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What Drives an Aliquot Sequence ?

By Richard K. Guy* and J. L. Selfridge

To D. H. Lehmer, on his 10th birthday, in gratitude for much inspiration,

encouragement and computation

Abstract.   The concept of the "driver" of an aliquot sequence is discussed.   It is shown

that no driver can be expected to persist indefinitely.   A definition of driver is given

which leads to just 5 drivers apart from the even perfect numbers.

If we examine the sequence 30, 42, 54, 66, 78, 90, ... we notice that each term

is the sum of the aliquot parts (divisors other than the number itself) of its predecessor.

Various authors have been struck by the peculiar charm and regularity displayed by

these aliquot sequences.  It is easy to show that every such sequence starting with a

number less than 138 either contains 1 and terminates, or contains a perfect number

and repeats.

Catalan's conjecture [1] was restated by Dickson [3] to the effect that every

aliquot sequence will either terminate or become periodic; e.g.,the amicable pair 220,

284 has period 2.   Later Poulet [8] found that 12496 starts a sequence with period

5 and that 14316 has period 28.  He and Lehmer struggled with the sequence starting

with 138.

More formally, let s{n) = o{n) - n, where a{n) is the sum of the divisors of n,

and let n : 0 = n, n : k + 1 = s{n : k). Lehmer showed that the 138 sequence has a

maximum

179 931895322= 138 : 117 = 2-61-929-1587569

and that   138 : 177=1.

The next difficulty arose with the 276 sequence.  Each term from 2716 =

276 : 8 = 227*97   is divisible by   227, and since any multiple of the perfect number

28 is abundant, the terms increase monotonically.  Notice that in our little sequence

starting with 30 the terms have the same property with respect to 6.  Paxson [7]

computed  (p  denotes a prime cofactor)

5641 400009252 = 276 : 67 = 227-p

and Henri Cohen [2] extended the calculation to
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2133 148752623 068133100 = 276: 118 = 223-527-p.

Stimulated by this, Lehmer persevered until he reached the term   276 : 169 =

22l2p,   where p  is a prime congruent to 1, mod 4, so that

7 421365124 006306789 124764410= 276 : 170 = 2-5-7-13-829-848557-p

suddenly lost the "driver" 28.   The succeeding terms, all being congruent to   ± 2,

mod 12, decrease steadily from   276 : 172 to the term 276 : 226 = 2p, where

again   p   is a prime congruent to 1, mod 4, and

351121 244430380 = 276: 227 = 225-131-48539-2760991.

Lehmer has computed a further 200 terms which show an erratic upward tendency.

The extent of our present knowledge [5], [6] is

107100047 962427456 048833497 403019424 = 276 : 433 = 2s3-199-c

where   c   is a 31 -digit composite number with no small factors.   Lehmer also

verified that, apart from 396 = s(276) = s(306), all sequences starting with numbers

less than 552 are bounded.

On the other hand, we have found [4], [5], [6] that of the sequences

starting with numbers less than 104, there are 751 which contain a term exceeding

1024; and we have conjectured that an infinite number of aliquot sequences are

unbounded.   Our aim here is to outline some of the characteristics of the "driver"

phenomenon which support this view.   Good examples of driver dominated

sequences are

628628 = 552 : 26 = 227-11 -13-157

35149477 396986268 016618686 344127020 = 552 : 181 = 22325-72c,

3985 297814226 = 564 : 83 = 2-3-211-3147944561

2422 499075303 417661059 252663526 = 564 : 265 = 2-3223-89-c,

11400 = 5250 : 3 = 233-5219

4 553462993 488753886 439512520 = 5250 : 72 = 233-5-c,

8154 = 8154 : 0 = 2-33151

4615096 670497664 245830510 = 8154 : 201 = 2-365-43-c,

1503680 = 8904: 13 = 265-37-127

3200141 507007701 992846912 = 8904 : 166 = 2689-127-c,

44144 =9852 : 11 = 2431-'89

5149877 193773848 066488144=9852 : 146 = 243-11-31-c.

Despite the tenacity of these drivers, none is expected to live for ever.

We notice that any prime divisor   p   of   n   will appear in   s{n)   just if  p

divides   o{n)   and will appear to the same power in   s{n)   if a higher power

divides    a{n).   If p  divides both  n   and  a{n)  to the same power, p  will divide

s{n)  to at least that power and to a higher power with probability   l/ip - 1), i.e.,
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always when p = 2.  In fact, the prime 2 will continue to be present unless  n  is a

square or twice a square, and continue to be absent unless  n   is a square.   This fact,

more than any other, seems to dominate the discussion of the behavior of aliquot

sequences.

A very rough argument in favor of our conjecture goes like this: on the average the

value of a{n) — n  is greater than  n  if n  is even, and less than  «  if «  is odd.   If

in the long run other effects are small compared to the persistence of parity, one

would expect that most large even sequences are unbounded and that most odd se-

quences are bounded.

More precisely, since the average order, a, of s{n)/n, taken over even values of n,

is greater than one so long as the terms remain even, we expect  n : r to be  not.

The probability that this is a square, or twice a square, is cx/\fn(/, so that the

probability that any future term is odd is  c2/\fn~,  which tends to  0  as n —> °°.

One might ask if a sequence could be shown to be unbounded by displaying a

driver which persisted indefinitely.  This would only occur if certain prime factors of

n  would always continue to appear to the same or higher powers in s{n).  The prime

2 in fact should keep the same power throughout, since the nature of the driver

changes radically when the power of 2 changes.  If each of a set of primes divides

o{n)  to a higher power than it divides  n, then we would have achieved the goal.  We

prove that this cannot happen.

Theorem 1. For any divisor v,  v > 1, of n, there is some prime divisor of v

which does not divide  o{v)/v.

Proof.   Let   v = 2ap\l---p"/   with a.,-• •, ar > 0, so that

a i +1       , a. +1       ,

p,1        -1 p/        -1

^).tr».t)-i-=r...—r.
If p. • • •pr | a(u)/u, then

aiv) Pi pr

Px'--Pr<— < 2-;-T'
v Px - 1       Pr~l

i.e. {p. - l)'"(pr - 1) < 2  and  u  has no odd prime divisors.  Moreover, since

a(2a)  is odd, 2-fu.

Note that we can prove this without the requirement that the power of 2

be higher in  o(u)    than in  v.

A precise definition of driver is desired at this point, but we would like our

definition to avoid fragile structures, such as

27365-17-23-137-547-1093

which crumples when the power of 3 changes.  In addition to the even perfect numbers

one would normally include in a list of drivers, any products of prime powers which

have a reasonable expectation of persistence, such as  233-5, 253-7  and   293-ll-31.
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104 RICHARD K. GUY AND J. L. SELFRIDGE

Each of these divides the sum of its divisors and hence divides the sum of its

aliquot parts.

For example, if n = 293-11-31 -/n, where   (m, 2n - 2) = 1, then  o{n) =

293211-31-aim), where   aim)  is even when  m  is not a square.  Then  s{n) =

293-ll-31-m'  where  {m , 6) = 1 and the chance of m   being divisible by 11 or

31 is small, and of its being a square is negligible.  For similar reasons  233-5   and

2s3-7  are persistent.

A further remarkable driver is the number 2.  When  n = 2m  and   {m, 6) = 1,

a{n) = 3a{m)  and  s{n) = 2m, where  (m , 6) = 1   provided that  4 | aim).  Neglecting

squares, 4 | aim)  unless m  is a prime congruent to 1, mod 4.  Similar considerations

hold for  233.

If n = 233-5-m, we find it convenient to regard 233-5 as the driver even when

im, 15) ^ 1   (and similarly for other drivers) so that the only crucial exponent is that

of 2.   That is, we draw the line to exclude some possibilities which tempt us on account

of their stability, but which rely for this on considerations secondary to the factor-

ization of a(2a) = 2a+l - 1.  Some further examples which are thus excluded are

23325-13, 25327-13, 25335,and 25335-7.

Define a guide to be 2", together with a subset of the prime factors of a(2a)

A driver is defined as a number  2av  with  a > 0, v odd, v \ a{2a)  and  2a~x | a(u).

This last requirement is included so that the power of the prime 2 will tend to persist at

least as well as it does for the driver 2 itself, for which the condition is trivially

satisfied.

Theorem 2.  The only drivers are   2, 233,  233-5,  253-7,  293-ll-31, and

the even perfect numbers.

Proof.    Let 2"v   be a driver, so that v \ 2a+l -I, 2a'x | a(u).   If  2a+l - 1 = v

is a Mersenne prime, the driver is an even perfect number.  If v= 1, 2a"x \ a(p) = 1,

a = 1 and we have the "downdriver" 2.  Henceforth we assume that  u > 1, and that

a(2a) = 2a+1 - 1 =p11---pa.r   is composite, so that  v = p\l •••pbr'', 0< b{ <a¡,

I < i < r  and not all the  b¡  are zero.

Define the deficiency of the factor p¡ ' of v  to be  2 !/p ', where   2 '   is the

highest power of 2 in any  aipfi ),  0 < / < b¡ .  The product of the deficiencies of the

factors of v  is greater than 1/4, since otherwise

2a+X   >2a.+ l _1=   f[pa.'>A\\   2di,
¿= 1 ¡= 1

so that  2a"1 > n^=12d''  and   2a_1 t iC^oCpf') = aiv).

The product of the deficiencies of the Mersenne primes, 2q - 1, q G {2, 3, 5, 7,

13, ... } is at most

4    8    32    128 Í.*L 32. 64       g_

3 * 7 * 31 * 127 3    7    31    63        5 '
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If the prime 7 is missing, this product is less than 7/5; if 3 does not occur, the product

is less than 6/5.

The deficiency of p¡' is at most  2 \pi + l)/p,-' , where h¡ = [\og2{bi + 1)] - 1,

and is strictly less than this unless  p¡  is a Mersenne prime.   So   a. < 4   for each  i,

since otherwise the deficiency of the corresponding factor p(-' is at most  2(3 +1)/34,

and the product of all deficiencies would be less than   (8/81)(6/5) < 1/4.  If a¡ =

2 or 3 for any p¡ > 5, the product of the deficiencies would be less than

(2887)       1
max {— - - ' — ■ - > < -,

|52   5   ?2   5\      A

so, with the possible exception of 3, we may assume that   2a+i - 1   contains no

repeated factors.

If 32 |2a+1 -1, 6 \a + 1, 327 |2a+1 - 1 and then 7 | v, for otherwise the prod-

uct of the deficiencies is at most (l/7)(7/5) < 1/4. If 32 || v or 3Yv, the product is less

than (1/9X6/5)< 1/4, while if 33 | v, 33 | 2a+ ' - 1, 18 \a + 1, 337-19-73 | 2a + 1 - 1

and the product is much less that   1/4.   So   3 || u, and if a = 5  we have the driver

2s3-7.  We cannot have  a  larger, since  2a + 1 - 1 would contain, in addition to 327,

some factor congruent to 1, mod 4, and the product of the deficiencies would be less

than
4  2   6       1
-< -.
9 5   5       4

We also notice that  2fl+1 - 1   contains at most one non-Mersenne prime factor,

i.e.,factor of the form   2cu - 1, u odd, u > 3, c > I, since the deficiency of such

a factor is  2ClilZu - 1), which is at most   2/5 iu = 3, c = 1), or otherwise at most

4/11 iu = 3,c = 2), and

2    _4_ 8        1_

5*11*5       A'

It remains to consider   2a+1 - 1 = (2qi - l)(2i?2 - 1)---(2cm - 1), where

2 < q. < q2 < • • •.  If u > 7, the product of the deficiencies is less than

(2/13)(8/5) < 1/4, so   u = 3 or 5.   If   c = 1, u = 3 (since   2-5 - 1   is not

prime), 2cu - 1 = 5, 5 | 2a+1 - 1, 4 | a + 1, 15 | 2a+1 - 1.  If a = 3  we have the

drivers  233-5   and  233.   If a > 7, there is another prime divisor of 2a + 1 - 1

which is congruent to 1, mod 4, and the product of the deficiencies is at most

n_8 j_ s)     i
5   13   5 ' 52 *5 [       A

So we have  c > 2, ¿¡^ > 2, u = 3 or 5, and, since we have dealt with   1 < a < 4,

a > 5.  Considerations modulo  2min(c,<?i)+1   show that

-1 =(2<?1 - 1)(- 1)---(2cm- 1), mod2min(c'°i)+1.

So   ±1=2     + 2cu - 1, the choice of sign is minus, the number of Mersenne primes

is even (and not zero) and  qx-c.   Now   2 lu-2 l2 2---> 2a+1,so

max
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3 + 2q. + q2 + •••   > log2« + 2q, + q2 + ••• > a + 1   > qlq2~"

since   2q - 1   divides  2a+1 - 1   just if q \ a + 1, and the  q.  are distinct primes.

This is clearly a contradiction if the number of q¡  is  4 or more, so there are just two

q¡:   3 +2ql +q2 > q.q2,  {q. - l){q2 - 2) < 5, ql=2=c  and  q2 = 3

or  5.  Only the latter gives a solution; u = 3  and   293-ll-31   is a driver.

The theorem is proved.

Table 1 exhibits some drivers, d, and guides, g, and the effect   on the power of

two, 2a, when  n = dm  or gm, {d, m)  or  ig, m) = 1   and  m = s, a square or  m =

ps  where p  is a prime congruent to   1, mod 4.  The odd prime factors of d or g

always divide  s{n); for a driver   2a || s{n) with the exceptions noted. If id, m) > 1,

the situation is more complicated.

Table 1. Power of 2 dividing s{n)

Driver or guide a        m = s, a square       m = ps = 1  (mod 4)

d 2 1 0 1 >2t

d 2 • 3 1 1 1

g 22 2 0 1 II

d 227 2 2 2

g 23 3 0 4 14

d 233 3 2 1 >4t

S 235 3 14- 2 4

cf 233 • 5 3 >4t 3

g 24 A 0 4 14

d 2431 4 4 4

g 253 5 2 4 3 4

S 2S7 5 3 4 4 4

d 2S3 • 7 5 >   6 t 5

if 26127 6 6 6

¿ 293 • 11 • 31 9 > 10 t 9

The signs   4, t   indicate that the driver or guide changes "downward" or "upward".

We are examining the statistical and probabilistic evidence concerning bounded-

ness and unboundedness of aliquot sequences in collaboration with M. C. Wunderlich.

The probabilistic model is a Markov process.  An aliquot sequence is in one of a

finite number of states; one of a finite set of drivers and guides is in control, or none

of them is.  We can calculate the expected "life" of a sequence in one of these states

and the expected number of terms in which the driver is retained.  "Break probabili-

ties" between pairs of states can also be calculated; for example, that from the 233-5

driver to the 2 driver is zero since direct transition is impossible.

We conclude with a table showing the numbers of sequences starting below 103

and below 104 which surpass various bounds.  The number of distinct sequences at

each bound is also given.
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Table 2 . Numbers of sequences surpassing given bounds

bound 1012      101S 1018      1021 1024 1027 1030

starting below 103     19 17 16 13 13 13 13

distinct 10 8 7 6 6 6 6

starting below 104 896 820 803 761 751 ? ?

distinct 113 106 104 100 98 ? ?

We expect to fill in the missing entries in due course, but much computation is needed.

As remarked in [5], [6] considerable help from Lehmer's sieve was necessary to push

all the sequences beyond 1024.
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