
© Copyright Khronos Group 2015 - Page 1

More on Vulkan and SPIR-V:
The future of high-performance graphics

© Copyright Khronos Group 2015 - Page 2

Outline
•Welcome

- Neil Trevett, Khronos President (NVIDIA)

•Vulkan project overview
- Tom Olson, GL Next committee chair (ARM)

•Vulkan applications
- Graham Sellers, Vulkan specification co-editor (AMD)

• SPIR-V provisional specification
- John Kessenich, SPIR-V specification editor (LunarG)

•Member progress reports and demos
- Various members

•Next steps
- Tom again

•Q&A / Panel discussion

© Copyright Khronos Group 2015 - Page 3

Khronos Connects Software to Silicon

Open Consortium creating
ROYALTY-FREE, OPEN STANDARD
APIs for hardware acceleration

Defining the roadmap for
low-level silicon interfaces
needed on every platform

Graphics, compute, rich media,
vision, sensor and camera

processing

Rigorous specifications AND
conformance tests for cross-

vendor portability

Acceleration APIs
BY the Industry

FOR the Industry

Well over a BILLION people use Khronos APIs
Every Day…

© Copyright Khronos Group 2015 - Page 4

Khronos News at GDC

•Vulkan – next generation graphics API
- Low overhead, high-efficiency graphics and compute on GPUs
- Formerly discussed as Next Generation OpenGL Initiative
- Technical overview and demos today – spec later this year

• SPIR-V – new shader IR supporting both graphics and compute constructs
- Adopted by both Vulkan and OpenCL 2.1
- Provisional specification available today

© Copyright Khronos Group 2015 - Page 5

Vulkan Project Overview
Tom Olson, ARM
GDC, March 2015

© Copyright Khronos Group 2015 - Page 6

Vulkan project history / status
• June to August 2014

- Next Generation OpenGL project launch
- Unprecedented commitment from all sectors of the industry
- Project disclosure and call for participation at SIGGRAPH

• Since then…
- Intense focus and a lot of hard work
- Vulkan unveil at GDC 2015

• Status
- Broad agreement on basic shape and semantics of the API
- ‘alpha’ header file enabling experiments
- API spec drafting is under way
- SPIR-V spec drafting basically complete – provisional spec available

© Copyright Khronos Group 2015 - Page 7

Vulkan vision and goals

•An open-standard, cross-platform 3D+compute API for the modern era
- Compatibility break with OpenGL
- Start from first principles

•Goals
- Clean, modern architecture
- Multi-thread / multicore-friendly
- Greatly reduced CPU overhead
- Architecture-neutral – full support for tile-based as well as direct renderers
- Predictable performance through explicit control
- Improved reliability and consistency between implementations

© Copyright Khronos Group 2015 - Page 8

Vulkan in a nutshell
•Modern architecture

- GL Context replaced by separate command buffers and dispatch queues

• Thread-friendly
- Most object types are free-threaded
- Application is responsible for synchronization

• Low CPU overhead
- Error checking and dependency tracking are the application’s job
- Can opt in to a validation layer

• Explicit control of when work is done
- Shader compilation and command generation happen at predictable times
- Immutable state specified early to move driver work away from dispatch time

© Copyright Khronos Group 2015 - Page 9

• Huge thanks to the whole Vulkan team!

- New members are always welcome

Apple

But first…

http://www.amd.com/

THANKS
AMD!

© Copyright Khronos Group 2015 - Page 11

Vulkan Applications
Graham Sellers, AMD

GDC, March 2015

© Copyright Khronos Group 2015 - Page 12

Hi! I’m Graham Sellers
• AMD’s OpenGL and Vulkan architect
• Represent AMD at OpenGL ARB
• Contributor of many OpenGL features and extensions
• Author of OpenGL SuperBible
• Spent the last year or so working on Vulkan
• I’m going to whip through a complete Vulkan application from startup to tear down

This is pseudo-code, not final API
We are still finalizing some details

@grahamsellers

https://www.khronos.org/vulkan

https://twitter.com/grahamsellers
https://twitter.com/grahamsellers
https://www.khronos.org/vulkan

© Copyright Khronos Group 2015 - Page 13

Vulkan Application Startup
• Vulkan is represented by an “instance”
• Application can have multiple Vulkan instances

- Each is independent
- Eases middleware, subsystems, etc.

• Instance is owned by the loader
- Aggregates drivers from multiple vendors
- Responsible for discovery of GPUs
- Makes multiple drivers look like one big driver supporting many GPUs

VK_APPLICATION_INFO appInfo = { ... };
VK_ALLOC_CALLBACKS allocCb = { ... };
VK_INSTANCE instance;

vkCreateInstance(&appInfo, &allocCb, &instance);

© Copyright Khronos Group 2015 - Page 14

Vulkan GPUs
• Vulkan instance creation takes:

- Application info – tell Vulkan about your application
- Allocation callbacks – Vulkan will allocate system memory using your allocator

• Once you have an instance, ask it about GPUs

• Produces a list of GPUs, and a count
• GPUs can be from different vendors

- Integrated + discrete
- Multiple discrete GPUs in one system
- Cross-GPU resource sharing and explicit multi-GPU support is in API

uint32_t gpuCount;
VK_PHYSICAL_GPU gpus[10];

vkEnumerateGpus(instance, ARRAYSIZE(gpus), &gpuCount, gpus);

© Copyright Khronos Group 2015 - Page 15

Vulkan GPU Info
• Query information about a GPU

• Lots of information available about GPU
- Manufacturer, relative performance, memory sizes, queue types, etc.

• Cross-GPU compatibility query

• Compatibility info indicates
- Full sharing, sharing of specific resources, or no compatibility at all

VK_SOME_GPU_INFO_STRUCTURE info;
uint32_t infoSize = sizeof(info);

vkGetGpuInfo(gpu[0], VK_GPU_INFO_WHATEVER, &infoSize, &info);

VK_GPU_COMPATIBILITY_INFO compatInfo;

vkGetMultiGpuCompatibility(gpuA, gpuB, &compatInfo);

© Copyright Khronos Group 2015 - Page 16

Vulkan Devices
• Construct a device instance from a GPU

• Creation info contains information about:
- Number and type of queues required
- Which extensions you want to use

- Extensions are ‘opt-in’ – cannot accidentally use an extension
- Level of validation

- Drivers generally will not include much, if any, error checking
- Layers above can validate at various levels
- Drivers may include multiple layers to validate vendor-specific behavior

VK_DEVICE_CREATE_INFO info = { ... };
VK_DEVICE device;

vkCreateDevice(gpu, &info, &device);

© Copyright Khronos Group 2015 - Page 17

Vulkan Queues
• Get queue handles from the device

• Queues are represented using two indices

- Node ordinal
- Node ordinal represents a “family” of queues, which are directly compatible

- Queue index
- Each queue family can have many queue instances

• Queues encapsulate
- Functionality – graphics, compute, DMA
- Scheduling – independently scheduled, asynchronous

VK_QUEUE queue;

vkGetDeviceQueue(device, 0, 0, &queue);

© Copyright Khronos Group 2015 - Page 18

Vulkan Command Buffers
• GPU commands are batched in command buffers

• Create as many command buffers as you need
• Command buffer creation info includes

- Which queue family you want to submit commands to (node ordinal)
- Information about how aggressively drivers should optimize for GPU performance
- etc.

VK_CMD_BUFFER_CREATE_INFO info;
VK_CMD_BUFFER cmdBuffer;

vkCreateCommandBuffer(device, &info, &cmdBuffer);

© Copyright Khronos Group 2015 - Page 19

Vulkan Commands
• Commands are inserted into command buffers

• Driver heavy lifting happens here
- Build many command buffers from many threads
- Re-use command buffers
- Spend time here optimizing work, not last minute right before draw
- Big packages of immutable state make the workload less regardless

VK_CMD_BUFFER_BEGIN_INFO info = { ... };
vkBeginCommandBuffer(cmdBuf, &info);

vkCmdDoThisThing(cmdBuf, ...);
vkCmdDoSomeOtherThing(cmdBuf, ...);

vkEndCommandBuffer(cmdBuf);

© Copyright Khronos Group 2015 - Page 20

Vulkan Shaders
• Vulkan shaders are compiled up-front

• Shader creation info contains
- Pointer to shader source

- SPIR-V – portable, vendor-neutral, open, extensible shader binary
- Other IRs could be supported through the same interfaces

- Additional optional information

• Compile shaders from multiple threads
- Driver will do as much work as it can right here

VK_SHADER_CREATE_INFO info = { ... };
VK_SHADER shader;

vkCreateShader(device, &info, &shader);

© Copyright Khronos Group 2015 - Page 21

Vulkan Pipeline State
• Pipeline state is fully compiled

• Creation info contains
- Compiled shaders
- Blend, depth, culling, stencil state, etc.
- List of states that need to be mutable

• Pipelines can be serialized and deserialized

VK_GRAPHICS_PIPELINE_CREATE_INFO info = { ... };
VK_PIPELINE pipeline;

vkCreateGraphicsPipeline(device, &info, &pipeline);

uint32_t dataSize = DATA_SIZE;
void* data = malloc(DATA_SIZE);

vkStorePipeline(pipeline, &dataSize, data);
...
vkLoadPipeline(device, dataSize, data, &pipeline)

© Copyright Khronos Group 2015 - Page 22

Vulkan Mutable State
• Some pipeline state is mutable or dynamic

• Represented by smaller state objects

VK_DYNAMIC_VP_STATE_CREATE_INFO vpInfo = { ... };
VK_DYNAMIC_VP_STATE_OBJECT vpState;

vkCreateDynamicViewportState(device, &vpInfo, &vpState);

VK_DYNAMIC_DS_STATE_CREATE_INFO dsInfo = { ... };
VK_DYNAMIC_DS_STATE dsState;

vkCreateDynamicDepthStencilState(device, &dsInfo, &dsState);

© Copyright Khronos Group 2015 - Page 23

Vulkan Resources
• Resources have a CPU and a GPU component
• CPU side is allocated using a vkCreate* function:

• It is the application’s responsibility to allocate GPU memory for resources…

VK_IMAGE_CREATE_INFO imageInfo = { ... };
VK_IMAGE image;
vkCreateImage(device, &imageInfo, &image);

VK_BUFFER_CREATE_INFO bufferInfo = { ... };
VK_BUFFER buffer;
vkCreateBuffer(device, &bufferInfo, &buffer);

© Copyright Khronos Group 2015 - Page 24

Vulkan GPU Memory
• Query objects for their memory requirements

• Application allocates GPU memory

• Bind application-owned GPU memory to objects

VK_IMAGE_MEMORY_REQUIREMENTS reqs;
size_t reqsSize = sizeof(reqs);

vkGetObjectInfo(image,
 VK_INFO_TYPE_IMAGE_MEMORY_REQUIREMENTS,
 &reqsSize, &reqs);

VK_MEMORY_ALLOC_INFO memInfo = { ... };
VK_GPU_MEMORY mem;
vkAllocMemory(device, &memInfo, &mem);

vkBindObjectMemory(image, 0, mem, 0);

© Copyright Khronos Group 2015 - Page 25

Vulkan Descriptors
• Vulkan resources are represented by descriptors

• Descriptors are arranged in sets

• Sets are allocated from pools

• Each set has a layout, which is known at pipeline creation time
- Layout is shared between sets and pipelines and must match
- Layout represented by object, passed at pipeline create time

• Can switch pipelines which use sets of the same layout
• Many sets of various layouts are supported in one pipeline in a chain

vkCreateDescriptorPool(...);
vkCreateDescriptorSetLayoutChain(...);
vkCreateDescriptorSetLayout(...);
vkAllocDescriptorSets(...);

© Copyright Khronos Group 2015 - Page 26

Vulkan Render Passes
• Render passes represent logical phases of a frame
• Render passes are explicit objects

• Render pass contains a lot of information about rendering
- Layout and types of framebuffer attachments
- What to do when the render pass begins and ends
- The region of the framebuffer that the render pass may effect

• Vitally important information for tile-based and deferred renderers
- … but also very helpful for traditional forward-renderers!

VK_RENDER_PASS_CREATE_INFO info = { ... };
VK_RENDER_PASS renderPass;

vkCreateRenderPass(device, &info, &renderPass);

© Copyright Khronos Group 2015 - Page 27

Vulkan Drawing
• Draws are placed inside render passes
• Executed in the context of a command buffer

• Pipelines, dynamic state objects and other resources bound to command buffers
• All draw types supported

- Indexed and non-indexed, direct and (multi-)indirect, compute dispatches, etc.

VK_RENDER_PASS_BEGIN beginInfo = { renderPass, ... };

vkCmdBeginRenderPass(cmdBuffer, &beginInfo);

vkCmdBindPipeline(cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
vkCmdBindDescriptorSets(cmdBuffer, ...);
vkCmdDraw(cmdBuffer, 0, 100, 1, 0);

vkCmdEndRenderPass(cmdBuffer, renderPass);

© Copyright Khronos Group 2015 - Page 28

Vulkan Synchronization
• Work is synchronized using event primitives

• Events can be set, reset, queried and waited on

• Command buffers can signal events as they complete execution

VK_EVENT_CREATE_INFO info = { ... };
VK_EVENT event;

vkCreateEvent(device, &info, &event);

vkSetEvent(...);
vkResetEvent(...);
vkGetEventStatus(...);
vkCmdSetEvent(...);
vkCmdResetEvent(...);
vkCmdWaitEvents(...);

© Copyright Khronos Group 2015 - Page 29

Vulkan Resource State
• Operations in command buffers are demarked by pipeline barriers
• Barriers can wait on and signal events
• Barriers can transition resources from state to state

- Renderable
- Readable as texture
- etc.

• Drivers do not track state

- Applications are responsible for state tracking
- If you get it wrong, we will happily render garbage or crash
- Validation layer will track state (slowly) and scream at you when you screw up

VK_IMAGE_MEMORY_BARRIER imageBarrier = { ... };
VK_PIPELINE_BARRIER barrier = { ..., 1, &imageBarrier };

vkCmdPipelineBarrier(cmdBuffer, &barrier);

© Copyright Khronos Group 2015 - Page 30

Vulkan Work Enqueue
• Work is executed on queues belonging to devices
• Completed command buffers are sent to queues for execution

• Queues own memory residency

- Driver will not track memory residency for you

• Queues can also signal and wait on semaphores for object ownership

VK_CMD_BUFFER commandBuffers[] = { cmdBuffer, ... };
vkQueueSubmit(queue, 1, commandBuffers, fence);

vkQueueAddMemReference(queue, mem);
vkQueueRemoveMemReference(queue, mem);

vkQueueSignalSemaphore(queue, semaphore);
vkQueueWaitSemaphore(queue, semaphore);

© Copyright Khronos Group 2015 - Page 31

Vulkan Presentation
• Presentation is how we get images to the screen
• Displayable resource represented by a special kind of image

- Bindable to framebuffers
- Created by platform-specific modules called WSI (Window System Interface)

• Defining a small number (~2?) of WSI bindings
- One for compositing systems where the compositor owns the displayable surface
- One for systems that allow presentation of application-owned surfaces

• WSI also deals with things like:
- Enumerating display devices and video modes
- Going full screen
- Controlling vsync

• Presentations enqueued along with command buffers

© Copyright Khronos Group 2015 - Page 32

Vulkan Teardown
• Application responsible for object destruction

- Must be correctly ordered
- No reference counting
- No implicit object lifetime

• Do not delete objects that are still in use!
• Most objects destroyed with:

• Some objects are “special”:

vkDestroyObject(object);

vkDestroyDevice(device);
vkDestroyInstance(instance);

© Copyright Khronos Group 2015 - Page 33

Vulkan AZDO?
• Vulkan is already PDCTZO (Pretty Darn Close to Zero Overhead)!

- Very little validation unless you opt-in
- You manage everything – virtually no driver funky business
- Much better abstraction of the hardware – no complex mapping of API to silicon

• Submit the same command buffer many times
- Amortized cost of building command buffer literally approaches zero

• Bindless
- Debatable need – descriptor sets can be of arbitrary size
- Explicit memory residency already in API

• Sparse
- Yes

• MultiDrawIndirect
- Yes

• Shader Draw Parameters
- Yes

© Copyright Khronos Group 2015 - Page 34

Vulkan Summary
• Vulkan is not “low level” – just a better abstraction of modern hardware
• Vulkan is very low overhead

- Reduced CPU utilization means more cycles for your application
- Explicit threading support means you can go wide without worrying about graphics APIs
- Building command buffers once and submitting many times means low amortized cost

• Cross-platform, cross-vendor
- Not tied to single OS (or OS version)
- Not tied to single GPU family or vendor
- Not tied to single architecture

- Desktop + mobile, forward and deferred, tilers all first class citizens

• Open, extensible
- Khronos is an open standards body

- Collaboration from a wide cross-section of industry, IHVs + ISVs, games, CAD, AAA + casual
- Full support for extensions, layering, debuggers, tools
- SPIR-V fully documented – write your own compiler!

© Copyright Khronos Group 2015 - Page 35

Thanks!

@grahamsellers

https://www.khronos.org/vulkan

https://twitter.com/grahamsellers
https://twitter.com/grahamsellers
https://www.khronos.org/vulkan
https://www.khronos.org/vulkan

© Copyright Khronos Group 2015 - Page 36

SPIR-V Provisional
GDC, San Jose
March 2015

© Copyright Khronos Group 2015 - Page 37

 Standard
 Portable
 Intermediate
 Representation

Enables compiler ecosystem for
more portable shaders

Goal:
1) Portable binary representation of shaders and compute kernels

for GPUs and parallel computers
2) Target for OpenCL C/C++, GLSL, and other shader languages

© Copyright Khronos Group 2015 - Page 38

Why use SPIR?
Without SPIR:
• Vendors shipping source

- Risk IP leakage

• Limited Portability
- No ISV control over front end
- Different front end semantics per vendor

• Higher runtime compilation time

With SPIR:
• Ship a single binary

- Requires tools to decipher; protecting IP

• Improved Portability
- ISV can create their own front end tool chain
- Multiple ISVs can share a common front end

• Reduced runtime compilation time
- Some steps are offloaded

Opportunity to unleash innovation:
Domain Specific Languages, C++ Compilers, ….

© Copyright Khronos Group 2015 - Page 39

What is SPIR-V?
•New intermediate language for input to Khronos graphics and compute APIs

- Fully specified Khronos-defined standard
- Can natively represent Khronos graphics and compute idioms

- E.g., implicit derivatives with control-flow constraints
- Memory and execution models for all GLSL and OpenCL high-level languages

• Core for Vulkan

- The only language accepted by the API
- Exposes machine model for Vulkan
- Fully supports the GLSL/ESSL shader languages
- Other shading languages easily target SPIR-V

• Core for OpenCL 2.1

- Supports OpenCL 1.2, 2.0, 2.1 kernel languages

© Copyright Khronos Group 2015 - Page 40

SPIR-V shader-language support
• Compiler chain split in two

- Front end compiler emits SPIR-V portable binary IL, offline
- SPIR-V IL is compiled to machine-specific binary by driver, online

• Front end NOT required in driver
- Khronos working on offline language front ends

© Copyright Khronos Group 2015 - Page 41

SPIR-V: A Deeper Look
•A Binary Intermediate Language

- A linear stream of words (32-bits)

• Functions inside a module contain a CFG (control-flow graph) of basic blocks
• Load/Store instructions are used to access declared variables
• Intermediate results are represented using single static-assignment (SSA)
•Data objects are represented logically, with hierarchical type information

- e.g. No flattening of aggregates or assignment to physical registers

• Selectable addressing model
- Allow usage of pointers, or dictate a memory model which is purely logical

• Can be easily extended
• Support debug information that can be safely stripped without changing the

semantics of SPIR-V modules.

© Copyright Khronos Group 2015 - Page 42

SPIR-V is a Binary Form
• Stream of words
• 32-bits wide
•Not a file format

- This is the form passed through entry point
- But, works well to start file with the

magic number and directly store the stream
- Deduce endianness from magic number

© Copyright Khronos Group 2015 - Page 43

SPIR-V is a Common Intermediate Form

© Copyright Khronos Group 2015 - Page 44

Structured Control Flow
11: Label
 ...
 LoopMerge 12 NoControl
 BranchConditional 18 19 12
19: Label
22: ...
 SelectionMerge 24 NoControl
 BranchConditional 22 23 28
23: Label
 ...
 Branch 24
28: Label
 ...
 Branch 24

24: Label
 ...

 Branch 11

12: Label

for (...) {

 if (...)

 ...
 else

 ...

 ...

}

© Copyright Khronos Group 2015 - Page 45

Hierarchical Types, Constants, and Objects

struct {
 mat3x4;
 vec4[6];
 int;
};

10: OpTypeFloat 32
11: OpTypeVector 10 4
12: OpTypeMatrix 11 3
13: OpTypeArray 11 6
14: OpTypeInt 32 1
15: OpTypeStruct 12 13 14

© Copyright Khronos Group 2015 - Page 46

SPIR-V: A Deeper Look (Summary)
•A Binary Intermediate Language

- A linear stream of words (32-bits)

• Functions inside a module contain a CFG (control-flow graph) of basic blocks
• Load/Store instructions are used to access declared variables
• Intermediate results are represented using single static-assignment (SSA)
•Data objects are represented logically, with hierarchical type information

- e.g. No flattening of aggregates or assignment to physical registers

• Selectable addressing model
- Allow usage of pointers, or dictate a memory model which is purely logical

• Can be easily extended
• Support debug information that can be safely stripped without changing the

semantics of SPIR-V modules.

© Copyright Khronos Group 2015 - Page 47

Call to Action

• Seeking feedback now on SPIR-V provisional
- A Provisional specification, subject to change based on your feedback
- Spec available at www.khronos.org/spir
- Provide feedback at https://www.khronos.org/spir_feedback_forum
- White paper https://www.khronos.org/registry/spir-v/papers/WhitePaper.pdf

• Innovate on the front end
- New languages, abstractions
- Target production quality Back ends

• Innovate on the back end
- New target platforms: Multi core, Vector, VLIW…
- Reuse production quality frontends
- Other high-level languages and IRs/ILs

• Innovate on Tooling
- Program analysis, optimization

http://www.khronos.org/spir
https://www.khronos.org/spir_feedback_forum
https://www.khronos.org/registry/spir-v/papers/WhitePaper.pdf

© Copyright Khronos Group 2015 - Page 48

Member Progress Reports and Demos

49

meets Mali™

Jesse Barker
Software Engineer, ARM

50

 Prototype Vulkan driver for ARM® Mali™ Midgard GPU architecture
 Intended to verify that Vulkan is a good fit to the architecture
 Initial port on Arndale Octa (4+4 ARM Cortex™ A-15/7, Mali T-628 MP6)

 Caveats
 Partial implementation – critical functions only, and some shortcuts
 Built on top of an OpenGL ES / OpenCL HAL, not optimized for Vulkan

Vulkan investigations at ARM

51

 Draw call microbenchmark
 1000 meshes, 3 materials
 Minimal state change between meshes
 Measure CPU cycles in driver
 Compare to OpenGL ES

Experiment

52

 For this test case, 79% reduction in CPU cycles spent in driver!

Results

0.00 0.20 0.40 0.60 0.80 1.00 1.20

Vulkan

OpenGL ES

Driver Overhead (normalized CPU load)

© Copyright Khronos Group 2015 - Page 53

Kishonti Informatics

© Copyright Khronos Group 2015 - Page 54

GFXBench 3.1
• Graphics benchmark for OpenGL ES 3.1
• In Google Play store this week!
• Adds compute shaders and new high-precision low level tests

© Copyright Khronos Group 2015 - Page 55

GFXBench 4.0

•Graphics benchmark to showcase OpenGL ES 3.1 with Android Extension
Pack (AEP)
• Outdoor car chase scene with adaptive tessellation, HDR rendering,
physically-based materials, compute post effects, dynamic reflections and
shadows
• Also sports geometry shaders and ASTC texture compression
• Public release soon

© Copyright Khronos Group 2015 - Page 56

GFXBench 5.0

• Entirely new engine aimed at benchmarking low-level
graphics APIs (Vulkan, DX12, Metal)

• Concept is a night outdoor scene with aliens
• Still in pre-alpha, but shows the most important concepts
• Is showcased running Vulkan at Intel's GDC booth

© Copyright Khronos Group 2015 - Page 57

Imagination Technologies

© Copyright Khronos Group 2015 - Page 58

Intel

© Copyright Khronos Group 2015 - Page 59

NVIDIA

© Copyright Khronos Group 2015 - Page 60

Valve

© Copyright Khronos Group 2015 - Page 61

GLAVE debugger

LunarG.com/Vulkan

http://lunarg.com/Vulkan

© Copyright Khronos Group 2015 - Page 62

Call to Action
•Give us feedback on Vulkan and SPIR

- Links provided on Khronos forums
- https://www.khronos.org/spir_v_feedback_forum
- https://www.khronos.org/vulkan/vulkan_feedback_forum

•Any company or organization is welcome to join Khronos for a voice and a vote
in any of these standards
- www.khronos.org

•Watch this space!
- Initial specs and implementations coming later this year

https://www.khronos.org/spir_v_feedback_forum
https://www.khronos.org/vulkan/vulkan_feedback_forum
mailto:ntrevett@nvidia.com
mailto:ntrevett@nvidia.com
mailto:ntrevett@nvidia.com

© Copyright Khronos Group 2015 - Page 63

Q&A / Panel Discussion

	Slide Number 1
	Outline
	Khronos Connects Software to Silicon
	Khronos News at GDC
	Vulkan Project Overview
	Vulkan project history / status
	Vulkan vision and goals
	Vulkan in a nutshell
	Slide Number 9
	Slide Number 10
	Vulkan Applications
	Hi! I’m Graham Sellers
	Vulkan Application Startup
	Vulkan GPUs
	Vulkan GPU Info
	Vulkan Devices
	Vulkan Queues
	Vulkan Command Buffers
	Vulkan Commands
	Vulkan Shaders
	Vulkan Pipeline State
	Vulkan Mutable State
	Vulkan Resources
	Vulkan GPU Memory
	Vulkan Descriptors
	Vulkan Render Passes
	Vulkan Drawing
	Vulkan Synchronization
	Vulkan Resource State
	Vulkan Work Enqueue
	Vulkan Presentation
	Vulkan Teardown
	Vulkan AZDO?
	Vulkan Summary
	Thanks!
	SPIR-V Provisional
	Slide Number 37
	Why use SPIR?
	What is SPIR-V?
	SPIR-V shader-language support
	SPIR-V: A Deeper Look
	SPIR-V is a Binary Form
	SPIR-V is a Common Intermediate Form
	Structured Control Flow
	Hierarchical Types, Constants, and Objects
	SPIR-V: A Deeper Look (Summary)
	Call to Action
	Slide Number 48
	meets Mali™
	Vulkan investigations at ARM
	Experiment
	Results
	Slide Number 53
	GFXBench 3.1
	GFXBench 4.0
	GFXBench 5.0
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	GLAVE debugger
	Call to Action
	Slide Number 63

