). Margin 
composed of arachnoid to thick undulating hyphae growing into the 
agar, sometimes sectorial. After 14 d the entire colonies are green 
to black. Aerial mycelium develops in some parts of the colonies.
Deviations: White aerial mycelium present in strain CBS 621.80.

Microscopy: Vegetative hyphae in the central part of colonies, 
dark brown, smooth to slightly roughened, thick walled, 6–12 µm 

wide, transversely septate, constricted at septa, embedded in 
EPS, disarticulating to 1–2-celled, dark brown chlamydospores, 
one celled 13–16 × 8–12 µm, two celled 17–24 × 10–12 µm. 
Vegetative hyphae at colony edge hyaline, smooth, thin-walled, 
2–10 µm wide, transversely septate, getting thicker and darker with 
age. Immersed hyphae with multiple lateral pegs. Conidiogenous 
cells undifferentiated, intercalary or terminal on hyaline hyphae, 
sometimes grown in the form of an outgrowth with three denticles. 
Conidia produced synchronously in dense groups from small 
denticles (1.0–2.5 µm long), and also formed percurrently 
alongside hyphae and on short lateral branches. Conidia hyaline 
and dark brown. Hyaline conidia one-celled, smooth, ellipsoidal, 
very variable in shape and size, 8–30 × 3.5–5 µm, often with an 
indistinct hilum. Dark brown conidia 1–2-celled, smooth, ellipsoidal 
when one celled, 7 × 6 µm, slightly constricted at septa when two 
celled, 12–20 × 4–12 µm. Unilateral and bilateral budding of hyaline 
conidia frequently seen, with the secondary conidia being smaller 
than the primary ones. Endoconidia not seen. 

Maximum tolerated salt concentration: 10 % NaCl. 

Cardinal temperatures: Minimum at 10 °C, optimum at 30 °C, 
maximum at 35 °C. 
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Specimens examined: Unknown, culture ex-type CBS 105.22 = ATCC 12536 
= CECT 2658 = IMI 062460 = NRRL Y-7469, isolated by M. Church; additional 
specimens see Table 1.

Aureobasidium pullulans (de Bary) G. Arnaud var. subglaciale 
Zalar, de Hoog & Gunde-Cimerman, var. nov. MycoBank 
MB512380. Fig. 7.

Coloniae in agaro MEA vel PDA 25 °C ad 20 mm diam post 7 dies, leves, haud 
lucidae, copiose sporulantes, roseae, reverso dilute aurantiaco; post 15 dies in medio 
roseae, marginem versus obscure brunneae; hyphae marginales superficiales latae, 
undulantes, nonnumquam sectores formantes; hyphae aeriae absentes. Hyphae 
vegetativae hyalinae, leves, tenuitunicatae, 2–10 µm latae, in coloniis vetustis 
nonnumquam hyphae fuscae, crassitunicatae, 5–9 µm latae. Conidia hyalina vel 
fusca, hyalina unicellularia, levia, ellipsoidea, forma magnitudineque variabilissima, 
5.5–28 × 2–6.5 µm, fusca 1- vel bicellularia, 8–16(–25) × 5–9 µm. Conidia saepe 
gemmantia, secundaria primariis minora; endoconidia circa 8 × 3 µm nonnumque in 
cellulis intercalaribus formata. Temperatura optima et maxima crescentiae 25 °C.

Holotype: CBS H-20186

Cultural characteristics: Colonies on MEA/PDA at 25 ºC attaining 
20 mm (10–35 mm) diam after 7 d, appearing smooth and matt due 
to abundant sporulation, pinkish (pinkish white, 7A2), reverse pale 
orange (5A3). After 14 d central areas of colonies remain pinkish, 
towards the margin becoming dark-brown (greyish brown, 5F3). 
Margin composed of thick undulating superficial and immersed 
branched hyphae, sometimes with sectors. Aerial mycelium 
absent.

Deviations: Culture EXF-2479 develops more intensively 
pigmented colonies than others, pink in centre and yellowish orange 
towards the colony margin on MEA, and golden-yellow on PDA.

Microscopy: Vegetative hyphae hyaline, smooth, thin-walled, 2–10 
µm wide, transversely septate, in older cultures locally converted to 
dark brown, thick-walled hyphae of 5–9 µm diam. Conidiogenous 
cells mostly undifferentiated, intercalary or terminal on hyaline 
hyphae, sometimes developed in clusters as conidiophore-like 
structure. Conidia produced synchronously in dense groups from 
small denticles, and also percurrently on short lateral branches. 
Conidia hyaline to dark brown. Hyaline conidia one-celled, smooth, 

Fig. 6. Aureobasidium pullulans var. melanogenum. a–c. Liberated conidia transforming to budding cells. d. Dark brown conidia. e–h. Poorly differentiated, terminal and 
intercalar conidiophors performing synchronous conidiation. i, l. Hypha with long lateral conidiogenous cells. j. Hypha with prolonged lateral pegs. k. Vegetative hyphae. m. 
Immersed hyphae with multiple lateral pegs. n. Melanized hyphae with intercalar synchronous conidiogenesis. o. Melanized hyphae / chlamydospores. a–c, e–n. CBS 105.22 
(ex-type strain); d, o. EXF-926. Scale bar: as marked on k (a–o) = 10 µm. 
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ellipsoidal, very variable in shape and size, 5.5–28 × 2–6.5 µm, 
often with an indistinct hilum. Dark conidia 1–2-celled, one celled 
8–16 ×5–9 µm, two celled 9–25 × 5.5–7.5 µm. Budding frequently 
seen, with  secondary conidia being smaller than the primary ones. 
Endoconidia, about 8 × 3 µm, sometimes present in intercalary 
cells. 

Maximum tolerated salt concentration: 10 % NaCl. 

Cardinal temperatures: Minimum at 4 °C, optimum and maximum 
at 25 °C.

Specimen examined: Norway, Spitsbergen, subglacial ice from sea water, 2003, 
coll. and isol. N. Gunde-Cimerman, Holotype CBS H-20186, culture ex-neotype 
EXF-2481 = CBS 123387; additional specimens see Table 1. 

Aureobasidium pullulans (de Bary) Arnaud var. namibiae Zalar, 
de Hoog & Gunde-Cimerman, var. nov. MycoBank MB512381. Fig. 
8.

Coloniae in agaro MEA 25 °C ad 25 mm diam post 7 dies, leves, lucidae textura 
coriacea, roseae, in medio brunneae, margine hyphis aereis albae, reverso griseo-
luteo; coloniae in agaro PDA post 7 dies ad 20 mm diam, leves, sporulatione 
copiosa lucidae, in medio aurantio-albae olivascentes, nonnumquam hyphales 
et setosae, reverso armeniaco. Hyphae aeriae absentes. Hyphae vegetativae 
hyalinae, leves, tenuitunicatae, 2–13 µm latae, in coloniis vetustis nonnumquam 
hyphae fuscae. Conidia hyalina vel fusca, hyalina unicellularia, levia, ellipsoidea, 
forma magnitudineque variabilissima, 7–17 × 3.5–7 µm, fusca 1- vel bicellularia, 
8–13(–24) × 5–9(–10) µm, saepe granulis ectoplasmaticis circumdata. Conidia 
saepe gemmantia, secundaria primariis minora; endoconidia haud visa. Temperatura 
optima crescentiae 25 °C,  et maxima 30 °C.

Holotype: CBS H-20184

Cultural characteristics: Colonies on MEA at 25 ºC attaining 25 mm 

Fig. 7. Aureobasidium pullulans var. subglaciale. a. Conidia. b–d. Budding conidia. e. Dark brown conidia. f, g. Hyphae with multiple lateral pegs, which develop into synchronous 
conidiation aparatus. h, m. Hyphae with lateral pegs. i, k. Conidiophore-like structure synchronously producing conidia. l. Endoconidia. n. Hyaline vegetative hyphae. o. 
Melanized hyphae. a–o. EXF–2481 (ex-type strain). Scale bar: as marked on a (a–o) = 10 µm.
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diam after 7 d, appearing smooth and shiny due to the leathery 
structure of colonies, pinkish (pinkish white, 7A2) with brownish 
(greyish brown, 5E3) central part, margin white (5A1), reverse 
yellowish (greyish yellow, 4B4); margin composed of superficial 
aerial mycelium. Colonies on PDA at 25 ºC attaining 20 mm diam 
after 7 d, appearing smooth and shiny due to abundant sporulation, 
orange-white (5A2) with olive-brown (4F3) centre, sometimes 
hyphal and with setae, reverse apricot (orange white, 5A2). No 
aerial mycelium.

Microscopy: Vegetative hyphae hyaline, smooth, thin-walled, 
2–13 µm wide, transversely septate, locally converted to dark 
brown, thick-walled hyphae. Conidiogenous cells undifferentiated, 
intercalary or terminal on hyaline hyphae and on larger transformed 
conidia. Conidia produced synchronously in dense groups from 
small denticles, later formed percurrently on short lateral branches. 
Conidia hyaline and dark brown. Hyaline conidia one celled, 
smooth, ellipsoidal, very variable in shape and size, 7–17 × 3.5–7.0 
µm, often with an indistinct hilum. Dark brown conidia 1-2-celled, 
one celled 8–13 × 5–9 µm, two celled 8–24 × 2–10 µm, surrounded 
by granular EP; if two-celled, constricted at the septum. Budding 
frequently seen, with secondary conidia smaller than the primary 
ones. Endoconidia not seen. 

Maximum tolerated salt concentration: 10 % NaCl.

Cardinal temperatures: Minimum at 10 °C, optimum at 25 °C and 
maximum at 30 °C.

Specimen examined: Namibia, dolomitic marble in Namib Desert, 1997, coll. and 
isol. U. Wollenzien, holotype CBS H-20184, culture ex-type CBS 147.97. 

DISCUSSION

The elongase-encoding gene (ELO) was used as phylogenetic 
marker for the first time. Southern blotting of A. pullulans genomic 
DNA did not suggest the existence of more than one copy of the 
elongase gene in the genome of A. pullulans, while this is the case 
in other fungi (Gostinčar et al. 2008); this would have diminished 
its value for routine studies. The gene provided excellent resolution 
of the Aureobasidium complex and thus could reliably be used for 
tree reconstruction. 

The anamorph genus Aureobasidium phylogenetically belongs 
to Ascomycota, order Dothideales, family Dothideaceae (Schoch 
et al. 2006). The fungi have been known since the late 19th century, 
when Viala & Boyer (1891) described A. vitis as a common coloniser 
of the sugary surface of grapes (Vitis vinifera). Type material is not 
known to be preserved. In her revision of the genus, Hermanides-
Nijhof (1977) neotypified Dematium pullulans De Bary (1884) with 
CBS 584.75, thus establishing A. pullulans as the oldest name for 

Fig. 8. Aureobasidium pullulans var. namibiae. a. Conidia. b–f. Liberated conidia transforming to budding cells. g–h. Hypha with long lateral conidiogenous cells. i. Immersed 
hyphae with multiple lateral pegs. j. Melanized hypha surrounded by EPS. k. Hyaline and dark brown conidia. a–k. CBS 147.97 (ex-type strain). Scale bar: as marked on a 
(a–k) = 10 µm.
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the type species of Aureobasidium. The genus was circumscribed 
using criteria of conidiogenesis, i.e., synchronous holoblastic 
conidium production. This feature is also known in sporodochial 
Kabatiella species forming defined leaf spots on specific host plants. 
When these fungi are cultured, the sporodochia fall apart, and the 
micromorphology becomes very similar to that of Aureobasidium 
pullulans. For this reason, Hermanides-Nijhof (1977) classified all 
Kabatiella species in Aureobasidium, even though most Kabatiella 
species have not been cultured and are only known from the 
sporodochial anamorph on the host plant. LSU sequences of the 
few species thus far available for study indeed show affinity to A. 
pullulans. 

Kabatiella zeae Narita & Y. Hirats. (Hermanides-Nijhof 1977) 
is found in isolated positions away from other aureobasidia (de 
Hoog et al. 1999, Yurlova et al. 1999). Synchronous conidiation 
is thus polyphyletic. However, in addition to molecular differences 
for some species, morphological distinctions may also be possible, 
since most Kabatiella species have sickle-shaped conidia, such 
as K. caulivora, K. harpospora (Bres. & Sacc.) Arx, K. phoradendri 
(Darling) Harvey f. umbellulariae Harvey, and K. zeae. In Kabatiella 
lini, a species clustering within A. pullulans (Fig. 2), the conidia 
have similar shape, but are slightly larger than in the var. pullulans. 
Kabatiella microsticta, K. caulivora and another, related pycnidial 
fungus, Selenophoma mahoniae deviate in all of the genes studied 
at the variety level. Thus, they might be regarded as separate 
varieties of A. pullulans, but the possibility cannot be excluded that 
unintentially the ubiquitous phyllosphere fungus A. pullulans was 
isolated instead of the pathogen. It appears likely that the plant-
invading, host-specific pathogens are consistently different from 
A. pullulans, which on host plants colonises surfaces only, but 
unambiguously identified strains are needed to prove this. 

Our multilocus analysis shows that Aureobasidium pullulans 
consists of three robust main groups, two of which have high 
statistic support in LSU and show the same topology with all of the 
genes sequenced. The ex-neotype of the species, CBS 584.75, 
is in group 1, A. pullulans var. pullulans. This group also contains 
CBS 146.30, the ex-type strain of Dematoideum nigrescens Stautz, 
CBS 701.76, the ex-type strain of Candida malicola D.S. Clark & 
R.H. Wallace, and CBS 100524, the ex-type strain of A. pullulans 
var. aubasidani Yurlova, which should thus be regarded as 
synonyms. The production of aubasidan rather than pullulan as the 
main extracellular exopolysaccharide (Yurlova & de Hoog 1997) is 
apparently strain dependent. Although the production of EPS and 
other previously described diagnostic characters for this variety 
were not evaluated in this study, we believe that used multilocus 
approach as molecular diagnostic tool would show the difference of 
var. aubasidani to other varieties. The ex-type strain of Dematoidium 
nigrescens (CBS 146.30) was the only initially darkly pigmented 
strain in group 1, which is probably due to its degeneration. The 
var. pullulans, which is newly defined, is phenetically characterised 
by rapidly expanding, pinkish cultures that can develop radial dark 
brown sectors due to the local presence of thick-walled, melanised 
hyphae. Most isolates attributed to this variety originate from 
sugary or osmotically fluctuating habitats, such as saline water 
in the salterns, tree slime flux, fruit surfaces and phyllosphere 
(Table 1). This well supported variety was obtained pan-globally 
from temperate to tropical habitats, and was also found trapped in 
Spitsbergen glaciers and in ice released from these glaciers into 
the sea water. Its distribution is wide, ranging from the Arctic to 
the Mediterranean coast. Given the small degree of diversity with 
TUB, ELO and EF1α, the taxon can be regarded as being relatively 
recent. 

Group 2, A. pullulans var. melanogenum contains CBS 105.22, 
the ex-type strain of this variety, and an authentic strain, CBS 123.37 
with the invalid description of Torula schoenii Roukhelman. Earlier 
data (Yurlova et al. 1995) suggested that this taxon cannot be 
distinguished from var. pullulans, but current sequence data show 
that the groups are strictly concordant. Cultures are characteristically 
black from the beginning. They produce an abundance of dark, 
ellipsoidal conidia, which can either originate from disarticulating 
hyphae (arthroconidia) or transfer from hyaline conidia. The hyaline 
conidia are ellipsoidal and emerge from inconspicuous scars 
alongside undifferentiated hyphae; the process of conidiogenesis 
is synchronous in addition to percurrent, the latter being identical to 
that in the anamorph genus Hormonema. The sources of isolation 
of the strains of this variety, as far as is known, are low-nutrient, 
mostly low-strength environments, such as moist metal and glass 
surfaces, showers, fountains, as well as ocean water. Only one 
strain of this variety was retrieved from a human patient, but it is 
also possible that this was a culture contaminant, since it is often 
reported in air, especially in warmer climates (Punnapayak et al. 
2003). Strains of this variety have a world-wide distribution, from 
the Arctic to the tropics. Given its marked diversity with TUB, ELO 
and EF1α, this may be an ancestral taxon, the introns having 
accumulated more mutations than var. pullulans. 

Group 3, A. pullulans var. subglaciale Zalar et al. is exclusively 
known from Kongfjorden glacial and subglacial ice and sea water. 
Its psychrotolerant nature is in line with its active metabolism under 
conditions of permanently cold in Arctic glaciers. 

Group 4 consists of a single isolate, CBS 147.97, the ex-type 
of the monotypic variety A. pullulans var. namibiae, isolated from 
marble in Namibia, Africa. The strain takes an isolated position 
with all sequenced genes, but has not drifted far away from the 
ancestral variety. 

Other related groups are 5 and 6, which are aureobasidium-
like but consistently different. Strains of these groups thus far have 
only been recovered from glacial ice in Spitsbergen. The species 
occurred with very high densities in subglacial ice in microchannels, 
and in gypsum-rich ice at high pH. During their travel through the 
glacier, these cells have been subjected to extreme variations in 
aw due to ice freezing and thawing. These conditions are highly 
selective, for which reason this entity is likely to be restricted to 
small endemic areas, such as Kongsfjorden (Skidmore et al. 2005). 
The description as novel species will be the subject of a later 
paper.

The overall phylogenetic structure of A. pullulans suggests that 
the species is strictly clonal. A possible teleomorph, Discosphaerina 
fagi, has been suggested on the basis of ITS sequence similarity 
(de Hoog et al. 2000), but this finding awaits confirmation with 
multilocus analysis and re-isolation from single ascospores. 

The varieties of Aureobasidium pullulans are markedly different 
for melanin production. This can be of biotechnological interest, 
since the organism is highly significant for its pullulan and aubasidan 
production (Yurlova & de Hoog 1997). Melanin contamination leads 
to low pullulan quality. Attempts have been made to grow non-
pigmented yeast cells, e.g. by culturing A. pullulans in a two-stage 
fermentation process in media with a special nutrient combination 
(Shabtai & Mukmenev 1995), or with melanin-deficient mutants 
(Gniewosz & Duszkiewicz-Reinhard 2008). From the present 
study, it is apparent that the use of strains of the variety pullulans 
is recommended.
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