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1.  Introduction

Recent advances in nanotechnology have brought forth a host 
of nanostructures, such as nanoparticles, nanowires (NWs), 
nanotubes and graphene, that exhibit ultrahigh mechanical 
strength (e.g. sample-wide stress  >1/10 of their ideal strengths) 
[1]. Such nanostructures are important building blocks for 
a broad spectrum of nanotechnology applications including 
energy harvesting and storage [2–4], nanoelectromechanical 
systems (NEMS) [5, 6], flexible electronics [7, 8] and stretch-
able electronics [9–11], where ultrahigh strength is of direct 
relevance. It is known that electronic band gaps change with 
elastic strain, so do phononic band gaps, thermal transport 
and other physical and chemical properties. Therefore, ultra-
high strength offers unprecedented opportunities to tune the 
functional properties of nanostructures through elastic strain 

engineering [1]. As an example, Si NWs were found to exhibit 
an enormous range of elastic strain (e.g.  >12%) [12], which is 
promising for elastic strain engineering.

In addition to the important technological applications, 
ultra-strength materials provide an excellent platform to 
study fundamental mechanical behavior at the nanoscale. It is 
known that size dependent mechanical properties and defor-
mation mechanisms arise as the characteristic dimension of 
single-crystalline nanostructures approaches 100 nm or so [13, 
14]. This has greatly motivated the mechanics of the materials 
community to investigate nanoscale mechanical behavior from 
both computational and experimental perspectives. Indeed, 
the recent rapid advance in nanoscale manipulation/mechani-
cal testing [15, 16] and in situ characterization tools such as 
electron microscopies [17, 18] has enabled real-time observa-
tion of deformation and defect dynamics. As the number of 
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atoms in these nanostructures comes increasingly within the 
reach of state-of-the-art computational modeling capabilities, 
direct comparison between nano-mechanical tests and atom-
istic simulations side by side has become closer to reality and 
holds great promise for important new discoveries in materials 
science.

Characterizing mechanical properties of individual one-
dimensional (1D) nanostructures, the focus of this review is 
still challenging because of the following requirements: (1) 
constructing appropriate tools to manipulate, position and 
align specimens, (2) applying and measuring forces with 
nano-Newton resolution, and (3) measuring local deformation 
with nanometer resolution. Existing experimental methods 
for the mechanical characterization of 1D nanostructures 
include vibration/resonance in scanning or transmission elec-
tron microscopes (SEM or TEM) [19–23], bending using an 
atomic force microscope (AFM) in different operation modes 
[24–29], tension/bending/buckling in an SEM with the aid of 
a nanomanipulator [30–35] (figure 1) as well as nanoindenta-
tion [36, 37]. Among all these methods tensile testing is the 
most straightforward one and it can measure a full spectrum 
of mechanical properties such as elasticity, plasticity and 
fracture.

However, the above in situ SEM tensile testing systems 
make it difficult to capture the effect of loading rate and not 
possible to capture the effects of temperature and environment. 
A reliable, multifunctional tensile testing apparatus becomes 
necessitated in order to further understand the mechanical 
behaviors of 1D nanostructures. MEMS consist of microm-
eter scale components but they offer nanometer displacement 
and nano-Newton force resolutions. MEMS actuators and 
sensors can be integrated on a chip [38]. As such, MEMS 
have been employed in various nanotechnology-related 
applications ranging from nanomanufacturing [39] to cell 

manipulation [40]. Similarly, MEMS could have the potential 
to impact nanomechanical characterization through controlled 
actuation, high-resolution force/displacement measurements, 
integrated multi-functions and tiny size for in situ electron 
microscopy testing. Zhu and Espinosa have developed an 
integrated nanoscale testing system using MEMS technology 
[41–44]. In the past decade, there has been extensive interest 
in developing MEMS-based instrumentation for experimental 
nanomechanics that will be reviewed in this article.

In this review, we summarize the recent advances in the 
field of mechanical characterization of 1D nanostructures 
using MEMS platforms. We start with three commonly used 
device configurations and other design considerations such as 
actuation and load sensing mechanisms, device fabrication, 
sample preparation and displacement/strain measurement. In 
section  3, representative MEMS platforms are reviewed in 
accordance with device configurations. Such platforms have 
been used for basic tensile testing, fatigue, thermomechanical 
testing, multiphysical testing, and true displacement-con-
trolled testing via feedback control. In section 4, we highlight 
several representative studies enabled by the MEMS plat-
forms to demonstrate the wide range of testing capabilities. 
Finally, some of the challenges and future directions in the 
area of MEMS-enabled nanomechanical characterization are 
discussed.

2.  Overview

In this section, we present three common device configura-
tions for tensile testing, along with typical MEMS actuation 
and sensing methods used in the testing. Next, the avail-
able microfabrication methods that can be employed to 
fabricate the testing platforms are presented, followed with 
a brief review of the manipulation methods used to mount 

Figure 1.  (a) Resonance of a nanotube in response to an electrostatic field in TEM. Reprinted with permission from [19]. Copyright 1999, 
AAAS. (b) A nanotube deflected by an AFM in the lateral force mode. Reprinted with permission from [24]. Copyright 1997, AAAS. (c) 
A nanotube mounted between two opposing AFM tips and stretched uniaxially in SEM. Reprinted with permission from [30]. Copyright 
2000, AAAS.
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nanostructures onto the MEMS devices and available meth-
ods for displacement and strain measurement. In this review, 
we limit the scope to uniaxial tensile testing, although MEMS 
devices can be readily applied for compression [44] and bend-
ing [45] testing too.

2.1.  Device configurations

Tensile test is the most unambiguous testing method to mea-
sure mechanical properties. For bulk materials a number of 
testing machines are commercially available such as those 
from MTS and Instron. The testing machines typically con-
sist of three parts: a servohydraulic (MTS) or screw-driven 
(Instron) actuator, a load cell (sensor), and a pair of grips. 
The same concept prevails at the small scale. There have been 
considerable efforts in developing instrumentation for micro/
nano-scale tensile testing. However, the methods for actua-
tion, sensing and even sample gripping are much different 
from the large-scale ones. Here we outline three typical device 
configurations for tensile testing: (1) without a direct load sen-
sor, (2) with a direct load sensor and an external actuator, and 
(3) with a direct load sensor and an on-chip actuator, which 
comprises a complete material testing system.

Figures 2(a) and (b) show a schematic of the first device 
configuration without a direct load sensor. The arrow repre-
sents an actuator (e.g. a comb drive actuator or a compliant 
thermal actuator). A specimen is positioned between the actu-
ator and a fixed post. Before the specimen is positioned (or 
after it is failed), the actuator displacement δ0 is recorded as a 
function of the applied voltage. During the testing, another set 
of displacement δ (=L′  −  L), which should be smaller than δ0 
due to the finite stiffness of the specimen, is recorded as a func-
tion of the same applied voltage. Both specimen displacement 

(elongation) and load (thus strain and stress) can be measured 
based on δ and δ0 that can be obtained from images or other 
methods—the elongation is equal to δ, while the load can be 
calculated based on δ and δ0 provided the stiffness (or spring 
constant) KA of the actuator is known, i.e. F = KA  ×  (δ0  −  δ). 
A similar concept has been used in nanoindenters that, of 
course, operate under compression. For example, a constant 
load is generated by a magnetic coil under a constant applied 
voltage no matter how much the nanoindenter travels. Without 
a substrate, there is an indenter displacement at this constant 
load. With a substrate, the indenter displacement reduces. In 
both cases the indenter displacement is recorded by a capaci-
tive sensor or an optical sensor similar to the case of AFM. 
The load is equal to the displacement difference multiplied by 
the stiffness of the actuator. Indeed, a nanoindenter has been 
used in conjunction with a MEMS structure for nanomechani-
cal testing, as will be discussed later. A comb drive actuator 
is very similar to the nanoindenter, in that they both provide 
a constant load.

Figures 2(c) and (d) show the second device configuration 
with a direct load sensor and an external actuator. The device 
consists of a load sensor supported by spring leafs and a grip-
ping pad. An external actuator can be either hooked [46] or 
glued [47] to the gripping pad to impose the displacement, 
while a specimen is positioned between the load sensor and 
the gripping pad. The load applied on the specimen is equal to 
that on the load sensor; i.e. F = KS  ×  δ, where KS is the stiff-
ness of the load sensor and δ is the load sensor displacement.

Figures 2(e) and (f) show the third device configuration 
that consists of both an on-chip load sensor and actuator. The 
load and displacement of the specimen are measured similar 
to those discussed for the second device configuration. The 
major difference is involvement of an on-chip actuator—both 

Figure 2.  Three typical configurations for uniaxial tension tests. (a, b), (c, d) and (e, f) correspond to the 1st, 2nd and 3rd device 
configuration defined in section 2.1, respectively. (a, c, e) and (b, d, f) show devices before and after deformation, respectively.
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comb drive actuators [43, 48] and thermal actuators [41] have 
been used. Generally speaking, comb drive actuators can pro-
vide a force-control loading condition while thermal actuators 
provide displacement control assuming the comb drive has 
low stiffness while the thermal actuator has large stiffness. 
Displacement control and force control are the two common 
options available for large-scale machines.

For the first configuration, the advantages include: 1) a 
simple structure and 2) that one end of the specimen is fixed, 
which eliminates the rigid body motion due to the sensor 
displacement and could be helpful for in situ observation. 
The main limitation is that it does not provide real-time load 
measurement and always requires calibration of the actuator 
without specimens. For the second configuration, the device 
structure is also simple. A major advantage is that the external 
actuators (e.g. piezo-actuators) are commercially available. 
However, the limitations include a tedious assembly process 
and the possible misalignment in both in-plane and out-of-
plane directions. Although innovative gripping methods have 
been devised to improve the in-plane alignment [49], out-of-
plane alignment is still challenging. The third configuration 
represents a complete testing system, analogous to large-
scale material testing systems. While reduced, misalignment 
issues could still exist. For instance, residual stress/stress 
gradient in the MEMS structures could cause out-of-plane 
deformation leading to an uneven height between the actua-
tor and the load sensor, especially in thin MEMS structures 
(e.g. those involving polysilicon films), see figure 7 in [44] 
as an example. In addition, misalignment of the specimens 
from the axial direction often occurs, which is not a signifi-
cant concern for NWs or nanotubes when the misalignment 
is small (e.g. 5° misalignment caused  <1% error in Young’s 
modulus of Pd NWs [42]) but could be for low aspect-ratio 
specimens [50]. For the third configuration, the system can be 
fully addressed electronically, which offers an unprecedented 
opportunity for in situ mechanical testing [42]. Besides, the 
electronic load sensor must be calibrated accurately, which 
might not be trivial.

2.2.  MEMS actuators and sensors

A number of actuation mechanisms have been implemented 
in MEMS including electrostatic actuation, thermal actuation, 
piezoelectric actuation, and shape memory alloy actuation 
[51, 52], among which the former two have been widely used 
for MEMS-based mechanical testing due to their compatibil-
ity with conventional microfabrication techniques.

An electrostatic actuator is based on the attraction of two 
oppositely charged plates. In particular, a comb drive type 
electrostatic actuator makes use of a large number of inter-
digitated ‘fingers’ that are actuated by applying a voltage 
between them [53, 54] (figure 3(a)). A comb drive actuator 
can generate a relatively large travel range (~10 µm or more). 
A distinctive feature of the comb drive actuator is that the 
electrostatic force is nearly constant over the travel range at 
a given voltage. The comb drive actuator has been widely 
used in the MEMS field. However, as an actuator an undesir-
able feature for mechanical testing is that it requires a large 

actuation voltage (often  >50 V), which might cause instability 
(pull-in) of the comb structure.

A thermal actuator relies on thermal expansion of the 
structural materials. Thermal actuators in a variety of config-
urations have been exploited for achieving in-plane motion, 
including U-shaped [55], V-shaped [41, 56] and Z-shaped 
actuators [57, 58]. For these actuators, when an electric 
current passes across the freestanding beams, Joule heat-
ing results in thermal expansion, leading to linear forward 
motion in the cases of V-shaped (figure 3(b)) and Z-shaped 
(figure 3(c)) actuators. A V-shaped actuator is very stiff and 
can provide a quite large force (~10 mN) at a relatively low 
actuation voltage, while a Z-shaped actuator is much more 
compliant and could be used simultaneously as a sensor. Both 
types of thermal actuators are typically limited in terms of 
travel range (~1–2 µm). A critical challenge for using ther-
mal actuators in nanomechanical testing is the undesired 
heating of the specimen. To mitigate this problem, Zhu et al 
introduced heat sink structures to dissipate heat and hence 
decrease the temperature rise at the specimen region to below 
5 °C [41, 59], without adding complexity in the fabrication 
process (e.g. extra steps to introduce a heat isolation structure 
between the actuator and the specimen). In vacuum the more 
heat sink beams between the thermal actuator and the speci-
men, the more heat dissipation there is [41, 59]. In air a larger 
distance between the actuator and the specimen also helps 
(even without the heat sink beams) due to the heat dissipa-
tion to the air [60]. Abbas et al designed a cascaded thermal 

Figure 3.  Schematics of common in-plane mechanical actuators. 
(a) Comb drive actuator, (b) V-shaped thermal actuator, (c) 
Z-shaped thermal actuator. The black and grey colors represent 
anchors and moveable parts, respectively.

J. Micromech. Microeng. 25 (2015) 093001



Topical Review

5

actuator that was able to provide  >10 µm displacement (at 
reduced stiffness) while the temperature near the specimen 
could remain as low as 50 °C [61].

A load sensor typically consists of a flexible member, so 
the load is measured as the sensor displacement multiplied 
by the sensor stiffness. Displacement sensing mechanisms 
commonly used in MEMS include capacitive sensing, piezore-
sistive sensing, piezoelectric sensing and tunneling sensing 
[51, 52]; the former two have been used for MEMS-based 
mechanical testing, again due to their compatibility with con-
ventional microfabrication techniques.

Capacitive sensing is perhaps the most popular sens-
ing mechanism in MEMS with commercial chips available 
for data acquisition. In principle any structure consisting of 
two plates separated by a gap is a capacitor. It is very dif-
ficult to measure the absolute capacitance in MEMS and the 
capacitance change does not readily correlate with the sensor 
displacement due to the presence of parasitic capacitances and 
stray capacitances. So typically a differential capacitive sen-
sor is used in a MEMS testing platform. Capacitive sensors 
are typically insensitive to temperature. For these reasons, dif-
ferential capacitive sensors have been widely used in many 
MEMS devices such as accelerometers [61]. Parasitic capaci-
tances can be mitigated by a commercially available sensing 
module (MS3110, MicroSensors) [42, 63, 64]. In addition, 
it is suggested that the MEMS package is placed as close 
as possible to the sensing module in order to diminish stray 
capacitance and electromagnetic interference [42].

The piezoresistive effect is a change in the electric resistiv-
ity of a semiconductor when mechanical strain is applied. The 
gauge factor (the ratio between relative resistance change and 
strain) can be as large as 200 for diffused semiconductors. Si 
is a common piezoresistive material including single-crystal-
line and polycrystalline Si, therefore piezoresistive sensing is 
widely used in MEMS devices [65]. Piezoresistive sensors are 
typically sensitive to temperature, although methods like the 
Wheatstone bridge can be used to cancel out the temperature 
effect.

2.3.  Fabrication

In general, silicon-based microfabrication methods include 
surface micromachining and bulk micromachining [51]. 
Surface micromachining is based on the deposition and etch-
ing of different structural layers on top of the substrate. To 
obtain freestanding structures, sacrificial layers that can be 
etched later to release the structural layers are required. By 
contrast, in bulk micromachining a Si substrate (wafer) is 
selectively etched to produce freestanding structures. Usually 
the structure thickness is a few micrometers in surface micro-
machining, and tens to hundreds of micrometers in bulk 
micromachining. A special bulk micromachining method 
involves silicon-on-insulator (SOI) wafers, where an insulator 
layer (i.e. silicon dioxide) is embedded between a structural 
layer of single-crystalline Si (with thicknesses ranging from 
submicrometer to 50 µm) and a Si substrate.

To design a MEMS testing platform, two important fac-
tors should be considered: system stability, and load sensor 

sensitivity. The in-plane bending stiffness of the actuator 
should be large compared to the specimen stiffness in order to 
keep the system stable. The out-of-plane bending stiffness of 
the entire device should be large to prevent out-of-plane defor-
mation as well as possible stiction (adhesion) to the substrate. 
For these reasons a relatively large device thickness is pre-
ferred if possible. On the other hand, a small in-plane bending 
stiffness of the load sensor is desired to achieve a high load 
resolution, which could be achieved by tuning the width of 
the sensing beams.

A number of customized fabrication processes have been 
developed to fabricate MEMS testing platforms. Saif and 
McDonald used a single crystal silicon reactive etching and 
metallization (SCREAM) process to fabricate a large-scale 
comb drive actuator that can generate force in the order of 
a milli-Newton [66]. Deep reactive ion etching (DRIE) of a 
Si substrate was used to create structures as deep as 12 µm. 
Haque and Saif developed a process that combines both sur-
face micromaching and bulk micromachining to fabricate a 
platform including a 100 µm thick device structure and a 
100 nm thick freestanding aluminum film [49]. Corigliano et 
al used a thick epipoly layer for microactuators and acceler-
ometers (ThELMA) process developed at STMicroelectronics 
to fabricate a platform including a comb drive actuator [67] or 
thermal actuator [68] (with a thickness of 15 µm) to test poly-
crystalline Si specimens. Lu et al used Si (130 µm thick) on 
a glass substrate made by wafer bonding to achieve a device 
with large out-of-plane rigidity [69]. Naraghi et al fabricated 
a MEMS platform [47, 70] using surface micromachining fol-
lowing a process previously developed by Kahn et al [54]. 
The device layer was made of polycrystalline Si with a thick-
ness of 5.2 µm. Kiuchi et al developed a comb drive based 
platform using a SOI wafer with a 35 µm thick Si device layer, 
including patterning of the Si layer to define the device and 
backside etching [71]. A number of MEMS platforms have 
been fabricated using similar SOI processes [61, 64, 72–75]. 
Of special note is that Zhang et al [76] fabricated a MEMS 
platform also using a SOI wafer, but with a patterned SiO2 
insulator layer beneath the structural layer, in order to achieve 
electrical isolation between the sample area and the actuator 
and the load sensor.

Commercially available MEMS fabrication processes have 
been used to fabricate MEMS testing platforms. Two well-
known processes are multi-user MEMS processes (MUMPs) at 
MEMSCAP (Durham, NC) and Sandia ultra-planar, multi-level 
MEMS technology (SUMMiT) at Sandia National Labs. These 
processes typically involve multiple structural layers that offer 
design flexibility to the users. MEMSCAP offers three types 
of processes that could be used to fabricate MEMS testing 
platforms, Poly-MUMPs, SOI-MUMPs and MUMPs-PLUS. 
Poly-MUMPs provides two structural layers of polycrystalline 
Si (2 and 1.5 µm thick, respectively) using surface microma-
chining [43, 77]. SOI-MUMPs provides one structural layer 
(10 or 25 µm thick) using the SOI technology [61, 78, 79]. Zhu 
and Espinosa collaborated with MEMSCAP to develop the 
first MUMPs-PLUS process based on Poly-MUMPs, where a 
backside window required for in situ TEM was made possible 
[42, 44]. The MUMPs-PLUS process based on SOI-MUMPs 

J. Micromech. Microeng. 25 (2015) 093001



Topical Review

6

was recently developed to keep part of the silicon oxide layer 
beneath the structural Si layer, which can serve as electrical 
isolation between the structures [80]. de Boer and co-workers 
used the SUMMiT process to fabricated MEMS platforms 
[81–83]. These commercial processes produce MEMS devices 
with high yield, reproducibility, and design flexibility, signifi-
cantly facilitating the advance of the field.

2.4.  Sample preparation

A key step in nanoscale mechanical testing is to position spec-
imens at desired locations with nanometer resolution and high 
throughput. For tensile testing, this step becomes even more 
challenging compared to other types of testing methods as 
the specimens must be freestanding, aligned with the loading 
direction, and clamped at both ends. Methods for the manipu-
lation and positioning of nanostructures onto MEMS devices 
mainly include ‘pick-and-place’ by nano-manipulation [42] 
and dielectrophoresis [84, 85] in addition to co-fabrication 
and direct synthesis. Here we briefly discuss these sample 
preparation methods, while more details can be found else-
where [15, 86].

A widely used method for mounting nanostructures onto 
MEMS devices is ‘pick-and-place’ by nanomanipulation, 
introduced by Zhu and Espinosa [42]. In this method, a 
nanomanipulator is employed to pick and transfer a desired 
sample from the substrate to a target location inside a SEM 
or a dual-beam (SEM/FIB). Electron beam induced deposi-
tion (EBID) of residual hydrocarbon in a SEM chamber or a 
precursor gas (e.g. platinum), is commonly used for clamp-
ing the samples. This method has been used successfully for 
a wide range of nano-structures [12, 76, 87–91]. Admittedly 
this method is tedious. The carbon- or platinum-containing 
materials could form amorphous contamination on the sam-
ple surface. There is also concern about whether the clamping 
mechanism is sufficiently rigid and reproducible. Gianola 
and co-workers recently reported artifacts in the strain meas-
urement directly between the clamps due to compliance and 
permanent deformation of the clamps [92]. Zhu and co-
workers also found the measured Young’s modulus of a NW 
(using the resonance method) depends on the clamping. But 
they pointed out that the true Young’s modulus can be meas-
ured if the critical clamp size is reached. The critical clamp 
size is a function of the NW diameter and modulus ratio of 
the clamp material and the NW. Note that their work was for 
resonance (or bending). Further investigation on the effect of 
clamping on mechanical behavior measured under tension is 
warranted. Meanwhile, displacement markers deposited along 
the NW length have been used for local displacement meas-
urement [91–93]. To alleviate the issues of EBID, adhesives 
(e.g. epoxy) have been used to clamp polymer nanofibers 
[70], CNTs [94] and Au nanobeams [95]. With adhesives, 
manipulating an individual specimen can only be done in air 
under an optical microscope, which might limit this method to 
relatively large specimen sizes. Compliance of the adhesives 
could also be of potential concern.

Dielectrophoresis has been used to mount CNTs [84] and 
GaN NWs [85] onto MEMS devices. While this method is 

more scalable than the ‘pick-and-place’ one, the yield is 
typically low and contamination during the process is quite 
common.

Directed synthesis is a promising method that could poten-
tially eliminate the issues with the ‘pick-and-place’ approach. 
The boundary conditions are supposed to be robust. Mass 
production that avoids the tedious manipulation process could 
be possible. However, so far only limited materials have been 
synthesized, including Si NWs [96] and Ge NWs [97] between 
microfabricated Si posts. In addition, no direct synthesis into 
movable MEMS devices has been reported. Co-fabrication is 
another method, while the materials that can be co-fabricated 
are typically limited. C60 NWs [74], Au NWs [75], and Pt 
ultra-thin films [61] have been successfully co-fabricated with 
MEMS devices for in situ tensile testing.

2.5.  Displacement/strain measurement

Accurate and non-contact displacement/strain measure-
ment is critical in the mechanical testing of nanostructures. 
The simplest method is to compare images of two markers 
on the specimen before and after the deformation. For 1D 
nanostructures, the markers can be made by EBID of carbon 
or platinum on the specimen surface [93]. The gap between 
the actuator and the load sensor can also be used to measure 
specimen displacement without the local markers, provided 
that there is no sliding between the specimen and the MEMS 
device. Since nanomechanical testing is typically conducted 
inside SEM or TEM, high-resolution images of the specimen 
can be readily obtained. The displacement resolution can be 
as high as half a pixel.

The manual operation of image correlation, however, can 
be tedious. In order to increase the yield as well as improve 
the resolution, a digital image correlation (DIC) algorithm 
can be used. DIC is a method based on comparing images 
of an area with random features on the specimen before and 
after the deformation. This method has been widely used for 
measuring displacement/strain using optical images [98–100] 
and recently extended to SEM images [101–103]. Correction 
schemes have been developed to account for issues like spatial 
distortion, time-varying distortion (drift distortion) and ran-
dom step changes (image shift) in SEM images. In addition, 
a high beam current and long dwell time were recommended 
to minimize inherent noise of the electron beam [104]. The 
recommendations might extend from the microscale to the 
nanocale with the caution that a high electron beam could 
introduce radiation damage to nanostructures.

Naraghi et al obtained the specimen displacement and strain 
by measuring the displacements of the MEMS structures (not 
directly of the specimen) using DIC of optical images [105]. 
FIB milling was used to introduce the random features on the 
otherwise smooth surface of the MEMS structures. Yilmaz 
and Kysar used the same DIC method but with SEM images 
[75]. Gianola et al applied DIC directly on a single NW, where 
the natural contrast along the length of the NW, presumably 
from a carbonaceous layer that had formed as a result of SEM 
imaging, was used as the random features [106]. In this case, 
DIC can provide displacement/strain information along the 
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entire NW, which could be useful to indicate if the strain is 
uniform or there exists localized necks or slip lines. The accu-
racy of DIC can reach 1/8 of a pixel or better.

Both methods above require a series of images capturing 
the specimen deformation. For the in situ SEM/TEM test-
ing, microscopy imaging at low magnification is needed to 
obtain the specimen displacement and sometimes the load, 
which might sacrifice the opportunity to observe deformation 
mechanisms at high magnification or at least requires switch-
ing between the magnifications and related electron beam 
conditions. The imaging rate is generally low. And it is time-
consuming to analyze a large number of images for image 
correlation. In some other cases, ex situ testing is required 
or in situ testing is unnecessary, e.g. to study fatigue behav-
ior under a controlled environment. Therefore, the electronic 
readout of the displacement/strain without the need of imag-
ing becomes desirable. Espinosa et al first developed a MEMS 
platform with two capacitive sensors [44]; the difference of 
the displacements measured by the two sensors is the speci-
men displacement. Pierron and co-workers implemented such 
a two-sensor scheme to study Ni nanobeams [63] and this was 
later applied on fatigue behavior study of nanostructures, both 
in situ and ex situ [95].

3.  Mems testing platforms

In this section, MEMS testing platforms for basic tensile testing 
will be reviewed according to the three device configurations 
aforementioned, followed with those for more advanced test-
ing such as fatigue testing and multiphysical testing. For the 
basic tensile testing, recent efforts on feedback control of the 
load sensor in order to achieve true displacement control will 
be presented. Only a few representative platforms can be dis-
cussed in this section, but other platforms are summarized in 
table 1. While MEMS have been used to test micro- or sub-
micro-scale specimens [81, 107], this review is focused on 
nanoscale specimens. A review on microscale characteriza-
tion can be found in [108].

3.1.  Platforms for basic tensile testing

3.1.1.  First configuration.  Using the first device configuration, 
Lu et al developed a MEMS platform consisting of a custom-
made thermal actuator [69]. The platform was used to test tem-
plate carbon nanotubes that were mounted onto the platform 
using dielectrophoresis [109]. Kiuchi et al [71] developed a 
MEMS platform consisting of a comb drive actuator (1000–
5000 pairs of combs) using the SOI process. A unique feature 
of this platform is a cantilever that serves as an amplification 
system for measuring the tensile displacement of the speci-
men. The amplification system was able to magnify the actua-
tor displacement by over 90 times. Using optical microscopy, 
a resolution of 30 nm in the cantilever deflection was acquired, 
translating to 0.29 nm in the actuator displacement. Carbon 
NWs directly synthesized on the platform by FIB-assisted 
chemical vapor deposition using phenanthrene (C14H10) were 
tested. Brown et al [77] built a MEMS platform consisting of 

a V-shaped thermal actuator using the Poly-MUMPS process. 
The specimen displacement was measured from SEM images. 
Loading and unloading behaviors of carbon nanofibers [77] 
and gallium nitride NWs [85] were measured inside SEM. 
Both pick-and-place and dielectrophoresis methods were used 
for mounting the specimens.

Of particular note is the ‘push-to-pull’ concept that has 
been applied to the MEMS platforms. Such a platform typi-
cally involves an existing transducer (e.g. nanoindenter) and a 
micro-fabricated structure that can convert compression from 
the transducer to tension on the nanostructure. Hysitron devel-
oped a push-to-pull platform that can be used together with 
their TEM nanoindentation holder to perform in situ TEM 
tensile testing [110]. As shown in figure  4(a), the platform 
consists of a fixed part and a freestanding part that is sup-
ported by four folded beams. While an indenter head pushes 
the freestanding part from the left-hand side, the gap between 
the fixed and freestanding parts expands and applies a tensile 
load to the specimen that is bridged across the gap. Guo et al 
employed this platform to study phase transition of VO2 NWs 
by in situ TEM [91, 111]. Lu et al developed another type of 
push-to-pull MEMS platform that coverts compression from 
a nano-indenter to tension in the orthogonal direction inside 
SEM and TEM, as shown in figure  4(b) [112]. This device 
further developed the concept of the Theta-like specimen 
[113, 114] that was used for mechanical testing of micro-fab-
ricated small-scale structures. This platform has been used to 
perform in situ SEM and TEM tensile testing of metal NWs 
[115, 116] and carbon nanotubes [94]. For both push-to-pull 
platforms, a calibration test on the platform without the speci-
men is necessary. The load on the specimen is obtained from 
the nanoindenter readout by comparing the cases with and 
without the specimen, providing that the structural response 
(e.g. stiffness) of the platform is known; the specimen elonga-
tion is measured by SEM or TEM imaging. For accurate load 
measurement, the alignment between the nanoindenter and 
the platform is critical.

3.1.2.  Second configuration.  Using the second device con-
figuration, Naraghi et al have developed a MEMS platform 
that is actuated by an external piezoelectric actuator [47], see 
figure 5(a). The platform includes a leaf-spring load sensor, 
a gripping pad and a gap in between to mount the specimen. 
A tipless AFM cantilever connects the three-axis piezo-actu-
ator and the gripping pad. Both load and elongation of the 
specimen were obtained from optical images of the MEMS 
platform using DIC. As illustrated in figure 5(b), the displace-
ments were measured by tracing rigid-body motions of three 
different regions in the image—Region 1 represents the device 
substrate, Region 2 the load sensor, and Region 3 the grip 
where the AFM cantilever is attached (note here the loading 
direction is towards the left side). The specimen elongation 
was recorded as U2–U3, while the load on the specimen was 
equal to the load sensor displacement (U2  −  U1) multiplied 
by the sensor stiffness. The displacement resolution using this 
method was 1/8 of a pixel, equivalent to 50 nm or better (from 
optical images). Electrospun polyacrylonitrile (PAN) nanofi-
bers were tested using this platform.
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Haque and Saif introduced a MEMS platform to character-
ize nanoscale thin films inside SEM and TEM [49, 117, 118]. 
The platform was actuated by an external piezo-actuator in the 
‘pulling’ direction. A U-shaped structure was co-fabricated in 
the platform to help mitigate the misalignment between the 

actuator and the specimen. Later Desai and Haque developed 
a platform using the push-to-pull mechanism, with an inde-
pendent load sensor, to study 1D nanostructures, as shown in 
figure 5(c). When the platform is pushed by an external piezo-
actuator, the specimen across the movable jaw and fixed jaw 

Figure 4.  (a) SEM image of the push-to-pull platform by Hysitron for in situ TEM testing. A nanoidenter head pushes the movable part 
from the left side. Reprinted with permission from [91]. Copyright 2011, American Chemical Society. (b) SEM image of the push-to-
pull platform by Lou and co-workers. A nanoidenter header pushes from the top. Reprinted with permission from [112]. Copyright 2010, 
Springer.

Figure 5.  (a) The MEMS platform consisting of a loadcell, actuated by an external actuator for nanofiber testing. (b) DIC displacement 
measurement. (a) and (b) Reprinted with permission from [70] and [47]. Copyright 2007, AIP Publishing LLC. (c) The push-to-pull MEMS 
platform by Haque and co-workers. An external piezo-actuator pushes from the left side [119].
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is stretched. The authors introduced an interesting design that 
is based on buckling of sensing beams (columns). The load 
on the specimen is the difference of the forces on the longer 
columns and shorter columns, while the specimen elonga-
tion is also related to the lateral displacement of the buckled 
beams. The lateral displacement of a sensing beam (1000, 2 
and 10 μm in length, width and thickness, respectively), when 
buckled, is about 40 times larger than the specimen elonga-
tion. The large amplification makes it possible for an optical 
microscope to measure specimen elongation and the load on 
the specimen. Using this device, ZnO NWs [119] and pyro-
lysed poly-furfuryl alcohol nanofibers [46] were tested.

3.1.3. Third configuration.  Using the third device configura-
tion, Zhu and Espinosa have developed a MEMS platform 
that includes an on-chip actuator and an electronic load sen-
sor with a gap in between [42]. Two types of MEMS actua-
tors were used, a thermal actuator for displacement control 
as shown in figure 6(a) and a comb drive actuator for force 
control as shown in figure  6(b). A major advance in their 
work was the introduction of a capacitance load sensor that 
measures displacement electronically, based on differen-
tial capacitive sensing rather than microscope imaging. The 
MEMS platforms were fabricated using Poly-MUMPs and 
MUMPs-PLUS for the in situ SEM and TEM testing, respec-
tively. Since then, a large number of MEMS platforms using 

this configuration have been reported. For instance, Cheng et 
al used the same design but fabricated a platform using SOI-
MUMPs to study mechanical properties of SiC [79] and Ag 
NWs [93]. Steighner et al fabricated a platform that includes a 
V-shaped thermal actuator and a capacitive load sensor using 
SOI-MUMPs, as shown in figure 6(c). The platform has been 
used for in situ SEM tensile testing of Si NWs [78].

Figure 6(d) shows a MEMS platform developed by Zhang 
et al, that consists of a comb drive actuator and a simply 
folded beam that serves as the load sensor [90]. A three-beam 
structure, as shown in the inset of figure 6(d), was fabricated 
near the specimen gap to capture specimen elongation and 
load sensor displacement in one image. Cobalt [90] and Si 
NWs [120] were tested using this platform. Chen et al has 
reported a platform that employed a similar structure for the 
mechanical testing of Pd NWs [89]. The platform consists 
of a V-shaped thermal actuator, a load sensor comprised of 
folded beams, and a comb structure adjacent to the sample 
that is attached to the platform and the substrate (similar to 
the three-beam structure mentioned above). This platform was 
developed as part of the Sandia Discovery Platforms.

3.2.  Platforms for fatigue testing

Pierron and co-workers have developed a MEMS testing 
platform that consists of two separated capacitive sensors 

Figure 6.  A MEMS platform including a thermal actuator (a) or comb drive actuator (b), a capacitive load sensor and a specimen in 
between (fabricated by Poly-MUMPs) [43]. (c) A platform consisting of a thermal actuator, a specimen gap, and a capacitive load sensor 
(fabricated by SOI-MUMPs). Reprinted with permission from [156]. Copyright 2013, AIP Publishing LLC. (d) A platform including 
a comb drive actuator and a beam load sensor. Reprinted with permission from [90]. Inset shows a magnified view of the three-beam 
structure, which is attached to the device in the boxed area. Copyright 2009, IOP Publishing.
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to record both the specimen displacement and load [63, 95]. 
Since high-resolution images are not mandatory for strain 
measurement in this case, the platform can be used for ex situ 
experiments that can study environmental effects in air as an 
example. As shown in figure 7, the MEMS platform includes 
a V-shaped thermal actuator, a heat sink, a specimen gap, and 
two capacitive sensors (one on each side of the specimen gap). 
The load can be acquired from the capacitance change in CS2, 
while the specimen displacement is extracted from the dif-
ference between CS1 and CS2. The area circled by the grey 
rectangles in figure 7 shows the electrical isolation between 
thermal actuator, and CS1 and CS2 using an electrically insu-
lating epoxy, which avoids electrical interference between the 
actuator and sensors. The platform has been used to perform 
fatigue test of Au ultrathin films (nanobeams) [95].

3.3.  Platforms for thermomechanical testing

1D nanostructures have been demonstrated as the building 
blocks of next-generation electronics and sensors. For device 
applications it is inevitable for nanostructures to experience 
different temperatures. Thus, it is of relevance to character-
ize their thermomechanical behavior. Chang and Zhu have 
recently developed a MEMS thermomechanical platform 
with an on-chip heater for the in situ mechanical testing of 

1D nanostructures from room temperature to 600 K [121]. The 
MEMS platform consists of a comb drive actuator, a capaci-
tive load sensor, a specimen gap, and a heater based on Joule 
heating in close proximity to the specimen gap, as shown in 
figure  8(a). The entire platform is symmetric to ensure the 
same temperature on both sides of the specimen to avoid tem-
perature gradient and heat flow through the specimen; note 
that the capacitive sensor is also in the form of a comb drive, 
identical in geometry to the comb drive actuator. A fully 3D 
multiphysics simulation was used to predict the temperature 
distribution in both air and vacuum environments. The temper-
ature distribution in air was measured by Raman spectroscopy 
and agreed well with the simulation result. The heater consists 
of eight Z-shaped beams, whose dimensions were carefully 
designed in order to purposely compensate the thermal expan-
sion of the long axial shuttles of the actuator and sensor during 
heating. The mechanical properties of single-crystalline Si 
NWs were tested inside a SEM at different temperatures to 
investigate their BDT behavior [121].

Chen et al integrated their MEMS platform inside a vac-
uum cryostat including a heater, a cooling channel with liquid 
nitrogen circulation and a PID temperature controller [122]. 
The vacuum chamber has a fused silica window on top so 
that the MEMS platform inside can be viewed by an optical 
microscope. The experimental setup is shown schematically 
in figure 8(b). Their setup is capable of achieving a tempera-
ture range from 77 to 475 K, with the largest 0.035 K min−1 
drift. Defect-free  <1 1 0 >  Pd NWs were tested to demonstrate 
the capability of the setup. A temperature dependent stress-
strain behavior was found in these Pd NWs.

Kang and Saif developed a novel MEMS platform for in 
situ uniaxial test of micro/nanoscale samples at high tempera-
ture [123]. Fabricated out of SiC, this platform was able to 
sustain temperatures up to 700 °C, which is much higher than 
those made of Si. Based on the design by Haque and Saif ear-
lier [49], a Joule heating mechanism and a local bi-metal type 
temperature sensor were incorporated for heating and tem-
perature measurement, respectively, as shown in figure 8(c). It 
is of note that microfabricated heaters have been used in ther-
momechanical testing platforms for microscale films [124].

3.4.  Platforms for multiphysical testing

 It is of fundamental and technological importance to understand 
the multiphysical coupling of nanostructures. Of particu-
lar interest to the mechanics community is how mechanical 
strain can alter other physical properties including charge car-
rier transport and phonon transport among others—so-called 
elastic strain engineering. Nanostructures typically exhibit 
ultrahigh mechanical strength, thus offer unprecedentedly 
large room for elastic strain engineering. Bernal et al devel-
oped a MEMS platform using MUMPs-PLUS to characterize 
electromechanical coupling of NWs, by integrating four-point 
electric measurement and tensile loading [125]. Based on the 
original design that consists of a thermal actuator, a specimen 
gap and a capacity load sensor, four conductive support beams 
were added to form electrical paths to the interconnects on the 
device shuttles where the specimen was positioned, as shown 

Figure 7.  (a) SEM image of a MEMS platform for the fatigue 
test that consists of a thermal actuator, a nanospecimen gap (NG), 
and two capacitive sensors (one on each side of the specimen gap. 
Reprinted with permission from [95]. (b) Corresponding schematic, 
with a description of its components and their displacements (e.g. 
XA: displacement of thermal actuator). Copyright 2013, Royal 
Society of Chemistry.
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in figures 9(a) and (b). Penta-twinned Ag NWs and Si NWs 
were tested as representatives of metallic and semiconductor 
NWs, respectively.

Zhang et al [76] fabricated an electromechanical MEMS 
platform based on the standard SOI process, but with a SiO2 

layer beneath the structural layer for insulation, as shown in fig-
ures 9(c) and (d). The piezoresistivity of Si NWs was reported. 
Kiuchi et al fabricated an electromechanical MEMS platform 
based on their previous mechanical platform [126]. An external 
Kelvin bridge method was used for resistance measurement.

Figure 8.  (a) SEM image of a MEMS thermomechanical testing platform including an on-chip heater based on Joule heating [121]. (b) 
Schematic of the vacuum cryostat system for temperature control. Reprinted with permission from [122]. Copyright 2014, AIP Publishing 
LLC. (c) Schematic of a MEMS thermomechanical platform made of SiC including a co-fabricated temperature sensor. Reprinted with 
permission from [123]. Copyright 2011, IOP Publishing.

Figure 9.  (a) SEM image of a MEMS platform with four-point electric measurement of a single NW. (b) Interconnects sit on the silicon 
nitride shuttle-provided electrical connection (magnified view of the box in panel (a)). Reprinted with permission from [125]. Copyright 
2010, John Wiley and Sons. (c) Schematic of a MEMS platform with two-point electrical measurement. (d) 3D schematic of the platform 
showing the buried oxide layer beneath the device serving as the mechanical connection and electrical isolation. Reprinted with permission 
from [76]. Copyright 2011, IEEE.

J. Micromech. Microeng. 25 (2015) 093001
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Murphy et al have studied thermal conductivity of Si NWs 
as a function of tensile strain [127]. While the MEMS plat-
form was used to apply tensile strain to the specimen, Raman 
spectroscopy was used to measure its thermal conductiv-
ity. Using photoluminescence and Raman spectroscopy, the 
optomechanical behavior of direct-bandgap NWs has been 
investigated [97, 128, 129]. Of note is that most MEMS-based 
in situ testing has been performed inside SEM or TEM. The 
integration of MEMS platforms with other types of micros-
copy or spectroscopy could offer exciting opportunities for 
multiphysical testing of nanostructures especially strain 
engineering.

3.5.  Platforms with feedback control

One drawback of all of the MEMS platforms discussed so 
far is that they cannot perform true displacement-controlled 
loading, like the Instron or MTS machines. MEMS load sen-
sors are made of flexible beams; no matter which sensing 
mechanism is used, the flexible beams deform in response to 
the load applied on the specimen. When a specimen under-
goes strain-softening events such as phase transformation or 
yielding that is often accompanied with a sudden load drop, 
the elastic energy accumulated in the load sensor could be 
released, causing a drastic increment of specimen elongation 
even without any further loading and thus premature failure 
of the specimen. To prevent that from happening, the load 
sensor should maintain its equilibrium position during load-
ing, which can be achieved by feedback control. In feedback 
control, an extra load is applied to the load sensor to keep it 
stationary. This extra load is recorded as the load applied to 
the specimen. Capacitive and piezoresistive sensors have been 
recently demonstrated with feedback control.

Feedback control on differential capacitive sensors has 
been employed in the accelerometers of analog devices (e.g. 
ADXL-50). However, it is not trivial to achieve that in cus-
tom-made MEMS testing platforms. Guan and Zhu [130] 
imposed a feedback voltage directly on the movable plate in 
the differential capacitive sensor to generate an electrostatic 
force to counterbalance the sensor displacement with the 

feedback response in the order of milliseconds. Pantano et al 
introduced an additional electrostatic actuator to provide the 
feedback force, as shown in figure 10(a) [80], which processes 
a response time of 40 ms and could hold a load sensor within 
a range of 20 nm. The additional actuator was connected to 
the load sensor mechanically but isolated electrically. A feed-
back voltage in response to the capacitance difference (due 
to the applied load) was applied to the additional actuator for 
pulling back the load sensor to the initial position. Since the 
thermal actuator has a much larger stiffness than the specimen 
and load sensor, true displacement control was achieved. The 
feedback system was used for in situ SEM tensile testing of 
penta-twinned Ag NWs. A sudden drop in stress as a result of 
yielding was captured in the stress–strain curve, which was 
not observed previously [131].

Piezoresistive sensing has been explored for feedback con-
trol too. Guan and Zhu introduced a Z-shaped thermal actuator 
that is very compliant compared to the V-shaped one [57]. 
Z-shaped thermal actuators made of Si exhibited pronounced 
piezoresistivity [58]. The concept of feedback control of the 
Z-shaped thermal actuator, which is illustrated in figure 10(b), 
is that when the actuator is pushed back by an external force, 
a feedback current can be applied on the actuator to counter-
balance the external force and keep it at the initial position. 
The feedback control was demonstrated by holding the actua-
tor at a constant position under various external forces under 
quasi-static loading, with errors less than 10%. Messenger et 
al [132] reported another example of utilizing a piezoresistive 
sensor for feedback control in order to achieve the precision 
control of actuator displacement. A Wheatstone bridge was 
used for resistance measurement to reduce the noise level. 
With the feedback control, the thermal actuator was demon-
strated to achieve an accuracy of 29 nm.

4. S elected results from MEMS-based  
nanomechanical testing

The ‘smaller is stronger’ phenomenon was first discovered for 
micro-whiskers in the 1950s [133] and has received extensive 
attention in the past decade [134–137]. In the case of metals, 

Figure 10.  (a) Working principle of a MEMS platform with feedback control based on capacitive sensing. Reprinted with permission from 
[80]. Copyright 2014, Springer. (b) Calibration scheme for feedback control of a MEMS platform based on piezoresistive sensing [58].
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as the size shrinks from the micro- to nano-scale, the dominant 
deformation mechanism transits from dislocation multiplica-
tion through the operation of single-arm resources to surface 
dislocation nucleation [1, 13, 14, 138–140]. In addition to a 
strong size effect on plasticity and fracture, the size effect on 
elasticity has been reported for some NWs [141]. MEMS-
based testing platforms have been playing an instrumental 
role in facilitating the recent advance of nanomechanics. They 
have been used to test a broad range of nanostructures (e.g. 
carbon nanotubes, crystalline NWs, metallic glass NWs 
[142], and polymer nanofibers [47, 70]), under a variety of 
microscopes or spectroscopies (e.g. optical, SEM, TEM and 
Raman). Below we discuss a few representative works to 
highlight the diverse capabilities of MEMS platforms.

Naraghi et al have studied the mechanical behavior of 
PAN nanofibers in situ under an optical microscope [47]. At 
a nominal strain rate of 2.5   ×   10−3 s−1, a Young’s modulus of 
7.6   ±   1.5 GPa was reported. Thinner nanofibers showed higher 
strengths but reduced ductility compared to thicker fibers, 
suggesting that thinner fibers are characterized by enhanced 
molecular alignment induced during electrospinning. A major 
benefit of this method is that strain rate experiments can be 
conducted and the maximum loading rate is limited by the 
frame rate of the camera. Naturally the authors have studied 
the mechanical behavior and failure of PAN nanofibers as a 
function of strain rate (from 2.5   ×   10−4 to 2.5   ×   10−2 s−1) 
[70]. At the fast rate, the nanofibers exhibited relatively large 
ductility, originated in the formation of a cascade of ripples 
(necks) (figure 11(a)); at the slow strain rate, the nanofibers 
deformed homogeneously allowing for the largest engineering 
strengths and extension ratios (figure 11(b)).

Time-dependent mechanical behavior is of interest not only 
to polymers but also to metals. Plastic deformation in metals 
generally consists of two components, the athermal compo-
nent and the thermal component, with the latter accounting 
for thermally activated processes that are usually sensitive to 
temperature and strain rate. Recently Qin et al reported the 
time-dependent mechanical response of penta-twinned Ag 
NWs that include five twin boundaries running along the NW 
length [93]. Penta-twinned Ag NWs exhibit some interesting 
mechanical properties such as the size effect in yield strength 
and elastic modulus, strain hardening, and nucleation-con-
trolled distributed plasticity [32, 131]. Qin et al discovered 
an unusual, fully reversible plasticity, which does not exist 
in single-crystalline Ag NWs. In situ SEM and TEM tensile 
testing was performed including several steps as shown in fig-
ure  11(c). A specimen was first stretched to a given strain. 
When the actuator was held constant, the load on the speci-
men decreased with time, while the specimen was elongated 
simultaneously. After the relaxation step, the specimen was 
gradually unloaded until the actuator was turned off (the 
specimen was still elongated but under compressive stress). 
At the recovery step, complete strain recovery was observed. 
Molecular dynamics simulations revealed that the observed 
behavior originates from the surface nucleation, propagation 
and retraction of partial dislocations. More specifically, vacan-
cies reduce the dislocation nucleation barrier, facilitating 
stress relaxation, while the twin boundaries and their intrinsic 

stress field promote retraction of partial dislocations, result-
ing in full strain recovery. In situ TEM directly observed the 
interaction between dislocations and existing twin boundaries 
during the relaxation step and the dislocation annihilation 
during the recovery step, as shown in figure 11(d). Since the 
relaxation strain is rather small, a highly stable testing system 
(e.g. the MEMS platform used) is the key to observing such 
a fine behavior. Other testing systems such as those involv-
ing a nanomanipulator might not work due to the inevitable 
drift of the nanomanipulator. Similar recoverable plasticity on 
penta-twined Ag NWs has been reported in terms of athermal 
manifestation [143].

Fatigue is another important cycle-dependent (poten-
tially time-dependent) mechanical behavior but so far has 
only received limited attention, mainly due to instrumenta-
tion difficulties. Using the ‘two-sensor’ platform, Hosseinian 
and Pierron have investigated the fatigue of Au nanobeams 
[95]. The specimens were 1.5 μm in width, 20 μm in length 
and 100 nm in thickness, and the grain size ranged from 10 to 
400 nm. Fatigue tests were carried out both ex situ and in situ 
TEM. For the ex situ test at ambient environment, the thermal 
actuator was cycled between 0.4 and 1.8 V in steps of 0.1 V 
at a frequency of 0.07 Hz. The specimen failed after 11 125 
cycles and a ratcheting behavior was observed, as shown in 
figure  11(e). The maximum strain increased from 1.0% to 
1.4% with loading times, and the maximum stress decreased 
from 0.62 to 0.54 GPa. No obvious change in the microstruc-
ture was observed from post-mortem TEM images. Next in 
situ TEM fatigue testing was performed to observe the micro-
structure evolution. The actuation voltage was cycled between 
0 and 4 V in steps of 0.4 V at a frequency of 0.25 Hz. The 
specimen failed at 6 995 cycles and the same ratcheting behav-
ior was observed again. Figure 11(f) shows a TEM image of 
specimen after fracture, where large numbers of dislocations 
can be seen near the fracture plane as indicated by the green 
rectangle. In addition, the blue rectangle shows the initiation 
of surface cracks adjacent to the fatigue crack. During the in 
situ TEM test, a large number of dislocations were found to 
nucleate after 400 cycles, accompanied with twins and stack-
ing faults. This work demonstrated that a MEMS platform 
with two electronic sensors can be a promising tool to investi-
gate fatigue at the nanoscale.

There has been increasing evidence suggesting the size 
dependence of the brittle to ductile transition (BDT) of Si. 
The transition temperature has been reported to decrease from 
~940 °C at bulk [144] to 400 °C at microscale [145, 146], 
and even lower to ~300 °C at sub-microscale [45]. The sys-
tematic investigation of the BDT of Si as a function of size, 
however, is still lacking especially at the nanoscale. Kang and 
Saif reported temperature-dependent Young’s modulus in Si 
beams with a cross-sectional area of 20.68 μm2 under uni-
axial tensile loading from room temperature to 403 °C [123]. 
Later, using a similar device, they observed the transition 
temperatures of Si beams under bending that reduced from 
375 °C to 293 °C while beam width decreased from 8.7 μm 
to 720 nm [45], as shown by the force-displacement behavior 
in figure 12(a). Figure 12(b) shows a SEM image of a frac-
tured Si beam with obvious plastic deformation. Chang and 
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Zhu reported the first evidence of BDT of Si NWs under ten-
sion [121]. A single-crystalline Si NW of 60 nm in diameter 
was tested initially at room temperature and then at gradu-
ally increasing temperatures. At room temperature and 362 K, 
a linear elastic stress–strain behavior was measured. But at 
399 K, 0.5% plastic strain was measured when the NW was 
totally unloaded, which indicates that the BDT temperature 
of this NW was between 362 and 399 K, much lower than 
that of single-crystalline Si at bulk and microscale, see fig-
ure 12(d). The NW was broken at 599 K with a failure strain of 
4.9%, substantially higher than that at room temperature. The 
fracture surfaces, as shown in figure 12(c), indicates a shear 

fracture plane, which agrees well with the molecular dynam-
ics prediction for  <1 1 0>  -oriented Si NWs [147].

Zhang et al utilized a MEMS platform to measure the 
piezoresistivity of Si NWs using two-point electric measure-
ment [76]. Strain dependent resistance was found in a Si NW 
under 100 nm, which reduced from 5.9   ×   1011 Ω at strain free 
to 2.2   ×   1010 Ω at 3.0% strain, as shown in the I–V curve in 
figure 13(a). To eliminate the influence of contact resistance 
in the two-point electric measurement [76, 96], Bernal et al 
recently measured the resistances of Si and Ag NWs under 
mechanical strain using a MEMS platform with four-point 
electric measurement. For Ag NWs, the resistance exhibited 

Figure 11.  (a) SEM images of deformed PAN nanofibers at strain rates of 2.5   ×   10−2 s−1 (a) and 2.5   ×   10−4 s−1 (b). (a) and (b) reprinted 
with permission from [70]. Copyright 2007, AIP Publishing LLC. (c) Stress–strain curve of a penta-twinned Ag NW during loading, 
relaxation, unloading and recovery [93]. (d) TEM image revealing dislocation nucleation and interaction with the twin boundaries during 
the relaxation of the penta-twinned Ag NW [93]. (e) Stress–strain behavior of Au nanobeam under cyclic loading. (f) TEM image of 
the fracture surface of the Au nanobeam after fatigue failure. Reprinted with permission from [95]. Copyright 2013, Royal Society of 
Chemistry.
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size dependence, increasing with decreasing diameter, due 
to the enhancement of surface scattering. Changes in resist-
ance with applied strain were found to be due to dimensional 
changes. For Si NWs, a reduction of resistance due to applied 
strain was observed, as shown in figure 13(b), which is con-
sistent with the piezoresistance behavior of bulk silicon [148]. 
The first order piezoresistive coefficients were found to be of 
similar magnitude as the bulk value. This result is in contrast 
to the giant piezorestivity reported for Si NWs [96]. Indeed 
the giant piezorestivity of Si NWs remains a matter of debate. 
The literature indicates that reproducible evidence for giant 
piezoresistance in ungated nanowires is limited; but in gated 
nanowires, giant piezoresistance has been reproduced [149].

MEMS offer promising potential for multiphysical testing 
of nanostructures especially strain engineering. For instance, 
Murphy et al have combined a MEMS tensile device with 
Raman spectroscopy to study the stress-dependent thermal 
conductivity of Si NWs [127]. Thermal conductivity was 
measured by varying the laser power and the distance from the 
laser spot to the clamps with the assistance of a heat transfer 

model. It was found that tensile stress of 1.7 GPa only caused 
a small change in thermal conductivity. However, when a large 
density of defects was introduced in NWs by ion irradiation 
of Ga+, a drastic decrease in thermal conductivity (>90%) was 
found, which was attributed to enhanced phonon scattering.

Another example of strain engineering is optomechanical 
behavior. Greil et al applied uniaxial tensile strain on Ge NWs 
while recording the photocurrent using Raman spectroscopy 
simultaneously [97]. The photocurrent spectra of Ge NWs 
was found to shift toward higher wavelengths with increas-
ing tensile stress showing a linear dependence. The results 
indicated the lowering of the direct bandgap energy due to 
tensile stress. Signorello et al also discovered a large bandgap 
shift in wurtzite GaAs NWs under both tensile and compres-
sive strains [128]. Tensile and compressive stresses decrease 
and increase the phonon energy, respectively, and thus photo-
luminescence and Raman spectra shift accordingly. While in 
both cases above no true MEMS devices were used, MEMS 
devices are expected to play an important role in strain 
engineering.

Figure 12.  (a) Bending behavior of a 720 nm thickness silicon beam at different temperatures. (b) SEM image of the fractured Si beams 
showing plastic deformation under bending at elevated temperature. Reprinted with permission from [45]. Copyright 2013, John Wiley 
and Sons. (c) Tensile behavior of a Si NW at different temperatures [121]. (d) SEM image of the Si NW fractured at 600 K showing shear 
failure [121].

Figure 13.  (a) I–V curve of Si NW at different strain levels using two-point electrical measurement. Reprinted with permission from 
[76]. Copyright 2011, IEEE. (b) Strain-dependent electromechanical response of Ag and Si NWs. Reprinted with permission from [125]. 
Copyright 2013, John Wiley and Sons.
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5. S ummary and outlook

We have reviewed the exciting advances in the field of mechan-
ical characterization of 1D nanostructures using MEMS 
platforms in the past decade. Many different types of MEMS 
platforms have been designed, fabricated and employed for 
nanomechanical characterizations ranging from basic tensile 
testing to fatigue to thermomechanical testing and multi-
physical testing. A large number of nanostructures have been 
characterized including carbon nanotubes, crystalline NWs, 
metallic glass NWs, and polymer nanofibers. MEMS plat-
forms and related nanomechanics studies have contributed 
tremendously to our understanding of the nanoscale mechani-
cal behaviors.

It remains a great challenge to manipulate and position 
individual nanostructures onto the MEMS platforms with 
high yield and high throughput. Novel nanorobotic manip-
ulation or synthesis methods for preparing nanostructure 
specimens should be sought to overcome this bottleneck. 
Feedback control has been successfully demonstrated to cap-
ture strain-softening behavior. But higher spatial resolution 
and faster response are still needed. MEMS-based platforms 
and related testing methods have seen rapid progress in the 
past decade. For the further growth of the field, it is an impor-
tant step to develop standards commensurate with those at 
larger scales.

Since MEMS-based nanomechanical testing is typically 
performed in situ in SEM and TEM, possible irradiation dam-
age due to the electron beam should be considered. Irradiation 
damage could include heating, electrostatic charging, ioniza-
tion damage (radiolysis), displacement damage, sputtering and 
hydrocarbon contamination [150], depending on the accel-
eration voltage, beam density, exposure time and observed 
material. For instance, electron-beam-assisted super-plastic 
shaping of nanoscale amorphous silica under 200 keV in TEM 
has been reported [151].

In the past decade, surface effects on NW mechanical 
behaviors have attracted tremendous interests. It will be useful 
to understand the role of internal microstructures/boundaries 
for the mechanical properties of NWs, e.g. is there cou-
pling between free surfaces and internal defects/boundaries? 
Nanostructures synthesized by various ‘bottom-up’ methods 
often possess internal defects and/or boundaries. For instance, 
solution synthesized Ag NWs possess interesting penta-
twinned structures, with five twin boundaries along the NW 
length [93]. Vapor–liquid–solid synthesized SiC NWs possess 
rather complicated microstructures, e.g. 3C structure with an 
inclined stacking fault and highly defective structure [79]. In 
vapor–liquid–solid synthesis, doping typically occurs either 
intentionally or unintentionally [152]. Internal defect struc-
tures must be carefully characterized before the testing results 
can be interpreted accurately.

With the advance of nanodevices, 1D nanostructures 
including NWs as building blocks will undergo more and 
more realistic mechanical loadings. Therefore, it is of critical 
relevance to study other effects (e.g. time, temperature and 
environment) on their mechanical behaviors. For example, 
creep, stress relaxation and fatigue properties will be important 

for long-time operation and reliability of the nanodevices. 
Strain rate, temperature and relaxation transient tests can be 
used to probe thermally activated mechanisms. MEMS will 
undoubtedly play an important role in such studies.

Due to its tiny size, a MEMS platform fits easily for in situ 
SEM/TEM testing. With the recent advance in time-resolved 
electron microscopy [153] (e.g. dynamic transmission elec-
tron microscopy, DTEM [154]), it might become possible to 
capture the dynamic response of nanostructures with atomic 
resolution. Combination of MEMS platforms and DTEM, 
together with the limited volume of 1D nanostructures, 
could offer exciting opportunities for probing the nanoscale 
mechanical and structural behaviors. Beyond microscopy 
(e.g. SEM/TEM/AFM/optical), it is promising to combine 
MEMS platforms with spectroscopy for multiphysical test-
ing. For instance, Raman spectroscopy is commonly used 
to observe vibrational modes in molecules. Micro-Raman 
has been used to measure temperature, stress, phase trans-
formation, etc. with spatial resolution of around 1 μm [155]. 
Photoluminescence spectroscopy can be used to measure the 
bandgap of semiconductors.
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