PyProp - A Python Framework for Propagating the Time Dependent Schrödinger Equation

Tore Birkeland

Department of Mathematics, University of Bergen

December 18, 2009

UNIVERSITY OF BERGEN

Study the behaviour of atoms and molecules

$10^{0} \mathrm{m}$	Н
$10^{-2}{ m m}$	Go
10^{-4} m	VV
$10^{-6} {\rm m}$	Ce
$10^{-8} { m m}$	Vi
$10^{-10} { m m}$	At

umans

10^{0}	m
10^{-}	2 m
10-	⁴ m
10^{-}	⁶ m
10^{-}	⁸ m
10-	¹⁰ m

Humans Golf balls Width of human hair Cells Vira Atoms

$10^{0} \mathrm{m}$	
$10^{-2} \mathrm{m}$	
$10^{-4} \mathrm{m}$	
$10^{-6}{\rm m}$	
10^{-8} m	
10^{-10} m	

Humans Golf balls Width of human hair Cells Vira Atoms

$0^0 \mathrm{m}$	Humans
0^{-2} m	Golf balls
0^{-4} m	Width of human hair
0^{-6} m	Cells
0^{-8} m	Vira
0^{-10} m	Atoms

1 1 1

$10^0 \mathrm{m}$	Humans
$10^{-2}{ m m}$	Golf balls
$10^{-4}{ m m}$	Width of human hair
$10^{-6}{ m m}$	Cells
$10^{-8}{ m m}$	Vira
10^{-10} m	Atoms

Humans
Golf balls
Width of human hair
Cells
Vira
Atoms

Atoms are smaller than the wavelength of light

- Any observation leads to a modification of the system
- It is not possible to directly observe what is going on
- Need theoretical models and calculations to match experiments

- Atoms are smaller than the wavelength of light
- Any observation leads to a modification of the system
- It is not possible to directly observe what is going on
- Need theoretical models and calculations to match experiments

- Atoms are smaller than the wavelength of light
- Any observation leads to a modification of the system
- It is not possible to directly observe what is going on
- Need theoretical models and calculations to match experiments

- Atoms are smaller than the wavelength of light
- Any observation leads to a modification of the system
- It is not possible to directly observe what is going on
- Need theoretical models and calculations to match experiments

- Atoms are smaller than the wavelength of light
- Any observation leads to a modification of the system
- It is not possible to directly observe what is going on
- Need theoretical models and calculations to match experiments

- 1. An atomic/molecular system is in an initial state
- 2. The system interacts with an external force
 - Interaction with radiation (laser)
 - Collision with another atom/ion/molecule
- 3. The final state of the system is analyzed to compare with experiments

- 1. An atomic/molecular system is in an initial state
- 2. The system interacts with an external force
 - Interaction with radiation (laser)
 - Collision with another atom/ion/molecule
- 3. The final state of the system is analyzed to compare with experiments

- 1. An atomic/molecular system is in an initial state
- 2. The system interacts with an external force
 - Interaction with radiation (laser)
 - Collision with another atom/ion/molecule
- 3. The final state of the system is analyzed to compare with experiments

- 1. An atomic/molecular system is in an initial state
- 2. The system interacts with an external force
 - Interaction with radiation (laser)
 - Collision with another atom/ion/molecule
- 3. The final state of the system is analyzed to compare with experiments

- 1. An atomic/molecular system is in an initial state
- 2. The system interacts with an external force
 - Interaction with radiation (laser)
 - Collision with another atom/ion/molecule
- 3. The final state of the system is analyzed to compare with experiments

- Overview of the thesis
- Introduction to Quantum Mechanics
- Solving the Time Dependent Schrödinger Equation on a computer
- How PyProp is a flexible solver
- Applying PyProp to laser ionization of Helium

Development and application of PyProp

- Computer Science Software design and implementation
- Mathematics Numerical methods
- Physics Applications

- Goals
 - Flexibility
 - Performance
- Research tool, not QM@Home
 - Common tasks automated
 - Difficult tasks possible
- Free Software (GPL) http://pyprop.googlecode.com

- Goals
 - Flexibility
 - Performance
- Research tool, not QM@Home
 - Common tasks automated
 - Difficult tasks possible
- Free Software (GPL) http://pyprop.googlecode.com

- Goals
 - Flexibility
 - Performance
- Research tool, not QM@Home
 - Common tasks automated
 - Difficult tasks possible
- Free Software (GPL) http://pyprop.googlecode.com

- Goals
 - Flexibility
 - Performance
- Research tool, not QM@Home
 - Common tasks automated
 - Difficult tasks possible
- Free Software (GPL) http://pyprop.googlecode.com

Scientific Results

- <u>T. Birkeland</u>, M. Førre, J. P. Hansen and S. Selstø, Dynamics of H_{2p} ionization in ultrashort strong laser pulses, J. Phys. B At. Mol. Opt. Phys, **37** 4205-4219 (2004)
- T. Birkeland and T. Sørevik Parallel Redistribution of Multidimensional Data Proceedings ParCo 2007 Conference NIC Series Volume 38, (2007)
- V. Popsueva, R. Nepstad, <u>T. Birkeland</u>, M. Førre, J. P. Hansen, E. Lindroth and E. Waltersson, *Structure of lateral two-electron quantum dot molecules in electromagnetic fields* Physical Review B, **76**, 035303 (2007)
- L. Sælen, I. Sundvor, <u>T. Birkeland</u>, S. Selstø, and M. Førre, *Classical and quantum-mechanical investigation of the role of nondipole effects on the binding of a stripped HD²⁺ molecule* Physical Review A, **76**, 013415 (2007)
- T. Sørevik, <u>T. Birkeland</u> and G. Okša, Numerical solution of the 3D time dependent Schrödinger equation in spherical coordinates: Spectral basis and effects of split-operator technique Journal of Computational and Applied Mathematics, 225, 56-67 (2007)
- C. R. Calvert, <u>T. Birkeland</u>, R. B. King, I. D. Williams and J. F. McCann, *Quantum chessboards in the deuterium molecular ion J.* Phys. B: At. Mol. Opt. Phys., **41**, 205504 (2008)
- 7. <u>T. Birkeland</u> and T. Sørevik, *Parallel Pseudo-spectral Methods for the Time Dependent Schrödinger Equation* Parallel Computing: Numerics, Applications, and Trends R. Trobec, M Vajteršic and P. Zinterhof (ed.) 261-279 (2009)
- C. R. Calvert, R. B. King, <u>T. Birkeland</u>. J. D. Alexander, J. B. Greenwood, W. A. Bryan, W. R. Newell, D. S. Murphy, J. F. McCann and I. D. Williams, *Pathways to state-selective control of vibrational wavepackets in the deuterium molecular ion* Journal of Modern Optics, **56** 1060-1069 (2009)
- 9. <u>T. Birkeland</u> and R. Strand, *How to Understand Nano Images*, Techne: Research in Philosophy and Technology, in print (2009)
- 10. R. Strand and <u>T. Birkeland</u>, *The Science and Politics of Nano Images* Nano meets Macro: Social Perspectives on Nanoscale Sciences and Technologies, (2009)
- L. Sælen, <u>T. Birkeland</u>, N. Sisourat, A. Dubois and J. P. Hansen, *Full 3D ab initio studies of interference effects in high-energy ion-molecule collisions* Proceedings of ICPEAC XXVI, in print (2009)
- L. Sælen, <u>T. Birkeland</u>, N. Sisourat, A. Dubois and J. P. Hansen, Non perturbative treatment of single ionization of H₂ by fast, highly charged ion impact, submitted for publication (2009)
- 13. <u>T. Birkeland</u>, R. Nepstad and M. Førre, *Multiphoton Double Ionization in Helium Driven by Intense XUV Attosecond Pulses*, to be submitted

Scientific Results

- <u>T. Birkeland</u>, M. Førre, J. P. Hansen and S. Selstø, Dynamics of H_{2p} ionization in ultrashort strong laser pulses, J. Phys. B At. Mol. Opt. Phys, **37** 4205-4219 (2004)
- T. Birkeland and T. Sørevik Parallel Redistribution of Multidimensional Data Proceedings ParCo 2007 Conference NIC Series Volume 38, (2007)
- V. Popsueva, R. Nepstad, <u>T. Birkeland</u>, M. Førre, J. P. Hansen, E. Lindroth and E. Waltersson, *Structure of lateral two-electron quantum dot molecules in electromagnetic fields* Physical Review B, **76**, 035303 (2007)
- L. Sælen, I. Sundvor, <u>T. Birkeland</u>, S. Selstø, and M. Førre, *Classical and quantum-mechanical investigation of the role of nondipole effects on the binding of a stripped HD²⁺ molecule* Physical Review A, **76**, 013415 (2007)
- T. Sørevik, <u>T. Birkeland</u> and G. Okša, Numerical solution of the 3D time dependent Schrödinger equation in spherical coordinates: Spectral basis and effects of split-operator technique Journal of Computational and Applied Mathematics, 225, 56-67 (2007)
- C. R. Calvert, <u>T. Birkeland</u>, R. B. King, I. D. Williams and J. F. McCann, *Quantum chessboards in the deuterium molecular ion J. Phys.* B: At. Mol. Opt. Phys., **41**, 205504 (2008)
- 7. <u>T. Birkeland</u> and T. Sørevik, *Parallel Pseudo-spectral Methods for the Time Dependent Schrödinger Equation* Parallel Computing: Numerics, Applications, and Trends R. Trobec, M Vajteršic and P. Zinterhof (ed.) 261-279 (2009)
- C. R. Calvert, R. B. King, <u>T. Birkeland</u>, J. D. Alexander, J. B. Greenwood, W. A. Bryan, W. R. Newell, D. S. Murphy, J. F. McCann and I. D. Williams, *Pathways to state-selective control of vibrational wavepackets in the deuterium* molecular ion Journal of Modern Optics, 56 1060-1069 (2009)
- 9. <u>T. Birkeland</u> and R. Strand, *How to Understand Nano Images*, Techne: Research in Philosophy and Technology, in print (2009)
- R. Strand and <u>T. Birkeland</u>, The Science and Politics of Nano Images Nano meets Macro: Social Perspectives on Nanoscale Sciences and Technologies, (2009)
- L. Sælen, <u>T. Birkeland</u>, N. Sisourat, A. Dubois and J. P. Hansen, *Full 3D ab initio studies of interference effects in high-energy ion-molecule collisions* Proceedings of ICPEAC XXVI, in print (2009)
- L. Sælen, T. Birkeland, N. Sisourat, A. Dubois and J. P. Hansen, Non perturbative treatment of single ionization of H₂ by fast, highly charged ion impact, submitted for publication (2009)
- 13. <u>T. Birkeland</u>, R. Nepstad and M. Førre, *Multiphoton Double Ionization in Helium Driven by Intense XUV Attosecond Pulses*, to be submitted

Scientific Results

- <u>T. Birkeland</u>, M. Førre, J. P. Hansen and S. Selstø, Dynamics of H_{2p} ionization in ultrashort strong laser pulses, J. Phys. B At. Mol. Opt. Phys, **37** 4205-4219 (2004)
- T. Birkeland and T. Sørevik Parallel Redistribution of Multidimensional Data Proceedings ParCo 2007 Conference NIC Series Volume 38, (2007)
- V. Popsueva, R. Nepstad, <u>T. Birkeland</u>, M. Førre, J. P. Hansen, E. Lindroth and E. Waltersson, *Structure of lateral two-electron quantum dot molecules in electromagnetic fields* Physical Review B, **76**, 035303 (2007)
- L. Sælen, I. Sundvor, <u>T. Birkeland</u>, S. Selstø, and M. Førre, *Classical and quantum-mechanical investigation of the role of nondipole effects on the binding of a stripped HD²⁺ molecule* Physical Review A, **76**, 013415 (2007)
- T. Sørevik, <u>T. Birkeland</u> and G. Okša, Numerical solution of the 3D time dependent Schrödinger equation in spherical coordinates: Spectral basis and effects of split-operator technique Journal of Computational and Applied Mathematics, 225, 56-67 (2007)
- C. R. Calvert, <u>T. Birkeland</u>, R. B. King, I. D. Williams and J. F. McCann, *Quantum chessboards in the deuterium molecular ion J. Phys.* B: At. Mol. Opt. Phys., **41**, 205504 (2008)
- T. Birkeland and T. Sørevik, Parallel Pseudo-spectral Methods for the Time Dependent Schrödinger Equation Parallel Computing: Numerics, Applications, and Trends R. Trobec, M Vajteršic and P. Zinterhof (ed.) 261-279 (2009)
- C. R. Calvert, R. B. King, <u>T. Birkeland</u>, J. D. Alexander, J. B. Greenwood, W. A. Bryan, W. R. Newell, D. S. Murphy, J. F. McCann and I. D. Williams, *Pathways to state-selective control of vibrational wavepackets in the deuterium* molecular ion Journal of Modern Optics, 56 1060-1069 (2009)
- 9. <u>T. Birkeland</u> and R. Strand, *How to Understand Nano Images*, Techne: Research in Philosophy and Technology, in print (2009)
- R. Strand and <u>T. Birkeland</u>, The Science and Politics of Nano Images Nano meets Macro: Social Perspectives on Nanoscale Sciences and Technologies, (2009)
- L. Sælen, <u>T. Birkeland</u>, N. Sisourat, A. Dubois and J. P. Hansen, *Full 3D ab initio studies of interference effects in high-energy ion-molecule collisions* Proceedings of ICPEAC XXVI, in print (2009)
- L. Sælen, T. Birkeland, N. Sisourat, A. Dubois and J. P. Hansen, Non perturbative treatment of single ionization of H₂ by fast, highly charged ion impact, submitted for publication (2009)
- 13. <u>T. Birkeland</u>, R. Nepstad and M. Førre, *Multiphoton Double Ionization in Helium Driven by Intense XUV Attosecond Pulses*, to be submitted

 $\mathbf{F} = m\mathbf{a}$

Quantum Mechanics

Heisenberg uncertainty principle: a particle can not have well defined position and velocity

- There is a probability for finding a particle in a given position
 - Must therefore consider all possible positions at the same time

Quantum Mechanics

Heisenberg uncertainty principle: a particle can not have well defined position and velocity

- There is a probability for finding a particle in a given position
- Must therefore consider all possible positions at the same time

Quantum Mechanics

Heisenberg uncertainty principle: a particle can not have well defined position and velocity

- There is a probability for finding a particle in a given position
- Must therefore consider all possible positions at the same time

Position and velocity is replaced by a wavefunction

 $\psi(\mathbf{x},t)$

$|\psi(\mathbf{x},t)|^2$ is the probability density of finding the particle in \mathbf{x}

Time evolution of $\psi({\bf x},t)$ is described by the Time Dependent Schrödinger Equation (TDSE).

$$i\frac{\partial}{\partial t}\psi(\mathbf{x},t) = \widehat{H}\psi(\mathbf{x},t)$$

Position and velocity is replaced by a wavefunction

 $\psi(\mathbf{x},t)$

 $|\psi(\mathbf{x},t)|^2$ is the probability density of finding the particle in \mathbf{x}

Time evolution of $\psi(\mathbf{x},t)$ is described by the Time Dependent Schrödinger Equation (TDSE).

$$i\frac{\partial}{\partial t}\psi(\mathbf{x},t) = \widehat{H}\psi(\mathbf{x},t)$$

The Hamiltonian describes the energies in the system

$$\widehat{H} = -\frac{1}{2m}\nabla^2 + V(\mathbf{x}, t)$$

- The differentiation operator represents kinetic energy
- $V(\mathbf{x})$ is the potential energy.
- Systems are characterized by different potentials

The Hamiltonian describes the energies in the system

$$\widehat{H} = -\frac{1}{2m}\nabla^2 + V(\mathbf{x}, t)$$

The differentiation operator represents kinetic energy

- $\mathbf{V}(\mathbf{x})$ is the potential energy.
- Systems are characterized by different potentials

The Hamiltonian describes the energies in the system

$$\widehat{H} = -\frac{1}{2m}\nabla^2 + V(\mathbf{x}, t)$$

- The differentiation operator represents kinetic energy
- $V(\mathbf{x})$ is the potential energy.
- Systems are characterized by different potentials

The Hamiltonian describes the energies in the system

$$\widehat{H} = -\frac{1}{2m}\nabla^2 + V(\mathbf{x}, t)$$

- The differentiation operator represents kinetic energy
- $V(\mathbf{x})$ is the potential energy.
- Systems are characterized by different potentials

Adding a particle is equivalent to adding degrees of freedom

 $i\frac{\partial}{\partial t}\psi(\mathbf{x}_1,\mathbf{x}_2,t) = (H_1(\mathbf{x}_1) + H_2(\mathbf{x}_2) + H_{1,2}(\mathbf{x}_1,\mathbf{x}_2))\psi(\mathbf{x}_1,\mathbf{x}_2,t)$

The time for solving a system increases exponentially with the number of particles

- 1 particle: 1 sec
- 2 particles: 17 min
- 3 particles: 277 hours
- 7 particles: age of the universe

The "exponential wall" of quantum mechanics

Adding a particle is equivalent to adding degrees of freedom

$$\mathbf{i}\frac{\partial}{\partial t}\psi(\mathbf{x}_1,\mathbf{x}_2,t) = \left(H_1(\mathbf{x}_1) + H_2(\mathbf{x}_2) + H_{1,2}(\mathbf{x}_1,\mathbf{x}_2)\right)\psi(\mathbf{x}_1,\mathbf{x}_2,t)$$

The time for solving a system increases exponentially with the number of particles

- 1 particle: 1 sec
- 2 particles: 17 min
- 3 particles: 277 hours
- 7 particles: age of the universe

The "exponential wall" of quantum mechanics

$$\mathbf{i}\frac{\partial}{\partial t}\psi(\mathbf{x}_1,\mathbf{x}_2,t) = \left(H_1(\mathbf{x}_1) + H_2(\mathbf{x}_2) + H_{1,2}(\mathbf{x}_1,\mathbf{x}_2)\right)\psi(\mathbf{x}_1,\mathbf{x}_2,t)$$

- The time for solving a system increases exponentially with the number of particles
 - 1 particle: 1 sec
 - 2 particles: 17 min
 - 3 particles: 277 hours
 - 7 particles: age of the universe
- The "exponential wall" of quantum mechanics

$$\mathbf{i}\frac{\partial}{\partial t}\psi(\mathbf{x}_1,\mathbf{x}_2,t) = \left(H_1(\mathbf{x}_1) + H_2(\mathbf{x}_2) + H_{1,2}(\mathbf{x}_1,\mathbf{x}_2)\right)\psi(\mathbf{x}_1,\mathbf{x}_2,t)$$

- The time for solving a system increases exponentially with the number of particles
 - 1 particle: 1 sec
 - 2 particles: 17 min
 - 3 particles: 277 hours
 - 7 particles: age of the universe
- The "exponential wall" of quantum mechanics

$$\mathbf{i}\frac{\partial}{\partial t}\psi(\mathbf{x}_1,\mathbf{x}_2,t) = \left(H_1(\mathbf{x}_1) + H_2(\mathbf{x}_2) + H_{1,2}(\mathbf{x}_1,\mathbf{x}_2)\right)\psi(\mathbf{x}_1,\mathbf{x}_2,t)$$

- The time for solving a system increases exponentially with the number of particles
 - 1 particle: 1 sec
 - 2 particles: 17 min
 - 3 particles: 277 hours
 - 7 particles: age of the universe
- The "exponential wall" of quantum mechanics

Adding a particle is equivalent to adding degrees of freedom

$$\mathbf{i}\frac{\partial}{\partial t}\psi(\mathbf{x}_1,\mathbf{x}_2,t) = \left(H_1(\mathbf{x}_1) + H_2(\mathbf{x}_2) + H_{1,2}(\mathbf{x}_1,\mathbf{x}_2)\right)\psi(\mathbf{x}_1,\mathbf{x}_2,t)$$

- The time for solving a system increases exponentially with the number of particles
 - 1 particle: 1 sec
 - 2 particles: 17 min
 - 3 particles: 277 hours
 - 7 particles: age of the universe

The "exponential wall" of quantum mechanics

Adding a particle is equivalent to adding degrees of freedom

$$\mathbf{i}\frac{\partial}{\partial t}\psi(\mathbf{x}_1,\mathbf{x}_2,t) = \left(H_1(\mathbf{x}_1) + H_2(\mathbf{x}_2) + H_{1,2}(\mathbf{x}_1,\mathbf{x}_2)\right)\psi(\mathbf{x}_1,\mathbf{x}_2,t)$$

- The time for solving a system increases exponentially with the number of particles
 - 1 particle: 1 sec
 - 2 particles: 17 min
 - 3 particles: 277 hours
 - 7 particles: age of the universe

The "exponential wall" of quantum mechanics

$$\mathbf{i}\frac{\partial}{\partial t}\psi(\mathbf{x}_1,\mathbf{x}_2,t) = \left(H_1(\mathbf{x}_1) + H_2(\mathbf{x}_2) + H_{1,2}(\mathbf{x}_1,\mathbf{x}_2)\right)\psi(\mathbf{x}_1,\mathbf{x}_2,t)$$

- The time for solving a system increases exponentially with the number of particles
 - 1 particle: 1 sec
 - 2 particles: 17 min
 - 3 particles: 277 hours
 - 7 particles: age of the universe
- The "exponential wall" of quantum mechanics

Returning to the TDSE

$$\mathrm{i}\frac{\partial}{\partial t}\psi(\mathbf{x},t)=\widehat{H}\psi(\mathbf{x},t)$$

- Can only be solved by hand for the simplest systems
- Computers does not work on continuous problems, the TDSE must therefore be *discretized* in space and time.

THE REPORT

Returning to the TDSE

$$\mathrm{i}\frac{\partial}{\partial t}\psi(\mathbf{x},t)=\widehat{H}\psi(\mathbf{x},t)$$

- Can only be solved by hand for the simplest systems
- Computers does not work on continuous problems, the TDSE must therefore be *discretized* in space and time.

Returning to the TDSE

$$\mathrm{i}\frac{\partial}{\partial t}\psi(\mathbf{x},t)=\widehat{H}\psi(\mathbf{x},t)$$

- Can only be solved by hand for the simplest systems
- Computers does not work on continuous problems, the TDSE must therefore be *discretized* in space and time.

THE REPORT

Returning to the TDSE

$$\mathrm{i}\frac{\partial}{\partial t}\psi(\mathbf{x},t)=\widehat{H}\psi(\mathbf{x},t)$$

- Can only be solved by hand for the simplest systems
- Computers does not work on continuous problems, the TDSE must therefore be *discretized* in space and time.

- Cartesian coordinates, $\mathbf{x} = (x, y, z)$
- Spherical coordinates, $\mathbf{x} = (r, \theta, \phi)$
- Cylindrical coordinates, $\mathbf{x} = (r, \rho, \phi)$
- Each rank may be discretized independently
- Optimal choice is system dependent

- Cartesian coordinates, $\mathbf{x} = (x, y, z)$
- Spherical coordinates, $\mathbf{x} = (r, \theta, \phi)$
- Cylindrical coordinates, $\mathbf{x} = (r, \rho, \phi)$
- Each rank may be discretized independently
- Optimal choice is system dependent

- Cartesian coordinates, $\mathbf{x} = (x, y, z)$
- Spherical coordinates, $\mathbf{x} = (r, \theta, \phi)$
- Cylindrical coordinates, $\mathbf{x}=(r,
 ho,\phi)$
- Each rank may be discretized independently
- Optimal choice is system dependent

AND BRANCH

- Cartesian coordinates, $\mathbf{x} = (x, y, z)$
- \blacksquare Spherical coordinates, $\mathbf{x} = (r, \theta, \phi)$
- Cylindrical coordinates, $\mathbf{x} = (r, \rho, \phi)$
- Each rank may be discretized independently
- Optimal choice is system dependent

- Cartesian coordinates, $\mathbf{x} = (x, y, z)$
- \blacksquare Spherical coordinates, $\mathbf{x}=(r,\theta,\phi)$
- Cylindrical coordinates, $\mathbf{x} = (r, \rho, \phi)$
- Each rank may be discretized independently
- Optimal choice is system dependent

- Cartesian coordinates, $\mathbf{x} = (x, y, z)$
- \blacksquare Spherical coordinates, $\mathbf{x}=(r,\theta,\phi)$
- Cylindrical coordinates, $\mathbf{x} = (r, \rho, \phi)$
- Each rank may be discretized independently
- Optimal choice is system dependent

Discretization

Approximating the continuous problem with a finite number of states.

Sum of continuous basis functions

$$\psi(x,t) \approx \sum_{i=0}^{m} c_i(t) B_i(x)$$

- Perform calculations on $\mathbf{c}(t) = \{c_i(t)\}$
- Which basis functions should we use?
 - Fourier functions?
 - Orthogonal polynomials?
 - B-Splines?
- Optimal choice is system dependent

- Approximating the continuous problem with a finite number of states.
- Sum of continuous basis functions

$$\psi(x,t) \approx \sum_{i=0}^{m} c_i(t) B_i(x)$$

- Perform calculations on $\mathbf{c}(t) = \{c_i(t)\}$
- Which basis functions should we use?
 - Fourier functions?
 - Orthogonal polynomials?
 - B-Splines?
- Optimal choice is system dependent

- Approximating the continuous problem with a finite number of states.
- Sum of continuous basis functions

$$\psi(x,t) \approx \sum_{i=0}^{m} c_i(t) B_i(x)$$

- Perform calculations on $\mathbf{c}(t) = \{c_i(t)\}$
- Which basis functions should we use?
 - Fourier functions?
 - Orthogonal polynomials?
 - B-Splines?
- Optimal choice is system dependent

- Approximating the continuous problem with a finite number of states.
- Sum of continuous basis functions

$$\psi(x,t) \approx \sum_{i=0}^{m} c_i(t) B_i(x)$$

- Perform calculations on $\mathbf{c}(t) = \{c_i(t)\}$
- Which basis functions should we use?
 - Fourier functions?
 - Orthogonal polynomials?
 - B-Splines?

Optimal choice is system dependent

- Approximating the continuous problem with a finite number of states.
- Sum of continuous basis functions

$$\psi(x,t) \approx \sum_{i=0}^{m} c_i(t) B_i(x)$$

- Perform calculations on $\mathbf{c}(t) = \{c_i(t)\}$
- Which basis functions should we use?
 - Fourier functions?
 - Orthogonal polynomials?
 - B-Splines?
- Optimal choice is system dependent

$$\mathrm{i}\frac{\partial}{\partial t}\psi(\mathbf{x},t)=\widehat{H}\psi(\mathbf{x},t) \quad \rightarrow \quad \mathrm{i}\mathbf{S}\frac{\partial}{\partial t}\mathbf{c}(t)=\mathbf{H}\mathbf{c}(t)$$

- Propagation: from $\mathbf{c}(t)$, find $\mathbf{c}(t+h)$
- Choice of propagation scheme
 - Cayley Propagator
 - Split-Step Propagator
 - Krylov Propagator
- Can be done independently from space discretization
- Optimal propagation scheme is system dependent

$$\mathrm{i}\frac{\partial}{\partial t}\psi(\mathbf{x},t)=\widehat{H}\psi(\mathbf{x},t) \quad \rightarrow \quad \mathrm{i}\mathbf{S}\frac{\partial}{\partial t}\mathbf{c}(t)=\mathbf{H}\mathbf{c}(t)$$

Propagation: from $\mathbf{c}(t)$, find $\mathbf{c}(t+h)$

Choice of propagation scheme

- Cayley Propagator
- Split-Step Propagator
- Krylov Propagator
- Can be done independently from space discretization
- Optimal propagation scheme is system dependent

$$\mathrm{i}\frac{\partial}{\partial t}\psi(\mathbf{x},t)=\widehat{H}\psi(\mathbf{x},t) \quad \rightarrow \quad \mathrm{i}\mathbf{S}\frac{\partial}{\partial t}\mathbf{c}(t)=\mathbf{H}\mathbf{c}(t)$$

- Propagation: from $\mathbf{c}(t)$, find $\mathbf{c}(t+h)$
- Choice of propagation scheme
 - Cayley Propagator
 - Split-Step Propagator
 - Krylov Propagator
- Can be done independently from space discretization
- Optimal propagation scheme is system dependent

$$\mathrm{i}\frac{\partial}{\partial t}\psi(\mathbf{x},t)=\widehat{H}\psi(\mathbf{x},t) \quad \rightarrow \quad \mathrm{i}\mathbf{S}\frac{\partial}{\partial t}\mathbf{c}(t)=\mathbf{H}\mathbf{c}(t)$$

- Propagation: from $\mathbf{c}(t)$, find $\mathbf{c}(t+h)$
- Choice of propagation scheme
 - Cayley Propagator
 - Split-Step Propagator
 - Krylov Propagator
- Can be done independently from space discretization
- Optimal propagation scheme is system dependent

$$\mathrm{i}\frac{\partial}{\partial t}\psi(\mathbf{x},t)=\widehat{H}\psi(\mathbf{x},t) \quad \rightarrow \quad \mathrm{i}\mathbf{S}\frac{\partial}{\partial t}\mathbf{c}(t)=\mathbf{H}\mathbf{c}(t)$$

- Propagation: from $\mathbf{c}(t)$, find $\mathbf{c}(t+h)$
- Choice of propagation scheme
 - Cayley Propagator
 - Split-Step Propagator
 - Krylov Propagator
- Can be done independently from space discretization
- Optimal propagation scheme is system dependent

Solving the TDSE - Summary

- coordinate system
- discretization scheme
- propagator
- Making the right choice is difficult
- The wrong choice can lead to hard-to-solve systems
- A flexible solver should allow experimentation with different methods

Solving the TDSE - Summary

System dependent choices

- coordinate system
- discretization scheme
- propagator
- Making the right choice is difficult
- The wrong choice can lead to hard-to-solve systems
- A flexible solver should allow experimentation with different methods

Solving the TDSE - Summary

- coordinate system
- discretization scheme
- propagator
- Making the right choice is difficult
- The wrong choice can lead to hard-to-solve systems

A flexible solver should allow experimentation with different methods

- System dependent choices
 - coordinate system
 - discretization scheme
 - propagator
- Making the right choice is difficult
- The wrong choice can lead to hard-to-solve systems
- A flexible solver should allow experimentation with different methods

PyProp Framework Design

- Core Routines
- Independent Modules
- User Code

PyProp Framework Design

Core Routines

Independent Modules

User Code

Core	Wavefunction Representation	Distribution
	Representation	Python Interface

PyProp Framework Design

- Core Routines
- Independent Modules
- User Code

Equidistant Grid B-Splines Spherical Harmonics Orthogonal Poly.

Split-Step Cayley Krylov IRAM Solver

e Wavefunction Distribution Representation Python Interface

PyProp Framework Design

Choose dimensionality and discretization

- Several discretization schemes built in
- Can calculate inner products, operator-wavefunction multiplications, load/save wavefunctions
- Supply potentials
 - PyProp takes care of a lot of repetetive code
- Choose propagator
 - Several propagators built in
- Perform analysis and data exploration
 - High level code is written in Python
 - All the propagation tools can be used interactively

Choose dimensionality and discretization

- Several discretization schemes built in
- Can calculate inner products, operator-wavefunction multiplications, load/save wavefunctions
- Supply potentials
 - PyProp takes care of a lot of repetetive code
- Choose propagator
 - Several propagators built in
- Perform analysis and data exploration
 - High level code is written in Python
 - All the propagation tools can be used interactively

- Choose dimensionality and discretization
 - Several discretization schemes built in
 - Can calculate inner products, operator-wavefunction multiplications, load/save wavefunctions
- Supply potentials
 - PyProp takes care of a lot of repetetive code
- Choose propagator
 - Several propagators built in
- Perform analysis and data exploration
 - High level code is written in Python
 - All the propagation tools can be used interactively

- Choose dimensionality and discretization
 - Several discretization schemes built in
 - Can calculate inner products, operator-wavefunction multiplications, load/save wavefunctions
- Supply potentials
 - PyProp takes care of a lot of repetetive code
- Choose propagator
 - Several propagators built in
- Perform analysis and data exploration
 - High level code is written in Python
 - All the propagation tools can be used interactively

Practical calculations can have wavefunctions with 1 B elements.

Computational kernels are optimized

- Using high performance libraries where possible
- Written in C++/Fortran

Automatic parallelization of one or more ranks

- Supports redistribution
- Parallel matrix-vector operations

- Practical calculations can have wavefunctions with 1 B elements.
- Computational kernels are optimized
 - Using high performance libraries where possible
 - Written in C++/Fortran
- Automatic parallelization of one or more ranks
 - Supports redistribution
 - Parallel matrix-vector operations

- Practical calculations can have wavefunctions with 1 B elements.
- Computational kernels are optimized
 - Using high performance libraries where possible
 - Written in C++/Fortran
- Automatic parallelization of one or more ranks
 - Supports redistribution
 - Parallel matrix-vector operations

Current Applications

Numerics:

- Generalized reduced wavefunctions (Lundeland and Kozlov)
- Multidimensional Redistribution (ParCo 2007 p443 (2008))
- Trans. Chebyshev Grids (J. Comp. Appl. Math. 225 p56 (2009))

Physics:

- Two Electron Quantum Dots (Phys. Rev. B 76, 035303 (2007))
- Laser-bound Molecules (Phys. Rev. A 76, 013415 (2007))
- Vibrational Molecular Wavepackets (J. Phys. B 41 205504 (2008))
- Laser Ionization of SAE Argon (Nepstad et.al. (2009))
- Ion-Molecule Collsion (Submitted)
- Laser Ionization of Two-Electron Helium (In preparation)
- Laser lonization of H_2 (work in progress)
- Born-Oppenheimer effects in H₂⁺ (work in progress)

Current Applications

l l c

Numerics:

- Generalized reduced wavefunctions (Lundeland and Kozlov)
- Multidimensional Redistribution (ParCo 2007 p443 (2008))
- Trans. Chebyshev Grids (J. Comp. Appl. Math. 225 p56 (2009))

Physics:

- Two Electron Quantum Dots (Phys. Rev. B 76, 035303 (2007))
- Laser-bound Molecules (Phys. Rev. A 76, 013415 (2007))
- Vibrational Molecular Wavepackets (J. Phys. B 41 205504 (2008))
- Laser Ionization of SAE Argon (Nepstad et.al. (2009))
- Ion-Molecule Collsion (Submitted)
- Laser Ionization of Two-Electron Helium (In preparation)
- Laser Ionization of H_2 (work in progress)
- Born-Oppenheimer effects in H₂⁺ (work in progress)

Current Applications

Numerics:

- Generalized reduced wavefunctions (Lundeland and Kozlov)
- Multidimensional Redistribution (ParCo 2007 p443 (2008))
- Trans. Chebyshev Grids (J. Comp. Appl. Math. 225 p56 (2009))

Physics:

- Two Electron Quantum Dots (Phys. Rev. B 76, 035303 (2007))
- Laser-bound Molecules (Phys. Rev. A 76, 013415 (2007))
- Vibrational Molecular Wavepackets (J. Phys. B 41 205504 (2008))
- Laser Ionization of SAE Argon (Nepstad et.al. (2009))
- Ion-Molecule Collsion (Submitted)
- Laser Ionization of Two-Electron Helium (In preparation)
- Laser Ionization of H_2 (work in progress)
- Born-Oppenheimer effects in H₂⁺ (work in progress)

Example: Laser Ionization of Helium

Two electron system

$$\begin{array}{rcl}
\widehat{H}_0(\mathbf{r}_i) &=& -\frac{1}{2}\nabla^2 - \frac{2}{r_i} + A_z(t) \left(\frac{\partial}{\partial z_i} - \frac{\cos\theta_i}{r_i}\right) \\
\widehat{H}(\mathbf{r}_1, \mathbf{r}_2) &=& \widehat{H}_0(\mathbf{r}_1) + \widehat{H}_0(\mathbf{r}_2) + \frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|}
\end{array}$$

Near spherical symmetry around the nucleus

Example: Laser Ionization of Helium

• Two electron system $\begin{array}{rcl}
\widehat{H}_0(\mathbf{r}_i) &=& -\frac{1}{2}\nabla^2 - \frac{2}{r_i} + A_z(t)\left(\frac{\partial}{\partial z_i} - \frac{\cos\theta_i}{r_i}\right) \\
\widehat{H}(\mathbf{r}_1, \mathbf{r}_2) &=& \widehat{H}_0(\mathbf{r}_1) + \widehat{H}_0(\mathbf{r}_2) + \frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|}
\end{array}$

Near spherical symmetry around the nucleus

Example: Laser Ionization of Helium

• Two electron system $\begin{array}{rcl}
\widehat{H}_0(\mathbf{r}_i) &=& -\frac{1}{2}\nabla^2 - \frac{2}{r_i} + A_z(t)\left(\frac{\partial}{\partial z_i} - \frac{\cos\theta_i}{r_i}\right) \\
\widehat{H}(\mathbf{r}_1, \mathbf{r}_2) &=& \widehat{H}_0(\mathbf{r}_1) + \widehat{H}_0(\mathbf{r}_2) + \frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|}
\end{array}$

Near spherical symmetry around the nucleus

- 1. $\mathcal{Y}_{l_1,l_2}^{L,M}(\Omega_1,\Omega_2)$ Combination of all angles
- 2. r_1 distance from nucleus to first electron
- 3. r_2 distance from nucleus to second electron
- Discretizing r₁ and r₂ with B-Splines
- Total wavefunction has $pprox 10\,{
 m M}$ elements
 - Total memory requirement is $\approx 100 \, \mathrm{GB}$
 - Must be run in parallel
- Propagation with the Cayley Propagator
- A calculation typically takes $24 \,\mathrm{h}$ on $111 \,\mathrm{CPUs}$

AND REAL

Three computational ranks

- 1. $\mathcal{Y}_{l_1,l_2}^{L,M}(\Omega_1,\Omega_2)$ Combination of all angles
- 2. r_1 distance from nucleus to first electron
- 3. r_2 distance from nucleus to second electron

Discretizing r_1 and r_2 with B-Splines

- Total wavefunction has $pprox 10\,{
 m M}$ elements
 - Total memory requirement is $\approx 100 \, \mathrm{GB}$
 - Must be run in parallel
- Propagation with the Cayley Propagator
- A calculation typically takes $24 \,\mathrm{h}$ on $111 \,\mathrm{CPUs}$

- 1. $\mathcal{Y}_{l_1,l_2}^{L,M}(\Omega_1,\Omega_2)$ Combination of all angles
- 2. r_1 distance from nucleus to first electron
- 3. r_2 distance from nucleus to second electron
- Discretizing r_1 and r_2 with B-Splines
- \blacksquare Total wavefunction has $\approx 10\,M$ elements
 - \blacksquare Total memory requirement is $\approx 100\,{\rm GB}$
 - Must be run in parallel
- Propagation with the Cayley Propagator
- A calculation typically takes $24 \,\mathrm{h}$ on $111 \,\mathrm{CPUs}$

- 1. $\mathcal{Y}_{l_1,l_2}^{L,M}(\Omega_1,\Omega_2)$ Combination of all angles
- 2. r_1 distance from nucleus to first electron
- 3. r_2 distance from nucleus to second electron
- Discretizing r_1 and r_2 with B-Splines
- \blacksquare Total wavefunction has $\approx 10\,M$ elements
 - \blacksquare Total memory requirement is $\approx 100\,{\rm GB}$
 - Must be run in parallel
- Propagation with the Cayley Propagator
- A calculation typically takes $24 \,\mathrm{h}$ on $111 \,\mathrm{CPUs}$

- 1. $\mathcal{Y}_{l_1,l_2}^{L,M}(\Omega_1,\Omega_2)$ Combination of all angles
- 2. r_1 distance from nucleus to first electron
- 3. r_2 distance from nucleus to second electron
- Discretizing r_1 and r_2 with B-Splines
- \blacksquare Total wavefunction has $\approx 10\,M$ elements
 - \blacksquare Total memory requirement is $\approx 100\,{\rm GB}$
 - Must be run in parallel
- Propagation with the Cayley Propagator
- \blacksquare A calculation typically takes $24\,h$ on $111\,CPUs$

- Ionization probability
- Energy distribution
- Remove bound states
 - Use integrated eigenvalue solver
- Project wavefunction on single electron states
 - Use the same discretization and propagation schemes for single electron problems

- Ionization probability
- Energy distribution
- Remove bound states
 - Use integrated eigenvalue solver
- Project wavefunction on single electron states
 - Use the same discretization and propagation schemes for single electron problems

- Ionization probability
- Energy distribution
- Remove bound states
 - Use integrated eigenvalue solver
- Project wavefunction on single electron states
 - Use the same discretization and propagation schemes for single electron problems

- Ionization probability
- Energy distribution
- Remove bound states
 - Use integrated eigenvalue solver
- Project wavefunction on single electron states
 - Use the same discretization and propagation schemes for single electron problems

Animation of an ionization event

Helium - Ionzation Probability

Ionization probability as a function of field strength

- Ionization probability does not go to one (stabilization)
- Each point on the graph is from one ionization event
 - Total of 30000 CPU hours

Summary

Created a software framework for atomic physics

- Scalable can perform massive calculations on large 2 electron systems
- Flexible can combine many different discretizations and propagators to solve quite diverse problems
- Solved a variety of problems using PyProp

Created a software framework for atomic physics

- Scalable can perform massive calculations on large 2 electron systems
- Flexible can combine many different discretizations and propagators to solve quite diverse problems
- Solved a variety of problems using PyProp

Created a software framework for atomic physics

- Scalable can perform massive calculations on large 2 electron systems
- Flexible can combine many different discretizations and propagators to solve quite diverse problems

Solved a variety of problems using PyProp

- Created a software framework for atomic physics
 - Scalable can perform massive calculations on large 2 electron systems
 - Flexible can combine many different discretizations and propagators to solve quite diverse problems
- Solved a variety of problems using PyProp

Ease transition for new users

- Documentation
- Simplify installation procedure
- Better error handling
- Compare methods
- Simplify implementation of new methods

Ease transition for new users

Documentation

- Simplify installation procedure
- Better error handling
- Compare methods
- Simplify implementation of new methods

Ease transition for new users

- Documentation
- Simplify installation procedure
- Better error handling
- Compare methods
- Simplify implementation of new methods

Ease transition for new users

- Documentation
- Simplify installation procedure
- Better error handling

Compare methods

Simplify implementation of new methods

Ease transition for new users

- Documentation
- Simplify installation procedure
- Better error handling
- Compare methods

Simplify implementation of new methods

Ease transition for new users

- Documentation
- Simplify installation procedure
- Better error handling
- Compare methods
- Simplify implementation of new methods

Image Sources

Wikimedia Commons

- Vitruvian man File:Vitruvian.jpg
- Hair File:Human_Hair_40x.JPG
- Cell File:SEM_blood_cells.jpg
- HIV File:HIV-budding-Color.jpg
- Atom File:Stylised_Lithium_Atom.svg

Raymond Nepstad

- Wavefunction
- Helium animation

