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Underlying Goal

Study the behaviour of atoms and molecules
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Length Scale

100m Humans
10−2m Golf balls
10−4m Width of human hair
10−6m Cells
10−8m Vira
10−10m Atoms
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How?

Laser Beam

Atoms are smaller than the wavelength of light

Any observation leads to a modification of the system

It is not possible to directly observe what is going on

Need theoretical models and calculations to match experiments
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Numerical Experiment

Simulation of an experimental setup on a computer

1. An atomic/molecular system is in an initial state

2. The system interacts with an external force

Interaction with radiation (laser)
Collision with another atom/ion/molecule

3. The final state of the system is analyzed to compare with experiments

The goal of this thesis is to perform steps 1 and 2 and simplify step 3 for a
wide range of problems
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Outline

Overview of the thesis

Introduction to Quantum Mechanics

Solving the Time Dependent Schrödinger Equation on a computer

How PyProp is a flexible solver

Applying PyProp to laser ionization of Helium
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Thesis Overview

Development and application of PyProp

Computer Science - Software design and implementation

Mathematics - Numerical methods

Physics - Applications
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What is PyProp?

Framework for solving the Time Dependent Schrödinger Equation

Goals

Flexibility
Performance

Research tool, not QM@Home

Common tasks automated
Difficult tasks possible

Free Software (GPL) http://pyprop.googlecode.com
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Classical Mechanics

A classical particle has a well defined position and
velocity.

The change of velocity is described by Newton’s Law

F = ma
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Quantum Mechanics

Heisenberg uncertainty principle: a particle
can not have well defined position and
velocity

There is a probability for finding a
particle in a given position

Must therefore consider all possible
positions at the same time
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Mathematical Formulation

Position and velocity is replaced by a wavefunction

ψ(x, t)

|ψ(x, t)|2 is the probability density of finding the particle in x

Time evolution of ψ(x, t) is described by the Time Dependent Schrödinger
Equation (TDSE).

i
∂

∂t
ψ(x, t) = Ĥψ(x, t)
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Hamiltonian

The Hamiltonian describes the energies in the system

Ĥ = − 1
2m
∇2 + V (x, t)

The differentiation operator represents kinetic energy

V (x) is the potential energy.

Systems are characterized by different potentials
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Adding Particles

Adding a particle is equivalent to adding degrees of freedom

i
∂

∂t
ψ(x1,x2, t) = (H1(x1) +H2(x2) +H1,2(x1,x2))ψ(x1,x2, t)

The time for solving a system increases exponentially with the
number of particles

1 particle: 1 sec
2 particles: 17 min
3 particles: 277 hours
7 particles: age of the universe

The “exponential wall” of quantum mechanics
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Computational Quantum Mechanics

Returning to the TDSE

i
∂

∂t
ψ(x, t) = Ĥψ(x, t)

Problem: if we know the ψ(x, t), find ψ(x, t+ h).

Can only be solved by hand for the simplest systems

Computers does not work on continuous problems, the TDSE must
therefore be discretized in space and time.
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Choice of coordinate system

Must choose a coordinate system in which to represent the
multi-dimensional wavefunction.

Cartesian coordinates, x = (x, y, z)
Spherical coordinates, x = (r, θ, φ)
Cylindrical coordinates, x = (r, ρ, φ)
Each rank may be discretized
independently

Optimal choice is system dependent
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Discretization

Approximating the continuous problem with a finite number of states.

Sum of continuous basis functions

ψ(x, t) ≈
m∑

i=0

ci(t)Bi(x)

Perform calculations on c(t) = {ci(t)}
Which basis functions should we use?

Fourier functions?
Orthogonal polynomials?
B-Splines?

Optimal choice is system dependent
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Propagation

Given a discretization scheme, we can turn the TDSE from

i
∂

∂t
ψ(x, t) = Ĥψ(x, t) → iS

∂

∂t
c(t) = Hc(t)

Propagation: from c(t), find c(t+ h)
Choice of propagation scheme

Cayley Propagator
Split-Step Propagator
Krylov Propagator

Can be done independently from space discretization

Optimal propagation scheme is system dependent
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Solving the TDSE - Summary

System dependent choices

coordinate system
discretization scheme
propagator

Making the right choice is difficult

The wrong choice can lead to hard-to-solve systems

A flexible solver should allow experimentation with different methods
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PyProp Framework Design

Core Routines

Independent Modules

User Code
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Flexibility

Choose dimensionality and discretization

Several discretization schemes built in
Can calculate inner products, operator-wavefunction multiplications,
load/save wavefunctions

Supply potentials

PyProp takes care of a lot of repetetive code

Choose propagator

Several propagators built in

Perform analysis and data exploration

High level code is written in Python
All the propagation tools can be used interactively
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Performance

Practical calculations can have wavefunctions with 1 B elements.

Computational kernels are optimized

Using high performance libraries where possible
Written in C++/Fortran

Automatic parallelization of one or more ranks

Supports redistribution
Parallel matrix-vector operations
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Current Applications

Numerics:

Generalized reduced wavefunctions (Lundeland and Kozlov)

Multidimensional Redistribution (ParCo 2007 p443 (2008))

Trans. Chebyshev Grids (J. Comp. Appl. Math. 225 p56 (2009))

Physics:

Two Electron Quantum Dots (Phys. Rev. B 76, 035303 (2007))

Laser-bound Molecules (Phys. Rev. A 76, 013415 (2007))

Vibrational Molecular Wavepackets (J. Phys. B 41 205504 (2008))

Laser Ionization of SAE Argon (Nepstad et.al. (2009))

Ion-Molecule Collsion (Submitted)

Laser Ionization of Two-Electron Helium (In preparation)

Laser Ionization of H2 (work in progress)

Born-Oppenheimer effects in H+
2 (work in progress)
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Example: Laser Ionization of Helium

Two electron system

Ĥ0(ri) = −1
2
∇2 − 2

ri
+Az(t)

(
∂

∂zi
− cos θi

ri

)
Ĥ(r1, r2) = Ĥ0(r1) + Ĥ0(r2) +

1
|r1 − r2|

Near spherical symmetry around the nucleus
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Helium in PyProp

Three computational ranks

1. YL,M
l1,l2

(Ω1,Ω2) - Combination of all angles
2. r1 - distance from nucleus to first electron
3. r2 - distance from nucleus to second electron

Discretizing r1 and r2 with B-Splines

Total wavefunction has ≈ 10 M elements

Total memory requirement is ≈ 100 GB
Must be run in parallel

Propagation with the Cayley Propagator

A calculation typically takes 24 h on 111 CPUs
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Helium - Analysis

Determine physical quantities

Ionization probability
Energy distribution

Remove bound states

Use integrated eigenvalue solver

Project wavefunction on single electron states

Use the same discretization and propagation schemes for single
electron problems
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Helium - Movie

Animation of an ionization event

PyProp Laser Ionization of Helium 27 / 31



Helium - Ionzation Probability

Ionization probability as a function of field strength
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Ionization probability does not go to one (stabilization)

Each point on the graph is from one ionization event

Total of 30000 CPU hours
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Summary

Created a software framework for atomic physics

Scalable - can perform massive calculations on large 2 electron systems
Flexible - can combine many different discretizations and propagators
to solve quite diverse problems

Solved a variety of problems using PyProp
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Future plans

Ease transition for new users

Documentation
Simplify installation procedure
Better error handling

Compare methods

Simplify implementation of new methods
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Image Sources

Wikimedia Commons

Vitruvian man - File:Vitruvian.jpg

Hair - File:Human Hair 40x.JPG

Cell - File:SEM blood cells.jpg

HIV - File:HIV-budding-Color.jpg

Atom - File:Stylised Lithium Atom.svg

Raymond Nepstad

Wavefunction

Helium animation
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