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Some evolutionary innovations may originate non-adaptively as pre-adaptations 

or exaptations, which are by-products of other adaptive traits1-5. Examples 

include feathers, which originated before they adopted a role in flight2, and lens 

crystallins, light-refracting proteins that originated as enzymes6. The incidence 

of non-adaptive trait origins has profound implications for evolutionary biology, 

but it has thus far not been possible to study this incidence systematically. We 

here study it in metabolism, one of the most ancient biological systems that is 

central to all life. We analyse metabolic traits of great adaptive importance, the 

ability of a metabolic reaction network to synthesize all biomass from a single 

(sole) source of carbon and energy.  We take advantage of novel computational 

methods to randomly sample many metabolic networks that can sustain life on 

any given carbon source, but that contain an otherwise random set of known 

biochemical reactions. We show that such random networks, required to be 

viable on one carbon source C, are typically also viable on multiple other carbon 

sources Cnew that were not targets of selection. For example, viability on glucose 

may entail viability on up to 44 other sole carbon sources. Any one adaptation in 

these metabolic systems typically entails multiple potential exaptations. 

Metabolic systems thus contain a latent potential for evolutionary innovations 

with non-adaptive origins. Our observations suggest that many more metabolic 

traits than currently appreciated may have non-adaptive origins. They also 

challenge our ability to distinguish adaptive from non-adaptive traits. 



 

How evolutionary adaptations and innovations originate is one of the most profound 

questions in evolutionary biology. Previous work1,2 emphasizes the importance of 

exaptations, also sometimes called pre-adaptations, for this origin. These are traits 

whose benefits to an organism are unrelated to the reasons for their origin, features 

that originally serve one (or no) function, and become later co-opted for a different 

purpose1–5. Although examples of exaptations occur from the macroscopic to the 

molecular scale1-6 and abound also in human evolution7, no number of examples could 

answer how important exaptations are in the origin of adaptations in general. This 

limitation of case studies can be overcome in those biological systems where one can 

systematically study many genotypes and the phenotypes they form8–12. 

 

One of these systems is metabolism. The metabolic genotype of an organism encodes 

a metabolic reaction network with hundreds of enzyme-catalysed chemical reactions.  

One of metabolism’s fundamental tasks is to synthesize small biomass precursor 

molecules from environmental molecules, such as different organic carbon sources. 

An organism or metabolic network is viable on a carbon source, if it is able to 

synthesize all biomass molecules from this source. Viability on a new carbon source 

can be an important adaptation, and anecdotal evidence shows that this ability can 

originate as a pre-adaptation13,14. For example, laboratory evolution of Pseudomonas 

putida for increased biomass yield on xylose as a carbon source produces strains that 

utilize arabinose as efficiently as xylose, even though the ancestral strains did not 

utilize arabinose14. Thus, viability on arabinose can be a by-product of increased 

viability on xylose. We here analyse systematically whether such exaptations are 

typical or unusual in metabolic systems.  

 

Our analysis uses the ability to predict a metabolic phenotype from a metabolic 

genotype with the constraint-based method of flux balance analysis (FBA, see 

methods), to study not just one metabolic network, but to systematically explore a 

vast space of possible metabolic networks. The members of this space can be 

described as follows. The currently known “universe” of biochemical reactions 

comprises more than 5,000 chemical reactions with well-defined substrates and 

products. In the metabolic network of any one organism, however, only a fraction of 

these reactions take place, enabling us to describe this network through a binary 



presence/absence pattern of enzyme-catalysed reactions in the known reaction 

universe. Recent methods based on Markov Chain Monte Carlo (MCMC) sampling 

(see methods) allow a systematic exploration of this space, i.e., they permit the 

creation of arbitrarily large and uniform samples of networks with a given 

phenotype12. This sampling is based on long random walks through metabolic 

network space, where each step in a walk adds or eliminates a metabolic reaction 

from a metabolic network, with the only constraint that the network remains viable on 

a focal carbon source. The starting point of the MCMC random walk is the 

Escherichia coli metabolic network, which we know a priori to be viable on different 

carbon sources15. We here use this approach to create random samples of metabolic 

networks that are viable on a given set of carbon sources. We refer to such networks 

as random viable networks.  

 

Our analysis focuses on 50 biologically relevant and common carbon sources 

(supplementary table 1)15. For each carbon source C, we create a sample of 500 

random viable networks that are viable on C, if C is provided as the sole carbon 

source. We then use FBA to determine the viability of these networks on each of the 

49 other carbon sources. This approach allows us to ask whether viability on carbon 

source C usually entails viability on other carbon sources. The answers to this and 

related questions show that potential exaptations are ubiquitous in metabolism.  

 

We began our analysis with a sample of 500 random networks that were viable on 

glucose as the sole carbon source (see methods). Each network can synthesize the 63 

essential biomass precursors of E.coli – many of them important for most 

organisms15,16 – in an aerobic minimal environment containing glucose as the only 

carbon source. Importantly, we did not require that these 500 networks are viable on 

any carbon source except glucose.  

 

We first examined whether these networks were viable on each of the 49 other carbon 

sources. The information resulting from this analysis can be represented, for each 

network, as a binary ‘innovation vector’ whose i-th entry equals one if the network is 

viable on carbon source Ci, and otherwise zero (figure 1a). We define the innovation 

index IGlucose of a network as the number of additional carbon sources that each 

network is viable on. The distribution of this index is shown in figure 1b. Fully 96 



percent of networks are viable on other carbon sources in addition to glucose (I > 0).  

The mean innovation index is I = 4.86 (standard deviation (s.dev.) = 2.83 carbon 

sources). This means that networks viable on glucose typically are also viable on 

almost 5 additional carbon sources. 18.8 percent of networks (94 networks) are viable 

on exactly 5 new carbon sources, and 37.4 percent (187) of networks are viable on 6 

or more carbon sources. Viability on each such carbon source is a potential 

exaptation. It is a mere by-product of viability on glucose, and could become an 

adaptation whenever this carbon source is the sole carbon source. We also found that 

different random viable networks differ in the additional carbon sources to which they 

are pre-adapted (supplementary figures 1 and 2). Most of the 50 carbon sources we 

study confer viability on at least one network in our sample (supplementary results). 

Moreover, a variation in our sampling procedures that allows only reactions already 

connected to a metabolism to be altered further increases the incidence of exaptation 

(methods, supplementary figure 3). Finally, complex metabolic networks that have 

more reactions have greater potential for exaptation (supplementary figure 4). 

 

We next asked whether the ability to grow on multiple additional carbon sources is a 

peculiarity of networks viable on glucose. To this end, we sampled, for each of our 

remaining 49 carbon sources, 500 random metabolic networks viable on this carbon 

source (for a total of 49 x 500 = 24500 sampled networks). We then computed the 

distribution of the innovation index IC for each carbon source C. Figure 2a shows the 

mean of this distribution (bars) and its coefficient of variation (vertical lines), that is, 

the ratio of the standard deviation to the mean. The figure shows that glucose 

(highlighted in red) is by no means unusual. 36 percent (18) carbon sources have an 

even greater average innovation index than glucose. For example, acetate allows 

viability on the greatest number (9.75) of additional carbon sources. Conversely, 

some carbon sources such as adenosine (IAdenosine =0.27) and deoxyadenosine 

(IDeoxyadenosine = 0.1) allow growth on fewer additional carbon sources than glucose. 

Carbon sources with a small average innovation index – they entail viability on few 

additional carbon sources – are also more variable in this innovation index 

(supplementary figure 5, Spearman’s ȡ = -0.82, p < 10-101). Even though any one 

carbon source may confer growth on only few additional carbon sources in any one 

network (figure 2a), when considering all networks in a sample, it may still allow pre-

adaptation to most other carbon sources (supplementary figure 6).  



In sum, viability on any one carbon source C usually entails viability on multiple 

other carbon sources, whose number and identity can vary with C. Viability on never 

before encountered carbon sources is thus a typical metabolic property. 

Environmental generalists capable of surviving on multiple carbon sources may be 

viable on many more carbon sources than occur in their environment (supplementary 

tables 2 and 3, supplementary figure 10). 

We next asked whether metabolically close carbon sources show the highest potential 

for pre-adaptation. The centre path of figure 2b shows a hypothetical metabolic 

pathway that leads from a carbon source C to a source Cnew (boxed area) and from 

there through (possibly multiple) further metabolic reactions to the synthesis of 

biomass. Figure 2c shows the same scenario, except that C and Cnew are separated by 

several further reactions. It is possible that random networks viable on C are more 

likely to be viable also on Cnew, if Cnew is closer to C, i.e., if they are separated by 

fewer metabolic reactions, as in the scenario of figure 2b. In this case, metabolite Cnew 

may be less easy to by-pass through an alternative pathway that originates somewhere 

between C and Cnew (right-most sequence of arrows in figure 2c). 

To test this hypothesis (see also supplementary results), we analysed our 50 samples 

of 500 random metabolic networks, where networks in each sample were required to 

be viable on a different one of our 50 carbon sources C. For each sample (carbon 

source C), and for each of the other 49 possible carbon sources Cnew, we asked 

whether the metabolic distance between C and Cnew is correlated with the fraction of 

networks that are also viable on Cnew. To do this, we used metabolic networks that 

were selected for growth on C and additionally viable on Cnew (methods). We then 

computed the mean metabolic distance and binned the distances. The results, pooled 

for all networks are shown on the vertical axis of figure 2d, whose horizontal axis 

reflects the mean metabolic distance (binned into 9 bins). If a carbon source Cnew is 

closer to a carbon source C, then significantly more networks viable on C are also 

viable on Cnew (Spearman’s ρ = -0.42, p = 10-87, n = 1990). However, the figure also 

shows that the association is highly noisy, and especially so at low metabolic 

distances. Taking reaction irreversibility into account yields the same result 

(Spearman’s ρ = -0.39, p = 10-57, n = 1601), as does a different way of computing 

distances between pairs of carbon sources C and Cnew (methods and supplementary 



results). The association is noisy, because metabolism is highly reticulate 

(supplementary results).   

While metabolic ‘nearness’ cannot explain exaptations involving two carbon sources, 

biochemical similarities help explain why a network viable on C might be viable on 

one additional carbon source Cn1, but not on another source Cn2. Indeed, exaptations 

often involve carbon sources with broadly defined biochemical similarities 

(supplementary figures 7 and 8). For example, glycolytic carbon sources are more 

likely to entail exaptations for growth on other glycolytic carbon sources, and 

likewise for gluconeogenic carbon sources, as well as for carbon sources involved in 

nucleotide metabolism. Furthermore, we also show that pre-adaptation is synergistic, 

that is, the innovation index for a pair of carbon sources is greater than the sum of the 

innovation indices IC1 and IC2 (supplementary figure 9).  

Limitations of our analysis include that; first, it is based on current knowledge about 

the reaction universe. Future work may increase the number of known reactions, but 

this would not diminish, but could only enhance the spectrum of possible exaptations. 

The reason is that additional reactions would allow the utilization of additional carbon 

sources by some metabolic networks. Second, most of our analysis focused on 

random networks that are viable on a specific carbon source, but selection in the wild 

can affect more than viability, which may affect the incidence of exaptations. Of 

special importance is selection favouring networks with a high rate of biomass 

synthesis. This particular selective constraint would not affect our conclusions, 

because we found that networks with high biomass synthesis rates have even greater 

potential for metabolic innovation than merely viable networks (supplementary table 

4 and supplementary figure 11). Third, we considered all necessary nutrient 

transporters to be present (see methods). If this is not the case, the incidence of 

exaptation may be reduced. In this regard, we note that 84 percent of E. coli 

transporters can transport multiple molecules17, and that their substrate specificity can 

change rapidly18, thus ameliorating this constraint. Fourth, real metabolic networks 

may contain more reactions connected to the rest of metabolism than our randomly 

sampled networks. However, when restricting our analysis to networks in which all 

reactions are connected, we found an even greater incidence of exaptation than in 

random networks (see methods and supplementary results, supplementary figure 3). 



Thus, our results provide a lower bound on the incidence of exaptations. Finally, most 

of our analysis is based on sampling a limited number of 500 networks viable on each 

carbon source, but sampling of 5000 random networks for select carbon sources 

yielded identical results (supplementary figure 12).  

Our observations show that latent metabolic abilities are pervasive features of carbon 

metabolism. They expose non-adaptive origins of potentially useful carbon source 

utilization traits as a universal and inevitable feature of metabolism. The abundance of 

non-adaptive trait origins results from the complexity of metabolic systems, which 

have many enzyme parts that can jointly form multiple metabolic phenotypes, but this 

ability is not restricted to metabolic networks. Many enzymes are capable of utilizing 

various substrates17, 19, which can further increase network complexity and the 

potential for exaptation. The ability to form multiple phenotypes also occurs in 

regulatory circuits20, which can form different molecular activity patterns, as well as 

RNA molecules21, which can form multiple conformations with different biological 

functions. Systematic analyses of genotype-phenotype relationships are becoming 

increasingly possible in such systems22,23, and already hint at exaptive origins of 

molecular traits. If confirmed in systematic analyses like ours, the pervasiveness of 

non-adaptive traits may require a re-thinking of the early origins of beneficial traits. 

 

METHODS SUMMARY 

We used Markov Chain Monte Carlo (MCMC) random walks that use reaction-

swapping to sample random viable metabolic networks12, as well as flux balance 

analysis24 to compute the viability of metabolic networks during the MCMC 

procedure. We performed all analyses for minimal aerobic growth environments 

composed of a sole carbon source, along with oxygen, ammonium, inorganic 

phosphate, sulfate, sodium, potassium, cobalt, iron (Fe2+ and Fe3+), protons, water, 

molybdate, copper, calcium, chloride, magnesium, manganese and zinc15.  
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FIGURE LEGENDS 

Figure 1 – Viability on glucose entails viability on multiple other carbon sources. 

(a) The binary innovation vector of a hypothetical metabolic network that is viable on 

glucose. The vector shows that the random network is viable on glucose, sorbitol and 

fructose (marked by 1), but not viable on pyruvate and acetate (marked by 0). The 

innovation index of this network (IGlucose = 2) denotes the number of additional carbon 

sources the network is viable on. (b) The distribution of innovation indices for 500 

random networks viable on glucose. Only 4 percent of networks have IGlucose = 0, 

meaning that they are viable only on glucose.  

 

Figure 2 – Innovation varies with respect to the carbon source C and the mean 

metabolic distance between C and Cnew. (a) For each of 50 carbon sources C 

(horizontal axis), the figure indicates the mean innovation index (bar) and its 

coefficient of variation (lines) for 500 random networks required to be viable on 

carbon source C. Note the broad distribution of the index. Some carbon sources such 

as acetate allow viability on more than nine additional carbon sources on average, 

while others, such as deoxyadenosine support viability on fewer than one additional 

carbon sources. The innovation index of glucose (in red) is typical compared to other 

carbon sources. (b) The figure shows a hypothetical carbon source Cnew, which can be 

synthesized from some carbon source C in one reaction (arrow), and which leads 

through multiple further reaction to the synthesis of biomass. Some metabolic 

networks may have an alternative metabolic pathway that by-passes Cnew altogether 

(right sequence of arrows). (c) Like (b), but Cnew and C are separated by multiple 

reactions. The fewer reactions separate C and Cnew, the more likely it is that Cnew is 

not by-passed by some alternative metabolic pathway, and that therefore viability on 



C implies viability on Cnew. This is the hypothesis tested in the analysis of (d). The 

horizontal axis of (d) indicates the mean number of reactions that separate C and Cnew 

in networks that are viable on both C and Cnew, binned into integer intervals 

corresponding to the floor of this number. The vertical axis indicates the fraction of 

random metabolic networks required to be viable on carbon source C that are 

additionally viable on Cnew. Note that the potential for innovation decreases with 

increasing distance. Box edges: 25th and the 75th percentiles; central horizontal line in 

each box: median; whiskers: ± 2.7 standard deviations; open circles: outliers. Data are 

based on samples of 500 random viable networks for each of 50 carbon sources C (n 

= 25000).  

 

Online Methods 

Flux balance analysis (FBA) 

FBA is a constraint-based computational method24,25 used to predict synthetic abilities 

and other properties of large metabolic networks, which are complex systems of 

enzyme-catalysed chemical reactions. FBA requires information about the 

stoichiometry of each molecular species participating in the chemical reactions of a 

metabolic network. This stoichiometric information is represented as a stoichiometric 

matrix S of dimensions m x n, where m denotes the number of metabolites and n 

denotes the number of reactions in a network24,25. FBA also assumes that the network 

is in a metabolic steady-state, such as would be attained by an exponentially growing 

microbial population in an unchanging environment. This assumption allows one to 

impose the constraint of mass conservation on the metabolites in the network. This 

constraint can be expressed as 

 Sv = 0 

wherein v denotes a vector of metabolic fluxes whose entries vi describe the rate at 

which reaction i proceeds. The solutions – ‘allowable’ fluxes – of this equation form a 

large solution space, but not all of these solutions may be of biological interest. To 

restrict this space to fluxes of interest, FBA uses linear programming to maximize a 

biologically relevant quantity in the form of a linear objective function Z25. 



Specifically, the linear programming formulation of an FBA problem can be 

expressed as  

 max Z = max {cTv | Sv = 0, a � v � b} 

The vector c contains a set of scalar coefficients that represent the maximization 

criterion, and vectors a and b contain the minimally and maximally possible fluxes 

for each reaction in v, respectively.  

We are here interested in predicting if a metabolic network can sustain life in a given 

spectrum of environments, that is, whether it can synthesize all necessary small 

biomass molecules (biomass precursors) required for survival and growth. In a free-

living bacterium such as E. coli, there are more than 60 such molecules, which 

include 20 proteinaceous amino acids, DNA and RNA nucleotide precursors, lipids, 

and cofactors. We use the E. coli biomass composition15 to define the objective 

function and the vector c, because most molecules in E. coli’s biomass would be 

typically found in free-living organisms. We used the package CLP (1.4, Coin-OR; 

https://projects/coin-or.org/Clp) to solve the linear programming problems mentioned 

above.   

 

Chemical environments 

Along with the biomass composition and stoichiometric information about a 

metabolic network, one needs to define one or more chemical environments that 

contain the nutrients needed to synthesize biomass precursors. We here consider only 

minimal aerobic growth environments composed of a sole carbon source, along with 

oxygen, ammonium, inorganic phosphate, sulfate, sodium, potassium, cobalt, iron 

(Fe2+ and Fe3+), protons, water, molybdate, copper, calcium, chloride, magnesium, 

manganese and zinc15. When studying viability of a metabolic network in different 

environments, we vary the carbon source while keeping all other nutrients constant. 

When we say, for example, that a particular network is viable on 20 carbon sources, 

we mean that the network can synthesize all biomass precursors when each of these 

carbon sources is provided as the sole carbon source in a minimal medium. For 

reasons of computational feasibility, we restrict ourselves to 50 carbon sources 



(supplementary table 1). They are all carbon sources on which E. coli is known to be 

viable from experiments15. We chose these carbon sources because many of them are 

prominent, and because they are of known biological relevance, but we emphasize 

that our observations do not otherwise make a statement about the metabolism of E. 

coli or its close relatives. They apply to metabolic networks that vary much more 

broadly in reaction composition than any relative of E. coli, because of our network 

sampling approach described below, which effectively randomizes the reaction 

composition of a microbial metabolism. 

  

The known reaction universe   

The known reaction universe is a list of metabolic reactions known to occur in some 

organisms. For the construction of this universe, we used data from the LIGAND 

database26,27 of the Kyoto Encyclopaedia of Genes and Genomes28,29. The LIGAND 

database is divided into two subsets – the REACTION and the COMPOUND 

database. These two databases together provide information about metabolic 

reactions, participating chemical compounds, and associated stoichiometric 

information in an interlinked manner.  

As we also described earlier12,30,31, we specifically used the REACTION and the 

COMPOUND databases to construct our universe of reactions while excluding - (i) 

all reactions involving polymer metabolites of unspecified numbers of monomers, or 

general polymerization reactions with uncertain stoichiometry, (ii) reactions involving 

glycans, due to their complex structure, (iii) reactions with unbalanced stoichiometry, 

and (iv), reactions involving complex metabolites without chemical information29. 

The published E. coli metabolic model (iAF1260) consists of 1397 non-transport 

reactions15. We merged all reactions in the E. coli model with the reactions in the 

KEGG dataset, and retained only the non-duplicate reactions. After these procedures 

of pruning and merging, our universe of reactions consisted of 5906 non-transport 

reactions and 5030 metabolites.  

 

Sampling of random viable metabolic networks 



In an organism, a metabolic network can change through mutations. They can lead to 

addition of new reactions, by way of horizontal-gene transfer, or through the 

evolution of enzymes with novel activities. They can also lead to loss of reactions 

through loss-of-function mutations in enzyme-coding genes. Natural selection can 

preserve those changed metabolic networks that are viable in a particular 

environment. Together, mutational processes and selection may change a metabolic 

network drastically on long evolutionary time-scale. Recent work has shown that even 

metabolic networks that differ greatly in their sets of reactions can have the same 

metabolic phenotype, that is, the same biosynthetic ability32. We here employ a 

recently developed Markov Chain Monte Carlo (MCMC) random sampling12,30,31,33,34 

procedure to generate metabolic networks that are viable in specific environments, but 

that contain an otherwise random complement of metabolic reactions. Briefly, this 

procedure involves random walks in the space of all possible networks. During any 

one such random walk, a metabolic network can change through the addition and 

deletion of reactions. Although this process resembles the biological evolution of 

metabolic networks through horizontal gene transfer and (recombination-driven) gene 

deletions, we here use it for the sole purpose to create random samples of metabolic 

networks from the space of all such networks12,34.  

In any one MCMC random walk, we keep the total number of reactions at the same 

number (139715) as the starting E. coli network, in order to avoid artifacts due to 

varying reaction network size12. Specifically, each mutation step in a random walk 

involves an addition of a randomly chosen reaction from the reaction universe, 

followed by a deletion of a randomly chosen metabolic reaction from the metabolic 

network. We call such a sequence of reaction addition and deletion a reaction swap. 

Reaction addition does not abolish the viability of a network in any environment. 

However, reaction deletion might. Thus, after a reaction deletion, we use FBA to ask 

whether the network is still viable – it can synthesize all biomass precursors -- in the 

specified environment. If so, we accept the deletion; otherwise, we reject it and 

choose another reaction for deletion at random, until we have found a deletion that 

retains viability. After that, we accept the reaction swap, thus completing a single step 

in the random walk. We do not subject transport reactions to reaction swaps. These 

reactions are therefore present in all networks generated by our random walk.  



Any MCMC random walk begins from a single starting network, in our case that of E. 

coli. The theory behind MCMC sampling12,34 , shows that it is important to carry out 

as many reaction swaps as possible for MCMC to ‘erase’ the random walker’s 

similarity (‘memory’) of the initial network. The reason is that successive genotypes 

in a random walk are strongly correlated in their properties, because they differ by 

only one reaction pair. These correlations fade with an increasing number of reaction 

swaps. Because we are interested in analyzing growth phenotypes of networks, 

correlations to the initial network would result in identification of growth on carbon 

sources similar to those of the starting network. In past work12,30, we found that for 

the network sizes that we use (1397 reactions), 3 x 103 reactions swaps are sufficient 

to erase the similarity of the final network to the starting network. To err on the side 

of caution, we thus carried out 5 x 103 reaction swaps before beginning to sample, and 

sample a network every 5 x 103 reaction swaps thereafter. In this way, we generated 

samples of 500 random viable metabolic networks through an MCMC random walk 

of 2.5 x 106 reaction swaps. We carried out different random walks to sample 

networks viable on different carbon sources.    

For some of our analyses, we also sampled random metabolic networks of sizes 

different from that of the E. coli metabolic network. To do this, we followed a 

previously established procedure12,30,31 to create a starting network for an MCMC 

random walk that has the desired size. This procedure first converts the known 

universe of reactions into a ‘global’ metabolic network by including the E. coli 

transport reactions in it. Not surprisingly, this global network can produce all biomass 

components and is therefore viable on all carbon sources studied here. We used this 

global network to successively delete a sequence of randomly chosen reactions in the 

following way. After each reaction deletion, FBA is used to ask whether the network 

is still viable on a given carbon source. If so, the deletion is accepted; otherwise 

another reaction is chosen at random for deletion. We deleted in this way as many 

reactions as needed to generate a network of the desired size. We then used this 

network as the starting network for an MCMC random walk, as described above, to 

generate samples of 500 random viable networks.  

 



Identification of disconnected non-functional reactions and the connected 

reaction universe 

We performed some of our analysis with a version of the reaction universe that does 

not contain disconnected reations. Reactions that are not connected to the rest of a 

metabolic network would be nonfunctional, because they cannot carry a non-zero 

steady-state metabolic flux, and thus could not contribute to the synthesis of biomass. 

The genes encoding them would eventually be lost from a genome. (We note that this 

loss could still take tens of thousands of years, given known deleterious mutation 

rates and generation times35,36 , enough for some for other genetic or environmental 

changes to render these reactions functional.) We define a disconnected reaction as a 

reaction that does not share any one substrate or any one product with any other 

reaction in the known reaction universe.  We focus here on reactions in the universe 

rather than in one metabolic network, because an individual network can gain 

additional reactions that may connect previously disconnected reactions. We note that 

even this “universal” definition of disconnectedness depends on our current 

knowledge of biochemistry, as well as on the environment, for the right environment 

could supply metabolites that connect previously disconnected reactions or pathways 

to the rest of a metabolic network. To identify the connected universe, we removed 

disconnected reactions. Because this removal may render other reactions 

disconnected, we repeated this process iteratively until no further reactions in the 

universe became disconnected. In this way, we found 3646 reactions of the 5906 

reactions in the universe of reactions to be connected.  We used this connected 

universe in some analyses to generate network samples using the MCMC approach.  

 

Estimation of the metabolic distance between carbon sources 

To compute the metabolic distance between a pair of carbon sources C and Cnew, we 

used the 500 networks selected for growth on a specific carbon source C. We first 

represented a network as a substrate graph37. In this graph, vertices correspond to 

metabolites. Two metabolites (vertices) are linked by an edge if the metabolites 

participate in the same metabolic reaction, be it as an educt or as a product. We 

excluded ‘currency’ metabolites from this substrate graph, which are metabolites that 



transfer small chemical groups and are involved in many reactions38. Specifically, we 

excluded protons, H2O, ATP (adenosine triphosphate), ADP (adenosine diphosphate), 

AMP (adenosine monophosphate), NADP(H) (nicotinamide adenosine dinucleotide 

diphosphate), NAD(H) (nicotinamide adenosine dinucleotide), and Pi (inorganic 

phosphate), CoA (coenzyme A), hydrogen peroxide, ammonia, ammonium, 

bicarbonate, GTP (guanosine triphosphate), GDP (guanosine diphosphate), and PPi 

(diphosphate) that occurred in both the cytoplasmic and periplasmic compartments15. 

In addition we also excluded oxidized and reduced forms of cofactors such as 

quinone, ubiquinone, glutathione, thioredoxin, flavodoxin and flavin moninucleotide. 

That is, we eliminated all vertices corresponding to these metabolites when 

constructing the substrate graph. For each metabolic network, we constructed two 

substrate graphs, first one wherein the reaction irreversibility was ignored and all 

reactions were considered reversible, and the second graph wherein irreversibility was 

taken into account. For a network selected for growth on carbon source C, we 

calculated the shortest distance of C to each exapted carbon source Cnew in the 

substrate graph of that network, as computed by a breadth-first search39. We 

preformed this analysis for each network in our ensemble of 500 networks viable on a 

carbon source C. The distance between carbon sources C and Cnew was then computed 

as a mean of the metabolic distances based on networks viable on both carbon 

sources.  

We also computed metabolic distance for any two carbon sources by representing the 

universe of reactions as a graph in the above manner. We again constructed two 

substrate graphs, first one wherein the reaction irreversibility was ignored and all 

reactions were considered reversible, and the second graph wherein irreversibility was 

taken into account. Taking irreversibility into account increases the maximal distance 

to infinity as some carbon sources are connected by irreversible reactions. 

 

Clustering of carbon sources based on the innovation matrix 

The entries of the innovation matrix I = (Iij) represent the fraction of random 

metabolic networks that we required to be viable on carbon source Ci, and that were 

additionally viable on carbon source Cj. To cluster the entries of this matrix, we first 



computed for all pairs of rows in this matrix the quantity d = 1-ȡ, where ȡ is the 

Spearman rank correlation coefficient between the row entries. This yielded a new, 

distance matrix which describes the distances between all pairs of rows. We clustered 

the rows of I by applying UPGMA (Unweighted Pair Group Method with Arithmetic 

means40), a hierarchical clustering method, to the distance matrix.  

 

Hierarchical clustering with UPGMA classifies data such that the average distance 

between elements belonging to the same cluster is lower than the average distance 

between elements belonging to different clusters12. UPGMA identified two clusters of 

glycolytic and gluconeogenic carbon sources, and we wanted to know whether the 

distances between them were significantly different. To this end, we first calculated 

the distribution of distances d = 1-ȡ for all pairs of row vectors of I within each of the 

two clusters. We called the resulting distance distribution the ‘within-cluster’ distance 

distribution. Similarly, we computed the distances between any pair of row vectors 

belonging to two different clusters. These formed a ‘between-cluster’ distance 

distribution. We then used the non-parametric Mann-Whitney U-test to check if these 

two distributions were significantly different.  

 

Estimation of carbon waste production  

FBA determines the maximal biomass yield achievable by a network for a given 

carbon source25. However, even when a network produces the maximally achievable 

yield, not all of the carbon input into the network may be converted into biomass. The 

non-converted carbon input constitutes carbon waste. Such non-utilized carbon can be 

secreted in the form of one or more metabolites. For example, in a glucose minimal 

environment, E. coli secretes carbon dioxide and acetate into the extracellular 

compartment as carbon waste. FBA estimates the amount of each metabolite secreted 

per unit time15,25. To estimate the amount of carbon waste that a random network 

viable on glucose produces, we first identified the different metabolites that it secretes 

as waste, and then computed the amount of carbon waste per metabolite as the 

product of carbon atoms in that metabolite and the amount of the metabolite secreted 

(mmol/gram dry weight/hour). The total carbon waste produced by a network 



computes as the sum of the above quantity over all secreted carbon-containing 

molecules. We repeated the above procedure for each random network in a sample of 

500 random networks viable on glucose. We found a total of 62 metabolites that are 

secreted as waste metabolites in at least one network of our sample of networks viable 

on glucose.  

We carried out all numerical analyses using MATLAB (Mathworks Inc.) 
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SUPPLEMENTARY INFORMATION 

 

Supplementary Results 

 

Networks selected for growth on glucose are pre-adapted to different carbon sources. After 

having shown that networks required to be viable on glucose are also viable on multiple other 

carbon sources (figure1b), we inquired whether the additional carbon sources to which a 

metabolic network is pre-adapted differ between different random viable networks, or 

whether they are mostly identical. We found that most of these carbon sources differ among 

networks. Specifically, 91.84 percent (45) of the additional carbon sources occur in the 

innovation vectors of fewer than 40 percent of the networks (supplementary figure 1). We 

also computed the fraction of carbon sources that both networks in a pair are viable on, among 

all carbon sources that at least one network in a pair is viable on. This distribution 

(supplementary figure 2a) has a mean of only 31.8 percent. In other words, for almost 70 

percent of carbon sources to which one network is pre-adapted, the other network is not pre-

adapted. Fully 23.5 percent of network pairs do not share viability on any carbon source aside 

from glucose (supplementary figure 2a).  

 

We next computed the pairwise distance between the innovation vectors IGlucose for all 500 

metabolic networks in our sample. This distance indicates the number of additional carbon 

sources that one but not the other network in a pair is viable on. Its distribution 

(supplementary figure 2b) has a mean of 5.22 carbon sources (s.dev. = 3.16). That is, two 

networks differ on average in their viability on 5 carbon sources. The distribution is right-

skewed (supplementary figure 2b) and contains networks that differ in their viability on many 

carbon sources. The two networks with the maximum distance of 26.53 are viable on 5 and 23 

carbon sources in addition to glucose, but only one of the additional carbon sources is shared 

between them. 

 

Higher reaction connectivity increases exaptation. The MCMC random walk (see methods) 

entails the addition of a randomly chosen reaction from the universe of reaction, followed by 

the deletion of a randomly chosen reaction. The deletion is accepted only if the network 



continues to be viable on the given carbon source. Thus, viability is the only constraint we 

enforce while sampling random networks. Reactions can be added that are not connected to 

the rest of the metabolism at the time when they are added, but such reactions cannot carry a 

non-zero flux and would therefore be non-functional (although they could become connected 

after additional reaction changes)41. To assess the effect of disconnected reactions on 

exaptation, we identified disconnected reactions and removed them from our universe of 

reactions (see methods) to generate a connected universe of reactions. We used the connected 

universe of reactions to generate 500 random networks viable on glucose via MCMC 

sampling. The average innovation index of these networks is equal to 10.5 (s.dev. = 6.7 

carbon sources), which is higher than for networks generated using the complete universe of 

reactions (Mann-Whitney U-test, p = 10-64). 

 

In a further analysis to understand the role of connected reactions, we modified the MCMC 

random walk in the following manner. We allowed the addition of a randomly chosen reaction 

only if all of its substrates participated in at least one other reaction in our network, thus 

ensuring that only connected reactions can be added to a network.  (We note that this 

procedure no longer guarantees detailed balance42 and uniform sampling of the space of 

viable networks.) We generated 500 metabolic networks viable on one carbon source, for each 

of 50 carbon sources using the modified random walk (a total of 500x50=25,000 networks). 

We then computed the innovation index for each network. We found that for networks viable 

on glucose, the mean innovation index is much higher (I = 20.6, s.dev. = 8.52, supplementary 

figure 3, glucose highlighted in red) than in our original sample of MCMC-generated 

networks viable on glucose (I = 4.86, s.dev. = 2.83, figure 1b). Supplementary figure 3 shows 

that this is also true for all other carbon sources. For example, networks viable on acetate are 

viable on 9.75 other carbon sources in our original sample of networks (figure 2a), while they 

are viable on 27.67 new carbon sources when we constrain the random walk to adding only 

connected reactions. Addition of only connected reactions leads to more exaptation in 

metabolic networks, presumably because these reactions allow more alternate routes towards 

biomass synthesis. We note that the connectedness of a reaction depends on current 

knowledge of biochemistry, as well as on the environment, for the right environment could 

supply metabolites that connect previously disconnected reactions or pathways to the rest of a 

metabolic network. 

 



Large metabolic networks have higher innovation potential. The size of a metabolic network 

is the number of reactions participating in the network. In most of our analyses, we focus on 

random networks with the same size as that of the E. coli metabolic network (1397 

reactions15). These have a mean innovation index of 4.86 for viability on glucose. However, it 

is possible that this index may depend on the number of reactions in a network. Larger 

networks might be more likely to metabolize carbon sources in addition to those on which 

selection acts. To find out whether this is the case, we generated six additional samples of 500 

random metabolic networks viable on glucose, but where networks in different samples 

differed in size. Specifically, network sizes ranged between 400 and 1600 reactions. We 

calculated the mean innovation index for networks in each sample. Supplementary figure 4 

shows that innovation is positively correlated with network size (Spearman’s ρ = 0.6, p = 10-

300, n = 3500). The horizontal axis of supplementary figure 4 denotes the network size 

categories we considered, and the vertical axis indicates the mean innovation index for 

networks in one sample (error bars correspond to one standard deviation). The figure shows 

that larger, more complex networks indeed have a higher innovation index.  The figure also 

shows that the variability in the innovation index increases as network size increases. That is, 

the number of additional carbon sources on which a network is viable becomes increasingly 

variable as network complexity increases.   

 

The networks used in most of our analyses were generated using the complete universe of 

reactions, as opposed to the connected universe described above. We wanted to find out 

whether removal of some reactions from the complete universe affects the correlation 

between metabolic network size and the innovation index. To this end, we removed 

disconnected reactions (see methods) from the networks of each sample. We found that 

removal of disconnected reactions did not change the correlation between network size and 

innovation (Spearman’s ρ = 0.59, p = 10-300, n =3500) that we had observed earlier for the 

complete universe (Spearman’s ρ = 0.6, p = 10-300, n = 3500).  

 

Most carbon sources can be subject to pre-adaptation. We also asked whether the proportion 

of the 49 carbon sources that confers viability to at least one network in our sample is small or 

large. In other words, is the potential for exaptation restricted to a modest percentage of 

carbon sources? The answer is no. Almost 90 percent (44) of the additional 49 carbon sources 



confer viability to at least one network in networks selected for growth on glucose. (We note 

that this number might be even higher if computational feasibility had not restricted us to 

samples of 500 networks.)  The same holds for networks selected to be viable on most other 

carbon sources (supplementary figure 6). Each vertical bar of supplementary figure 6 shows, 

for a network sample viable on a specific carbon source (horizontal axis), the number of 

additional carbon sources on which at least one network in the sample is viable. For 86 

percent (43) of samples, this number is greater than 40, and for 94 percent (47) of samples it 

is greater than 25, meaning that more than half of the additional carbon sources confer 

viability to at least one network in the sample. The exceptions are inosine, adenosine, and 

deoxyadenosine, which can give rise to pre-adaptations on only 4, 3, and 3 other carbon 

sources, respectively. Thus, even though any one carbon source may confer growth on only 

few additional carbon sources in any one network (figure 2a), when considering all networks 

in a sample, it may still allow pre-adaptation to most other carbon sources. For example, 

viability on xylose allows viability on only three additional carbon sources on average (figure 

2a). However, in a sample of 500 networks viable on xylose, pre-adaptation occurs for 43 

carbon sources (supplementary figure 6). Pre-adaptation or exaptation can thus occur for the 

vast majority of carbon sources we examined.  

 

Metabolically close carbon sources show the highest potential for pre-adaptation. To ask 

whether metabolically close carbon sources show the highest potential for pre-adaptation, we 

first performed a simple test that relied on the metabolic distance, the minimal number of 

metabolic reactions separating pairs of carbon sources (C, Cnew), for all possible pairs that can 

be formed from our 50 carbon sources (see methods). The maximal distance is six reactions. 

We then analysed networks selected to be viable on the carbon source glucose. We divided 

the 49 carbon sources Cnew different from glucose into two categories, those on which more 

than the median number of networks in a sample are viable (see distribution in supplementary 

figure 2), and those on which fewer than this median number are viable. The average 

metabolic distance of carbon sources to glucose in the two categories is 2.26 (s.dev. = 0.82) 

and 3.6 (s.dev. = 1.14), respectively, a difference that is statistically significant (Mann-

Whitney U-test, p = 0.007).  This means that carbon sources Cnew with a greater incidence of 

pre-adaptation are metabolically closer to glucose.  

 



The analysis in figure 2d shows that the association between the average metabolic distance 

and the potential for pre-adaptation, especially at low metabolic distances, is noisy. That is, 

even if a carbon source Cnew can be produced from C in a single step, the fraction of networks 

that are viable on Cnew may range widely from 0.05 to almost one (left-most bin in figure 2d). 

For example, 92.8 percent of networks viable on acetate are additionally viable on pyruvate as 

well, whereas only two of 500 networks viable on pyruvate are additionally viable on N-

acetylneuraminate, even though both carbon sources are only two reactions away from 

pyruvate.   

 

It merits explanation why a metabolic network is not always viable on a carbon source Cnew 

that can be produced from metabolite C in a single step. For example, the median fraction of 

networks viable on carbon sources Cnew that have a distance of one from glucose is only 0.21. 

The reason is illustrated in the right-most sequence of arrows of figures 2b and 2c. It may be 

possible to synthesize biomass from carbon source C such that carbon source Cnew is 

completely bypassed.  For example, D-glucose-6-phosphate (Cnew) can be produced from 

glucose (C) in one step. However, not 100 percent but only 77.2 percent of networks viable on 

glucose are additionally viable on D-glucose-6-phosphate. The remainder (22.8 percent or 114 

networks) can bypass D-glucose-6-phosphate. These 114 networks metabolize glucose with 

either of two reactions. The first is catalysed by xylose isomerase (enzyme commission 

number (EC) 5.3.1.5), which can convert glucose into fructose15,43. The second is catalysed by 

glucose dehydrogenase (EC 1.1.5.2), which can convert glucose into gluconate15,44. In sum, 

the highly reticulate nature of metabolism allows alternative pathways to by-pass carbon 

sources very closely related to C, and thus limits the potential for pre-adaptation for any one 

carbon source Cnew45. 

 

We asked whether computing distances between C and Cnew in the universe of reactions 

changed the correlation between distance and the fraction of networks that are viable on Cnew. 

To do this, we represented the universe of reactions as a substrate graph (see methods), and 

found that the correlation changed very little (Spearman’s ρ = -0.47, p = 10-132, n = 2450). On 

taking reaction irreversibility into account, 388 of 2500 pairs of carbon sources have infinite 

distance. However, the correlation between the innovation index and distances between 

carbon sources C and Cnew remains unchanged (Spearman’s ρ = -0.39, p = 10-77, n = 2062). 



 

Pre-adaptation involves preferably broadly similar carbon sources. We next asked whether 

any further indicators of biochemical similarity among carbon sources might help understand 

why a network viable on C might be viable on one additional carbon source Cn1, but not on 

another source Cn2. For example, of the 500 random metabolic networks selected for growth 

on acetate, 89.6 percent networks are also viable on L-serine, which is at a metabolic distance 

of two from acetate. In contrast, only 6 percent networks are additionally viable on N-

acetylneuraminate, which also has distance two from acetate. Is there a difference between L-

serine and N-acetylneuraminate that accounts for these differences? 

 

To help us ask this question systematically, we defined an innovation matrix I, whose 

construction is described in supplementary figure 7a. The entries of this matrix Iij contain the 

fraction of those random metabolic networks that we required to be viable on carbon source 

Ci, and that were additionally viable on carbon source Cj. The distance between two rows 

represents differences in the spectrum of carbon sources to which networks required to be 

viable on Ci and Cj are pre-adapted. We computed a distance measure based on the 

Spearman’s rank correlation coefficient (see methods) for all pairs of row vectors, thus 

arriving at a distance matrix for these vectors. We then used hierarchical clustering to group 

carbon sources (row vectors) that allow pre-adaptation on similar spectra of carbon sources. 

The results are three very distinct and clearly separable groups of carbon sources reflected by 

deep and statistically significant branches in a dendrogram (supplementary figure 8).  

Specifically, the three groups comprise (i) glycolytic carbon sources, which are mainly sugars 

and feed into the glycolytic pathway (green), (ii) gluconeogenic carbon sources that feed into 

lower glycolysis or the tricarboxylic acid cycle (purple), and (iii) nucleotide carbon sources 

(inosine, deoxyadeosine and adenosine, in black). By far the most prominent groups are the 

glycolytic and gluconeogenic carbon sources, comprising 47 of our 50 carbon sources. The 

pairwise within-cluster distances of row vectors are significantly lower than the between-

cluster distances (Mann-Whitney U-test, p = 10-159) for these two clusters. 

  

Supplementary figure 7b shows a heat-map representation of the innovation matrix, with rows 

and columns organized such that they reflect the clusters we detected. Carbon sources within 

a cluster favour the utilization of other carbon sources within a cluster, e.g., networks viable 



on one glycolytic carbon source tend to be viable on other glycolytic carbon sources as well. 

To go back to our opening example, viability on acetate, a gluconeogenic carbon source, is 

more likely to entail viability on another gluconeogenic carbon source, such as L-serine, than 

on N-acetylneuraminate, a glycolytic carbon source. 

 

Pre-adaptation through required viability on two carbon sources is synergistic. In our 

analysis thus far, we studied samples of random viable networks that we required to be viable 

on only one carbon source. However, many organisms have to be viable on more than one 

carbon source in the wild. This raises the question whether the innate capacity for pre-

adaptation increases or decreases as one requires viability on multiple carbon sources. For 

computational feasibility, we restrict ourselves here to analyses of two carbon sources. 

Specifically, we chose at random 100 pairs of carbon sources, and generated for each carbon 

source pair (C1, C2) 100 metabolic networks required to be viable on both carbon sources. We 

then asked whether the average innovation index for these networks I(C1,C2) was greater or 

smaller than the sum of the innovation indices IC1 and IC2. To this end, we calculated the 

quantity I(C1,C2) - IC1 - IC2. This quantity would be equal to zero if pre-adaptation was additive 

whenever viability was required on two carbon sources (C1, C2). Supplementary figure 9 

indicates that the distribution of I(C1,C2) is displaced to the right of the origin, and significantly 

different from zero (One sample t-test, p = 10-10, n = 100). Specifically, for 77 percent of 

carbon source pairs, the number of additional carbon sources to which pre-adaptation occurs 

is greater than the sum of the innovation indices IC1 and IC2, and for 23 percent pairs it is less. 

Thus, viability when required on a pair of carbon sources (C1, C2) leads to pre-adaptation on 

more carbon sources than expected from the two carbon sources C1 and C2 separately. 

 

We hypothesized that pre-adaptation on a pair of carbon sources would be higher if carbon 

sources C1 and C2 belonged to two different clusters (supplementary figures 7b and 8), 

because then each source would facilitate pre-adaptation to other carbon sources in its 

respective cluster. To test this hypothesis, we computed the innovation index I(C1,C2) 

separately for two groups of carbon source pairs. In the first group, carbon source C1 belonged 

to a different cluster than carbon source C2. In the second group, C1 and C2 belonged to the 

same cluster. The innovation index I(C1,C2) of carbon source pairs belonging to different 

clusters (mean I(C1,C2) = 4.02) was significantly higher than when C1 and C2 belonged to the 



same clusters (mean I(C1,C2) = 0.6;  Mann-Whitney U-test, p = 10-8). Thus, the capacity of pre-

adaptation increases when viability is required on a pair of carbon sources that are 

biochemically dissimilar. 

 

Environmental generalists may be viable on many more carbon sources than occur in their 

environments. Environment-generalists such as E. coli can sustain life on more than 50 carbon 

sources15. Because viability on one carbon source may entail viability on multiple others, E. 

coli may have experienced selection for viability on substantially fewer than the 50 carbon 

sources we study. In other words, viability on multiple carbon sources may be an indirect by-

product of selection on several other carbon sources. In our next analysis, we asked how many 

fewer carbon sources are required to allow growth on the majority of the 50 carbon sources 

studied here. To this end, we first generated a sample of 100 random metabolic networks 

viable on 10 randomly chosen carbon sources and calculated the average innovation index of 

these networks. We then repeated this procedure for further samples of 100 networks, 

requiring viability on an increasing number of carbon sources. Supplementary figure 10 

shows the average number of carbon sources on which networks are actually viable (vertical 

axis, error bars indicate one s.dev.), as a function of the number of carbon sources on which 

viability is required (horizontal axis). The figure demonstrates that pre-adaptation follows a 

principle of diminishing returns. Networks need to be, on average, viable on almost 49 

randomly chosen carbon sources to show viability on all 50 carbon sources. We restricted 

ourselves in all our analyses to 50 carbon sources for reasons of computational feasibility, and 

note that the usefulness of our analysis is limited by this fact. Specifically, networks required 

to be viable on 49 carbon sources may be viable on many more than the 50 carbon sources we 

examined. The impression of diminishing returns may results partly from the upper limit we 

impose on the number of carbon sources.     

 

In contrast to observations about networks required to be viable on multiple carbon sources, 

our earlier analysis had shown that viability on pairs of carbon sources (C1, C2) can entail pre-

adaptation on more carbon sources than expected from each of the two carbon sources, 

especially if (C1, C2) are biochemically dissimilar (supplementary figure 9). By extension, it 

might be possible to choose a modest number (C1, …, Cn) of carbon sources, such that 

viability required on each of these carbon sources entails pre-adaptation on a much larger 



number of carbon sources, e.g., all or most of the 50 carbon sources we study. To identify 

such groups of carbon sources we pursued the following, heuristic procedure that involves our 

innovation matrix I. Recall that the entries of this matrix Iij contain the fraction of those 

random metabolic networks that we required to be viable on carbon source Ci, and that were 

additionally viable on carbon source Cj. For a pre-specified threshold T, we examined each 

column Cj of this matrix, to see if the largest entry of the column exceeded T, meaning that a 

fraction T of networks were also viable on Cj when required to be viable on at least one 

carbon source Ci. This approach resulted in identifying carbon sources that networks were 

pre-adapted to (Cnew) when required to be viable on other carbon sources (C) for a specific 

threshold T.   

 

We used a threshold T = 0.75, meaning that for the sample of networks required to be viable 

on at least any one carbon source Ci, 75 percent or the majority of its networks were 

additionally viable on another carbon source Cj. With this approach, we found that requiring 

viability on 34 specific carbon sources should entail viability on 16 further carbon sources. To 

validate this hypothesis, we generated 500 random metabolic networks viable on the specific 

34 carbon sources (when provided as sole carbon sources). We then computed the mean total 

number of carbon sources these random networks are viable on. Specifically, we found that 

random networks were viable on a mean of 49.33 carbon sources (s.dev. = 0.84) when 

required to be viable on the specific 34 carbon sources (T = 0.75, supplementary table 2). This 

means that selection on these 34 specific carbon sources allows networks to be viable on 

almost all carbon sources we considered. That is, they are pre-adapted to significantly more 

carbon sources than 500 random networks viable on a randomly chosen set of 34 carbon 

sources (mean = 42.23, s.dev. = 1.24) (Mann-Whitney U-test, p = 10-169, supplementary table 

3). We repeated this procedure with varying thresholds, T = 0.25 and T = 0.5 and again found 

pre-adaptation to significantly more carbon sources than 500 random networks viable on a 

randomly chosen set of carbon sources (supplementary table 3). This analysis shows that 

metabolic networks are pre-adapted to more carbon sources when required to be viable on a 

specific set of carbon sources. Thus, environment generalists may have benefitted through 

similar requirement of viability and growth on a subset of carbon sources, which allowed 

them to be viable on a repertoire of multiple carbon sources.  

 



Less carbon waste means more pre-adaptation. We next report on an association between a 

network’s biomass yield and its innovation index. We found this association when we divided 

our original sample of 500 random networks required to be viable on glucose into two groups, 

according to whether a network’s biomass yield lay above or below the mean yield. In this 

analysis, random metabolic networks with a high biomass yield also showed a significantly 

higher innovation index (Mann-Whitney U-test, p = 10-5). Next we generated 500 random 

networks with a biomass yield on glucose equal to or exceeding that of the E. coli metabolic 

network15. This sample of networks showed a mean innovation index (6.04, s.dev. = 3.7) that 

was significantly higher (Mann-Whitney U-test, p = 10-8) than our original sample of 

networks (IGlucose = 4.86, s.dev. = 2.83). Thus, networks with higher biomass yield have a 

higher innovation index. 

 

A high biomass yield may indicate that a network produces less carbon waste. To find out 

whether this is the case, we calculated the total carbon waste produced by each network in our 

original sample of random networks viable on glucose (see methods), and found that the 

biomass yield is indeed negatively correlated with the amount of carbon waste produced by 

these networks (Spearman’s ρ = -0.89, p = 10-168, n = 500). Furthermore, there is a modest yet 

significant negative correlation between the amount of carbon waste and the innovation index 

of networks viable on glucose (Spearman’s ρ = -0.28, p = 10-10, n = 500). 

 

We hypothesized that in the networks producing more carbon waste (and having low biomass 

yield), one or more additional carbon sources are excreted as carbon waste and cannot be fed 

into biomass production. Such networks would then not be pre-adapted for viability on these 

carbon sources. It is relevant here that carbon waste can be secreted in the form of various 

metabolites, such as carbon dioxide, acetate, and fumarate, to name a few. For example, a 

total of 62 carbon-containing metabolites are secreted as waste by at least one network in our 

sample of 500 networks viable on glucose. We tested this hypothesis in the following way. 

For each metabolite, and for each of our two samples (high and low biomass yield), we 

counted the number of networks in which the metabolite is secreted as waste. Supplementary 

table 4 shows for each potentially secreted metabolite, the number of high and low yield 

networks that secrete it. Significantly fewer high-yield networks secreted carbon-containing 

metabolites, when we considered all these metabolites together as a group (Mann-Whitney U-



test, p = 0.0081, n = 62). For 92 percent (57 of 62) metabolites, the number of low yield 

networks secreting the metabolite is higher than the number of high yield networks 

(supplementary table 4). Furthermore, 12 of these 62 metabolites are used as carbon sources 

as well (supplementary table 4, shown in red). The association we find is particularly 

important for metabolites that can also serve as carbon sources or are linked to carbons 

sources. For example, acetate, which is also one of our 50 carbon sources, is secreted as waste 

by 173 low yield metabolic networks, but only by 122 high yield networks. Other examples of 

carbon sources that are excreted by a greater number of low-yield networks include 5-

dehydro-D-gluconate, D-gluconate, fumarate, glycolate, succinate, pyruvate.  

 

We next asked whether the innovation index correlates with biomass yield per carbon not just 

for glucose, but for all other carbon sources as well. We define the biomass yield per carbon 

as the ratio of the biomass yield of a metabolic network to the number of carbons in a 

particular carbon source. Biomass yield needs to be defined in this manner for this analysis, 

because different carbon sources contain different numbers of carbon molecules. 

Supplementary figure 11 shows that the average innovation index on a carbon source C, and 

the mean biomass yield per carbon show a strong positive correlation (Spearman's ρ = 0.47, p 

= 0.00057, n = 50). As we mentioned above, a high biomass yield per carbon reflects the 

efficient conversion of the carbon source into biomass precursors with little waste. Thus, what 

holds for glucose also holds for other carbon sources.  

 

In sum, a network that converts carbon sources efficiently into biomass tends to have a high 

innovation index. It tends to be pre-adapted to a larger number of carbon sources. The reason 

is that the waste products of inefficient metabolic networks include carbon sources. These 

carbon sources are not utilized by the inefficient network, but can be utilized by an efficient 

network. 

 

A sample size of 500 networks is sufficient for our analysis. Most of our analysis presented 

here used 500 random networks viable on a single carbon source. While a sample size of 500 

networks has proven to be sufficient for understanding the essentiality of reactions30, this 

might not be the case for our present analysis. To find out, we sampled ten times as many, i.e., 



5000 networks for each of the following 10 carbon sources: pyruvate, acetate, D-glucose, L-

aspartate, L-serine, adenosine, N-acetylneuraminate, trehalose, maltotriose and L-galactonate. 

These carbon sources have varying innovation indices (main text, figure 2a), ranging from the 

highest to the lowest values we observed. We then computed the distribution of the innovation 

index IC for each of these ten C carbon sources. Supplementary figure 12 shows the mean of 

this distribution (bars) and its coefficient of variation (vertical lines), that is, the ratio of the 

standard deviation to the mean. Black indicates values for the sample of 5000 networks, while 

grey indicates values for the original sample of 500 networks. Note that the means are very 

similar for the two samples of different size. For each carbon source, we also computed the 

fraction of networks viable on each of the other 49 carbon sources (identical to the innovation 

matrix explained in the supplementary results, supplementary figure 7a). We then computed 

the statistical association between the entries of this matrix for the resampled and the original 

ensemble of random networks for each carbon source. The association is high and 

significantly different from zero (Spearman’s ρ ≥ 0.7, p ≤ 10-7, n = 50 for all 10 carbon 

sources. These observations suggest that a sample size of 500 random networks is sufficient 

for the analyses conducted here. 



 

Supplementary Figures 
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Supplementary Figure 1 – Different carbon sources differ greatly in their propensity for 

exaptation. The horizontal axis lists 49 different carbon sources. The vertical axis indicates 

the fraction of random networks viable on each carbon source (when required to be viable on 



glucose). Carbon sources are ranked according to the value on the vertical axes. While more 

than 70 percent of networks are viable on glucose-6-phosphate, fructose-6-phosphate and 

fructose as additional carbon sources (left-most three bars), most carbon sources allow 

viability of only a small fraction of sampled networks. Data is based on 500 random networks 

viable on glucose.  
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Supplementary Figure 2 – Majority of the pre-adapted carbon sources differ among 

networks. (a) The distribution of the number of shared carbon sources in the innovation 

vector of networks pairs. 23 percent of network pairs do not share any carbon source that they 

are viable on (except glucose). On average, 31.8 percent of carbon sources are shared between 

a pair of networks. (b) The distribution of the phenotypic distance between network pairs, as 

computed by the Hamming distance46 between their innovation vectors. The Hamming 

distance increases by one for each entry in which two binary vectors differ. The distance thus 

indicates the number of carbon sources (aside from glucose) that one but not the other 

network pair is viable on. On average, two networks differ in their viability on 5 carbon 

sources. Data in (a)-(b) are based on innovation vectors of 500 random networks required to 

be viable only on glucose.  
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Supplementary Figure 3 – Innovation potential increases with network connectedness. For 

each of 50 carbon sources C (horizontal axis), the figure indicates the mean innovation index 

(bar) and its coefficient of variation (lines) for 500 random networks required to be viable on 

carbon source C. Each sample was generated through a sampling process similar to our 

MCMC sampling, except that we only allowed a reaction to be added to a network, if the 

reaction was connected to the network through its substrates or products. Considering only 

such connected networks increases the potential for exaptation. For example, the innovation 

index of glucose (in red) is much higher than in the original sample of networks (figure 2a).  
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Supplementary Figure 4 – The potential for innovation increases with network 

complexity. The horizontal axis shows network size (network complexity) in numbers of 

reactions. A size of 1400 reactions corresponds approximately to the size of the E. coli 

metabolic network (1397 reactions15) used in our other analyses. The vertical axis shows the 

mean innovation index of networks with a given size. Higher network complexity allows 

viability on a larger number of additional carbon sources. Data for each network size class are 

based on samples of 500 random networks viable on glucose, i.e. a total of 3500 networks.  
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Supplementary Figure 5 – For carbon sources with a high innovation index, this index is 

less variable.   The horizontal axis indicates the mean innovation index, and the vertical axis 

indicates the coefficient of variation of this index. The data is the same as for figure 2a, i.e., 

each data point is based on a sample of 500 random networks required to be viable on one of 

50 carbon sources (n = 25000). Note that the coefficient of variation decreases with increasing 

innovation index.  
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Supplementary Figure 6 – Pre-adaptation occurs for the vast majority of carbon sources. 

For each of 50 carbon sources C (horizontal axis) the height of the vertical bar above each 

carbon source indicates the total number of the other 49 carbon sources on which at least one 

network in the sample is viable. For instance, acetate allows viability (pre-adaptation) on 48 

other carbon sources, while deoxyadeosine and adenosine allow viability on only 3 other 



carbon sources. Data in the figure are based on samples of 500 random viable networks for 

each carbon source, i.e., on a total of 500x50=25,000 sampled networks.  



 

 

Supplementary Figure 7 – Innovation occurs preferentially within clusters of related 

carbon sources. (a) A hypothetical innovation matrix comprising 5 carbon sources. Each row 



vector corresponds to the carbon source Ci on which viability is required, and each column 

vector correspond to the additional carbon source Cj. Each matrix entry indicates the fraction 

of networks that are also viable on Cj while required to be viable on Ci. (b) The figure shows a 

heat-map of the innovation matrix, organized according to different groups of carbon sources. 

The purple metabolite lettering corresponds to gluconeogenic carbon sources, green lettering 

corresponds to glycolytic carbon sources, and black corresponds to nucleotides as carbon 

sources. The two extreme ends of the colour spectrum of the heat map are blue and red, where 

blue (red) indicates that none (all) random networks required to be viable on carbon source Ci 

(rows) are also viable on an additional carbon source Cj (columns). The figure shows that 

carbon sources within a cluster favour the utilization of other carbon sources within the same 

cluster. Data in figures (a)-(b) are based on 50 samples of 500 random viable networks, where 

networks in each sample were required to be viable on a different source of 50 different 

carbon sources.  
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Supplementary Figure 8 – Innovation occurs preferentially within clusters of related 

carbon sources. The dendrogram shows three distinct groups of carbon sources based on 

hierarchical clustering of the innovation matrix, using the Spearman’s rank correlation 

distance (horizontal axis, see methods). The green, purple, and black groups of metabolites 

correspond to glycolytic, gluconeogenic, and nucleotide carbon sources. Note that the 

Spearman’s distance between any two clusters of carbon sources is larger than 0.6. Data are 

based on 50 samples of 500 random viable networks, where networks in each sample were 

required to be viable on a different one of 50 different carbon sources.  
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Supplementary Figure 9 – Pre-adaptation through required viability on two carbon 

sources is synergistic. The figure shows the distribution of the quantity I(C1,C2) - IC1 - IC2, 

averaged over 100 random metabolic networks viable on a pair of carbon sources C1 and C2 

(horizontal axis). This quantity describes whether the innovation index of a pair of carbon 

sources (I(C1,C2)) is higher or lower than the sum of the individual innovation indices IC1 and 

IC2. A majority of pairs (77 percent) have a synergistic mean innovation index (I(C1,C2) > (IC1 + 

IC2)), while the remaining pairs have an antagonistic innovation index (I(C1,C2) < (IC1 + IC2)). 

Data are based on innovation vectors of 100 random networks viable on a pair of carbon 

sources (C1, C2), computed for 100 randomly chosen pairs of 50 carbon sources.  
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Supplementary Figure 10 – Diminishing returns in pre-adaptation. The vertical axis 

indicates the mean number of carbon sources on which viability is observed, for networks 

required to be viable on the number of randomly chosen carbon sources shown on the 

horizontal axis. For each value on the horizontal axis, data is based on specific samples of 

carbon sources, and on samples of 100 networks for each sample of carbon sources. Error bars 

denote one standard deviation. Note that networks are required to be viable on 49 carbon 

sources to allow viability on all 50 carbon sources studied here. 
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Supplementary Figure 11 – Innovation potential rises with reduced waste production. 

Each data point corresponds to one of 50 carbon sources. The horizontal axis indicates the 

average biomass yield per mole of carbon for the carbon source. The vertical axis indicates 

the average innovation index of the carbon source. Carbon sources that are efficiently 

metabolized (and produce low carbon waste) have a high yield. The figure shows that such 

high-yield carbon sources also allow viability on a greater number of additional carbon 

sources. For each carbon source, data are based on samples of 500 random networks viable on 

the carbon source (n = 25000). 
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Supplementary Figure 12 – A sample size of 500 networks is sufficient for our analysis. 

For each of 10 carbon sources C (horizontal axis), the figure indicates the mean innovation 

index (bar) and its coefficient of variation (lines) for 5000 random networks (black bars) and 

500 random networks (gray bars) required to be viable on carbon source C. Note the broad 

distribution of the index. The height of the solid lines indicates the coefficient of variation. 

Note that the pairs of black and gray bars have similar height. 



 

Supplementary Tables 

Supplementary table 1 – The 50 carbon sources used in this study 

 

5-Dehydro-D-gluconate D-Fructose 6-phosphate 

D-Glucarate D-Mannose 

Acetate Melibiose 

D-Glucuronate D-Fructose 

N-Acetyl-D-glucosamine D-Mannitol 

N-Acetyl-D-mannosamine L-Fucose 

Glycine Pyruvate 

N-Acetylneuraminate Fumarate 

Glycolate D-Ribose 

Adenosine D-Glucose 1-phosphate 

Inosine L-Rhamnose 

2-Oxoglutarate D-Glucose 6-phosphate 

L-Lactate D-Sorbitol 

D-Alanine D-Galactose 

Lactose D-Serine 

L-Alanine D-Galactarate 

L-Lyxose L-Serine 

D-Allose D-Galactonate 

D-Malate Succinate 

L-Arabinose L-Galactonate 

L-Malate D-Galacturonate 

L-Aspartate Trehalose 

Maltose D-Glucose 

Deoxyadenosine D-Gluconate 

Maltotriose D-Xylose 



Supplementary table 2 – Thirty-four specific carbon sources that allow growth on all 50 

carbon sources 

 

 

 

 

 

 

 

  

  

 

 

 

 

 

 

 

Acetate D-Malate 

Succinate L-Rhamnose 

D-Glucose 1-phosphate Deoxyadenosine 

D-Ribose N-Acetyl-D-
mannosamine 

Fumarate D-Serine 

D-Galactose D-Sorbitol 

D-Mannose D-Glucarate 

Glycolate D-Galactarate 

D-Xylose D-Galactonate 

L-Lactate L-Fucose 

D-Glucuronate 5-Dehydro-D-gluconate 

Lactose Trehalose 

L-Arabinose D-Allose 

N-Acetylneuraminate L-Lyxose 

Inosine Maltotriose 

D-Galacturonate Melibiose 

D-Mannitol L-Galactonate 



Supplementary table 3 – Selection on specific sets of carbon sources allows networks to be 

viable on more carbon sources 

 

Threshold 

(T) 

Number of 

specific carbon 

sources viability 

is required on 

Number of carbon 

sources networks are 

viable on for specific 

sets of carbon sources 

Number of carbon 

sources networks 

are viable on for 

random sets of 

carbon sources 

p-value (n 

= 500) 

0.25 19 39.88 ± 2.72 32.64 ± 2.8 10-144 

0.50 26 45.86 ± 1.64 37.45 ± 2.31 10-165 

0.75 34 49.33 ± 0.84 42.23 ± 1.24 10-169 

 

Selection on specific carbon sources allows networks to be viable on more carbon 

sources. The first column denotes the threshold T denoting the fraction of networks that were 

also viable on Cj when required to be viable on at least one carbon source Ci. The second 

column denotes the number of specific carbon sources that networks are required to be viable 

on and the third column denotes the average (one s.dev.) number of carbon sources such 

networks show viability on. The fourth column denotes the average (one s.dev.) number of 

carbon sources networks are viable on when required to be viable on the same number of 

random carbon sources as denoted in the second column. The last column shows that 

networks viable on a specific set of carbon sources can be pre-adapted to significantly more 

carbon sources than networks viable on a random set of carbon sources.   

 

 

 



Supplementary table 4 – Metabolites secreted as waste, the number of low biomass yield 

and high biomass yield networks that secretes each metabolite 

 

Metabolite name 
Number of 
low yield 
networks 

Number of 
high yield 
networks 

(R)-Propane-1,2-diol 2 0 
5-Dehydro-D-gluconate 20 1 

4-aminobutyrate 3 0 
Acetoacetate 10 6 
Acetaldehyde 25 16 

Acetate 173 122 
Adenine 41 32 

Adenosine 29 25 
Alpha-ketoglutarate 6 3 

Allantoin 3 0 
L-arabinose 1 0 
L-arginine 1 0 

L-asparagine 1 0 
Carbon dioxide 230 186 

L-cysteine 4 3 
Cytidine 69 56 

D-Lactate 3 2 
D-Alanine 6 0 

2-dehydro-3-deoxy-D-gluconate 3 1 
Dihydroacetone 101 41 
Ethanolamine 2 0 

Ethanol 6 3 
Formaldehyde 38 26 

Formate 112 60 
Fumarate 78 45 

sn-Glycero-3-phosphoethanolamine 4 7 
Gycerophoglycerol 1 0 

D-Gluconate 9 3 
Glyceraldehyde 50 12 

Glycerol-3-phosphate 6 0 
Glycerate 35 21 
Glycolate 135 91 
Glycerol 25 3 
Guanine 3 2 
Histidine 71 33 



Hypoxanthine 17 15 
L-isoleucine 4 1 

Indole 89 18 
Inositol 21 15 

L-Lactate 4 1 
L-Leucine 6 1 
Ornithine 58 58 

Phenethylacetaldehyde 25 19 
Phenylalanine 23 11 

3-phenylpropionate 1 2 
Putrescine 13 5 
Pyruvate 10 2 
L-Serine 4 0 
Succinate 39 19 
Tartrate 1 0 

Thymidine 39 17 
L-Threonine 6 5 

Thymine 3 0 
L-Tryptophan 16 7 

L-Tyrosine 33 43 
Uracil 40 22 
Urea 8 7 

Uridine 21 14 
L-valine 1 0 
Xanthine 23 10 

Xanthosine 8 4 
 

Secreted metabolites in low and high biomass yield networks.  The second and the third 

columns denote the number of low and high biomass yield networks that secrete carbon waste 

in the form of specific metabolites (first column) respectively. Most metabolites are secreted 

in a higher number of low biomass yield networks. Many of the secreted metabolites are also 

among the carbon sources we consider, shown in red. Data are based on samples of 500 

random networks required to be viable on glucose.  
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