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More on Vulkan and SPIR-V: 
The future of high-performance graphics 
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Outline 
•Welcome  

- Neil Trevett, Khronos President (NVIDIA) 

•Vulkan project overview 
- Tom Olson, GL Next committee chair (ARM) 

•Vulkan applications 
- Graham Sellers, Vulkan specification co-editor (AMD) 

• SPIR-V provisional specification 
- John Kessenich, SPIR-V specification editor (LunarG) 

•Member progress reports and demos 
- Various members 

•Next steps 
- Tom again 

•Q&A / Panel discussion 
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Khronos Connects Software to Silicon 

Open Consortium creating  
ROYALTY-FREE, OPEN STANDARD 
APIs for hardware acceleration 

 
 

Defining the roadmap for  
low-level silicon interfaces 
needed on every platform 

 

Graphics, compute, rich media, 
vision, sensor and camera 

processing 
 

Rigorous specifications AND 
conformance tests for cross-

vendor portability 
 

Acceleration APIs  
BY the Industry  

FOR the Industry 

Well over a BILLION people use Khronos APIs 
Every Day… 
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Khronos News at GDC 
 

•Vulkan – next generation graphics API 
- Low overhead, high-efficiency graphics and compute on GPUs 
- Formerly discussed as Next Generation OpenGL Initiative 
- Technical overview and demos today – spec later this year 

 

• SPIR-V – new shader IR supporting both graphics and compute constructs 
- Adopted by both Vulkan and OpenCL 2.1 
- Provisional specification available today 
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Vulkan Project Overview 
Tom Olson, ARM 
GDC, March 2015 
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Vulkan project history / status 
• June to August 2014 

- Next Generation OpenGL project launch 
- Unprecedented commitment from all sectors of the industry 
- Project disclosure and call for participation at SIGGRAPH 

 

• Since then… 
- Intense focus and a lot of hard work 
- Vulkan unveil at GDC 2015 

 

• Status 
- Broad agreement on basic shape and semantics of the API 
- ‘alpha’ header file enabling experiments 
- API spec drafting is under way 
- SPIR-V spec drafting basically complete – provisional spec available 
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Vulkan vision and goals 
 

•An open-standard, cross-platform 3D+compute API for the modern era 
- Compatibility break with OpenGL 
- Start from first principles 

 

•Goals 
- Clean, modern architecture 
- Multi-thread / multicore-friendly 
- Greatly reduced CPU overhead 
- Architecture-neutral – full support for tile-based as well as direct renderers 
- Predictable performance through explicit control 
- Improved reliability and consistency between implementations 
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Vulkan in a nutshell 
•Modern architecture 

- GL Context replaced by separate command buffers and dispatch queues 
 

• Thread-friendly 
- Most object types are free-threaded 
- Application is responsible for synchronization 

 

• Low CPU overhead 
- Error checking and dependency tracking are the application’s job 
- Can opt in to a validation layer 

 

• Explicit control of when work is done 
- Shader compilation and command generation happen at predictable times 
- Immutable state specified early to move driver work away from dispatch time 
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• Huge thanks to the whole Vulkan team! 

- New members are always welcome 

Apple 

But first… 

http://www.amd.com/


THANKS  
AMD! 
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Vulkan Applications 
Graham Sellers, AMD 

GDC, March 2015 
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Hi! I’m Graham Sellers 
• AMD’s OpenGL and Vulkan architect 
• Represent AMD at OpenGL ARB 
• Contributor of many OpenGL features and extensions 
• Author of OpenGL SuperBible 
• Spent the last year or so working on Vulkan 
• I’m going to whip through a complete Vulkan application from startup to tear down 

This is pseudo-code, not final API 
We are still finalizing some details 

 

@grahamsellers 

https://www.khronos.org/vulkan 

https://twitter.com/grahamsellers
https://twitter.com/grahamsellers
https://www.khronos.org/vulkan
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Vulkan Application Startup 
• Vulkan is represented by an “instance” 
• Application can have multiple Vulkan instances 

- Each is independent 
- Eases middleware, subsystems, etc. 

• Instance is owned by the loader 
- Aggregates drivers from multiple vendors 
- Responsible for discovery of GPUs 
- Makes multiple drivers look like one big driver supporting many GPUs 

 
VK_APPLICATION_INFO appInfo = { ... }; 
VK_ALLOC_CALLBACKS allocCb = { ... }; 
VK_INSTANCE instance; 
 
vkCreateInstance(&appInfo, &allocCb, &instance); 
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Vulkan GPUs 
• Vulkan instance creation takes: 

- Application info – tell Vulkan about your application 
- Allocation callbacks – Vulkan will allocate system memory using your allocator 

• Once you have an instance, ask it about GPUs 
 
 
 
 

• Produces a list of GPUs, and a count 
• GPUs can be from different vendors 

- Integrated + discrete 
- Multiple discrete GPUs in one system 
- Cross-GPU resource sharing and explicit multi-GPU support is in API 

 
 

uint32_t gpuCount; 
VK_PHYSICAL_GPU gpus[10]; 
 
vkEnumerateGpus(instance, ARRAYSIZE(gpus), &gpuCount, gpus); 
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Vulkan GPU Info 
• Query information about a GPU 

 
 
 
 

• Lots of information available about GPU 
- Manufacturer, relative performance, memory sizes, queue types, etc. 

• Cross-GPU compatibility query 
 
 

 

• Compatibility info indicates 
- Full sharing, sharing of specific resources, or no compatibility at all 

VK_SOME_GPU_INFO_STRUCTURE info; 
uint32_t infoSize = sizeof(info); 
 
vkGetGpuInfo(gpu[0], VK_GPU_INFO_WHATEVER, &infoSize, &info); 

VK_GPU_COMPATIBILITY_INFO compatInfo; 
 
vkGetMultiGpuCompatibility(gpuA, gpuB, &compatInfo); 
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Vulkan Devices 
• Construct a device instance from a GPU 

 
 
 
 

• Creation info contains information about: 
- Number and type of queues required 
- Which extensions you want to use 

- Extensions are ‘opt-in’ – cannot accidentally use an extension 
- Level of validation 

- Drivers generally will not include much, if any, error checking 
- Layers above can validate at various levels 
- Drivers may include multiple layers to validate vendor-specific behavior 

VK_DEVICE_CREATE_INFO info = { ... }; 
VK_DEVICE device; 
 
vkCreateDevice(gpu, &info, &device); 
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Vulkan Queues 
• Get queue handles from the device 

 
 

 
• Queues are represented using two indices 

- Node ordinal 
- Node ordinal represents a “family” of queues, which are directly compatible 

- Queue index 
- Each queue family can have many queue instances 

• Queues encapsulate 
- Functionality – graphics, compute, DMA 
- Scheduling – independently scheduled, asynchronous 

VK_QUEUE queue; 
 
vkGetDeviceQueue(device, 0, 0, &queue); 
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Vulkan Command Buffers 
• GPU commands are batched in command buffers 

 
 
 
 

• Create as many command buffers as you need 
• Command buffer creation info includes 

- Which queue family you want to submit commands to (node ordinal) 
- Information about how aggressively drivers should optimize for GPU performance 
- etc. 

VK_CMD_BUFFER_CREATE_INFO info; 
VK_CMD_BUFFER cmdBuffer; 
 
vkCreateCommandBuffer(device, &info, &cmdBuffer); 
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Vulkan Commands 
• Commands are inserted into command buffers 

 
 
 
 
 
 

• Driver heavy lifting happens here 
- Build many command buffers from many threads 
- Re-use command buffers 
- Spend time here optimizing work, not last minute right before draw 
- Big packages of immutable state make the workload less regardless 

VK_CMD_BUFFER_BEGIN_INFO info = { ... }; 
vkBeginCommandBuffer(cmdBuf, &info); 
 
vkCmdDoThisThing(cmdBuf, ...); 
vkCmdDoSomeOtherThing(cmdBuf, ...); 
 
vkEndCommandBuffer(cmdBuf); 
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Vulkan Shaders 
• Vulkan shaders are compiled up-front 

 
 
 
 

• Shader creation info contains 
- Pointer to shader source 

- SPIR-V – portable, vendor-neutral, open, extensible shader binary 
- Other IRs could be supported through the same interfaces 

- Additional optional information 
 

• Compile shaders from multiple threads 
- Driver will do as much work as it can right here 

VK_SHADER_CREATE_INFO info = { ... }; 
VK_SHADER shader; 
 
vkCreateShader(device, &info, &shader); 
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Vulkan Pipeline State 
• Pipeline state is fully compiled 

 
 
 
 

• Creation info contains 
- Compiled shaders 
- Blend, depth, culling, stencil state, etc. 
- List of states that need to be mutable 

• Pipelines can be serialized and deserialized 
 

VK_GRAPHICS_PIPELINE_CREATE_INFO info = { ... }; 
VK_PIPELINE pipeline; 
 
vkCreateGraphicsPipeline(device, &info, &pipeline); 

uint32_t dataSize = DATA_SIZE; 
void* data = malloc(DATA_SIZE); 
 
vkStorePipeline(pipeline, &dataSize, data); 
... 
vkLoadPipeline(device, dataSize, data, &pipeline) 



© Copyright Khronos Group 2015 - Page 22 

Vulkan Mutable State 
• Some pipeline state is mutable or dynamic 

• Represented by smaller state objects 

VK_DYNAMIC_VP_STATE_CREATE_INFO vpInfo = { ... }; 
VK_DYNAMIC_VP_STATE_OBJECT vpState; 
 
vkCreateDynamicViewportState(device, &vpInfo, &vpState); 
 
VK_DYNAMIC_DS_STATE_CREATE_INFO dsInfo = { ... }; 
VK_DYNAMIC_DS_STATE dsState; 
 
vkCreateDynamicDepthStencilState(device, &dsInfo, &dsState); 
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Vulkan Resources 
• Resources have a CPU and a GPU component 
• CPU side is allocated using a vkCreate* function: 

 
 
 
 
 
 

• It is the application’s responsibility to allocate GPU memory for resources… 
 

VK_IMAGE_CREATE_INFO imageInfo = { ... }; 
VK_IMAGE image; 
vkCreateImage(device, &imageInfo, &image); 
 
VK_BUFFER_CREATE_INFO bufferInfo = { ... }; 
VK_BUFFER buffer; 
vkCreateBuffer(device, &bufferInfo, &buffer); 
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Vulkan GPU Memory 
• Query objects for their memory requirements 

 
 
 
 
 

• Application allocates GPU memory 
 
 
 

• Bind application-owned GPU memory to objects 
 
 
 

VK_IMAGE_MEMORY_REQUIREMENTS reqs; 
size_t reqsSize = sizeof(reqs); 
 
vkGetObjectInfo(image, 
                VK_INFO_TYPE_IMAGE_MEMORY_REQUIREMENTS, 
                &reqsSize, &reqs); 

VK_MEMORY_ALLOC_INFO memInfo = { ... }; 
VK_GPU_MEMORY mem; 
vkAllocMemory(device, &memInfo, &mem); 

vkBindObjectMemory(image, 0, mem, 0); 
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Vulkan Descriptors 
• Vulkan resources are represented by descriptors 

• Descriptors are arranged in sets 

• Sets are allocated from pools 

• Each set has a layout, which is known at pipeline creation time 
- Layout is shared between sets and pipelines and must match 
- Layout represented by object, passed at pipeline create time 

• Can switch pipelines which use sets of the same layout 
• Many sets of various layouts are supported in one pipeline in a chain 

vkCreateDescriptorPool(...); 
vkCreateDescriptorSetLayoutChain(...); 
vkCreateDescriptorSetLayout(...); 
vkAllocDescriptorSets(...); 
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Vulkan Render Passes 
• Render passes represent logical phases of a frame 
• Render passes are explicit objects 

 
 
 
 

• Render pass contains a lot of information about rendering 
- Layout and types of framebuffer attachments 
- What to do when the render pass begins and ends 
- The region of the framebuffer that the render pass may effect 

• Vitally important information for tile-based and deferred renderers 
- … but also very helpful for traditional forward-renderers! 

VK_RENDER_PASS_CREATE_INFO info = { ... }; 
VK_RENDER_PASS renderPass; 
 
vkCreateRenderPass(device, &info, &renderPass); 
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Vulkan Drawing 
• Draws are placed inside render passes 
• Executed in the context of a command buffer 

 
 
 
 
 
 
 

• Pipelines, dynamic state objects and other resources bound to command buffers 
• All draw types supported 

- Indexed and non-indexed, direct and (multi-)indirect, compute dispatches, etc. 

VK_RENDER_PASS_BEGIN beginInfo = { renderPass, ... }; 
 
vkCmdBeginRenderPass(cmdBuffer, &beginInfo); 
 
vkCmdBindPipeline(cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline); 
vkCmdBindDescriptorSets(cmdBuffer, ...); 
vkCmdDraw(cmdBuffer, 0, 100, 1, 0); 
 
vkCmdEndRenderPass(cmdBuffer, renderPass); 



© Copyright Khronos Group 2015 - Page 28 

Vulkan Synchronization 
• Work is synchronized using event primitives 

 
 
 
 

• Events can be set, reset, queried and waited on 
 
 
 
 
 

• Command buffers can signal events as they complete execution 
 
 
 
 

VK_EVENT_CREATE_INFO info = { ... }; 
VK_EVENT event; 
 
vkCreateEvent(device, &info, &event); 

vkSetEvent(...); 
vkResetEvent(...); 
vkGetEventStatus(...); 
vkCmdSetEvent(...); 
vkCmdResetEvent(...); 
vkCmdWaitEvents(...); 
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Vulkan Resource State 
• Operations in command buffers are demarked by pipeline barriers 
• Barriers can wait on and signal events 
• Barriers can transition resources from state to state 

- Renderable 
- Readable as texture 
- etc. 

 
 
 

 
• Drivers do not track state 

- Applications are responsible for state tracking 
- If you get it wrong, we will happily render garbage or crash 
- Validation layer will track state (slowly) and scream at you when you screw up 

VK_IMAGE_MEMORY_BARRIER imageBarrier = { ... }; 
VK_PIPELINE_BARRIER barrier = { ..., 1, &imageBarrier }; 
 
vkCmdPipelineBarrier(cmdBuffer, &barrier); 
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Vulkan Work Enqueue 
• Work is executed on queues belonging to devices 
• Completed command buffers are sent to queues for execution 
  
 
• Queues own memory residency 

- Driver will not track memory residency for you 
 

 

• Queues can also signal and wait on semaphores for object ownership 

VK_CMD_BUFFER commandBuffers[] = { cmdBuffer, ... }; 
vkQueueSubmit(queue, 1, commandBuffers, fence); 

vkQueueAddMemReference(queue, mem); 
vkQueueRemoveMemReference(queue, mem); 

vkQueueSignalSemaphore(queue, semaphore); 
vkQueueWaitSemaphore(queue, semaphore); 
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Vulkan Presentation 
• Presentation is how we get images to the screen 
• Displayable resource represented by a special kind of image 

- Bindable to framebuffers 
- Created by platform-specific modules called WSI (Window System Interface) 

• Defining a small number (~2?) of WSI bindings 
- One for compositing systems where the compositor owns the displayable surface 
- One for systems that allow presentation of application-owned surfaces 

• WSI also deals with things like: 
- Enumerating display devices and video modes 
- Going full screen 
- Controlling vsync 

• Presentations enqueued along with command buffers 
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Vulkan Teardown 
• Application responsible for object destruction 

- Must be correctly ordered 
- No reference counting 
- No implicit object lifetime 

• Do not delete objects that are still in use! 
• Most objects destroyed with: 

 
 

• Some objects are “special”: 

vkDestroyObject(object); 

vkDestroyDevice(device); 
vkDestroyInstance(instance); 
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Vulkan AZDO? 
• Vulkan is already PDCTZO (Pretty Darn Close to Zero Overhead)! 

- Very little validation unless you opt-in 
- You manage everything – virtually no driver funky business 
- Much better abstraction of the hardware – no complex mapping of API to silicon 

• Submit the same command buffer many times 
- Amortized cost of building command buffer literally approaches zero 

• Bindless 
- Debatable need – descriptor sets can be of arbitrary size 
- Explicit memory residency already in API 

• Sparse 
- Yes 

• MultiDrawIndirect 
- Yes 

• Shader Draw Parameters 
- Yes 
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Vulkan Summary 
• Vulkan is not “low level” – just a better abstraction of modern hardware 
• Vulkan is very low overhead 

- Reduced CPU utilization means more cycles for your application 
- Explicit threading support means you can go wide without worrying about graphics APIs 
- Building command buffers once and submitting many times means low amortized cost 

• Cross-platform, cross-vendor 
- Not tied to single OS (or OS version) 
- Not tied to single GPU family or vendor 
- Not tied to single architecture 

- Desktop + mobile, forward and deferred, tilers all first class citizens 

• Open, extensible 
- Khronos is an open standards body 

- Collaboration from a wide cross-section of industry, IHVs + ISVs, games, CAD, AAA + casual 
- Full support for extensions, layering, debuggers, tools 
- SPIR-V fully documented – write your own compiler! 
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Thanks! 

@grahamsellers 

https://www.khronos.org/vulkan 

https://twitter.com/grahamsellers
https://twitter.com/grahamsellers
https://www.khronos.org/vulkan
https://www.khronos.org/vulkan


© Copyright Khronos Group 2015 - Page 36 

SPIR-V Provisional 
GDC, San Jose 
March 2015 
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  Standard  
  Portable 
  Intermediate 
  Representation 

Enables compiler ecosystem for  
more portable shaders 

Goal:   
1) Portable binary representation of shaders and compute kernels 

for GPUs and parallel computers 
2) Target for OpenCL C/C++, GLSL, and other shader languages 
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Why use SPIR? 
Without SPIR: 
• Vendors shipping source 

- Risk IP leakage 

• Limited Portability 
- No ISV control over front end 
- Different front end semantics per vendor  

• Higher runtime compilation time 
 

With SPIR: 
• Ship a single binary 

- Requires tools to decipher; protecting IP 

• Improved Portability 
- ISV can create their own front end tool chain 
- Multiple ISVs can share a common front end 

• Reduced runtime compilation time 
- Some steps are offloaded 

Opportunity to unleash innovation:  
Domain Specific Languages, C++ Compilers, …. 
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What is SPIR-V? 
•New intermediate language for input to Khronos graphics and compute APIs 

- Fully specified Khronos-defined standard 
- Can natively represent Khronos graphics and compute idioms 

- E.g., implicit derivatives with control-flow constraints 
- Memory and execution models for all GLSL and OpenCL high-level languages 

 
• Core for Vulkan  

- The only language accepted by the API 
- Exposes machine model for Vulkan 
- Fully supports the GLSL/ESSL shader languages 
- Other shading languages easily target SPIR-V 

 
• Core for OpenCL 2.1 

- Supports OpenCL 1.2, 2.0, 2.1 kernel languages 
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SPIR-V shader-language support 
• Compiler chain split in two 

- Front end compiler emits SPIR-V portable binary IL, offline 
- SPIR-V IL is compiled to machine-specific binary by driver, online 
 

• Front end NOT required in driver 
- Khronos working on offline language front ends 
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SPIR-V: A Deeper Look 
•A Binary Intermediate Language 

- A linear stream of words (32-bits) 

• Functions inside a module contain a CFG (control-flow graph) of basic blocks 
• Load/Store instructions are used to access declared variables 
• Intermediate results are represented using single static-assignment (SSA) 
•Data objects are represented logically, with hierarchical type information 

- e.g. No flattening of aggregates or assignment to physical registers 

• Selectable addressing model  
- Allow usage of pointers, or dictate a memory model which is purely logical 

• Can be easily extended 
• Support debug information that can be safely stripped without changing the 

semantics of SPIR-V modules. 
 



© Copyright Khronos Group 2015 - Page 42 

SPIR-V is a Binary Form 
• Stream of words 
• 32-bits wide 
•Not a file format 

- This is the form passed through entry point 
- But, works well to start file with the  

magic number and directly store the stream 
- Deduce endianness from magic number 
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SPIR-V is a Common Intermediate Form 
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Structured Control Flow 
11: Label 
    ... 
    LoopMerge 12 NoControl 
    BranchConditional 18 19 12 
19:   Label 
22:   ... 
      SelectionMerge 24 NoControl 
      BranchConditional 22 23 28 
23:     Label 
        ... 
        Branch 24 
28:     Label 
        ...  
        Branch 24 
  
24:   Label 
      ... 
 
 
      Branch 11  
 
 
12: Label 

for (...) { 
 
 
 
    if (...) 
 
 
        ... 
    else 
 
        ... 
 
 
 
    ... 
 
 
} 
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Hierarchical Types, Constants, and Objects 

struct { 
    mat3x4; 
    vec4[6]; 
    int; 
}; 

10: OpTypeFloat 32 
11: OpTypeVector 10 4 
12: OpTypeMatrix 11 3 
13: OpTypeArray 11 6 
14: OpTypeInt 32 1 
15: OpTypeStruct 12 13 14 
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SPIR-V: A Deeper Look (Summary) 
•A Binary Intermediate Language 

- A linear stream of words (32-bits) 

• Functions inside a module contain a CFG (control-flow graph) of basic blocks 
• Load/Store instructions are used to access declared variables 
• Intermediate results are represented using single static-assignment (SSA) 
•Data objects are represented logically, with hierarchical type information 

- e.g. No flattening of aggregates or assignment to physical registers 

• Selectable addressing model  
- Allow usage of pointers, or dictate a memory model which is purely logical 

• Can be easily extended 
• Support debug information that can be safely stripped without changing the 

semantics of SPIR-V modules. 
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Call to Action 

• Seeking feedback now on SPIR-V provisional 
- A Provisional specification, subject to change based on your feedback 
- Spec available at www.khronos.org/spir  
- Provide feedback at https://www.khronos.org/spir_feedback_forum 
- White paper https://www.khronos.org/registry/spir-v/papers/WhitePaper.pdf 

 

• Innovate on the front end 
- New languages, abstractions 
- Target production quality Back ends 

 

• Innovate on the back end 
- New target platforms:  Multi core, Vector, VLIW… 
- Reuse production quality frontends 
- Other high-level languages and IRs/ILs 

 

• Innovate on Tooling 
- Program analysis, optimization 

http://www.khronos.org/spir
https://www.khronos.org/spir_feedback_forum
https://www.khronos.org/registry/spir-v/papers/WhitePaper.pdf
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Member Progress Reports and Demos 
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meets Mali™  

Jesse Barker 
Software Engineer,  ARM 
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 Prototype Vulkan driver for ARM® Mali™ Midgard GPU architecture 
 Intended to verify that Vulkan is a good fit to the architecture 
 Initial port on Arndale Octa (4+4 ARM Cortex™ A-15/7, Mali T-628 MP6) 

 

 Caveats 
 Partial implementation – critical functions only, and some shortcuts 
 Built on top of an OpenGL ES / OpenCL HAL, not optimized for Vulkan 

 

Vulkan investigations at ARM 
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 Draw call microbenchmark 
 1000 meshes, 3 materials 
 Minimal state change between meshes 
 Measure CPU cycles in driver 
 Compare to OpenGL ES  

 

Experiment 
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 For this test case, 79% reduction in CPU cycles spent in driver! 

Results 

0.00 0.20 0.40 0.60 0.80 1.00 1.20

Vulkan

OpenGL ES

Driver Overhead (normalized CPU load) 
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Kishonti Informatics 
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GFXBench 3.1 
• Graphics benchmark for OpenGL ES 3.1 
• In Google Play store this week! 
• Adds compute shaders and new high-precision low level tests 
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GFXBench 4.0 

•Graphics benchmark to showcase OpenGL ES 3.1 with Android Extension   
Pack (AEP) 
• Outdoor car chase scene with adaptive tessellation, HDR rendering, 
physically-based materials, compute post effects, dynamic reflections and 
shadows 
• Also sports geometry shaders and ASTC texture compression 
• Public release soon 
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GFXBench 5.0 

• Entirely new engine aimed at benchmarking low-level 
graphics APIs (Vulkan, DX12, Metal) 

• Concept is a night outdoor scene with aliens 
• Still in pre-alpha, but shows the most important concepts 
• Is showcased running Vulkan at Intel's GDC booth 
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Imagination Technologies 
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Intel 
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NVIDIA 
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Valve 
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GLAVE debugger 
 
 
 
 

LunarG.com/Vulkan 

http://lunarg.com/Vulkan
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Call to Action 
•Give us feedback on Vulkan and SPIR 

- Links provided on Khronos forums 
- https://www.khronos.org/spir_v_feedback_forum 
- https://www.khronos.org/vulkan/vulkan_feedback_forum 

 

•Any company or organization is welcome to join Khronos for a voice and a vote 
in any of these standards 
- www.khronos.org 

 

•Watch this space! 
- Initial specs and implementations coming later this year 

 

https://www.khronos.org/spir_v_feedback_forum
https://www.khronos.org/vulkan/vulkan_feedback_forum
mailto:ntrevett@nvidia.com
mailto:ntrevett@nvidia.com
mailto:ntrevett@nvidia.com


© Copyright Khronos Group 2015 - Page 63 

Q&A / Panel Discussion 
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