
A Logical Analysis of Information Systems:

static aspects of the data-oriented-persrective

A thesis submitted by

Terence Aidan Halpin

BSc, BA, DipEd, :MLitStud

in the

Department of Computer Science -

University of Queensland

for the degree of

Doctor of Philosophy

1989 July

Declaration

To the best of my knowledge and belief, the work presented in this thesis is
original, except where acknowledged below or in the body of the text. Tiie
material has not been submitted, either in whole or in part, for a degree at
this or any other university.

This thesis is largely concerned with a version of NIM1 {:t--:lj3sen'.s
Information and Analysis Method), which I have refined and extended. As the
acronym suggests, this methodology was originally developed by Professor
G. M. Nij::;.en. While several researchers have cont.ljbut;·:d to J\TIAM, the
fundamental conceptual framework was principally the work of Professor
Nijssen and Professor E. b. Falkenberg .

. The thesis makes substantial reference to work discussed in the first
eleven chapters of the text Conceptual Schcnia and Relational Database Design
(1989, Prentice Hall, Sydney), which Professor Nijssen and I co~a.uthored.
Except for some of the exercise questions, these chapters, and the exercise
answers, were written by myself. With respectto original contributiom, the
fol!owinJ lht summarizes the main NIAM enhanceme~ts due to myself which
.are c1iscu.::sed in the above-mentioned text:

•

•
•

•

•

•
•

•
•
•
•

•

reordering of the steps in the Conceptual Schema Design Pmced::tre to
impruve t~e treatment of subtypes and mandatory roles;
extensions to uniqueness constraints for nested • fact types;
explkit distinctions bet\veeri populations· and types, and interaction~

between real world and data base constraints;
simp lin :--ation of suo type treatment and removal of previous anomalies;
extensions to occurrence frequencies and label type constraints;
deeper amlys~s ofr;;ference schemes;
shr:r1er notations for equality, subset and exclusion constraints;
various constraint implication theorems;
additional constraint types (ir.reflexive, asymmetric, intransitivr: .
.mandatory entity);
deeper aualysis of derivation, and discussion of open/closed worlds;
additional results.concerning conce;::>tual schema equivalence-:-;
schema transformation algorithm based on degree of overlap;
notations for comtraints on relational schemas;
r.>.ddi!"'g comprehensive constraint mapping to the ONF algorithnJ.;
conceptual pre-CJ)timization to obtain a better ONF relational schema .

_T~ ___ t:f.q_!:P_~
Terry Halpin

Brisbane, 1989 July

Acknowledgements

I am grateful to my supervisor, Professor John Staples, for his sage advice,

encouragement, kindness, and meticulous appraisal of earlier drafts of this

thesis.

Professors G.M. Nijssen and E.D. Falkenberg have my thanks for many

stimulating discussions on NIAM. Apart from providing conceptual

foundations, their communication skills have helped me to appreciate the value

of examples and diagrams.

Peter Creasy has my.gratitude for reading and commenting on the second

diaft of the thesis. I also thank Lee Lafferty for writing the printer driver

which facilitated the production of the printed copy.

Finally, I thank my wife, Norma, for her love, support and patience.

Abstract

It is widely accepted that inforrriation systems are best specified first at the
conceptual level. This approach promotes correctness, clarity, adaptability
and productivity. For commercial applications, relational database systems
have become .the most important target systems for implementing conceptual
information structures. This .is mainly because relational systems are simpler
to use, are based on mathematical foundations, and are now efficiently
implemented. Designing appropriate conceptual and relational schemas for
practical applications is a non-trivial· task. · The main objective of this
thesis is to provide a formal basis for reasoning about conceptual schernas and
for making _design choices.

This thesis focusses on the data-oriented perspective of infoimation
system desigr~. Most conceptual modelling methodologies provide a graphical
language for the high leve1 specification of conceptual schem~s. Of these
graphical notations, the cor:ceptual schema diagram language of NIAM

(Nijssen's Information Analysis Method) is arguably the most intuitive and
·expressive. Partly because of these advantages, the designer may experience
difficulties in as~ :-ssir:g various properties of and relationships bet\.veen NIA11

. conceptual schemas (e.g. satisfiability, implication and equivalence). To
help resolve these difficulties, we formalize NIAM conceptual schemas in terms
offormallogic, so as to provide a rigorous treatment of the formal semantics
and proof~ theory. -

A thorough analysis of database reference schemes is provided, includin~
definite descriptions. Global and local aspects of schemas are distinguished,
so as to support mo:lular specification. Various results concerning dcivation
rules are established, arid MAM is extended to take full advantage of the
semantic" of numeric and lexical objects. Further extensions and
modifications to NIAM are introduced, motivated and fomialized.

Properties of, and relationships between conceptual schemas are treated
in depth, with particular attention to satisfiability, constraint implication,
and schema equival~Ec~. One of the major contributions of this thesis is its
rigorous formalization of schema equivalence within NIAM, enabling
transformation theorems to be precisely stated and formally proved. The
formalism is used to refine existing results and to establish new theorems.

The implementation of conceptual schemas in relational database systems
is examined, focussing on the mapping .. of conceptual constraints into
relational schemas and SQL systems in particular. One important application
discussed is the notion of conceptual optimization, whereby conceptual
schemas are transformed before being mapped down, in order to yield a more
efficient relational schema.

Related topics for future research are suggested. Appendices provide
background on formalization, examples of detailed formal proofs, and indicate .
how some of the results developed here may be adapted to the Entity
Relationship modelling approach.

Contents

1 Introduction

1.1 Thesis scope and motivation

1.2 Summary of major contributions

1.3 Structural overview

2 Early enhancements to NIAM

2.1 Design sequence and subtyping

2.2 Constraints

2.3 Other enhancements

3 Formalization of information structures

1-1

1-3

1-5

2-1

2-7

2-11

3.1 The UoD and the knowledge base 3-1

3.2 Conceptual architecture of an information system 3-7

3.3 The formal language QL= 3-9

3.4 The formal language KL 3-13

4 Specifying 1\TIAM conceptual schemas in KL

4.1 Object types and predicates 4-1

4.2 Uniqueness, mandatory role and frequency constraints 4-5

4.3 Subtypes 4-14

4.4 Subset, equality and excl~sion constraints 4-21

4.5 Homogeneous binaries and other constraints 4-25

4.6 Nesting · 4-28

5 Further aspects of NIAM kno,:rledge bases

5.1 Reference schemes and numbers

5.2 Global aspects

5.3 Derivation rules

5.4 The database and definite descriptions

5-1

5-11

5-16

5-26

,.

~)·

~'It'

6 Conceptual schema modalities

6.1 Satisfiability of conceptual schemas

6.2 Constraint implication

6.3 Equivalence of conceptual schemas

7 Some applications to relational database systems

7.1. The ONF algorithm: constraint mapping . .

7.2 Conceptual schema optimization

7.3 Optimizing global conceptual schemas

8 Conclusion

8.1 Summary

8.2 Topics for future research

Appendices

I The nature and purpose of formalization

IT Sample proofs

ill Entity-Relationship modelling

Bibliography

Index of main acronyms and theorems

6-1
6-8
6-27

7-1
7-7
7-18

8-1
8-2

A-1

A-4

A-ll

B-1

I-1

List of Figures

Figure 2.1 An earlier graphical notation for subtypes 2-3

Figure 2.2 The notation now used by Falkenberg 2-4

Figure 2.3 It is implied that Man and Woman partition Person 2-5

Fig·ure 2.4 An •exclusion constraint• specified textually 2-6

Figure 2.5 An exclusion constraint specified graphically 2-6

Figure 2.6 A subschema for the real world 2-7

Figure 2.7 A different subschema for the knowledge base 2-7

Figure 2.8 The parenthood relation 2-8

Figure 2.9 A simple frequency constraint on an optional role . 2-9

Figure 2.10 A needed uniqueness constraint 2-10

Figure 2.11 Old and new notations for a pairwise subset constraint 2-11

Figure 3.1 A given UoD is a set of possible subworlds 3-3

Figure 3.2 Evolution of the knowledge base 3-5

Figure 3.3 Components of an information system (plus user) 3-7

Figure 3.4 The general formal system KS 3-8

Figure 3.5 A specific formal system 3-8

Figure 3.6 Each IC or ground function term denotes one individual 3-12

Figure 3.7 The domain of objects is partitioned into 5 classes 3-16

Figure 4.1 Hybrid ellipses are used only in the metatheory 4-2

Figure 4.2 Unary, binary and ternary predicates 4-3

Figure 4.3 The left diagram is equivalent to R2 of Figure 4.2 4-3

Figure 4.4 Two examples of translating binaries into KL 4-4

Figure 4.5 An inter-predicate UC in terms of a natural join 4-7

Figure 4.6 A concise translation ?f a CS fragment 4-14
L

Figure 4.7 Information conveyed by a subtype link 4-15

Figure 4.8 Two examples of lexical constraints 4-17

Figure 4.9 Example of an unnamed lexical subtype 4-18

Figure 4.10 Two examples of numeric subtype definitions 4-20

Figure 4,11 A subschema with five role-object constraints 4-28

Figure 4.12 Old (left) and new (right) notations for nesting 4-29.

Figure 5.1 An abbreviation for a simple reference scheme 5-2

Figure 5.2 "has• may be used as an abbreviated predicate name 5-2

Figure 5.3 The left diagram abbreviates the right diagram 5-2

Figure 5.4 Abbreviation of a composite reference scheme 5-3

t':

Figure 5.5 The left diagram abbreviates the right diagram 5-3

,;I Figure 5.6 Abbreviating reference of a dimensionless entity 5-4
!·
I• Figure 5.7 Abbreviating an injective unit-based reference scheme 5-4 jl·

:I . I
I

Figure 5.8 Summary of simple reference predicate translations 5-5

I Figure 5.9 Indirect and direct comparisons with numbers 5-6

Figure 5.10 Defining alternative units for the same entity type 5-6

Figure 5.11 Length may be measured in mm or m 5-7

Figure 5.12 Concisely specifying a numerically referenced subtype 5-8

Figure 5.13 Two uses of the shorthand notation of Figure 5.12 5-8

Figure 5.14 An xor reference scheme 5-9

Figure 5.15 An example of an xor reference scheme 5-9

Figure 5.16 An alternative but usually inferior conceptualization 5-10

Figure 5.17 A generally inferior way to conceptualize lengths 5-10

Figure 5.18 Partitioning the described objects .into primitive types 5-12

Figure 5.19 Migration between •exclusive subtypes• is allowed 5-12

Figure 5.20 A globally implied mandatory role constraint 5-14

Figure 5.21 A globally implied disjunctive MRC 5-14

Figure 5.22 An unusual example where some lecturers are "lazy• 5-15

Figure 5.23 Double ellipse notation allows multiple occurrences 5-16

Figure 5.24 Comments may be placed in braces 5-17

Figure 5.25 This describes the same UoD as Figure 5.24 5-19

Figure 5.26 A textual constraint 5-19

Figure 5.27 A derived predicate expressed in functional notation 5-20

Figure 5.28 Conditional derivation rules are marked "**' 5-21

Figure 5.29 Constraints"'on stored part of ** are not implied 5-22

Figure 5.30 An equality constraint with a whole.predicate operand 5-23

Figure 5.31 Equivalent and usually preferable to diagram 5.30 5-23

Figure 5.32 The right-hand versior) is usually prsferred 5-23

Figure 5.33 The target operand is a whole predicate 5-24

Figure 5.34 Equivalent to but often less preferable than 5.33 5-25

FigurP 5.35 Both schema diagrams portray the same UoD feature 5-25

Figure 5.36 A simple knowledge-base diagram 5-27

Figure 5.37 Translating a KB diagram 5-30

Figure 5.38 A reference diagram 5-32

Figure 6.1 Undesirable schemas may be trivially satisfiable 6-2

Figure 6.2 If m < n then {r
1

, .. ,rn} is underhired 6-3

Figure 6.3 This is not strongly satisfiable on three counts 6-5

Figure 6.4 Constraints marked "*" are implied 6-10

,;::
:"·-;
h
:I
!.

Figure 7.1 o
Figure 7.11

Figure 7.12

Figure 7.13

Figure 7.14

Figure 7.15

Figure 7.16

Figure 7.17

Figure 7.18

Figure 7.19

Appendix Ill:

Figure 1

Figure 2

Figure 3

Figure 4

A first attempt to schematize table 7.2

Fact types are now elementary

Theorem ESS1 has been applied

The final, optimized version

A conceptual schema before optimization

The optimized version of the previous schema

The relational schema obtained from Figure 7.15

Potential patterns for optimization·

The constraints enable substantial optimization

. This sub-optimal schema generates 4 ONF tables

Some attributes of Lecturer

Figure 1 translated into NIAM

A Nl.AM schema in need· of optimization

An EER schema missing important constraints

7-13

7-14

7-14

7-15

7-16

7-16

7-17

7-22

7-23

7-25

A-14

A-15

A-16

A-16 ·

Table 2.1

Table 7.1

Table 7.2

List of Tables

The conceptual schema design procedure (CSDP)

Extract from a report about coal mines

An output report

2-i

7-3

7-"13

.-;

·i

i. -(

1 Introduction

1.1 Thesis scope and motivation

In this section we briefly outline the scope and motivation of the thesis.

The next section summarizes the main contributions of this work, and the final

section of the chapter provides a structural overview.

This thesis is largely concerned with the formal specification of

conceptual structures, and their mapping to relational database systems.

Although much of what is presented here has relevance to the design of

·conceptual and relational schemas in general, the focus of the conceptual

modelling treatment is on N1AM (Nijssen's Information Analysis Method), with

the relational code being given in SQL (Structured Query Language).

For reasons such as correctness, clarity, adaptability and cost

effectiveness, information systems are best specified first at the conceptual

level (ISO 1982). For commerdal applications, relational database systems

have generally become the most important target systems onto which

conceptual information structures are mapped. This is mainly because

relational systems are simpler to use, are based on mathematical foundations

(Codd 1970),and are now efficiently implemented. Moreover, as Codd points

out, "the relational model ... extends itself naturally to distributed systems

ability to extract the information" (Rapaport 1988).

Designing appropriate conceptual and relational schemas for practical

applications is a non-trivial task. Each year thousands of research papers

appear in the literature dealing with aspects of this design problem. , The

main objective of this thesis is to provide a formal basis for reasoning about

conceptual schemas and for making design choices which lead to efficient

relational implementations .

. ·Many conceptual modelling methodologies exist (e.g. see Brachman 1988;

Jardine & Reuber 1984; Olle et al. 1988; Sowa 1988). Although the process

oriented and behaviour-oriented perspectives of information system design are

important, this thesis focusses on the data-oriented perspective. One popular

way to design relational data structures is to use entity relationship

modell.ing (ER) to specify the conceptual schema, map this onto a relational

schema, and then refine the table structure using normalization (e.g. Chen &

Dogac 1983; Teorey, Yang & Fry 1986). Although similar to ER modelling in

l

· hZ.

some respects, fact-oriented modelling, as exemplified by NIAM, arguably

provides a simpler and stronger methodology (see Appendix 3 for further

discussion of ER).

Comparative benefits of the fact-based approach have been cited elsewhere

(e.g. Kent 1986; Nijssen, Duke & Twine 1988). Natural verbalization of

examples in terms of elementary facts is the foundation of NIAM's design

procedure. Its conceptual schema diagrams use only one data structure (the

fact type), allow a wide variety of constraints to be expressed, and are

easily populated for validation purposes.

Originally developed by Nijssen, Falkenberg and others, NIAM has evolved

considerably over the last few years. Papers by Falkenberg (197 6) and Vermeir

& Nijssen (1982) illustrate an early form of NIAM which adopted the Binary

Relationship Model. To provide a more natural and direct connection with

human conceptualization, NIAM now allows relationships of any arity. For

historical background on the binary-relationship model, as well as an argument

for retaining the binary-only restriction, see Mark (1987). A recent text

(Nijssen & Halpin 1989) provides a detailed introduction to the version of

NIAM currently endorsed by Nijssen.

Given a (hopefully) significant set of output reports for a UoD (Universe

of Discourse), l\TIA.11's design procedure is used to specify a conceptual schema

in which each fact type is (ideally) elementary. For implementation in a

relational database system, a simple algorithm is then used to group these

fact types into relation types in "optimal no:r:mal form" (Ol\TF). The number and

shape of tables so obtained can often be changed by transforming the initial

conceptual schema into another which is equivalent (or acceptably close to

being equivalent: we refine this notion later) before applying 1he ONF

algorithm. Hence such transformations can help to produce a more efficient·

relational schema which is still free of redundancy. Conceptual schema

transformations also play an important role in the merging of subschemas and

translation between different user views.

Most conceptual modelling methodologies provide a graphical language

for the high level specification of conceptual schemas. Of these graphical

notations, the conceptual schema diagram language of l\1AM is perhaps the most

intuitive and expressive. However, as pointedout by Levesque (1984), there

is a fundamental tradeoff between expressibility and tractability. The more

expressive a language becomes, the greater the computational complexity of

procedures for checking logical results (e.g. constraint implication, or

schema equivalence).

1

1
I .

'

sec. 1.2 Summary of main contributions 1-3

Partly to keep the problem manageable, most research in database design

has restricted the set of constraints to functional and multi-valued

dependencies (e.g. see Beeri & Kifer 1986). Nevertheless, in practical

database applications the additional constraint categories depicted on NIAM

diagrams often occur, and hence should not be ignored. Partly because

NIAM schemas are so expressive, the designer may experience difficulties in

assessing various properties of and relationships between NIAM conceptual

schemas, e.g. satisfiability, implication and equivalence.

To help resolve these difficulties, we formalize 1\TIAM conceptual schemas

m terms of frrst order predicate logic, thereby providing a rigorous and

well-founded treatment of the formal semantics and proof-theory. Although

formalization of knowledge bases in terms of formal logic is not new (e.g. ISO

1982 appendix F, Reiter 1984), we are not aware of any previous

formalization of NIAM in predicate logic. Our formalization in frrst order

logic supports the rigorous proof of substantial practical results (e.g.

schema equivalence). It also provides a simple and natural treatment of

various theoretical aspects (e.g. definite descriptions in the database

context).

This logical framework is used to refine and extend 1\TIAM in several ways.

New results are obtained in the following areas: reference schemes; derivation

rules; lexica] and numeric aspects; further constraint categories; schema

satisfiability; constraint implication; schema equivalence and schema

implication; conceptual optimization; and constraint mapping to ONF relational

schemas.

Many of the problems addressed in this thesis overlap with the problems

identified by Gallaire, Minker and Nicolas (1984, p. 179) as needing continued

research. We hope that our work further demonstrates the fruitful interaction

of the disciplines of logic and database theory.

1. 2 Summary of main contributions

The major research contributions of this thesis may be summarized as follows.

They are listed roughly in decreasing order of importance, from our

perspective. This does not correspond to the order in which the contributions

are discussed in the thesis.

sec. 1.2 Summary of main contributions 1-4

1 Formalization of mAM in terms of first order predicate logic, thus

providing a well-founded model theory and proof theory.

2 A rigorous account of the notions of equivalence and implication between

conceptual schemas, ·as well as constraint implication, thus allowing

relevant theorems to be precisely specified and proved.

3 New theorems concerning constraint implication, and conceptual schema

equivalence and implication in mAM.

4 A proper formal account of mAM reference schemes, with particular

attention to definite descriptions and lexical/numeric objects.

5 Guidelines for optimizing the conceptual schema by transforming it to

· yield a more efficient ONF map.

6 Augmentation of the ONF algorithm by adding comprehensive mapping of

conceptual constraints to relational constraints.

7 Separation of local/global aspects of conceptual schemas to support

incremental specification and general application of results.

8 Deeper analysis of derivation rules, including specification and use of

semantics for lexical and numeric object types.

9 A rigorous account of conceptual schema satisfiability in mAM.

10 Various early refinements and ~xtensions to mAM, including:

reordering of the steps in the Conceptual Schema Design Procedure to

improve the treatment of subtypes and mandatory roles;

detection and removal of anomalies in the treatment of subtypes;

explicit distinctions between populations and types, and

interactions between real world and data base constraints;

additional constraint categories;

extensions to uniqueness constraints for nested fact types;

extensions to frequency and lexical/numeric constraints;

simpler notations for equality, subset and exclusion constraints.

i:'

i'

"i
' L

sec. 1.3 Structural overview 1-5

1. 3 Structural overview

We conclude this introductory chapter by providing_a structural overview of

the thesis content. A perusal of the Contents pages will help to fill in

further details of· the development. Please note that within this thesis,

unless otherwise specified, plural first person terms (e.g. "we", "our") are

to be interpreted as singular (e.g. "I", "my").

As indicated in the thesis declaration, we recently co-authored a NIAM

textbook (Nijssen & Halpin 1989). For convenience, from now on we refer tb

this work as NH89. In chapter 2 of this thesis, we summarize some of our main

enhancements to NIAM as presented in NH89, focussing on the examples cited in

the previous section under contribution 11. The early placement of this

material reflects the chronology of its development, and provides an

opportunity for informal discussion of concepts to be later formalized.

In Chapter 3, we define our usage of some general terms (e.g. "universe

of discourse", "knowledge base"), and discuss a simple conceptual architecture

for information systems. We then present the syntax and formal semantics of

the knowledge base language (KL) that will be used in our formalization.

Generic axioms are specified to partition the domain of discourse and to

provide semantics for real numbers and character strings. Some basic theorems

are established from these axioms.

The next two chapters specify ho'.v knowledge bases expressed in NIM1's ·

high level grap;":c and tabular notation may be translated into sentences in

KL. Additionally, several revisions and extensions are made to improve

various aspects of NIAM. Chapter 4 covers the basic issues involved in

specifying object types, predicates and constraints.

Chapter 5 begins with a detailed analysis of reference schemes,

especially those involving numbers. It then examines those aspects of

conceptual schemas which require a global perspective. An examination of

derivation rules follows; as a result these rules are partitioned into two

categories. Finally, a theory of definite descriptions is presented that

enables specific databases to be mapped into KL;

Chapter 6 uses the fom1al framework to analyze various modal properties

of and relationships between conceptual schemas. A stronger notion of

satisfiability is introduced for schemas, and additional schema formation

rules are specified. Constraint implication is then defined and several

theorems in this category are established. The final section of this chapter

deals with equivalence and implication between conceptual schemas. This is

sec. 1.3 Structural overview 1-6

probably the most important part of the whole thesis: by introducing

contextual definitions which provide conservative extensions, the notion of

schema equivalence is rigorously grounded in first order logic, and several

important theorems are proved.

Chapter 7 examines various applications of the th_eory to the

implementation of conceptual schemas in relational database systems. To

complement the ONF algorithm, a procedure is discussed for mapping

conceptual constraints into relational schemas and SQL systems in particular.

The notion of conceptual optimization is examined: to generate a more

efficient relational schema, a conceptual schema may be transformed before

being input to the ONF algorithm. Guidelines for selecting conceptual schema

transformations are discussed.

Chapter 8 summarizes the principal ideas in the thesis, and suggests

related topics for future research.

There are three appendices. Appendix I provides some basic background

on formalization in general. Appendix II provides sample forn1al proofs of

some of the results discussed in the thesis. Appendix III briefly indicates

how some of our results may be adapted for use with Entity-Relationship

modelling.

j:

r~
1;-q_

' a~

'1
~~

' t
\
~

I
' ~
~

: 1
f ;

i
·' '

2-1

2 Early enhancements to NIAM

2.1 Design sequence and subtyping

In this chapter we briefly summarize some of our early enhancements to NIAM,

as incorporated in NH89. Many of these changes were also discussed in our

earlier works (e.g. Halpin 1986a, 1987, 1988a, 1988b). As well as having

practical advantages, these enhancements are a preparation for our later

fom1alization. In this section we focus on modifications we made to the NIAM

Conceptual SchemaDesignProcedure (CSDP) to overcome some problems with.

the treatment of subtypes and mandatory roles. A brief sketch of NIAM is

included, but the reader unfamiliar with this methodology may wish to consult

NH89 for further background.

Basically, NIAM is a method of designing information systems. Though it

includes some mechanisms for specifying information flows (information flow

diagrams) and modelling an application's behaviour (event triggers), its

emphasis is on the design of information structures. In particular, NIAM

provides a procedure (the CSDP) for specifying information structures at the

·conceptual level, as well as an algorithm (the 01\TF or "Optimal Nom1al Form"

algorithm) for mapping these conceptual structures onto normalized relational

schemas for implementation in relational database systems. The conceptual

schema design procedure currently comprises nine steps (see Table 2.1).

1

2.

3.

4.
5.

6.

7.
8.
9.

Transform familiar information examples into elementary facts,
and apply quality checks.

Draw a first draft of the conce~tual schema diagram,
and apply a population check.

Eliminate surplus entity types and common roles,
and identify any derived fact types. .
Add uniqueness constraints for each fact type.
Check that fact types are of the right arity.
Add entity type, mandatory role, subtype and
occurrence frequency constraints.
Check that each entity can be identified.
Add equality, exclusion, subset and other constraints.

Check that the conceptual schema is consistent with the original
examples, has no redundancy, and is complete.

Table 2.'1 The conceptual schema design procedure (CSDP)

sec. 2. 1 Design sequence and subtyping 2-2 .

Prior to our work, the CSDP comprised 14 steps, in which subtypes were

determined at step 5, uniqueness constraints at step 6, and mandatory (total)

roles were specified at step 8 (Nijssen & Falkenberg 1983). In NIAM, unlike

many approaches to subtyping, a subtype is introduced only if the following

two conditions are satisfied: some role is played only by this subtype; the

subtype is definable in terms of other roles played by its supertype(s). So a

subtype is introduced for a particular role only if this role is optional for

its attached object type. Hence, contrary to the above ordering of steps, we

need to detemline whether the role is optional or mandatory before we can make

any decision about subtyping.

Since the old order of the CSDP steps is inappropriate, we changed the

CSDP to have mandatory roles determined before subtyping. Partly to simplify

the specification of exclusion and exhaustion constraints among subtypes (see

later), we also demanded that uniqueness constraints and label type

constraints be determined prior to· subtyping. By making some other minor

changes and combinations, we reduced the CSDP to 9 steps (NH89, p. 32). The

subtype introduction procedure was reworded to ensure that only well-defined

proper subtypes could be introduced (NH89, p. 132).

Although we believe the new order of the CSDP steps is' appropriate for

learning the design methodology, in actually using the procedure an

experienced designer may choose to reorder some of these steps or to perform

some steps concurrently. For example, the candidate elementary facts

verbalized at step 1 might in fact be splittable; rather than waiting till

step 5 to apply formal checks on these candidates, the designer may well

decide to consider uniqueness constraints (steps 4 and 5) concurrently at step

1 in order to minimize the chance of making such errors before actually

drawing a draft diagram. Knowledge of uniqueness constraints may also impact

on decisions about derived fact types (step 3). For example, if we agree that

constraints on derived fact types should also be derivable then cases

traditionally considered in terms of transitively implied functional

dependencies are readily identified. Later constraints (especially mandatory

roles, subset and equality constraints) may also impact on decisions about

derivability.

Owing to the work of Falkenberg, Nijssen and Vermeir, :t\'IAM includes two

matrix procedures for determining the suptype graph (V erineir & Nij ssen 19 82,

Nijssen & Falkenberg 1983). There has been a tendency in the NIA11literature

to suggest that all aspects >of a conceptual schema, including subtyping, can

be determined from a significant set of output reports. However, as we

sec. 2.1 Design sequence and subtyping 2-3

indicated in NH89 (p. 135), no set of reports can be significant with respect

to subtype definitions, since for any finite set of data there will always

remain an infinite set of such definitions which are consistent with the data.

The same comment applies to derivation rules. In cases of doubt, the UoD

expert must be consulted.

NIAM uses an arrow between nodes to indicate that the source node is a

proper subtype of the target node. During the course of its evolution, NIAM

·has used various additional notations to specify exclusion and exhaustion

constraints among .subtypes. The notation used prior to our work is shown in

Figure 2.1. This scheme was developed by Nijssen and Falkenberg (1983). In

cases 1 and 3 the dot indicates that, for each state of the knowledge base,

the populations of the subtypes must collectively exhaust the population of

the supertype. In cases 1 and 2 the fork indicates that the subtypes are

disjoint; in cases 3 and 4 the subt)'r'c populations may overlap.

1: BUC=A 2: 3: B U C =A 4:
snc={} snc={}

Figure 2.1 An earlier graphical notation for subtypes

To provide some intuitive support for this notation, it was argued that

separate arrows suggests different classification schemes, which result in

overlapping subtypes. However, different classification schemes need not

overlap. For example, consider a chauvinistic universe of discourse in which

all high salary earners are males. Nqw suppose number of children is recorded

only for female employees, and home phone number is recorded only for high

salaried employees. We now have two disjoint subtypes based on different

classification schemes (gender and salary).

A more serious problem with the scheme is its inability to fully specify

exclusion constraints for various cases when more than two subtypes are

involved. For example, suppose A has subtypes B, C and D, and types C and D

overlap with each other but not with B. For instance, suppose we wish to

record some specific role for each of the subtypes Non-smoker, Pipe-smoker and

Cigarette-smoker, where the latter two types overlap. The scheme in Figure

2.1 does not extend to handle such cases.

sec. 2.1 Design sequence and subtyping 2-4

For such reasons we abandoned the notation. In response to our

criticisms, Falkenberg (1986) now uses a notation in which exclusion and .

exhaustion between tWO SUbtypeS is specified by a circled dot and circled "X",

respectively, connected to the subtype arrows by dotted lines (see Figure

2.2). This notation is more intuitive, and is capable of specifying the cases

where the old notation failed.

1: BUC=A 2: 3: B U C =A
snc={} snc={}

Figure 2.2 The notation now used by Falkenberg

However, this notation leads to untidy diagrams. When the subtype graph

has several nodes, there may be so many exclusion and exhaustion markers

crowded into the schema diagram that the diagram is difficult to read. Since

a major reason for using a diagram is to provide .a clear picture, we feel that

extensive use of this notation is less than ideal.

There are in fact two basic purposes served by a conceptual schema

diagram: to provide a concise means of quickly expressing most of the

conceptual schema; and to provide a simple picture of the application for

humans. With this in mind, a solution to the problem suggests itself. Just

as derived fact types must be fully specified by textual formulae, so must

subtype definitions. And just as constraints on derived fact types may be

omitted from the diagram since they are implied, subtype exclusion and

exhaustion constraint markers may ·be omitted since they are implied by the

subtype definitions and the constraints on the fact types i_nvolved in these

definitions.

So we changed the CSDP to require that proper definitions be supplied for

subtypes when they are introduced, and to remove the requir~ment for marking

subtype exclusion and exhaustion constraints. Another .reason for reordering

the steps was to expose the connection between these implied constraints, the

subtype definitions and the current constraint picture. In rare cases, as

discussed shortly, other constraint types may be required to complete this

picture. In the absence of explicit constraint markers, it is important for

the designer to choose subtype names which suggest these constraints in the

sec. 2. 1 Design sequence and subtyping 2-5

mind ofthe human reader. As a simple example, consider the subschema shown

in Figure 2.3. For simplicity, the roles played by the subtypes are omitted,

and a high level language for subtype definition has been assumed.

&···
Man =df Person having G::;nder with code 'm'
Woman =df Person having Gender with code 'f'

Figure 2.3 It is implied that Man and Woman partition Person

The dot and arrowed bar respectively specify mandatory role and

uniqueness constraints (in combination they assert that each person has

exactly one gender). The constraint that Man and Woman are mutually

exclusive is impli.;d by the subtype definitions, together with the uniqueness

constraint (each person has at most one gender) and the fact that 'm' is not

equal to 'f. The constraint that the union of Man and Woman exhausts Person

follows from the subtype definitions, the lexical constraint ({ 'm', 'f }), and

the mandatory role constraint on has_gender. So there is no needto clutter

up the diagram by marking these constraints.

Later in the thesis we formalize the notion of constraint implication and

provide a more rigorous discussion of such cases. The relevant theorems for

this case are IX2 and lEI (see section 6.2). In setting out these theorems we

make use of Falkenberg's notation, to pictorially convey the implied

constraints. For such abstract situations the notation is still of value. In

very rare cases, the notation may also be useful in a specific situation, as

we now discuss.

Subtype exclusion and exhaustion constraints are always implied by the

subtype definitions and the constraints on the defining fact types. · In

practical ca~es, the constraints of relevance here tend to be just uniqueness,

mandatory role and lexical/numeric constraints. One can imagine rate cases

however, when exclusion or exhaustion constraints may need to be specified

directly. Since such a case may arise even if subtypes are not introduced,

our general solution to this problem is to specify these as textual

constraints, written beneath the schema diagram.

sec. 2.1 Design sequence and subtyping 2-6

Since such cases are hard to ·invent, we provide only one, rather

pathological example. Figure 2.4 describes a chauvinistic company whose
-i;;'

empfoyees hold the position of clerk ('c'); secretary ('s') or manager ('m').

Here it is company policy that no women are managers. For simplicity we have

specified two of the employee attrib~tes directly in terms of codes, rather

than introduce Sex and Job as entity types· with codes. The details of the

textual constraint (symbolized below the braced. comment); may be ignored. A

formal treatment is given in later chapters.

{'m', 'f'} - -, .,. ..
I ' , Sexcode1
",--,. /

{No women are managers }
Vx.....,(x has'-sexcode 'f' & x hasjobcode 'm')

Figure 2.4 An "exclusion constraint" specified textually

However, if subtypes are introduced (in NIAM this happens only if the

subtypes have specific roles to play), then Falkenberg's notation may now be

used as a simple, graphic way of portraying these constraints (see Figure
I

2.5). For an exhaustion case, add the constrainL that all men are managers.

We allow t11e graphic notation in such rare cases. In other _cases, except for

discussion of constraint implication, the graphic notation for subt;pe

eYclusion and exhaustion is best ignored,

{'m','f'} --' " .. I \

1 Sexcode
\ ;

"'

·®········

Woman =df Employee having Sexcode 'f'
Manager' =df Emp10yee having Jobcode 'rri'

Figure 2.5 An exclusion constraint specified graphically

sec. 2:2 Constraints

2.2 Constraints

In this section we summarize a number of .changes and additions that we

made to the treatment of constraints in NIAM conceptual schemas. These are

discussed more fully in NH89.

Although the conceptual schema is typically used to specify some real

world application, we may have good reasons for allowing the set of

constraints imposed on the knowledge base (the formal model of the

application) to differ from the actual constraints in the real world.

However, some general results may be stated which restrict the possible

relationships between real world constraints and knowledge base constraints.

We discuss two such results here, by way of example.

Consider the subschema of Figure 2.6. For simplicity, reference modes

have been omitted. The constraints indic;..te that each. person has exactly one

year of birth, and zero or more phones. The same phone may belong to more

than one person. Let us suppose that this constraint picture agrees with the

real world.

was born in

Figure 2.6 A subschema for the real world

Now for good reasons (e.g. privacy, space limitations) we may decide to

make the recording of birth year optional, and to record at most one phone

number for each person. So the cm;esponding subschema for our knowledge

base is as shown in Figure 2. 7.

was borri in

Figure 2.7 A different subschema for the knowledge base

Since we usually make the knowledge base constraints agree with :hose in

the real world, if there are arty differences in the constraint patterns these

' (

sec. 2.2. Constraints 2-8.

should be. consciously determined by the schema designer. The following

guidelines need to be observed in specifying constraints on the knowledge

base.

1 For each fact type, its pattern of uniqueness constraints needs to be at

least as strong as that which applies in the real world.

2 If a role is optional in the real world, then it is optional in the

knowledge base; but the converse need not apply.

Note that these guidelines are observed in our example. The first

guideline would be violated if we weakened the uniqueness constraint on

was_born_in. We do not wish to allow a person to have many birth years (at

least not in the same incarnation!). The second guideline would be violated

if we made it mandatory for a person to have a phone. We can't record a

person's phone if the person doesn't have one (of course we can.always change

the situation by demanding that people must have phones in the real world; but

this is a different issue). For further discussion, see NH89 (pp. 77, 117).

In NH89 we introduced some new constraint categories. Three of these

(irreflexivity, asymmetry and intransitivity) relate· to fact types where at

least two of the roles are played by the same object type. The most common

application is the homogeneous binary fact type. For example, the parenthood

relation is irreflexive (nobody is his/her own parent), asymmetric (if x is a

parent of y then y is not a parent of x), and intransitive (if x is a parent

of y and y is a parent of z then x cannot be a. parent of z). These

constraints are indicated by marking "ir", "as" or "it" near the predicate

(see Figure 2.8). Since irreflexivity is implied by asymmetry, the former

constraint is omitted.

as,it

Figure 2.8 The parenthood relation

While such constraints are standardly included in the set of relational

·properties discussed in introductory logic, they are often ignored in the

database context.· This is a pity, since they can be implemented quite

sec. 2.2 Constraints . 2-9

efficiently (as discussed in a later chapter). For further discussion see

NH89 (pp. 183-191), and for a formal treatment see chapter 4 of this thesis.

One other constraint we introduced in NH89 (p. 195) is the "mandatory

entity" constraint, to cover cases where a specific object has to be present

in· any population of its object type (e.g. a file-server node might be

mandatory for any network of nodes). We have now subsumed this category

under a wider class of constraints which we call "role-object constraints".

These are discussed later (chapter 4).

We now mention one subtle change we made to the notion of occurrence

frequency constraints in NIAM. These are discussed in NH89 (pp. 149-154) and

formally defmed in chapter 4, and may apply to a single role or a combination

of roles. In Figure 2.8, the mark "1;2" denotes a frequency constraint on the

second role of the is_parent_of predicate (we no longer use the "1..2"

notation ofNH89). This means that each person that appears in the population

of this role must appear there either once or twice (each person has at most

two parents).

Nijssen and Falkenberg (1983) instead defined an occurrence frequency to

be the number of times an object in the attached object type could play that

role. Their definition has two unfortunate consequences. Firstly, it

introduces a dependence between m~datory roles and frequency constraints.

For example, if a role is optional the lower bound on its frequency must be

zero, but if the role is mandatory this lower bound must be above ·zero. With

our approach the two kinds of constraint can be treated independently.

Secondly, their notation is less powerful, since it cannot be used to

specify frequency constraints on optional roles when the lower frequency bound

exceeds zero. For example, using our notation the "2" mark in Figure 2.9

specifies that if a person has a phone at all, he or she must have 2 phones.

This constraint cannot be expressed _in the old notation.

was born in

Figure 2.9 A simple frequency constraint on an optional role

For such rea~ons we changed the defmition of the term "occurrence

frequency constraint" to the definition given here. This also made it easier

sec. 2.2 Constraints

to specify general constraint implication theorems dealing with frequency

constraints (see NH89, pp. 152-3, as well as section 6.2 of this thesis). We

have since found another version of NIAM in which a definition of occurrence

frequency equivalent to ours is used (Mark, 1987).

In NH89 we introduced a number of extensions to standard NIAM

constraints. For example, we allow that some of the roles spanned by an

inter-predicate uniqueness constraint may belong to an objectified relation

type. For example, the circled "u" in Figure 2.10 captures the constraint

that for each subject and position there is only one person enrolled in that

subject who achieves that position. The rounded rectangle around the

enrolled_in predicate is our new notation for indicating nesting: it

implicitly specifies that this predicate is many:many. The objects playing

the achieves role are (Person,Subject) pairs nested in the enrolment fact

type. We discuss nesting in detail later. For further discussion on this

example using the old notation See NH89 (pp. 88-9) .

. (g)

Figure 2.10 A needed uniqueness constraint

Unless such constraints are allowed, there is no way of formally

supporting any notion of equivalence for the nesting/flattening

transformations, since some 11niqueness constraints in the flattened version

could not be expressed in . the . nested version. . We discuss the general

formalization of schema equivalence in detail later in the thesis.

We also extended the varieties of "label type constraints" to include

lexical and numeric subtypes of several forms (e.g. see NH89 pp. ~11-3).

However, since we later (section 4.3) provide an improved and more

comprehensive treatment of this area, we say no more about this now.

" We conclude this section by noting some simplifications we made to the

notations for subsetJ equality and exclusion constraints. The new notations

discussed in NH89 (pp. 171-81) and are formally defmed later in the

(chapter 4). Basically, we use a dotted arrow for a subset constraint,

~··"'au.;:.. from the subset role to the superset role. · For an equality constraint

sec. 2.3 Other enhancements 2-11

there are arrow heads at both ends. Apart from being simpler, this notation

suggests the close connection between a subset constraint and a conditional.

Exclusion constraints are specified by an "x" as usual, but without the

circle (unless there are more thu.n two operands). When the roles are

contiguous, the dotted lines should meet at the junction point (this avoids

the need for role connectors at each end). Figure 2.11 gives one example of

the. old versus the new notation.

Figure 2.11 Old and new notations for a pairwise subset constraint

2.3 Other enhancements

In NH89 we introduced several other enhancements to 1\'IAM. These include a

deeper analysis of .reference schemes, an overlap algorithm for selecting

schema transformations based on the kind of relation overlap, new results for

constraint implication and coilceptual schema equivalence, high level notations

for constraints on relational schemas, augmentation of the optimal normal forril

algorithm by constraint mapping, and conceptual schema optimization to

provide a more efficient ONF map.

Some of these ideas have now ~een substantially reworked and improved

(e.g. our treatment of reference schemes and schema equivalence). Moreover,

these contributions are best appreciated once a formal groundwork for them has

been set out. Hence, rather than examining these matters at this stage, we

postpone their discussion until our basic formalization of NIAM has been

presented. The next three chapters provide this formalization.

v-•

3 Formalization of information structures

3.1 The UoD and the knowledge base

In this chapter we provide a framework for formalizing information structures;

the concepts arid definitions presented are used later to establish various

results, especially theorems about constniint implication and schema

equivalence. In this section we provide an intuitive explanation of some

fundamental aspects of our approach to information systems. A more formal

treatment is provided in later sections. We use the term "information

systems" in a generic sense, to include not just traditional database systems

but more advanced systems .such as "knowledge-based systems".

Though they can be treated formally, information systems are constructed

for pragmatic reasons. To begin \vith, there is a task that is required to be

carried out with the aid of.· a computer system, e.g. handling of academic

records. The complete specification of the task/problem/application may

involve data, process and behavioural aspects (see Olle et al. 1988). We

ignore the latter two perspectives for this. thesis, and assume that the

problem is solved if the system can output on request any information

perceived to be relevant.

Strictly, and conceptually, the information system (IS) stores sentences

which are interpreted by the user as expressing information. We assume the

reader is familiar with the notion of external, conceptual and internal levels

(e.g. see ISO 1982). Our discussion remains at the conceptual level unless

otherwise indicated.

Such infmmation involves a fixed area of interest known as the universe

of discourse (UoD). In the research literature, the term "universe of

discourse" has many meanings (see, e.g., ISO 19.82; Jardine & Reuber 1984).

Our usage is now explained. The UoD is typically specified with the hope of

modelling a very restricted structure within the physical universe (e.g. a

business environment), but may specify an abstract world (e.g. Euclidean

geometry) or an imaginary world (e.g. Wonderland).

To clarify our intuitive usage of the term "UoD" we make use of the

notion of possible worlds . . The nature of possible worlds and the status of

transworld identity of individuals are still areas of philosophical dispute:

Possible worlds are construed variously as maximally consistent sets of

......

sec. 3. 1 The UoD and the knowledge base 3-2

propositions, maximally possible states of affairs, alternative conceptions,

and soon. Loux (1979) andHaack_p978,:pp.170-203)presentusefuloverviews

of the central issues. Hughes:e and Cresswell (1968) provide a standard

introduction to modal logic, while Bradley and Swartz (1979) give an extensi\1e.

account of modal propositional logic. We make no attempt hete to solve the

philosophical problems of possibiiia semantics. ·

To avoid circularity, the term "possible world" is understood through

paradigm examples. One possible world is the real world. The term "real

world" or. "actual. world" is usually taken to refer to our whole universe,

including past, present and future. One might think of the real world as a

space-time continuum. Besides the real world there are infinitely many worlds

which might have been, e.g. a world in which Expo88 was held in Sydney rather

than Brisbane.

Some worlds are impossible, e.g. a world in which Expo88 was held in

Brisbane but was not held in Brisbane. We use "possible" in a logical rather

than a physical sense, e.g. it is logically possible for us to float in the

air even though our physical laws might prevent this ..

A subworld may be "part" of a world, e.g. the space-time worm which is

Australia in the twentieth century. More generally, a subworld may be

pictured as a world viewed thfough a "relevance filter" which removes

unwanted detail.. Over the lifetime of the application, a particular subworld

is modelled in the information system. At any point 1n this.lifeti;:·,~. the

information system provides a "glimpse" of the subworld. Each subworld

glimpse portrays a set of individual objects instantiating certain properties

and relations.

For a given task we associate exactly one UoD. UoDs for different tasks

may overlap. We think of the UoD essentially as the structure of interest.

Hence, extensionally, we may regar~ each UoD as a set of possible subworlds.

For a given UoD, each subworld·must admit only certain types of individual.

For example, suppose the task is simply to maintain details concerning the

years in which scientists were born or died~ In th'is UoD each individual is

either a scientist or a year: there are no cats, computers, languages etc.

Secondly, each subworld must admit only certain predicates. We use the

term "predicate" to mean "property, or relationship type". In our example

UoD, the precFcates denoted by the predicate symbols "was_born_in" and

"diedj:n" are the only ones admitted. Thirdly, each subworld must satisfy

certain constraints on its predicate populations (e.g. each person was born in

?nJy one year). Some predicates may be derived from others by means of

sec. 3.1 The UoD and tne knowteage oase

derivation rules. For example, given any individual x, x is_dead if and only

if there is a y such that x died_in y .
. ,,

· A subworld is factual if and only if each relevant atomic proposition

true in it is also true in the actual universe; otherwise the subworld is

fictional. We take a proposition to be what is asserted when a declarative

sentence is uttered. Propositions are true or false but not both; however in

deciding whether a subworld is factual we exclude irrelevant propositions,

i.e. those not "of interest" for the UoD. An atornic proposition predicates a

property or relationship on a sequence of individuals. For a given UoD, all

its member subworlds are p9ssible but some of these may be fictional. Figure

3.1 illustrates this classification, with rectangles depicting some sample

subworlds.

impossible
subworlds

possible
subworlds

UoD

..

fa~tual
subwo~lds '----

Figure 3;1 A given UoD is a set of_possible subworlds

. '

Suppose the task is to maintain birth and death details about scientists.

In some impossible subworld, Einstein died in i9S5 and did not die in 1955.

In some possibie, fictional nonUoD subworld Einstein invented Pascal. In some

factual (and hence possible) nonUoD subworld, Wirth inventedPasc.al. In some

fictional subworld within the UoD, Einstein died in 1960. In some factual UoD

subworld, Einstein died in 1955.

Note that truth in a subworld does not imply actual truth (i.e. truth in

the real world). In some fictional subworld, the actually false proposition

that Einstein died in 1960 is assigned the value true.

sec. ::f."/ /[It: UULI a//U Lllv f\IIVV"~'-':::1~ ~---

In possible world semantics, it is usually agreed that in each possible

world every proposition is. true. or false. In standard closed world semantics \ .

a proposition iS false if it iS not asserted tO be true. fu OUr SUbWorld I

semantics every proposition of interest is true or false in each subworld. If 1

a proposition is llOt Of interest, it dOeS not COnCern US .What itS truth ValU.e I .
might be: we simply reject it from consideration. Pragmaticalli therefore we 1

have ilo need to decide whether propositions outside the UoD (e.g. Einstein was ,

a physicist) should be assigned "false", "unknown" etc.

Constraints imposed on th~ UoD may allow some real world instances

of a relevant predicate to be omitted (e.g. we might decide to record only one
·'

phone number for each person, even though in the real world some people

have more, and we might make recording of a person's birth year optional even

though each person has a birthyear);

For a given UoD there may be several factual UoD subworlds. This :rillght

arise because the UoD subworlds relate to different real subw6rlds, e.g. the

same academic record system might be used in two different universities. Note

that we c~nsider the DoD as a struc;tu:i·e, rather . than a structure instance

(i.e. a subworld). Two universities may have the same academic recording

structure, even though many of their individuals (e.g. students) diffe1;.

Even if the real subworld is the same, UoD subwor10s may differ according

to how complete their details are. Fer example, suppose the UoD allows that

people may play zero, one or more sports, and that in the real world Ann plays

tennis and hockey. In one factual UoD subworld we might record no sport for

Ann, in another only tennis, in another· only hockey, and in another both

tennis and hockey.

For a given application there will be one UoD subworld that is factual

and complete: this is the task subworld. Given the UoD specification, the

information system can ensure that the particular subworld being described is

consistent with this specification. However it is beyond the scope of the {

system to ensure that this subworld is factual or that it is complete: these 1

requirements can only be enforced by the human9 wl:10 SF~~:ply the information to (

the system.

Being a set, the UoD is fixed: it does not change with time; it does not

have states. We also regard the ta:J: subworld as fixed. However, what is

asserted of this subworld typically do\!s change with time. Informally, we may

regard the information system to include a • "varset" (set variable) of

sentences known as the knowledge base (KB). At any time, the sentences in

KB are taken to assert propositions about the task subworld. Ideally, these

sec. 3. 1 The UoD and the knowledge base

propositions will be true, and in this sense the KB records the system's

explicit "knowledge" about the task subworld. As explained in the next

section, further knowledge ma{be inferred by applying logical inference to

the rules and facts stored in KB.

The knowledge base consists of a (fixed) set of sentences known as the

conceptual schema (CS) and a varset of sentences known as the database (DB).

The cs delimits the UoD, and the database viewed across time determines which

of the UoD subworlds is chosen to model the application. While practical

systems sometimes permit the CS (and hence UoD) to evolve, along with the

user's perception of what ought to be the task, for the purposes of this

thesis we assume the CS and UoD are stable.

The knowledge base then is the union of the conceptual schema and the

database. While this definition is also used by some other researchers, the

teTI11 "k."TTowledge base" is sometimes used in other ways (e.g. some researchers

exclude the database from being part of the kriowledge base).

Typically, each sentence iri the database is an elementary fact: roughly,

this is an instantiation· of an irreducible logical predicate, e.g. "the Person

with surname 'Halpin' seeks the Degree with code 'PhD'". During the lifetime

of the information system, one particular UoD subworld (ideally one matching

the task subworld) is described by the system. However, from the point of

view of humans interacting with the information system, only some of this

description may be available at any given time.

At any time, the database expresses the current elementary assertions

about the application. Besides current events, these assertions may concern

past events (e.g. sales figures for last two years) and (anticipated) future

events (e.g. airline flight timetable for next week). The database may grow

or shrink when an update occurs. -An update may add facts, delete facts or

both. A simplified picture of an ~volving knowledge base is provided by

Figure 3.2. Here the vertical dimension measures the total . number of

sentences stored in the KB. The CS component is stable but the DB component

goes through a series of changes as. it is updated·· (typically through compound

transactions).

Nr sentences

DB

cs
time

Figure 3.2 Evolution of the knowledge base

· sec. 3. 1 The UoO and the knowledge base 3-6

The truth value of a pr~position does not change with time. Assuming

invariant reference, some sentert.ces express the same proposition regardless of

their time of utterance. These include sentences expressing analytic

propositions (e.g. "A square has, 4 sides"), and event descriptions which

explicitly state the time of the event (e.g. "Einstein was born in 1879").

Time-dependent sentences may express different propositions depending on

their time of utterance, e;g. "Reagan is president of the USA'' uttered in 1988

expressed a true proposition, but 'if uttered now would express a false

When a contingent, time-dependent, present-tense/past-tense sentences is

asserted at time t (e.g. when added to the database) we take it that this

sentence is short for: "At/(At some time before) t it js true that s". With

this understanding, database states may be indexed to their time, and the · ,,

· atemporal UoD subworld cannot result in contradictory propositions (e.g.

"Reagan is president of the USA at time t1 " does not contradict its

.. replacement "Bush is president.of the USA at time t2'').

The CS is intended to precisely define the UoD by specifying what counts

as a UoD subworld. Any subworld is determined by the set cf relevant atomic

propositions true of it. Given a standard interpretation of \Vords, and 7ime

indexing of sentences, the UoD subworld described in an inform.ation system is

<ietermined by a knowledge-time worm (for a rough two-dimensional picture

()f such a worm, consider the region under the graph in Figure·3.2). Different

knowledge-time worms describe different subworlds.

Hence for a given UoD, the cs specifies not only what database states a_re

possible, but also what transitions between database states are possible. For

\ . example, the transition from a marital status of "divorced" to "single.' ~:;:1ight

ruled out. However, while we have set up our framework to include this

.·dynamic aspect,. for this thesis we jgnore transition constraints. For many

applications, transition constraints are rare, and can be trivially added and

ip:lplemented; in some cases these can be ~xpressed by means of behavioural
,,.~ . ;

In cases where the role of time is central, or where previous information

states are to be preserved, more complex approaches may indeed be required

(e.g. temporal logic for conservative databases). A wealth of research

lj,terature on the dynamic aspects of knowledge bases exists, and a serious

study of these matters is beyond tte scope of this thesis.

sec. 3.2 Conceptual architecture of an information system :.:5-1

3. 2 Conceptual architecture of an information system
~... . .

. Conceptually, we take the architecture of an information system to be as

. portrayed in Figure 3.3. .Arrow heads. indicate Jhe direction(s) of-information

·flow. · All communic;ation between the user(s). wd the system is via the

conceptual informqtion processor (CIP). For a given applicatio0., users enter

the specific conceptual schema, update the database, ar.d request infonuation .

. Hence the CIP has three functions: CS filter; update· filter; information

supplier. .

Ge:~sric Formation Rules I
r-· .. _ ..

Conceptual Schema
1---·-··

Datal:Jase
,·.

lnfef;:mce Rules

·----~

~·

Concep tual
~;'Jn .. lr:forma

Proces sor
. ,, .. J

T

Figwre 3.3 Components of an information system (plus user)

user

To r·" accepted, user messages must corSorm to the fo:n:al inform.1tion

synem language (ISL) used for all applications. This is composed of a

generic C:)nceptual schema language (CSL), a generic database update lar <J''.T"i.ge

.. ·(UL), and a generic query language (GQL). UL includes the rules for assc.rting

·facts (FAT . .). V/e focus our attention on the generic knowledge base language

KL, which is simply CSL U FAL. The formation rules of KLare detailed later.

The reader who is unclear about the meaning of terms such as "formation

· rules", "axioms", "inference rules", ":groof theory", "model theory'',

"metalarigL:.1ge", "consistency", "soundness", "completeness", "decidability",

"independence", "isomorPhism" etc. should ?onsult Appendix I, which provides

relevant b:-tckground concerning the ·nature and purpose ·of foii:nalization.

The follow::1g components of the information ~ystem are the same for all

applications: generic form~tion rules of I~L; generic CS axioms; inference

rules. The CS consists of generic axioms and specific axioms. The generic CS

. · . axiorns include the relevant axioms of logic, mathematics and NIAM. We

discuss these later. The· specific cs axioms are divided into th;ree groups:

stored fact type d~darations; population constraints; and derivation rules.

Among other things, the fact type declarations restrict the symbolic names

(e.g. predicate names). ·when the specific .cs axioms are .entered by the

designer the CIP uses these restrictions together witli the CS formation rules

to ac~ept or reject the input.

3.2 Conceptual architecture of an information system 3-8

Once the cs isaccepted, it is used (with the UL rules) by the CIP to

.... ..., u•.u.•··'"' whether an update re~uest from the user is to be accepted.··

When the user issues a well formed request for information, the CIP

~"'a,, • ..,., the knowledge base for the answer. If the relevant info:nnation is

stored, the CIP applies its inference rules in an attempt to derive the

For example, using Modus Ponens and Universal

as inference rules, the CIP may deduce that Pat is cancer-prone

the fact that Pat smokes and the derivation rule that if a]:1"'"9bject smokes
is cancer prone. . · //~""'i"_,..,

The same proposition may be expressed by different sentences. Given that

KB sentences must conform to KL, this narrows down the possibilities.

different designers may choosevocabularies which differ in their CSL

For example, designers may choose different symbols for the same

(e.g. "is_employed_by" instead of "works_for'') or may choose to

certain aspects of the UoD in terms of predicates and objects instead

just predicates (e.g. "has...:gendercode 'm'" instead of "is_male"). We

to this issue later when defining implication and equivalence betwee.n

conceptual schemas.

A formal system consists of a formal language together with a deductive

composed of axioms and/or inference rules. As our interest is in

tXirlfOJnn:3.ticm stn..ctures, the general formal system we wish to discuss is as set

We call this "KS" (Knowledge System)~

Language: KL
Axioms:
Inference rules:

generic CS axioms
MP, etc.

Figure 3.4 The general formal system KS

For a given application, a specific formal system is obtained by ~dding

IJ,,.., .. .a CS axioms for that UoD (see Figure 3.5). Different designers might

different specific formal systems Sl, .S2 etc. for the same application.

systems can differ only in the specific CS '~~xioms.

Languag.:; KL
Axioms: generic CS axioms

·specific CS axioms
Inference rules: MP, etc.

Figure 3.5 A specific formal system

sec. 3.3 The forma/language QL=

One might consider a further level of specific formal systems by adding

the facts expressed in a database state as axioms. However, we are primarily
. ·~··,

interested in examining the connections between two different conceptual

schemas, say CSl and CS2. Such connections can be explored proC?f

theoretically, e.g. within the general system KS are the specific axioms of

CS2 deducible fromthose of CSl? These connections can also be explored from

the vie\vpoint of model theory, e.g. is every model of CSl also a model of CS2?

Intuitively, knowledge-time worms are closely related to models.

T\vo major concerns for this chapter and the next three chapters are. to

spell out the details of the KS system, and to capture our mode1~theoretic

intuitions within a formal framework. Appendix I inclu<].es some general

reasons as to why formalization is of importance. Within this thesis,. the

main motivation for our formalization is to provide a rigorous framework for

establishing whether two conceptual schemas are equivalent.

3. 3 The formal language· QL:=

. In this section and the next we discuss the syntax and formal semantics of our

knowledge base language KL, which is based on first order predicate calculus

with identity and functions, but tailored for knowledge base work.. Our

general approach to predicate calculus is setout in Halpin & . Girle (1981);

further background on identity, functions and metalogic are provided by Rennie

and Girle (1973) and Hunter (1971).

Formalization of kr~.::.wledge bases in terms of first order logic has been

done before (e.g. IS01982 Appendix F), but we believe our approach provides a

more natural framework,. with clear_ links-to NIAM concepts. The only either

work we are aware of which seeks to provide some "formal" basis for NIAM uses

theNIAMlanguage itself (e.g. Leung 1988) orRIDL (Meersman, 1981) orProlog
. .

(McGrath, 1987). To our knowledge, our formalization is the first which

provides a rigorous model theory and proof theory for NIAM.

First we summarize.QL=:= (Quantification Language with identity), a basic

predicate calculus language. QL= is like an assembly language: it is powerful

enough to express all our knowledge base requirements, but is often awkward to

work with. We later introduce notational variations and define higherlevel

Constructs mi.til we arrive at a language which facilitates the textual

translation 6f NIAM diagrams.

sec. 3.3 The forma/language QL= 3-10

Though spartan, QL= is not parsimonious, e.g. ·,.., and & would suffice for

the propositional operators, and functions could be expressed as many:one

. predicates. Propositional variables are_ex_clu_d~ci_sin_Qk_:l.h_~Ejs :IJ9 need for

them. The propositional and individual constants are. used only in formal

proofs. In the following syntactic definitions, a sequence of one or more

space characters is used as a metasymbol for "or" (instead of "I") and

nonterminals are italicized.

propositional constant:
individual constant (IC):
individual variable (IV):
function v.ariable (FV):
function constant (FC):
function symbol:
predi :;ate variable (PV):
predicate c'"'nstdnt (PC):
predicate symbol:
quantifier:
parenthesis:
propositional operator:

TF
a b c d e a0 a1 a2 •.

x y z w v u x0 x1 x2 ..

tn gn hn fon f,n ..

FVFC
Fn Gn Hn Fen F,n ..

2 =
PVPC
\1:3
()
-&V-+=

(where arity n . ~ I)
(no FCs in OL=)

(whe~ .3 arity n ~· 1).

Propositional, predicate and function constants have special axioms or

rules which apply in all interpretations. In QL=, only three such constants

(T, F, =2
) are used: we explain these shortly. Terms and wffs (well formed

formulas) of QL= are defin~d as follows.

Termformation rules:

Basis clause: Each IC and IV is ate m.
Recursive clause: Iff is an n-ary function symbol and t1 •• tn are terms

(not necessarily distinct) then f(t1, .• ,tn) is a term.
Terminal clause: If t is a term, it is so because of the above rules.

Wffjo>"Jnation rules:

Basis clauses: T and F are wffs

If R is an n-ary predi-:;ate symbol and t1 .. t0 are t&rnis

(not necessarily distinct) then Rt1 .. tn is a wff
Recursive clauses: If ex is a wff, so is ,..,ex

Terminal clause:

If ex is a wff and v is an IV, then \/vex is a wff . .

If ex is a wff and v is an IV, then ::Jva is a wff
If ex and .B are wffs, so is (ex & .B)
If ex and .B are wffs, so is (ex V .B)
If ex and .B are Wffs, so is (ex -+ .B)
If ex and .B are ·t~1fs, sc is (ex = B)
If ex is a wff, it is so because of the above rules.

sec. 3.3 The forma/language QL= 3-11

For our purposes we restrict.wffs further to closed -wffs, i.e. wffs in

which each N is bound to a quantifier., Closed wffs are said to be sentences.
-;.?

The standard semantics of a set of QL= sentences is now summarized. A tuple

.. is a sequence of items, and a relation is a set of tuples. An n-ary function

is an n+1-irryrelation iri which there is only one tuple with the same first n

items: these n items are said to be the arguments of the function and the

n+ 1 th item is the value of the function.

An interpretation I of a set of QL= sentences comprises a non.:.empty

· domain D of individuals (each of Vv hich is nar.1ed by a constant), together with

the following assignments:

• Tile propositional constants "T" and "F" are respectively assigned the .
truth values True and False.

· • · Each !C is mapped onto one individual in D.
• Each predicate symbol is mapped to a relation over D.

The predicate constant "= 2
" is interpreted as the identity relation.

Each function symbol is mapped to a functioh with argumenL3 and values in
D.
The operators , &, V, -+ and 5 are given their usual truth-functional
interpretations (negation, conjunction, inci\'Sive disjunction, tnaterie:l
implication and materia! equivalence respectively).
qua.:tifiers are interpreted by expansion on D, e.g.

3xF1x· = F1a V F1b V ..
Vx F1x 5 F1 a & F1 b & ..

An interpret?.~ion I of QL= is a mc.:lel of a set of QL= Se'ltences iff each

sentence in this set is true for I. For a more detailed tn:a.tmeril of these

· standard semantics see Hunter (1971 pp. 141-9).

A formal system comprises a formal language and a deductive apparatus.

A deductive apparatus for QL= may be provided in many ways. For example, the

propositional part may be axiomatized by the three axiom schemata (a-+(!3-+a));
. . '

~J3-+/'))-+((a-+I3)-+(a-+{))); (.......... a-+a) together with definitions for&, V and= in

of-+ and , and the inference rule AA: If a and (a-+!3) are theo:ems soh

The AA rule (Affirming the Antecedent) is often called MP (Modu$ F0nens).

predicate component without identity is usually axiomatized with at mo~t

four axiom schemata (e.g. seeHJnter 1971 p. 167), an.d the ide;ntity :relation

be axiomatized by two rules (reflexivity: Vx=2 xx) and substittitivity of

Sl says that if =2 x;, and iP(y/x) is like ¢x exc:"pt for

free occurrences of y in zero or more places where x _occurs free in <lix,

each closure of iPx-+ iP(y/x) is a theorem (e.g. see Hunter 1971 pp. 196-

sec. 3.3 The formal language OL= 3-12

However, instead of the a-xiomatic approach, we set out "proofs" in OL= by

using a technique we call deduction trees. Deduction trees are essentially

semantic tableaux, with the added freedom to evaluate branches more swiftly by
··~-. ___ .,. ---·~------·--·--- ·-·---·---·· ..

· using natural deduction at any stage. Our basic treatment of semantic

tableaux is set out in Halpin & Girle (1981). For the identity relation we

add SI (substitutivity of identicals) and the rule that any branch with a node

of the form "'=2 t1 t2 may be clos-=d where t1 and t2 are ground terms (e.g. see

Rennie & Girle 1973, pp. 187-8). A ground term is an IC or a function term

h t Ic d · · "a", "f1(a)", "rr(a,f1(b))". w ose argumen s are s or 3roun . terms, e.g. ~

Ground terms are also called closed terms.

While our proofs and counterexample generation are based upon the

predicate calculus for QL=, knowledge bases must conform to additional axioms

and formation rules, as discussed later.

In principle, each knowledge base state can be expressed as a set of

sentences of QL=. Informally, an interpretation of a KB state corresponds to

an atemporal glimpse of a possible world, with· the domain of the

interpretation being the set of objects (individuals) perceived in that

glimpse. Notice however, that QL= is untyped. Each individual constant or

ground function term denotes one individual. Different ICs and different

ground function terms may all refer to the same individual. This situation

may be portr3yed by an occurrence diagram as in Figure 3.6.

Ground terms Domain of individuals

Figure 3.6 Each IC or ground function term dehotes one individual

The untyped, simplistic reference scheme of QL= is awkward for humans

since it ignores the natural perceptual tendency of humans to. categorize

objects into types (e.g. Person, Department), and its names are artificial and

forgettable (e.g. "F2 ab" might be used for "The person with name 'Halpin TA'

· works for the department with title 'Computer Science'"). In the next section

we moclify the QL= language to include a richer range of identifiers and make

it notationally more readable. We also show how types can be emulated by

predicates, and define certain predicate and function constants to be included

in all knowledge bases. The language so formed we call KL.

sec. 3.4 The forma/language KL 3-13

3.4 The formal language KL

Our know ledge base language KL is built ~~-!9P <?!9~: __ _!_9_~~gin with, we

adopt the following rules to aid readability of formulas. The new

constructions are well formed and have the semantics of their definiens.

1. The arity of a predicate or function symbol is implicitly specified in context by

t11c number of its arguments. For example, Pxy may be written as Fxy. In

principle, if not in practice, we allow wffs such as Vx3y(Fx&hy) since iliis is

short for Vx3y(F1x&Pxy) which has two distinct predicates F1 and p2_

2. Square brackets may be used like parenilieses to delimit wffs, i.e.

If (o:) is a wff t11en so is [o:]

3. Outermost brackets may be droppe~ ::.Jm a formula occurrence which is whole (not a

proper subformula), i.e.

If (o:) or [o:] is a whole wff ilien so is ex

4. Brackets may be dropped in accordance wiili ilie following priority convention for

propositional operators, with sequences of ilie same operator evaluated left

associatively.

highest

I
(already implied by formation rules)

lowest

&
v

e.g. Fx V Gx & Hx -ar Fx V (Gx & Hx)

Fx V Gx V Hx -ar (Fx V Gx) V Hx

Note that=, being a predicate, has higher priority still,

e.g. "'X=y is equivalent to "'(x=y) { here= is shown infix: see later }

5. Extra brackets around wffs are al:..,;::ed, i.e.

If o: is a wff, so are (o:) and [o:]

6. Ifv
1

•• vn are IVs, and Q is uniformly \1 or 3

then if o: begins with (, [, \1, 3 ·or "'

ilien Qv1 .. vno: =dr Qv1 .. Qvno:

els:e Q1\ .. v"~o: =.cr Qv1 .. Qvno: { here"~" denotes" " }

e.g. Vxy(Fxy-tGxy) -a; \lx\ly(Fxy-tGxy)

Vxy3zwv Fxyzwv =ar \fx\ly3z3w3vFxyzwv

Note iliat fonnulae like 3yXFy and VxxFx .are not well formed.

sec. 3.4 The formal language KL 3-14

We do not expand the set of identifiers for individual variables, but we

do allow more meaningful identifiers to be used for function and predicate

symbols. As a preliminary, the EBNF -syntax--ef-seme-relevant-syntax groups is

now set out. Here, a space character " " is used as a metasymbol for "or".

Nonterminals are italicized. [x] means x is optional. {x} means 0 or more

occurrences of x. Familiar sequences are abbreviated with the use of" .. ".

7.

lowercase letter (ll): ab .. z

uppercase letter (ul): AB .. Z

letter (l): . ll ul

digit (d): 0123456789
identifier_char (idch): lluld_#$%.

function_id: ll{idch}

This production tule expands I-..iher tha\1 replaces the previous syntax. Some newly

permitted function terms are: cube_of(a); sale(a,b).

The inclusion of new predicate identifiers is somewhat more complex. To begin

with we add the rule:

8. prefixJ)redicate_id: ul ul{idchL

If R is a prefix_predicate_id ~d tr,t. are terms, then Rt
1
.. t. is a wff.

Here "~" denotes the space character " ". Any predicate symbol with more than one

unsubscripted character must be terminated by a space .. Some newly permitted wffs

are: Person x; Likes ab

So far all predicate symbols are written in prefix position. We now allow

binary predicate symbols to be wr:Jtten infix. Here " ... " is a place-holder

ellipsis, and has a separate usage from " .. ". Unless the symbol is an upper

case letter or "=", it must be a lower-case letter followed by at least one

character and flanked by spaces ..

9. inflx_predicate_id: ul ... ~llidch{idchL ... =

If R is an infix_predicate_jd with no " ... " and t
1

, t
2

are terms then tj(t
2

is a

· wff.

If .. R .. : is an infix_predicate_id and t
1

, t
2

are terms then tj(t
2

is a wff. .

Some newly permitted wffs are: xRy; x=y; a works_ forb; but not ax b.

In the Ll:tird cas-~ the predicate symbol is" ... works_for ... ".

sec. 3.4 The formal language KL 3-15

We allow predicates of arity above 2 to be written in mixfix (ot distfix)

form. These are italicized, with spaces separating them from their terms.

italic_idcntificr_ch (iic): italic version of idd

10. mixfix_prcdicmc_id: ···~iic {iic} ~···~iic (iic} ~··· Liic~)

If R is a mixfix_pred.icate_id then t.:ie result of substituting each

· in R with a term is a wff.

e.g. "x scores y for z" uses the predicate" ... scores ... for ... ".

Note that mixfix predicates are terminated by p:.:ce-i1olders, e.g. "A

score of .. was obtained by .. for .. " is illegal. . The language could be

extended further· ro :?ennit this. and allow po.:.tfix predicates (e.g.· " ...

is_male"), but we do not include such exte>,... ,...;ons \Vi thin this thesis.

So far, all spaces have served as delimiters in our syntax. We also

permit extra spaces around delimiters as follows:
. .

11. Extra spaces are allowed around propositional operators, = quantifiers, bracket$

and spaces.

e.g. Fx V Gx; x = y; Vx Eyz (Fx & yGz)

We also wish to extend the range of individual constants. Before doing

so it will be helpful to classify the individuals in the univ~rsc- of

discourse.· Recall that any knowledge base state may be given an

interpretation which includes specification of the domain of individuals D.

Now from the human perspective it is natural to partition this domain into a

set of mutually exclusive and collectively exhaustive populations. Figure. 3.7

illustrates a partition which applies to all our knowledge base

. interpretations. ·

The domain is partitioned into five classes. For each of these classes,

some sample members have been depicted by constant terms of either a textual

or graphic nature. We briefly describe each of these classes informally to

convey the main ideas, then provide a formal treatment;

Strings are abstract symbols but are denoted in a dir.ect ,-·ay by those

marks which are spatial sequences of characters: naively, strings may be

"written"; they are lexical entiries. The string 'Ann' is the 3-character

spatial sequence inside the quotes. All other entities are nonlexical.

sec. 3.4 The forma/language KL 3-:16

(1\ ' c;;;;;,) (1 ,(2,3)) .. pairs

. . '-·-··· --~

I 1t ~ ..

5 -3.7 3+5i ..

described objects

numbers
basic

obr 'Ann' '5' ..

nil {nil}

strings

Figure 3.7 The domain of objects is partitioned into 5 classes

Numbers are abstract entities for which we define various mathematical

oper1tions. \Vr; represent them by numerals-(i.e. strings which conform to the

syntax of numeric terms). Sometimes .1·einay wish to pose queries about strings

or numl.Jers themselves (e.g. \Vhich surname is also a name of a city? List all

subject codes starting with "cs". Whose mass in kg is numerically greater

than his/her IQ?). Moreover, the explicit specification of reference schemes

for described objerts (e.g. Peo_;_)le, Cars, Lengths) involves strir:.gs or

m:mber::;, and .derivation rules often do like-;;;ise. In Figure 3.7, we have

depicted two descriJ.. ~d objects (a particular person and car) by means of

pictures. However, described objects are alwaysrefeP":"lcedi:r the KB by means

of definite descriptions, e.g. "the person '."ith surname 'Halpin"'. The other

objects are referenced in the KB by specialized ICs or function terms of KL.

We· use a typeless first order · fom1alization in which. predicates and

functions]f'g~tlly range over the who]e domain .. Moreover, we give ground

function tem1s the same ontological status as individual constants, viz. any .

such tem1 dces refer to some object in th~ domain. ·We include the nil object '

in our domain as :he referellt for all simple ,;garbage" e~press1ons; such as

"2+'rd'". We may pick any concrete or abstract object as nil, so long as it

isn't a string, a number or described, e.g. we might pick my current garbage

bin as nii! The nilobject is always denoted by "nil", which we how add as an

rc to KL. If desired, nil may also be treated as the empty list, and used to

constrnct lists in the usual way.

Objects in. the four classes. so far discussed are c:J.lk.d basic objects.

·The final cbss of objecrs consists of objects which are ordered pairs. The

pairing operation may be applied to any two objects (basic objects or pairs),

and ahvays produces a pair. So the domain is closed under pairing. Later in

this section we axiomatize .:he pairing operation, using special function terms

sec. 3.4 The formal language KL 3-17

to denote pairs. Our motivation in including pairs is to simplify later work

with nested fact types. Apart from including described objects, our domain

partitioning is quite similar to the schen1e-·trsea··J:n--nre--language Trilogy

(Andrews 1987, p. 32).

Note that our ontology is not parsimonious. From an abstract point of

view, any basic object could have been chosen as .-l,e nil object, and both

multi-character strings and multi-dimensional numbers could have b~~n

constructed as special sequences using the pairing operation. However, we

feel our classification scheme is closer to the way in which such objects are

perceived in practice. For example, a two-character string is typically

thought of as a spatial ordering of characters, and we might wish to consider

the pair (3,9) without the connotation of a complex number.

In order to express the partition in .Figure 3.7, we treat the following

prefix predicate identifiers as predicate constants with the fixed

interpretation shown in braces:

-
Basic x { x is a basic object }

Described x {xis (definitely) described by the user }

Number x

Pair x

Strir-,g X

{ x is a number }

{xis a pair}

{ x is a character string }

The followingpu:nition axioms are included in our knowledge base system KS.

When first presented, the names of KS axioms are displayed in bold.

P1 Vx[(Pasic x V Pair x) &

(Basic x = Described x V Number x V String x V x = nil)]

P2 Vx[~(Basic x & Pair x) &

~(Described x & Number x) &

"'(Described x & String x) & N(Number x & String x)]

& ,..., Described nil & ,..., Number nil & ,..., String nil

By giving "nil" the status of an IC, it follows that nil exists in every

domain, i.e. 3x x=nil (this may be trivially shown with a deduction tree).

Later we introduce ground tem1s for real numbers and strings; so these also

exist in all doi11ains. We see later that if two objects exist, so ·'!oes their

pair. Details a~=-'ut the described entities (if any) are completely dependen:

on the particular KB. However, we provide within KS a mi11imal semantics for

sec. 3.4 The formal language KL 3-18

Number, String and Pair. Let's start with Number. Although we included this

. general category to enable the set of n-dimensional numbers to be treated as a

subset of the set of n+l-dimensional numbers_,..fm: __ n__::: 1,_ irLthis Jhesis we

focus our attention on the real numbers. We begin by adding the following

predicate and axiom:

Real x { x is a real number }

RN Vx(Real x __. Number x)

We now expand the symbols of KL to enable numbers to be referenced in

the usual notation, and add a first order set of axioms for the clost.d field

of real numbers, relativized to individmls instantiating the Real predicate.

To begin with, we add to V.L ·:,~individual constants 0 and 1, two unary

function constants - and -\ and four binary function constants +, -, * and/.

For convenience, we write unary - as a prefix operator, - 1 as a postfix

operator, and +2
, -

2
, *2

, P as infix operators using the priority convention

1
- - 1 {unary}
*!
+-

· whh operators or~ tl:.e same level evalJated left-associatively, and we allow

extra spaces arounc these operato:::-s, e.g.

= + (x,/(*(y,-(z)), - 1(w))
df

We also add "i=" to KL as a def..ved symbol :t"or inequality, with the following

definition (where x andy are any tenns):

We now set out the ten field axioms, relativized 10 reals and incl.uding

closure where needed. ·Given our left associativity :::onvention, the left

operand of= in RF2 and RF6 cou1d be written without parentheses.

RF1 Vxy [neal x & Rec.1 y __. Re31x+y & x+y = y+x]

RF2 Vxyz [_Real x & Real y & Real z __. (x+y)+z = x+(y+z)]

RF3 Rea; 0 8. Vx[Real x __. x+O = x]

RF4 Vx [Real X__. Real -X & X + -X = 0]

sec. 3.4 The forma/Janguage KL 3-"19

RF5 Vxy [Real x & Real y-+ Real x*y & x*y = y*x]

RF6 Vxyz [Real x & Real y & Real z-+ (x*y)*z = x*(y*z)]

RF7 Real i & Vx[Real x -+ x*i = x]

RF8 Vxyz [Real x & Real y & Real z -+ x*-(y+zf;;;;, (x*y) + (x*z)"T

RF9 .i ::/= 0

RF1 0 Vx [Real x & x ::/= 0 -+ Real [1 & x*x-1 = i]

When applied to real numbers, 'unary - and - 1 give the additive and

multip:icarive inverses, wbile + and * give the sum and product. Subtraction

· and division are now defined in terms of these operatim:ts:

x-y

x/y

We now add :5 as an infix predicate constant? and axioms to assert that it is

transitive and antisymmetric, and it provides a total order for the reals:

T01

T02

RT03

Vxyz (X :5 y & y :5 Z -+ X ~ Z)

Vxy (X :5 y & y :5 X -+ X = y)

Vxy (Real X & Real y -+ X :5 y V y :5 X)

We now add two axioms to ensure that the reals form an ordered field:

ROFi

ROF2

Vxyz [Real x & Real y P R.eal z & x :5 y-+ x+z :5 y+z]

Vxyz [Real x & Real y & Realz & x :5 y & 0 :5 z -+ x*z :5 y*z]

Vle now add the followingabbrevjations (x andy are any terms):

x~y = y:5X
df

X<Y. = X:5y&x#y
df

x>y = . y<x
df

xn = x*x* .. *x (where there are n occurrences of x) d[

To complete this first order theory of real closed fields we add one

axiom and two axiom schemata. The first axiom (RCl) ensures that cardinal

numbers have real square Toots:

RC1 Vx [Real X & 0 :5 x-+ :Jy(Real y & X = y2) J

sec. ::J.4 1 ne rorma/ language KL 3-20

RC2 says that every real polynomial of odd degree has a real zero, and RC3

says that 0 is not a sum of nontrivial real squares:

RC2 \iy
0

•• yn[Real y
0

& .. & Real Yn-+ 3x(Real x &

RC3

Yo+ yl*x + .. + Yn*xn = 0)]

\ix
0
.. xn[Real x

0
& .. & Real xn & x0

2 + .. + xn2 = 0

-+ x
0
= 0 & . . & x

11
= 0]

for n = 1 ,3,5,~.

for n = 0,1,2, ..

The first order theory of real closed fields was shown to be decidable by

Tarski (1949). . It is however at least exponentially cbmylex. Further

background on this topic is given by Rabin (ed. Baru.1ise 1977, sec. C.3), and

Chang & Keisler(l977 sec. 1.4).

Constants for rational numbers other· than 0 and 1 are introduced as

abbreviations for functional terms in the usual way, e.g.

2 =dr 1+1, 3 =dr 1+1+1, ..

0.1 = df i /i 0, 0.2 = df 2/1 0, ..

So any ground term of the form [-]d{d}.d{d} is now assigned a speCific real

number in all interpretations. Such terrns are called, slightly misleadingly,

numeric constams. Irrationals may either be referenced by description (e.g.

Real x & x2 = 2) or be approximated 'by a ration3l (e.g. 1.414). Since the

system knovcs that 0 and 1 are reals, and that reals are closed under the

operations discussed, it knows that Real 2, Real 3 etc. Moreover, the system

can deduce facts such as 170 > 150 and 170 = 2 * 85 from its axioms. As well,

relevant subsets of the reals. may now be defined. The following 'subsets are

important enough to include in KS.

Integer x

Cardinal x

Posint.x

{xis an integer, i.e ... -2 -1 0 1 2 .. }

{ x is a cardinal number, i.e. o 1 2 .. }

{ x is a positive integer, i.e. 1 2 .. }

\Ve fix the interpretation of these predicates by the following axioms.

Note that in this thesis we do not employ different notations to distingu;<;h

definitions (recursive or otherw1se) from the other "xiom<:

RS1 .. ,:x[Integer x - x =- 0 V 3y(lnteg?r y & (x = y-;_-1 V x == y-1))]

RS2 \ix(Cardinal x - Integer x & x ~ o)

RS3 Vx(Posint x - Integer x & x > o)

sec. 3.4 The formal language KL 3-2:1

We now expand the set of ICs in KL and add axioms to KS to cater for

those objects which are characterstrings. Intuitively, strings are sequences

ofO or more characters. We start by adgingJ~ kngwn ~~1lJLa_c_t_er._constants

for each of the characters· introduced earlier (letters, digits, operators,

etc:). We adopt the Modula convention. If c is a character other than the

double-quote (") then the 3-character symbol "c" denotes c. The double-quote

is denoted by the 3-character symbol: "". Our first two string axioms are

now set out.

Charx { x is a charact~r of KL }

ST1 Vx(Char x - x="a" 'v x=;'b" V .. V x="'" V x= '"')

ST2 Vx(Char X _. String x)

Since the list of characters is finite and given, axiom STl may be

unabbreviated by the patient reader. Though not needed, we allow single

. quoted -:haracter constants for characters other than single-quote, i.e. 'c'

· =dr "c" when c is not the single-quote ('): we often use single quotes when

the context is a formula line rather than a paragraph. We use two contiguous

single:..quotes (") as an IC denoting the null string: intuitively, this is a

sequence of 0 characters (its existence might not be very intuitive, but the

same could be said of 0). Tv,·o double-quotes ("") may be also be used to

denote the null string, but we avoid this to save confusion with the constant

for double-quote ("").

We now allow the + operator to be used for concatenation of strings. The

following axioms assert that string concatenation is commutative and

associative, and define the null string.

ST3 Vxy [String x & Stringy ... String x+y & x+y = y+x] .

ST4 Vxyz [String x & Stringy & String z ... (x+y)+z == x+(y+z)]

STS String " [.. Vx I String X-! A r .. ;_ X]

Since + is left-associative, the brackets in the left operand of = in ST4

could havt. been dropped. We now allow string concatenation tem1S to be

abbreviated as follows. If "c"", .. , "en" are n character constants then

"c1 •• cn" =dr "c
1
"+ .. +"c

11
", for n 2: 2. For exan1ple: "abc" =dr "a"+"b"+"c".

Similarly, 'c1 •• C11 ' =dr 'c
1
'+ .. +'c

11
', for n 2: 2. For example: ".'Hi"' =d[

'"'+'H'+'i'+"" =dr ""+"H"+"i"+".... No abbreviations are defined for terms

with mixed quotes, e.g. ""'+"":in practice such terms are nor used.

·----~--;:::;- ' ~-22

Hence each string is given a name, even though some of these are just

abbreviations for function terms (cf. numeric constants). These names are
. .

called string constants. Although strings are abstract entities, we may adopt ___ , ______
the intuitive viev.· that a string constant is astring which denotes the string

that is the character sequence inside its quotes, e.g. the string constants

"CSi i2" "Don't worry. • 'Be "happy".'

denote thP: strings:
CSii2 Don't worry. Be "happy•.

The use of a string constant as a term x implies the truth of String x,

since the ST axioms identify characters, the null string, and their

concatenations as strings. We now define a function len which, when applied

to a string, returns· the length (i.e. the number of charactfrs) of that

string. The .. .1ext two axioms enable the length of any string to be computed.

The theorems that len(") = 0 and ~Char " are now trivial to prove. The

length of multi~character strings may be computed by expressing them in the

form c+s where cis a character.

len(s) { length of strings }

ST6 Vx [Char x-> len(x) = i]

ST7 VX\} [String x & String y-> len(x+y) = len(x) + len(y)]

Axioms TOI and T02 established :o as a transitive and antisv!nmetric . .
operator, and definitions. were given for < etc. Vle now use these operators

for lexicographic ordering of strings. To do this we first introduce an ord

function which assigns a unique cardinal number to each character. For this

thesis we adopt the ASCII ordering for standard ASCII characters, and assume

the reader may supply distinct ordinal values for the rest. This injection

from characters to· cardinals may be set out as a single axiom ST8 (shown

~bbreviated).

ord(c) {ordinal number for cliaracter c.}

ST8 ord(' ') = 32 & ord('"') = 34 & ord('#') = 35 & ..

It follows that the characte: constants denote distinct characters. \Ve

call this theorem CC=f:.. Vi'hen first presented, the names of KS theorem::: that

are not axioms are shown in italics.·

sec. 3.4 The forma/language KL 3-23

CC=!= 'a'=J=.'b' & 'a'=J=.'c' &. •. & "'"=!='"'

This may be trivially proved with a deduction tree, e.g. to show 'a' =/= 'b':

assume 'a' = 'b', use ST8 and the Real axioms to sh0w ord('a') =/= ord('b'),

theri use the assumption and SI to deduce ord('a') =/= ord('a'), which closes.

For convenience we now define two more functions (head and rest) with the

following meaning when applied to non-null strings:

head(x)

rest(x)

{ the first character oi A }

{ the rest of x, i.e. all but the head of x }

ST9 Vxy [Char x & Stringy-+ head(x+y) = x & rest(x+y) = y]

Fm: example: bead('BSc') = 'B', and rest('BSc') =· 'Sc'. Note that a character

is a special case of a string. We now add string axioms for :S:

ST1 o Vx [String x -+ 11
:S x]

ST11 V'i:y [Char x & Chary-+ (x :S y = ord(x) :S ord(y))]

ST12 Vxy [String x & String y & x =1= '' & y :f ''-+

(x :S y = head(:>.) :S hE...,J(y) &

(head(x) = head(y) -+ rest(xj :S rest(y)))]

The axiomar:zation of :S, =, <, > and;:: fo:r strings is now complete. For

example, to prove that 'ab' < 'c': assume 'ab' = 'c'; use ST axi0~11s to show

'ab' :S 'ab' and ~('c' :S 'ab'); use SI to give ~('ab' :S 'ab'); closure now

gives 'ab' ,_ 'r.'; ST axioms give 'ab' :S 'c'; combining we have 'ab' < 'c' by

definition. To shorten such proofs, the following theorem concerning equality

of non-null suings may be proved using T02 and ST12:

S.T = \fxy [String x & String y & x =1=.
11 & y =1=

11
_,

(x = y = head(x) = head(y) & rest(x) = rest(y))]

St:ing analogues of T03 and OFl are also easily proved. The string·

axioms STl..ST12 are adequate to define any su htypc of String and in

conjunction with our Real axioms may be used to define further string

operations if required. However, to simplify the specification of string

subtypes (e,g. c20, aaddd -- ·we discuss slish cases in the next chapter), it is

convenient to define C:e following lexical subtypes and include them within

KS.

sec . . :::f.4 1 ne rorma1 language KL

Digit X

Letter x

Digits X

Letters x

{ x is a digit character }

{ x is a letter }

{ x is a string of i or more digits }

{ x is a string of I or more letters }

ST13 Vx(Digitx=x='O' Vx='i' V .. x='9')

3-24

. . . ····~-~-~·~--------------·······----

ST14 Vx (~etter x =·x='a' V .. V x='z' V x='A' V .. V x='Z')

ST15 Vx [Digits X = String X & X=/=" & Digit head(x) &

(rest(x)=!="-+ Digits rest(x))]

ST16 Vx [Letters x = String x & x=fo" & Letter head(x) &

(rest(x) =/=" -+ Letters rest(x))]

Elsewhere(NH89 Ch. 7) we allowed for the possibility of refraining from

specifying either numeric or string aspects for a symbol, e.g. consider "35"

as a RuomNr. However, for simplicity we assume by default that _such "atomic

symbuls" are really strings; it doc;s .not matter conceptually if the string

··· operations are not used, and at the implementation level other data types

could be chosen if desired. For example, in the conceptual schema we might

specify room# as a string reference mode, but when we later specify the

internal schema we might choose a numeric data type such as: smallint simply to

save storage space or to speed up value comparisons.

Typically, numer.ic and string predicates and functions are not used

explicitly when specifying a database (i.e. the set of stored facts), and are

usually not depicted explicitly ori a NIAM CS diagram. However they .rre

required to specify lexical subtypes (e.g. <aaddd>), some derivation rules

(e.g. computing profit from cost and sale prices), some nongraphic conc:traints

(e.g. deathyr not earlier than birthyr), and various ad hoc queries (e.g. list

all thesis titles containing the phrase ''information systems").

We now axiomatize ordered pqirs. To begin with, we add the foJlowing

function constant and axiom.

pair(x,y) { the ordered pair comprising_ x followed .by y }

Since ground function tem1s always refer, if x anc y are objects in the

domain, so is pair(x,y). For convenience, we allow any tem1 of the form

"pair(x,y)", where x and y are terms, to be abbreviated to "(x.y)". To

prevent confusion Viith the notation for function argument lists, we stipulate

that an occurrence of the form "(x,y)" in a formula may be expanded to

····~~~-~-~·~------······

sec. 3.4 The formal language KL 3-25

"pair(x,y)" if and only if the occurrence is not immediately preceded by a

function symbol. Axiom OPI may now be expressed more concisely:

We make the pairing operation right-associative, allowing removal of·

brackets around embedded pairs. If x, y and z are any terms, arid "(.x,y,z)"

does not follow a function symbol then:

(x,y,z) =dr (.x,(j1,z)) · { where each side is a term }

Since the .pair function is recursive, ordered n-tuples of any arity above 1

can be represented as a pair. In this sense, the don1ain is closed under
. .

tupJing. Vle make use of this notation lJ.t.er when we fom1alize nested fact

·types.

System. ICs (a, b; c, d, e, a
0

• ••) are useful in discussing model

theoretic mc.ttters (e.g. settiTjg out universal and existential instant~acions,

and depicting a model or countermodel), but are not used for the specification

of a conceptual schema or a database. The propositional constants T and Fare

used only for format proofs. Any conceptual schema or database may be

expressed as a set of closed KL wffs (without system lCs or propositional

constants). However, not just any set of wffs will count as a cs or DB. In

the next two chapters, we djscuss how a knowledge base expressed in the

graphical and textual notation·ofKIAM may be translated into KL.

4-1

4 Specifying NIAM conceptualschemas in KL

4.1 Object types and predicates

To clarify the NIAM notation, and to enable theorems about conceptual schemas

to be formally proved, Lhis chapter and the next explain how a knowledge base

expressed in the NIAM notation may be translated into a set of sentences in

KL. Provided fom1ation rules for a NIAM knowledge base can be supplied, this

will also determine what counts as a well formed knowledge base in KI:.. Our

formalization also introduces a number of revisions and· extensions to NIAM

itself (especially in the next chapter).

Some of our early ideas on translating NIAM into predicate logic were

communicated elsewhere (Nijssen et al. 1988, pp. 3-4, 8-14). However, this

chapter provides a much more comprehensive and improved treatment. To

begin with, each knowledge base includes the KS axioms discussed previously.

We now translate the components of a NIAM cs diagram, starting with the nodes

which are ellipses. The names of these nodes conform to the syntax of a

prefix_predicate_id, and are written inside or beside the ellipse.

Informally, an ellipse may be thought of as enclosing a. set of

individuals. Vlhen th'e ellipse is broken these' individuals are strings

(lexical objects). This is fom1ally captured by translation rule TBE

(Translate Broken Ellipse). The translation formula is shown on the right.

Translation rule names are shO\vn in plain capitals, stat-ring with "T". We

treat TEE etc. as translation schemas, rather than translation instances: here

"A" is a predicate variable standing for any unary predicate .

.... - ... , '
TBE I A I

I I
Vx (Ax-+ String x)

' / ... _

Solid ellipses may be thought of as ~nclosing non-lexical objects (other

than nil). · If a solid ellipse enclc::,;s role boxes its object;, are pairs,

otherwise its objects are basic. Alternatively, pair types may be depicted by

a rectangle surrounding the role boxes. We postpone a detailed discussion of

pairs um:l section 4.6. ,,;

r·

sec. 4. 1 Object types and predicates 4-,2

A solid ellipse which does not enclose role boxes must be named. If the

elll.pse name has a single underline then the objects are real numbers: the

underline reminds us of a segment of the real number line. ____ .A_double __ _

underline is used to include higher dimensional numbers: we make no further

use of the double underline in this thesis. The rule for translating solid

ellipses is set out in TSE.

TSE 8 . Vx (Ax-+ Described x)

0 Vx (Ax-+ Real x)

. 0 Vx (Ax-+ Number x)

'~o .. -_o[D Vx(Ax-+ Pair x)

These underlining conventions are used here .for the first time. In our

earlier work (l\TH89) the terms "entity" and "label" usually meant "described

object or number or pair" and "string" respectively. In cases where strings

played non-referential roles, we spoke of labels that were. entities and used a

doubly bordered ellipse with both solid and broken lines. We no longer use

this notation .. Strings are always indicated by a single broken empse, and

numeric objects are distinguished from described objects by underlining.

Nil is never depicted on a NTAM diagram. Most of what we want to say

about an "object type" applies for any non-nil object type. So for

convenience we introduce the hybrid ellipse notation shown in Figure 4.1. An

ellipse which is half solid and half broken stands for any non-nil object

type. Though the names of such hybrid ellipses are not underlined, numeric ·

object types are included. It should be understood that this is a metanotation

only: no hybrid ellipses are used in NIAM diagrams, e.g. the designer must

specify .whether an object type is lexical.

A

@
Figure 4.1 Hybrid ellipses are used only in the metatheory

::;ec. 4. 1 uojecr rypes ana prea1cates 4-3

In a NIAM diagram, a predicate of arity n is displayed as a named,

contiguous sequence of n boxes, where n ~ 1, e.g.

R1 R2 R3

D I

Figure 4.2 Unary, binary and ternary predicates

We assume that the. designer has chosen to adopt the convention of using a

single predicate mime (unabbreviated if necessary, as discussed later),

written inside or beside the box which corresponds to the first place holder

of the predicate, with the spatial order of the boxes (starting at the box

. with the predicate name) matching the order of the predicate placeholders.

We have discussed elsewhere (NH89, Ch. 3) another way of portraying "fc.ct

types" in NIAM, which makes the spati3.1 order of the boxes irrelevant by

giving each a role name. If desired, this could be accommodated within our

convention by using the ordinal for the placeholder as the (unqualified) role

name for the box. For example, see Figure 4.3.

R2 .. R2

I 1. I 2 1·

Figure 4.3 The left diagram is equivalent to R2 of Figure 4.2

We regard our ordered predicate notation and the unordered role notation

as . different only in their focus. In the predicate approach, the predicate

name car:-ies the burden of the informal semantics with the role names reduced

to ordinals; in the role approach, the role names carry the burden of the

infom1al semantics with the fact type name often reduced to some arbitrary

identifier. In both approaches we see a linguistic structure in which objects

play various roles with respect to the verb orrelationship.

In a NIAM diagram each ·role box must be connected by an arc to exactly

one ellipse. Moreover, each (:...nabbreviated) predicate name appears only once.

Informally, eacf. role is "ryped" so that only objects satisfying the predicate

of the attached ellipse play that role. Here is the unary predicate case:

e.g.
TPU

Vx (Rx -t P..x) Vx(Jogs x-; Person x)

sec. 4. 1 Object types and predicates 4-4

Note that NIAM diagrams, as well as our hybrid ellipses, are topological ·

rather than metric. Ellipses may be shown with any size and oblateness; role

boxes may be shown as any rectangle; the contactpQillL9iJ!IGS . .with ellipses

and boxes may be anywhere on the perimeter; ete.

·We use the example for TPU to make a general point. The NIAM diagram

asserts that in the UoD under discussion, no individual jogs unless that

individual is a person. There are two basic ways of satisfying this intention

when a database is added. Firstly, we could mal:e it (syntactically) illegal

to enter a fact claiming that some non-person jogs. This would email adding

specific formation rules to the language for each specific predicate.

The second approach is to allow such sentences as wffs but to reject them

on the basis that they must be faLse. It is this second approach that we

adopt throughout. A specific KB is constructed by starti~g with KS and adding

axioms specific to. the application. Once the axiom that Vx(Jogs x-. Per::;on x)

is added to KS, any later assertion that a non~person jogs must be rejected

since it contradicts this axiom. In this sense then, we simulate "typing"

within our untyped calculus.

As a trivia: issue, predicate names on a NIAM diagram must be modified if

necessary to agree with the syntax of predicate 'names for KL. With our

current version of KL, if we allow NIAM unary predicate names to start with a

lower'-case letter, this letter should be upshifted (see the TPU .example).

Also, the predicate constants already specified for KS should be treated as·

reserved.

The binary predicate case is dealt with as follows:

TPB Vxy (xRy -> Ax. & By)

Here, and elsev.·;1ere in stating such translations, the object types attached to

the predicate under consideration are not necessarily distinct. The right

hand example in Figure 4.4 is a case where A = B.

Vxy(x drives y--; Person x & Cary)

Vxy(x likes y--; Perscn x & Person y)

Figur:e 4.4 Two examples of tianslating binaries mto h.L

... _ ---· J • ~·'"' o.••u "t::L(ut::ncy constraints 4-5

Ternaries and higher arity predicates are translated similarly. The n

ary predicate case is summarized by rule TPN. Here A
1

, •• ,An are any non-nil

object types, including described types, numeric types, lexical types and pair

types (as discussed later, these include suotypes and compositely described

object types).

TPN

R

for all n ~ 1

Specifying the fact types for a particular conceptual schema involves two

tasks: the names (and arities) of the recognized predicates are listed; and

each predicate has its places "typed" as discussed in this section. These

declarations may be described as "typing constraints", although in NH89 the

term "constraint" was used in a more restrictive sense.

Though developed independently, the basic formulation of typing

constraints presented here is rather obvious, and has been adopted by other

researchers (e.g. in Reiter 1984, formulae of the form TPN are classified as

integrity constraints which specify the domains of relations).

4.2 Uniqueness, mandatory role and frequency constraints

In this section we map three varieties of NIAM graphical constraints into KL,

starting with uniqueness constraints (UCs). As discussed in J\ij{89 (Ch. 4),

each predicate is given at least one UC. The weakest UC is depicted as a bar

(or two-headed arrow) spanning the whole predicate. This is reaDy no

constraint at all as far as our for.nalizarion is concerned, since repetition

of a proposition has no logical significance (conjunction is idempotent), and

by default any set of tuples of the right type and arity is allowed. He:r1ce

such "constraints" are simply ignored (see TUCI).

TUC1
, ignore this •constraint•

sec. 4.2 Uniqueness, mandatory role and frequency constraints 4-6

We now consider intra-predicate UCs which span only some of the roles in

the predicate. The simplest case of this is catered for by TUC2.

TUC2 I R I I Vxyz (xRy & xRz ~ y ·= z)

All our constraint translations assume a static interpretation. For instance,

in Figure 4.4 adding a UC to the first role of Drives indicates that for each

KB staze, each person drives at most one car: this still allows a person to

drive several cars during the lifetime of the application,

TUC2 is generalized by TUC3 for the case of any UC spanning n-1 roles of

a predicate. of arity n. Unless the roles are contiguous, arrow tips n~ust be

added to the constraint bar (to. distinguish a single uc from two separate

UCs). To help explain the translation rule, ordinals have been added as role

names to indicate that the UC spans all but the ith of the n roles. For a

fact type of arity n to be elementary, any uniqueness constraint on it must

span at least ·n-1 roles: so TUCl-3 cover all cases of intra-predicate ucs on

elementary fact types. We discuss UCs on compound fact types later in this

section.

TUC3

.Inter-predicate uniqueness constraints are dep'icted with the circled "u"

notation. The simplest case is covered by TUC4 ..

R

TUC4.

s L....-1 ---'----'

For the reader who is familiar with the relational data model, TUC4 may

· be explained as follows: if a natural join of R aL..::. S is perfomied (by

matching values for the object type playing roles R.l and S.1) then a UC spans

the columns linked by the "u". Let the object types be A, B and C (not

necessarily distinct); and let the corresponding attributes of the natural

sec. L/-.;t. umqueness, manaarory rote ana rrequency consrramrs 4-f

join ofR and S (denoted R *S) be a, band c (assume uniquely named). Then the

inter-predicate UC shown in Figure 4.5 amounts to a UC spanning columns band .

c of the natural join (indicated by underlining the b, c pair).

~·-:: r;··: . @ .·
~-~~ .·r:·

. ~~)
R*S (a, b, c)

Figure 4.5 An inter-.predicate UC in terms of a natural join

TUC4 is generalized in TUC5 to the case of n binaries.

TUGS

Jj

. The possibility of extending the use. of the ~~~~~ notation to handle

further cases (e.g. higher arities, equijoin over more than one attribute, UC

over combinati:Jn.s of tuples) suggests itself; currently NIAM diagrams do not

cater for such cases.

If a derived predicate is included on a cs diagram; it is asterisked ..

Any constraints marked on a predicate that is singly-asterisked may be ignored

when translating a CS diagram into KL since, if correct, these constri,iints are

implied by the definition of the derived predicate and the constraints on the .

other predicates. This is summarized in TDl.

*
TD1 ~ = ignore constraints on singly-asteris~ed predicates

Since constraints may be included on these predicates to make them more

obvious to humans, it is still important to ensure that such c0nstraints are

consistent with the rest of the cs. These constraints may be translated and

checked for consistency in the same way as constraints on other predicates.

The next chapter introduces a special class of doubly-asterisked derived

predicates: constrair::.s on these should not be ignored.

We now consider mandatory roles (total roles). For background discussion

on this topic see our earlier work (NH89, sec. 6.3). In this thesis we make

some minor changes to our earlier treatment of mandatory roles for derived

predicates, and explore the use of strings and··· riumoers-in-more-detail.

Roughly, a role is mandatory if, in every interpretation of the CS, it must be

played by all the instances of its object type that are mentioned in the

interpretation. In contrast to our earlier work, we now allow these instances

to be mentioned in stored or derived fact types. A binary case is. shown in

TMR.l.

TMR1 Vx (Ax__, ::Jy xRy)

On a NIAM diagram, a tole is explicitly indicated as mandatory by adding

a dot where the arc from the role box meets its object type ellipse. TMR2

generalizes TMRl to predicates of any arity where the role may occur at any

position.

TMR2

A disjuncti"'' of roles is explicitly specified as mandatory by joining

the role arcs at the object type ellipse and placing a dot there. T11R3 gives

a simple binary case:

TMA3 0::
Vx [Ax-+ ::Jy(xf.w V .. V xRny)]

This is generalized in TMR4. Though this general translation is ugly~ it is

simple to carry out in a11y individn1l case.

/

"""· -..&.. '-'"'l.fL.IOIIO<><>, rua.nua.Luly IUif:1 allu uequency consrra1nrs 4-9

TMR4

We consider further aspects of mandatory roles (e.g. implicit specification)

in the next chapter.

The translation formulae for TMR2 and TMR4 are a little diffir•1lt to

read (and print~), because in order to talk about a role we had to introduce

variables for each position in the predicate. For convenience we now

·introduce an abbreviated notation which more directly supports the concepts of

object types and roles. To begin with, we allow unary predication to be

written like a set membership assertion. If x is an IV and A a unary

predicate symbol, then we define:

X f. A =df Ax

Note that this is just a rewrite rule. Although we may informally think

of "x c. A'' as· saying that x is a member of the set A, where in a given

interpretation a predicate is identified· with its exlmsion, we hav';. not

actnalJy included any set theory in our first order formalization. In

particular, we are not going to set up ar: axiomatic basis for sets. Such

abbreviations are ypically used only for predicates corresponding to NIAM

object types, as suggested by the diagram on the right.

\Ve nmv introduce a more general abbreviation .. If R is a n-ary predicate,

then we identify its ith role as R.i (cf. qualified i1dd names in Pascal, SQL

etc.) and define:

X f. F\.f = df

Altho ... 1gh inform3Jly th':' diagram helps us picture this in terms of membership

in the set of objects in the ;th place of the predicate, formally we have just

defined an abbreviation. When formal proofs are set out, formulae using the

new no:ation must first be unabb:.-eviated, unless derived inferen~e rules using

_ _._. - -••·....,-_. •• .._.._..._.., ,,,.....,,,.....,'-"'-...,'f IVIV UIIV IIV'I..flJVJIVY "-'VII.;;,liQIJil..:>

the high level no.tation have been established. However, many formulae may ·

now be written more concisely. For example, the translation rules TMR2 and

Tlv1R4 may be replaced with the shorter forms T11R2' and TMR4' as shown. The

equivalence between the short and long forms.~iseasilypro~ed by

unabbreviating and then using a deduction tree.

TMR2' Vx(X E. A__. X E. R.i) .

TMR4'

Uniqueness constraints are a special case of occurrence frequency

constraints (FCs). Recall our discussion of these constraint~ in section 2.2.

An FC of n (where n is an integer) on a role or role sequence means any given

instantiation of the role (sequence) occurs n times (in that relation). In

contrast to our earlier work, we. use n;m to mean an integer in the range n .. m.

An FC of n;m on a role (sequence).means that each instantiation of the role

(sequence) occurs at least n and at most m times. A simple birary case. is

set out in TFCl. This says that if x R's something, x R's exactly (at least

and at most) n things.

n

TFC1 n ~ 1

Vx[3y; xRy1 __. 3y
2
•. y,.(y1f;y2

& y1 i-Y3 & .. &yn_1-:fyn & xRy
2

& .. & xRyn)]

. &Vxyl .. yn+l [xRyl & .. &xRyn+l ... yl=Yz Vyl=Y3 V .. Vyn=Yn+l]

Notice tha~ when n = 1, TFCl reduces to TUC2. A simple binary case for

the frequency range constraint is given in TFC2. This says that if x · R's

something it ·R' s at least n things and at most m things.

TFC2 1-sn&nsm

. Vx[3yl xRyl __. 3yz .. yn(Y1-:fY2 & Y1-:fY3 &.:& Yn-J*Yn & xRy2 & .. ?<- xRyn)]

& Vxyl .. ym+l [xRyl & .. &xRym+l_. Y1=Y2 V Y1=Y3 V .. V Ym=ym+l]

By allmving the possibility that n = m, a~ FC of n may be defined as an

FC of n;n. So TFCl becomes a special case of TFC2. Clearly, TFC2 may be

ge1ieralized further to the case where the predicate may be of any arity and

the role may be · in any position. Though this generalization is

I
I
I
:'

••- _,.,....,.._....,,,.._.._......,/ III'••UI~'-''-....,1)" 1"-'IVC.II....., 11-'-ft..lVII-)' VVII~f.IU.IIII.~ ""'t-1 I

straightforward, its specification is lengthy and difficult to read using our

current notation. Indeed, even TFCl an~ TFC2 are somewhat difficult to

interpret at a glance. To simplify the formulation of such results, we

introduce some higher level constructs as abbreviati6hs:·---------

If x andy are IVs and <Px is a wff with no free occurrence of y, then we

define 3! (the quantifier for unique existence) thus:

3!x <Px = df

The definiens is read "there is exactly one x such that <Px". The "no free

occurrence" condition is required ·to avoid variable collision, e. b. "z" is

used instead of "y" in the following unabbreviatior.:

Vx3!y xRy
df

Vx3yl xRy & Vz(xRz-+ z=y)]

Similarly, we define a denumerable list· of numeric existential

quantifiers 31
, 32, 33 etc. The individual cases are obtained by replacing n

in the following definiticn schema with l, 2, etc. Clearly 3! is just a

variant notation for 31
• Again, <P must have '10 free occurrences of y.

311x <Px = df 3\ .. xn[CDX
1

& .. & <Pxn & X1 :#:X2 & X1 :#:X3 & .. & xn_1 =#=Xn &

Vy(<Py ... y=x
1

V .. V y=xn)]

For any given n, this is read "there are exactly n x's such that <Px". \Ve may

now set out the translation rule 1FC1 more concisely as 1FC1 ':

TFC1' Vxy(xRy -+ 3nz xRz)

It is also convenient to define a denumerable number of numeric range

existential quantifiers 3°:1, 3°:2, .. , 31:1 etc. Individual cases are

obtained by replacicg n and m with 0, 1, 2 etc. where n !: m.

3n;mx <Px =dr 3x
1
.. x,J <Px

1
& .. & <Pxn &x

1
:;6X

2
&x

1
:;6X

3
& .. 6ixn_

1
=#='xn]

& Vx
1
.. x

1
[<Px & .. & <Px

1
-+ x

1
=x

2
V x

1
=X

3
V •. V x =X

1
]

m+ 1, m+ · m m+

For a given n and m this is read "thei\.. d.l.e at least n !ind at most m x's such

that <Px". If n = 0 the first conjunct disappears, S0 ~his is =-~ad as "therF,'.

are at most m x's such that <Px". For example, "35:
7x Senator x" is read

sec. 4.2 Uniqueness, mandatory role and frequency constraints 4-12

"there are at least 5 and at most 7 senators", and "3°:7x Senator x" is read

"there are at most 7 senators". Clearly the earlier numeric existential

quantifiers are special cases of the numeric:_:r:e.ng~ ___ exisJentiaLquantifiers

(viz. where n = m). TFC2 may now be shortened to TFC2':

TFC2' Vxy(xRy-+ 3n;mz xRz)

Uniform lists of 3! may be abbreviated as for V and 3, e.g. "3lxy xRy" is

short for "3lx3ly xRy". }Iowever, we do not so abbreviate lists of the other

quantifiers, e.g. we do not use "32 xy xRy" as short for "32 x32 y xRy". Partly

to cater for such cases, we allow a sequence of Ns (e.g. "x
1
x

2
x

3
") to be

abbreviated as an underlined symbol (e.g~ ''?£"). Although informally such a

symbol may be thought of as denoting a tuple variable, formally we treat it

simply as an a~ :.;reviation.

If <1>?£ is a formula in which ?£ only occurs appended to n-ary predicate

symbols, and X
1
.. X11 is a sequence of IVs which are not free in <1>?£, then the

following J.bbreviations are defined:

Vx <I>x = Vx
1
.. x

11
<l>x

1
.. x

12 df

3x <I>x = 3x1 .. x11 <I>xl'.xn df

3!x <l>x = 3 !x
1
.. x

11
<l>x

1
.. x

11 df

~=~ = Xr=Yr & .. &xn=Yn df

For example, if R and S are ternary then "3x(Rx -+ Sx & Tx)" may be
- - - 2

unabbreviated as "3xyz(Rxyz-+ Sxyz & Ty)". The translation rule TUC3 may

now be shortened ta the primed fon11:

TUC3'

1FC3 shows a simple case of an FC on a role combination: each

instantiation of the role pair marked out by the "II" occurs at least n and

at most m times. We first ~et out the long ver .. ion of the translation rule.

1 n;m-,

TFC3 R I

Vxy[3z
1

Rxyz
1

-+ 3zrz
12

(z1 ~z2 & Z1~z3 & .. & z11_ 1 ~z11 & Rxyz
2

& .. & Rxyz
11

)]

& Vxyz
1

•• z [Rxyz
1

& .. & Rxyz -+ z
1
=z

2
V z

1
=z

3
V .. V z =z

1
]

. m+.l · m+l m m+

sec. 4.2 Uniqueness, mandatory role and frequency constraints 4-13

To simplify this and other cases, we define the usage of the other

existential quantifiers with underlined variables in an analogous manner to·

our earlier definition. All such cases are ~ov~_r~~--~2'--~~-~--ic:>.!J.?\Ving.

definition (list). Note that~ etc. are underlined variables.

3n;mx ¢x - cir 3xl .. xn[¢x1 & .. & ¢xn & x1 :/=Xz & \ :/=X3 & .. & xn-1 :/=Xn]
- -- - ·- ---

The general case of an FC on a role anywhere in any predicate, may now be

specified as in 1FC4 ..

TFC4
1 s.ns.m
1 s.is.u

Equivalently:

\lx[X E R.i ~ 3n,-m~(RE, & Zi = X)]

Vx[Rx ~ 3n;mz(Rz & z. = X·)]
- - _ - I l

The translation rule 1FC3 may be shortened to TFC3 ':

TFC3' Vxyzl Rxyz ~ 3n;mx(Rx & X =X & X =y)]
- - 1 . 2

The most general case of an FC may be translated using rule 1FC5. Here

the predicate is of arity . u, and the constraint spans the· r wles

R.il, .. ,R.ir.

n;m

Vx [Rx ~ 311•~mz(Rz & z, =X· & .. & z. =X·)] .
- - _ _ !1 · !1 lr ·lr

It is convenient to use "3?" as an alternative notation for "3°;1
• If x

andy are IVs and ¢x :sa wff with no free occurrer.ce of y, theii \ve def:.ne 3?

(read "there is at most one") thus:

3?x ¢x = dr Vxy(¢x & ¢y ~ x=y)

This enables a uc on a role to be expressed more concisely, e.g. TUC2'

abbreviates TUC2:

~t:c:. 4 . .:1 ;:;,uvrypes 4-14

TUC2' Vx3?y xRy

This quantifier is also useful for translating uniqueness constraints on
···--·--·-·-··----------··"·-···

compoundfact types. Although in a conceptual schema we aim to eliminate

compound fact types in favour of elementary fact types, it is useful to be

able to discuss compound fact types at the conceptual level. With a compound

fact type of arity n, a UC may span between 1 and n roles. The general case

(TUC6) is now set out. Here a UC spans r roles in positions i1, .. , ir. This

case actually covers all possible intra-predicate UCs, whether the fact type

is elementary or compound.

The combination of a mandatory role constraint and UC on a role may also

be rendered concisely by use of 3!. For example, the CS fragiJ?.ent in Figure

4.6 may be translated as the three KL sentences shown.

Vxy(xRy -r f:0c & By)
Vx(f:0c -r 3!y xRy) .
Vy3?x xRy

Fi.gure4.6 A c~ncise translation of a CS fragment

4.3 Subtypes

We now consider how subtype constraints may be mapped into KL. F0r a

detailed but high level treatment ofNIAM subtypes see our earlier work (NH89,

Ch. 6). In cs diagrams, subtypes are connected to their immediate supertype

by a directed line segment. The information conveyed by this linkage may be

translated as shown in Figure 4.7:

sec. 4.3 Subtypes 4-15

· Vx(Bx -+ Ax)

Figure 4.7 Information conveyed by a subtype link

However, in N1AM only well defined proper subtypes are allowed. This

means· that included in the CS there must be subtype deji1iition (SD). Such

definitions are written in textual form below the CS diagram. Since the

subtype definitions imply the lirlkage information there is no need to

translate any subtype linkages into KL. Hcwever, the subtype definitions must

be translated. In order for such translation to be a.utomatic, a formal

language for such definitions needs to be defined, together with an algorithm

for mapping to KL. As a temporary solution, for. this thesis we assume that,

except for string and numeric subtypes (as explained shortly), the definitions

are actually given in KL itself; so such definitions are· mapped unaltered.

For example, a subtype Man might be defined as follows:

Vx [Manx= 3y(x has_gender y & y has_gendercode 'm')]

Membership in therelevant supertype (e.g. Person x) is implied by the

typing constraint on the predicate " ... has_gender ... ", b'.lt could be added as

a comment in braces for human readers. A useful exercise would be to de"elop

a more convenient notation for such definitions. For exari1ple, given that

Gender is standardly referenced by gendercode it would not be difficult to

define translation rules so that the following text would be treated as an

abbreviation of the previous definition: Man =df Person having Gender 'm'. It

should be understood that the main impact of adding subtype definitions is .

felt only when the typing constc1ints are defined for the roles played by the

subtype (consider rule TPN where the subtype is one ofthe A).
Subtypes for strings and numbers are usually specified in a different

way. In our earlier work (NH89, sees 6.2, 7.1) we introduced some notations

for this task. We now provide a formal and imprO\Yed treatment of these

notations, and clarify_ the meaning of abbreviated 1:1 reference schemes as

portrayed on :NJAM diagrams. Vle start by exaniining lexical subtypes, i.e.

subtypes of String.

Recall that lexical types appear as broken ellipses on a 1\TIAM diagram.

· Sometinies it may be convenient to include ~ames for these types on the

sec. 4.3 Subtypes 4-16

diagram, but this is not essential. If no lexical constraint is specified for .

the type then it is assumed to be the type . String (see rule TBE). If it is

desired to restrict the type to a proper subset of Stril1g_~--~~~~-~!:l .. ~J?.:P~?Priate

subtype definition is written, in abbreviated form, beside the subtype node

(or even inside it if the node is unnamed). We now provide a standard list of

abbreviations for specifying such lexical subtypes. These cover almost all

practical cases. Any other cases may l;>e defined ·using the String axioms

established earlier.

Earlier we defined expressions of the form x E A to mean Ax. It is

convenient to define several other uses of E. If x is an individual variable

and a
1

, •• ,an are either n string constants or n. numeric constants then we

define:

= df

If- S
1

, •• , sn are string constants, a lexical object type may be specified as

the set {s
1

, •• ,sn} by listing this set beside the node, i.e .

TSDi

... -·
I '·,

I A .1
I I ' _, --

For exrrmple, Gendercode might be specified as { 'm' ,'f} and Colourcode as

{'red', 'green' ,'blue'}.

The lexical subtypes Digit, Letter, Digits and Letters have already been

defined (Axioms STJ3 .. 16). We now use. these·. to specify various string

patterns. Angle brackets are used to delimit such lexical subtype

definitions .. ·We first define uses _of E with angle brackets. Here n is a

positive integer.

X E <Cn> = String x & x:;!:" & len(x) :::; n ·
df

X c <nC> = String x & len(x) = n
df

X E <dn> = Digits x & len(x) ~ n
df

X E <nd> = Digits x & len(x) = n
df

XE<an> - df
Letters x & len(x) :::; n

x E <na> d[Letters x & len(x) = n

These respectively mean that x is a non-null string of at most n characters,

exactly n characters, at most n digits, exactly n digits, at most n letters,

sec. 4.3 Subtypes 4-17

and exactly n letters. For the exact cases we allow the "c", "d" or "a" to be

written n times as a "vivid pattern" e.g.

<cc> may be used instead of <2c>

<dddd>may be used instead of <4d>

<aaa> may be used instead of <3a>

etc.

Vivid string patterns may be (recursively) concatenated by juxtaposition, i.e.

if <p> and <q> are vivid string patterns then so is <pq>, and

X E <pq> = df 3yz(X= y+z & y E <p> & Z E <q>)

Only vivid string patterns may .be concatenated by juxtaposition. However, all

string patterns may be (recursively) concatenated by use of+, i.e. if <p> and

<q> are string patterns then so is <p+q>, and

X E <p+q>=dr 3yz(X= y+z & y E <p> & Z E <q>)

If < .. > is a string pattern, then a lexical node may be specified as this

string subtype by writing the pattern beside the node, i.e ..

TSD2

.... -, '\
I A I < .. >
I I , __ .., \lx[Ax= X E < .. >]

For example, the left subtype in Figure 4.8 might be used for subject

codes (e.g. "CS112"). Instead of this vivid form, the string pattern could

have been· specified as <2a+3d>. The right subtype in this figure might pe

used for naines consisting 'of a ·surname of one to 20 characters, then a space,

then one to three initials.

---,
I" '

1 Su~ectcode' <aaddd>
\ I

"' ----

---, ...
I"

(Personname~ <a20+ 1 1+a3>
' ,"' ----

\lx [Subjectcode x = String x & 3yz(x = y+z & Letters y
& len(y)=2 & Digits z & len(z)=3)]

\lx [Personname x = String x & 3yz(x = y+ 1 1 +z & Letters y
& len(y) !! 20 & Letters z & len(z) !! 3)]

Figure 4,3 Two examples of lexical constraints

"t-1 0

·In setting out subtype specification rules, we use a predicate variable.

to refer to the subtype. If no subtype name is supplied, the subtype

definition is used instead of this name when typing constraints are specified

for the roles played by the subtype. For example, co-ns1der-Figure4~9~-- ' -

has _gendercode

'Vxy \ x :-Jas_gendert;ode y-+ Gender x & y = 'm' V y = 't')

Figure 4.9 Example of an unnamed lexical subtype

If we had included the name "Gt.:ndercode" for the string subtype, then the

subschema would have been translated by TPB and TSDl to the two forn1ulae:

Vxy(x bas_gendercode y -+ Gender x & Gendercode y);. Vx(Gendercoue x = ·
x='m' V x='f).

Note that on a CS diagram, lexical subtypeS often overlap (e.g. <c20>,

<aaddd>, {'Spring', 'Summer', 'Autumn', 'vVinter'J). This overlapping is

implicitly specified by lexical constraints of the kind just discussed. It is

very rare to exhibit any arrr'"'S between lexical types. If such arrows are

shown they may be igno:::-ed in translating since they are implied by the subrypo~

definit1 o;-~~.

The same comment applies to numeric subtypes. Earlier, we spt:!cified four

subtypes of Number: Real, Integer, Cardinal and Posint. If used, these appear

as a solid ellipse with the appropriate name: subtype linkages to Real are not
. .

normally shown on the diagrar~1. If any other subtype of Real is to be used it

is shown as a (possjbly named) soJid t>llipse ·with the subtype defmition

written, in abbreviated form, beside or iri the ellipse; again, a subtype arrow

to Real is usually omitted. We now provide some standard abbre\,iations for

specifying such subtypes. If nf'eded; mncr rea1 ~ubtypes may be defined using

the Real axioms established earlier.

As with strings, a finite set oi real numbers may simply be -listed· in

·full. The translation rule is TSL>3 (cf. TSDl), where n1, .. , nm are numeric

constants for the Reals.

TSD3

Recall that quotes must not be use.d, otherwise the constants denote strings

rather than numbers. For '2xample, [1 ,2,3} is a set of numbers but

sec. 4.3 Subtypes 4-19

{
111 ,'2 I ,'3 1 } is a set of strings. One formation rule for schema diagrams is

that sets of quoted constants may be specified only for broken ellipses.

Other subtypes of Real are delimited by squa,t:~,--Q~f!_~~~ts ____ QI __ round

brackets, depending on the case. We first define the use of E with such

bracketed expressions. In these definitions, n arid m are integers where n < m;

and r and s are reals where r < s. Integer subranges are defined with the

help of" .. ", e.g. [1..5] is {1,2,3,4,5}. We lise"_" (suggesting a segment of

the real number line) to do a similar job for a continuum of reals, e.g. [0 ___)]

is the set ofreals from 0 through 1. The dn notation infom1ally means a

number denoted by a non-null string of up to n digits, and ± allows signed

numbers. A round bracket is used to exclude a delimiting number, e.g. [0 ___))

is the set of non-negative reals below 1. Since this use of round brackets

requires that an underscore be included, there is no danger of conflation with

our use of parenthes-::s as pair delimiters.

x E [n .. m] = Integer x & x ~ n & x 5 m
df

X E [n ..] = Integer x & x ~ n
df

X E [.:n) = Integer x & x 5 n
df

x E [r_s] = . Real X & X ~ r & X 5 S
df

X E [r_] = Real x & x ~ r
·df

X E [_r] = Real x & x 5 r
df

x £ (r_s) = Real X & X > r & X < S
df

Other cases for round brackets, and permutations of round and square brackets,

may obviously be specified.

If a maximum precision needs to be specified (e.g. dollar values), this

may be catered f<)r as follo\vs. However, any associated derivation rules need

to have corresponding restrictions. For each of these cases we permit "d .. d",

where there are.n "d"s, as a vivid variant of "dn" .

X E [.dn] = . Real X & X ~ 0 &. X < i & Integer x*! on
df

x E [dn.dm] = Real X & X ;:: 0 X < I on & Integer x*i om
df

X E [±.dn] = Reai x & x > -i & x < i & lntegerx*lon
df

x E [±dn.dm] = Real x & x >-ion & x < 10n &.Integer x*10m
df

For example, real numbers in the range -99999.99 through 99999.99 with at

most 2 digits after the decimal point may be specified as [±d5.d2] or

[±ddddd.dd]. \Ve regard it to be an external than a conceptual issue whether

leading or trailing zeros are needed for input or output (e.g. m our

treatment 3, 3.0, 00003.00 etc. are all defined as 1 + 1 + 1).

Aunion of ranges may be (recursively) specified by separating the ranges

by commas, i.e. if [rJ and [rJ are real ranges, then so is [r1,r2] and

= df

Here we have used "[", "]" generically to include round brackets. If [..] is

any numeric constraint of the kind specified with our bracket notation, then a

node may be specified as the corresponding subtype of Real by writ)ng this

notation inside or beside the node, i.L.

TSD4 (~) [..] Vx(Ax =X E [..])

Figure 4.10 pres~nts two examples, where the E notation has been

unabbreviated. As indicated earlier, it is optional whether subtypes of Real

are given names.

s [1..7] Vx(Rating_nr x =Integer x & x ::: 1 & x ~ 7) .

s(OJ Vx(PosReal x = Real x & x > 0)

Figure 4.10 Two examples of numeric subtype definitions

We end this section by defining a further abbreviation which is useful

later. If x is a term and S is a predicate name, role name or a bracketed

range specification, then we define the symbol "¢" (read informally as "does

not belong to") by the following abbreviation:

x¢S = ""'(X E S)
df

""''-'· '+."+ .:>UU~t::L, t::l{UdiiLY di/U t;:)((;/U::i/U/1 r.;UI/::iLI i:I./1/LS

4.4 Subset, equality and exclusion constraints

Background on subset, equality and exclusion constraints may be found in NH89

(sec. 8.2). · We now express these in KL, starting with--suoset constraintS:
These are marked with a dotted arrow pointing to the superset. A simple case

is TSCl: both raw and role versions are given.

s o=J Vx (:Jy xRy -> :Jz xSz)
TSC1

I
Vx (X E R.l-> X E S.l)

H

This is generalized in TSC2, .where the predicates may be of any arity

(including unary) and the roles may be in any position. Despite visual

appearances, we do not require the predicates to be of the same arity or the

roles to be in the same position; moreov·er, R and S need not be distinct.

TSC2 Vx (X E R.i-> X E S.j)

TSC3 covers the general case of a subset constraint between pairs of

contiguous roles. If R and S are binary this simplifies to Vxy(xRy -> xSy).

Note that predication is needed to establish the underlined variables as "row

variables11
• ·

[~~ lj I
-~

s _ _j
TSC3

R [--
I I

•I =]
Vxy[:Jz(RL & X= Z· & y ""Z·) -> :Jw(Sw & X= W· & y = W·)] _ _ I 1+1 _ _ J J+l

This ge11C-ralizes further to TSC4, the case of a subset constrain~ between

predicate tup1es of (not necessarily contiguous) roles:

'----.,...---'-' .,. - - ___]

TSC4
....------,...-.:....--~

R c=n=TI=n=J-·
Equality constraints occur when there are subset constraints in both .

directions. A dotted line with arrow tips at both ends is shown

connecting the relevant operands (optionally, beth arrows tips may be

delet,:d). By replacing ~~~~~in TSCl-4 with 11=11 we obtain TEC1~4:

TEC1

TEC2

TEC3

Vx (3y xRy = 3z xSz)

Vx (X E R.l =X € S.l)

s c==u==J
R c==n==J
s c== If l I. -=J
"c== 1, t =J

Vx (X E R.i =X E S.j)

Vxy[3z(Rz&x=z.&y=.Z·)=3w(Sw&x=w-&y=W·)]
- - I 1 ... 1 · - _ · J · jT.l

TEC4
'------'-' ,...-_ -- ___]

:

.-----Jr-1'* --~

. R c=n=u=n=J

sec. 4.4 Subset, equality and exclusion constraints 4-23

We now consider exclusion constraints. A dotted line connects the

relevant operands to an exclusion mark "X" (optionally, this mark may

be circled). The simple case of TXCl is, given in both raw and role

versions. The role versions are used for the other cases TXC2-4.

s I Vx:yz~(xRy & xRz) ·
TXC1 x

I
Vx~(X E R.l & X E S.l)

R

s [-- lj I =]
TXC2 ~ Vx~(X E R.i & X E S.j)

R c==--r i .1 -=]
s c== 1j I =]

TXC3 x
R [-- I i f .·I =]

Vx:y~[3z(Rz & X= Z· & y = z.) & 3w(Sw & X= W· & y = w.)]
- - I 1+1 _ _ .))+!

TXC4

Vx
1

•• xn~[3y(Ry & X
1

= y1-1. & .& xn = y1.) & 3z(Sz & X1 = z. & .. & Y n= Z:)]
- - n _ _ Jl . ;n

TXCl-4 cover the. cases where there are two operands. These generalize

respectively to TXCS-8, where there is a mutual exclusion .:::onstraint am:ong n

operands. Vlhen n exceeds 2, it~-- generally recommended that the "X" mark is

circled~ The most important case in practice is where we have a set of

mutually exclusive roles (see TXC6: clearly this subsumes TXC5). Here no

object can simultaneously inst.mtiate any role pair selected fron~ the n roles,

i.e a· simple exclusion constraint exists bei:ween each of the role pairs.

sec. 4.4 ;;,uoser, equaury ana excwsron cun~L:wuL~

TXC6 ..•. ···1'50 _·.:~

Similarly,. the formalizations of TXC1,3~~ may be adapted to provide

formalizatiom of TXC5,7-8. Since these extensions are straightforward, we do

· not specify them here.

We conclude this section· by introducing join subset, join equality and

join exclusion constraints~ as an extension to NIAM. The pairwise subset case

is set out i~ TSC5. As t;he general specifict:tion inKL is awkward, we convey

the meaning of the constraint usiug relational concepts. Here we have four

(not necessarily distinct) predicates R, S, T and U. R*S[ci,c) is the

projection on columns ci, c1 of the natural join of R and S. Column ci is the

column that role R.i maps onto in the join, and so on. Basically the

constraint asserts that the .set of pairs formed in the join projection

R*S[ci,c) is a subset of the set of pairs formed in the join projection

T*U[c.l_,c1]. Clearly, for non-vacuous applications .the pairs being compared

must belong to compatible pair types (e.g. roles R.i and T.k might be played

by objecttype A, and roles S.j and U.zplayed by object type B).

T.J; U.J

O_T_U
TSC5 . n----u

R.i S.j

Similarly, translations may be set out for a join equality constraint

(TEC5) and a join exclusion constraint (TXC9). CLarly, the TSC5, TEC5 and

TXC9 pairu,ise join constraints may be generalized to the tuple-wise case.

Although the specification of such general. translation rules is awkward in KL,

for any· specific case the KL definition i::: strai.ghtforward. For example,

1EC5a · is a simple case of 1EC5: this is later used in discussing

transformations on compositely described object types; here the population of

the (S.2,T.2) join parrsinust equal the population of the(R.l,R.2) pairs.

TEC5a

Vxy[:Jz{zSx & zTy) = :Jw Rxyw]

4.5 Homoge:&ieous binaries and other constraints

Background on homog;o:neous binaries and other constraints may be fo:.md in

NH89 (sees. 8.3, ~.4). Irreflexive, asymmetric and intransitive constraints

are translated for simple homogeneous binaries as shown:

ir

TIR1 IR Vx -xRx

as

TAS1 Ef_=] Vxy(xRy-:+ -yRx)

it

TIT1 R Vxyz(xRy & yRz -:+ -xRz)

In some cases, similar constraints need to be applied to embedded

· homogeneous role prurs (e.g. Part contains Part in Quantity). These are

catered for by the following rules. Here R is at least a ternary.

ir

Vxy [Ry-; -(X =- y. & X = y.)]
- - I)

as

TAS2

Vxyzw [Rz & Rw & X= Z· & y = Z· -t -(y;, w. & X= W·)]
_ _ -· I . J I j

sec. 4.o Homogeneous omanes ana omer consrramzs

it

TIT2

vx:;;zwvu [Rw & Rv & Ru & x=w. & y=w· & y=v· & z=v--+ ...:.(x;u: &-z;-u·~r-------
-- __ l J I J I J

In some methodologies (e.g. Entity-Relationship modelling) the term

"cardinality" is used in classifying relationship types as 1:1, l:n, n:l, or

n:m, but WAM describes such cases in tem1s of uniqueness consrraints. In

some WAM dialects, the term "cardinality constraint" is a synonym for

"frequency constraint". However, in our version of WAM, a cardinalify
. .

constraint may be imposed on an object type to limit the number of members for

each populatirm. of that type (in some cases this might be less than the

cardinality of rhe type, e.g. a type may include many ob.iects only some of

which may be used at a time). Such constraints may be indic~-;.ted by v.'Ii.ting

the cardinality range beside the object type ellipse, using our semicolon

notation, and are easily translated using our numeric existential quantifiers.

To specify that there are at most n objects in each population of A:

TCC

For example, to assert that there is only one President; we may write "0;1"

beside the object type ellipse for President.

·To simplify discussion of the next constraint category, as well as later

transformation theorems, we introduce a further r:.1etasymbol. \Vl.L-ri an object ,

type must be either lexical or numeric it is shown as a half-solid circle with

the type name underlined:

= df
or

In some cases we need to specify a constraint on the playing of a role by

a single object: v.re call this a role-object constraint. Vle now define three

kinds of role-object constraints for the simple case where the the role is

played by an enumerated lexical or numeric object type (similar constraints

for described object types are. defined in the next chapter).· These are set

out in 1ROCJ-3. Here a is either a string or numeric constant In each case

sec. 4.5 Homogeneous binaries ana omer consrramrs
~

the object a is connected by a broken arc to the relevant role arc: if it is

known that the object type A plays only this role in the global schema diagram .

then the broken arc may be omitted.
The dot above a in 1ROC1 specifies that if any objeciplays the ------------

indicated role then a does. In this sense, a might be called a "mandatory

object"; we introduced this kind of constraint in NH89 (p. 195) using the

term "mandatory entity".

TROC1 3x(x E R.i) -+ a E R.i

In 1ROC2, underlining a specifies a "restricted uniqueness constraint"

for a in that role. A frequency range annotation above or below a specifies a

"restricted frequency constraint" for· a in that role (1ROC3). These

constraint categories are introduced here for the first time .

TROC2

TROC3

.... , { .. ,a, .. }
A I _.,..

I . - . 3?x(Rx & X· = a)
- - l

3n;nzx(Rx & x. = a)
- - I .

As a simple example, consider the subschema of Figure 4.11. This might

be used to record whether a committee member is the President, one of two

possible Vice-Presidents, the Secretary, the Treasurer, o~ an Ordinary member.

The dot over "P" might be used to specify that the President is elected first.

The underscores for "P", "S" and "T" indicate there is at most one President,

at most one Secretary, and at most one Treasurer. The frequency notation

·above "VP" indicates there can be at most 2 Vice-Presidents. Since only one

role is shown connected to the right-hand object type, broken arcs to this

role are assumed.

sec. 4.6 Nesting 4-28 .

.,,.,..- ,\ • 1;2

I I{'P' 'VP' 'S' 'T' '0'}
I , ' ' , / - - -' ,. ... _

Figure 4.11 A subschema with five role·object constraints

Our constraint specification has now covered all the graphic, static

constraint categories of NH89. Since KL has the expressiveness of predicate

logic, other ', ;.1Cls of constraint can be asserted in KL, but since this power

is open ended we cannot exhaustively list all such cases. Some practic:.:.I

examples of textual constraints (e.g. people cannot die before they are born)

are considered in later chapters.

4.6 Nesting

Background on "nested fact types" can be found in NH89. There we adopted the

usual high level approach to nesting by d..:ii1.:.:ig an "objectified relationship"

as a relationship which is also treated .a<:: Bn object \vhkh itself plays roles.

In this section we formalize· nesting in a more general way using ou: pair

func6on, ar..d offer a simple graphic notation.

To help explain· u- .. 1ew approach, we use a familiar example (see Figure

4.12). For simplicity, reference modes have been omitted. The subschema on·

the left is in the old notation. We have an embedded many:many binary . .

relationship type:. Person enrols in Subject. At the outer level we have a.

functional relationship type for recording the rating scored by a person in a

subject. In our analysis (see NH89 p. 100), the embedded part must have a uc
-

spanning its entire length. If it has a sho-rter key then, if nesting is to

occur, this key should be embedded instead. For a contrary view on this

matter, see Falkenberg (1986, p. 7-23).

With the old notation, the uc must be marked separately and an ellipse is

drawn around the embedded part. This can be awkward to draw, especially if

the embedded part has several roles. While we still percit the old notation,

we now prefer to use ?-.jraJ?le ("roundedrectangle") instead of ar. ellipse, with

the understanding that afulllength UC is assumed (visually one may imagine

the UC overlaid on one of the long sides of the frame). Apfu""t. from a

mandatory role dot, any constraint marks around the embedded part are

understood to apply to the inner roles.

sec. 4.6 Nesting 4-29

enrolled in

Figure 4.12 Old (left) and new (right) notations for nesting

In NIAM the embedded objects are usu~,Jy considered to be relationships

or facts. However, we now believe it is simpler, and usually just as natural,

to think of these· objects as pairs. For example, rather than :s2ying that a

particular enrolment relationship between a person and a subject scor~s a·

rating, we may simply say that the (Person,Subjtct) pair scores the ratir ;:;. A

majo:::- pragmatic reason for ad0pting this new approach is that it comiderably

simplifies our treatment of equivalence transforrhations involving nesting.

Note that we use the word "relationship" in its normal logical sense,

i.e. a relationship i~ a proposition, not a tuple. Relationships may be

assigned truth values but individuals cannot. In short, we do not include

relationships as individuals. Syntactically, "=" is an operator between wffs

and "=" is an operator between terms, and a wff is not a term. For example,

we may say "xRy = xSy" and "(x,y) = (w,z)", but not "xRy == xSy" or "(x,y) =
(y,z)".

Unless there is a gond reaso!:. for doing so, we .prefer not to name

embedded object types. lnthis case, further translation rules are needed to

formalize typing or mandatory role constraints on the role played by the pair

type. The binary case is specified by ·rules 1NB1 and TMR5.

TNB1

TMR5

Vx[X E S.i _. 3yz(yRz & X = (y,7.))]

{ mandatorj role aspect: }

Vxy[xRy _. (x,y) E S.i]

---• ""1".- I ·-ULIII'::J 4-30

Note that the relevant pairs must instantiate R: it is not enough that

they belong to the Cartesian product of the object types attached to R.l and

R.2. The binary case is by far the most common. It generalizes to the case

where R is n-ary, n > 1, as shown in TN2 and TMR6:

TMR6 ~=E)

[---r --J s:.._0 __

{ mandatory role aspect: }

Vx
1

.• xn[Rx
1

•• xn ~ (x
1

, •• ,xn) E S.i]

Although informally we may think of an object (x
1
, •• ,xn) as an n-ary

tuple, formally we capture it as the pair (x
1
,(x

2
, •• ,xn)). · If the pair object

type is named, then the typing and mandatory role constraints are specified in

same way as for other named object types. However, the translation of the

naming must be specified as follows. \Ve cite only the general case l1ere

. (TN3) ..

A

TN3 ~:a

Having formalized nesting, we introduce a notation for specifying subset,

equality and exclusion constraints for n~sted fact types where: an operand's

roles involve both inner and outer predicates. The most important case is

TEC6. Note that because of the typing constraint on S, 'the right-hand side of

the quantified equivalence may be replaced by "3z(xRz & (x.z)Sy)". This kind

of equality constraint is relevant to licencing certain kinds of schema

transformations· on nested fact types. Analogous subset (TSC6) and exclusion

(TXC10) constraints may also be defined. These pairwise constraint categories

may be generalized to tuple-wise .cases.

I .

sec. 4.6 Nestmg 4-31

TEC6

·ITJ
\fxy[xTy = 3z (x,z)Sy] .

Before ending this section, we note that nesting can be foimalized

without the pair ftmction by introducing special functions for each case. · For

example, one might define the function enrolment(x,y) as a 1:1 mapping

between the (Person,Subject) pairs instantiating the Enrolment fact type and

its set of values. This function may then be used to refer to the embedded

objects~ VIe used this alternative approach in an earlier formalization.

However, while closer to the traditional concept of "objectifying a

relationship", this alternative complicates later work on equivalence

transformations. We feel that our current approach provides a simple and

intuitive solution.

We have now formalized most of the basic NIAM graphic notations. In the

next chapter we look at more advanced aspects offormalization, and introduce

further enhancements to the methodology.

5 Further aspects of NIAM knowledge bases

5.1 Reference schemes and numbers

In this chapter we discuss further issues regarding the translation of NIAM

knowledge bases into KL, and modify NIAM to provide an improved treatment in

certain areas. This section examines reference schemes, focussing on

abbreviated not:.ttions, and reference schemes that make use of numbers.

Background discussion on reference schemes may be found in NH89 (Ch. 7).

In a knowledge base, described entities are never denoted by individual

constants. Instead definite descriptions are used (e.g. "the Lecturer with

surname 'Halpin'", "the Length with cm_value 175"). Such descriptions are

defined in terms of NIAM reference schemes. The final section of this chapter

examines definite descriptions in more detail.

Set theoretically, the simplest reference scheme for an entity type is an

injection (1:1-into mapping) from the population of that type to String. In

NH89, we introduced the notion of a reference mode, i.e. the manner in which

the string relates to the entity being referenced. A meaningful name may be

chosen for the reference mode and then written in parentheses beside the name

of the entity type. A reference mode name is a sequence of one or more

identifier_characters (see Ch. 3), usually starting with a lower-case letter

unless this conflicts with standard conventions (e.g. "MHz", "K", "%", "$").

A parenthesized reference mode is just an abbreviation for the explicit

reference scheme under discussion, as shown in Figure 5.1.

In this figure, r is the name· of the reference mode, while r' is its

expanded form. If r is one of "name", "code" or "title" then r' is the result

of prep ending lc(A), the lowercase version of name of the entity type A, to r,

else r' is simply r. For example, "Persoa (surname)" involves the reference

predicate "... has_surname ... " while "City (name)" involves the predicate

" ... has_:_cityname ... ". In the figure, "< .. >" denotes a1.y Jexical comtrai.nt

(e.g. <aaddd>, {'m','f}): writing it beside the entity type indicates it is

to be applied to the implicit label t;· 1 · :::. If it is desired to name the label

type, then r' is chosen except that its first character is capitalized (e.g.,

"Surnan1e", "Cityname").

sec. 5.1 Reference schemes and numbers

< .. > has r' < .. >
....
' I GD = df I

' -·,/

If r E {'name','code','title'} then r' = lc(A)+r eise r' = r
Figure 5.1 An abbreviation for a simple reference scheme

5-2

One formation rule for cs diagrams is that predicate names be unique:

this implies that the (expanded) names of reference modes must also be unique.

The expansion scheme in Figure 5.1 conveniently allows multiple occ-urrences

of "name", "code" and "title" on the same diagram, which expand differently,

e.g. "Subject (code)" and "Gender (code)" expand to "Subject (subjectcode)"

and "Gender (gendercode)". ·while this enables such abbreviations to be

expanded independently of others, in practice shorter expansions may be chosen

so long as they are unique to the global schema, e.g. "Gender (code)" might be

expanded to "Gender (geode)" if "geode" is not used elsewhere.

\Ve define only one abbreviation scheme for predjcate names. The word

"has" may occur more than once as the abbreviated name of a binary predicate.

To preserve uniqueness of predicate names it is always expanded by prepending

it to an underscore followed by the lower case version of the name of the

adjacent object type (see Figure 5.2).

= df

Figure 5.2 · "has• may be used as an abbreviated predicate name

For: example, the left hand schema fragment shown in Figure 5.3 is an

abbreviation of the right hand fragment:

has_gender

has_phone

Figure 5.3 The left diagram abbreviates the right diagram

We now consider abbreviations for cases where a combination of two or

more labels is used to refer to an entity. For example, a person might be

identified using a combination of surname and initials, where the surname

sec. 5.1 Reference schemes and numbers 5-3

string and the initials string are two separate objects. The general

abbreviation schema for a composite reference scheme using n labels is given

in Figure 5.4. Here r1, •• ,rn ·are the names of the n:~f~:r::~!!~~-El_Qpe~_Lr:1 ', •• ,rn'

are th~ir expanded names, an~ c
1

, •• ,cn are the respective lexical constraints.

In contrast to our earlier work (NH89), we use commas instead of "+"s as

separators. The label types are not necessarily distinct, and may be named if

desired. If no lexical constraints are given, then each label type is String.

has r' -n

'

-- ... \

'<c >
I 1

... _ ...

Figure 5.4 Abbreviation of a composite reference scheme

A simple example is given in Figure 5.5.

~
(surname, initials)__ _ __,.

<a20,a3>

has surname
/,- ,

f----'\ < a20 > ~
'----J.........,,...--' ' / _

'/.,..-'
' f----J\ < a3 > 1

'----'---~ ' /

has initials --
Figure 5.5 The left diagram abbreviates the right diagram

Unlike sorrie other :N1A11 notations, for any given en!.iry type we never

allow more than one reference scheme to be abbreviated. For example, if there

is an jnjection from Subject to Subjectcode and another injection from Subject

to Subjecttitle then only one of these may be abbreviated (using the scheme of

Figure 5.1). So a commalist of reference modes always m~ans composite

reference, rath~r than a list of simple references.

Although conceptually we .make no distinction between _the abbreviated

and explicit reference forms, in practice we ahvays choose the abbreviated

form to indicate the primary reference scheme. We treat selection of a

primary reference scheme from candidate reference schemes as an implement

ation concern rather than as a conceptual concern. As will become more

apparent when we discuss derived predicates, this is not the only feature of a

NIAM "conceptual" schema diagramwhich is captured only at a subconceptual

level (e.g. a high implementation level).

~t::c.;. o.' nt::Jt::rence scnemes ana numoers 5-4

Injective numeric reference schemes may also be abbreviated. In contrast

to our earlier. work (NH89), the names of numeric reference modes are

underlined. The reference mode with abbreviated name "nr" is reserved for

referencing, by means of a number, dimensionless entities which we do not wish

to consider to be numbers. The name "nr" may be used with more than one

entity type, but the occurrences are expanded by prepending the name of the

entity type (in lower case) and an underscore to produce unique predicate

names (see Figure 5.6). If a numeric subtype definition (e.g. [.L7], { 1,2})

is specified beside the entity type this is understood to specify the implicit

numeric subtype. In Figure 5.6 we show this as [..]. If no numeric subtype

definition is given, Real is assumed.

[..]

@ = elf

r:-·~
~

has_/c(A)_nr

Figure 5.6 Abbreviating reference of a dimensionless entity

For example, "Quantity (nr)" and "Rating (nr)" generate the predicates

" has_quantity_nr · ... " and " ... h:as_rating_nr ... ". If desired, a name for

the numeric subtype may be constructed by preperiding the entity type name to

"_nr", e.g. "Rating_nr": if used this must be underlined; If we wish to treat

a dimensionless quantity as a number then its. name is underlined and no

reference scheme is specified for it on the diagram.

We now examine unit-based reference modes (e.g. em,$). Names of unit

based reference modes are unique, and. never abbreviated. The reference

predicate name is generated by prependiP::>: " ... has_'' to the reference mode

name (not Jnderlined), and then appending "_value ... ". See Figure 5.7 (here

we assume~ is not "nr"). If no numeric subtype definition is specified, then
• J • •

Real is assumed. In the un1ikely case where a r.ame for the numeric subtype is

desired, this may be constructed by prepending "Nr_for_" to the name of the

reference mode(e.g. "Nr_for_Mm", "Nr_for_mm", "Nr_for_$").

[..]

w = df

hasJ_value

Figure 5.7 Abbreviating an injective unit-based reference scheme

For example, "Length (em)" and "Money (~)" generate the predicates " ...

h 1 II d ·II h. $ 1 II w . th II • b d" as_cm va ue ... anas __ va ue .. : . e use e term umt- ase

sec. 5.1 Reference schemes and numbers 5-5

liberally to include cases such as "Year (AD)" and "Portion (%)": these

respectively generate the predicates " ...

has_%_value ... ".

has_AD_value ... " and "

For convenience we now introduce a metasymbol to facilitate general

discussion about simple injective reference schemes. Here "simple" means

neither composite not disjunctive (see later). In doing so we summarize the

simple reference translation rules discussed so far.

If a reference mode r is simple, its reference· predicate may be

abbreviated as "z/. A generic reading for "x zr y" is "x is identified

(under r) by y"; however its specific reading is determined by the cited

reference mode r in accordance with our earlier abbreviations. See Figure

5.8. Here "a" deno:cs the lowercase version of the name "A". For example, if

"A (r)" is replaced by "Gender (code)" then "x zr y" is replaced by "x

has_gendercode y". Although "z/ bears some analogy to the equality operator

"=",clearly "z/ is not reflexive, nor symmetric nor transitive.

®
CD

Figure 5.8

r

name
code
title
r
nr
r

= df

= df

·r

has aname
has-:acode
has_atitle
has_r
has a nr

. has=r _=-value

{a= lc(A)}
{a = lc(A) }
{a = lc(A) }
{ r =f. 'name','code','title' }
{a = lc(A) } ·
{~=f. 'nr' }

Summary of simple reference predicate translations

· The inclusion of a reference mode for an entity type A implies that

objects of type A are Described~ and hence falsifies any direct comparison

between an object of type A and a number. For example; the specification "IQ

(nr) [0 .. 200]" makes false an assertion such as :Jx(IQ x & x=130); any

comparisons with a number will have to be made indirectly via the numeric

reference scheme. If IQ is instead specified as the subtype [0 . .200] then

such assertions are not automatically rejected. This choice is made in Figure ·
. .

.5.9. The subtype definitions illustrate indirect and direct comparisons with

numbers.

·:.;

sec. o. 7 Kererence scnemes and numbers

Vx[Tallperson x E= 3yz(x has_height y & y has_cm_value z & z ~ 180)]
Vx[Genius x = 3y(x has_iq y & y ~ 150)]

Figure 5.9 Indirect and direct comparisons with numbers

5-6

We do not specify a general notation for abbreviating composite reference

schemes other than the simple lexical case considered earlier. . In practice,

· designers may introduce their OY. ·' notations for special cases .. We suggest an

asterisk then be used to indicate a fuller specification exists elsewhere.

· For example, "Date (*ymd)" might abbreviate a schema module in which :C J.te is

uniquely determined by Year (AD) [0 .. 9999], Month (nr) [L12] ru"ld Day (nr)

[1..31] together with other constraints (e.g. month sizes), reference schemes

(e.g. MonthNi.iiDe), and derivation :rules for subtractiLe dates etc. In this

approach :t yc.~:: is a single segment of the tirp.eline, but months and days have

multiple occurrences.

In rare cases, we may wish to allow an entity type to have more than one

unit-based refereucc mode within the same information system. This may ar:i.~:-

to cater for a g:;:·adual transition fm~n an old to a new unit system (e.g.

imperial to metric), or because even with the one entity type different units

are used fnr difierent contexts (e.g. mm, m, Y....m, pc etc.). Some backgrv iJd

discussionis given in i"'nS9 (pp. 169-70). We now discuss a slightly different

scheme for fo:I:Tnalizing such cases.

A conversion rule specifies how one unit may be converted to another and

vice versa. Such a rule may be shown explicitly .as a derived fact !ype .·':ld

its textual form included in the list of de1ivation rules. Alterna~ively, the

rule may be abbreviated in equation form and written beside the entity type

ellipse .. If r is the name of a unit-based reference mode for the entity type,

s is the name of another unit, and j(x) is a function-term of KL then. a

conversion equation between these units may be specified and translated into

KL as shown in Figure 5.10.

0 = 0
x s = t(x) r

df
Vxy(x has_s_value y = x has_r_value f(y))

Figure 5.1 o Defining alternative units for the sar:1e en_iit:;' type

sec. 5.1 Reference schemes and numbers 5-7

For example, consider the schema fragment shown in Figure 5.11. This

reflects the practice in the Australian lumber industry, where cross sectional
'---- ... ··-·-----~-·------··--·

measurements are given in millimetres and the reach (long dimension) is

measured in metres.

has· reach

has diameter

Figure 5. "11 Length may be measur~d in mm or m

The conversion equation translates as:

'ixy(x has_m_value y = x has_mm~value 1 DDD*y)

Notice the "m" beside th;~ top right-hand role arc in Figure 5.11. This

aspect cannot be captured conceptually, but has an implementation effect. The

placing of "(mm)" and "m" indicate that mm is the primary reference mode for

Length, but for input and output the reach is given in metres. The lack· of

any unit rnaJ.ke:r on the diameter role means that diameters are given in the
. ary "t (\ pnm um rnr- /·

As an example, suppose we wanted to know which pples had a reach which

was 50 times their diameter. Using "{x: <Px}" to denote the set of all x such

that <Px, this query may be formulated in a primitive conceptual query language

thus:

List {x: 3yzwv(y has_polecode x & y has_diameter w & w has_mm_value z

· & y has_reach v & v has_mm_value 5D*z)}

If the schema js implemented with reach values in metres, the query phrase "v

has_mm_ value 50*z" calls the com ersion rule to c;ompu~e the mm value from

the stored m value. Axioms introduced later in the chapter enable this query

to be expressed more concisely.

Sometimes, it is useful to be able to specify a number of subtyp'=S of the

same supertype without having to draw a separate node for each. Let A be a

described entity type which is numerically referenced by the reference mode~·

where !.. is either nr or is unit-based, and let "[..]" denote any bracketed

numeric subtype definition as specified earlier. We . alloY•/ "[.,]" to be

sec. 5. 1 Reference schemes and numbers 5-8

written beside a role played by A to specify that this role is played only by

the subtype of A defined in terms of [..]. The general abbreviation scheme is

set out in Figure 5.12.

R \ix[X E R.i -t 3y(X :::::r y & y E [••])]

Figure 5.12 Concisely specifying a numerically referenced subtype

A simple example is given in Figure 5.13. Here the test is marked out of

20 and the exam out of 80. Notice that the numeric constraint on Score must

cater for all the roles it plays (including the derived role). \Vit~out the ·

abbreviation just introduced, it would be necessary to explicitly depict nodes

for TestScore and ExamScore (with the former a subtype of the latter, which

itself js a subtype. of Score). If the schema is complete with respect to the

roles played by Score, the [0 .. 100] constraint may be omitted since it is then

derivable.

Notice the use of a predicate dictionary .to enable lmig predicate names

to be .abbreviated within the diagram and the derivation rule. With large

schemas, all the predicates may be abbreviated as "R
1
", "R

2
" etc.

T = obtains a 1est score of
E = obtains an exam score of
F = obtains a final score of

[0 .. 2~]

[0 .. 1 00]

Figure 5.13 Two uses of the shorthand notation of Figure 5.12

The specification of the derivation rule requires further discussion,

since so far we have not axiomatized +as an operator between scores (which

here are neither numbers nor strings). We discuss this later in the chapter.

sec. b. 1 Heterence scnemes and nutnoers 5-9

If a 'different unit-based reference mode is also specified on a role arc

with a [..] constraint, then this mode is used to generate the subtype

definition. For example, with Figure 5.11, a [2 . .5] constra]nL next to "m"
' ' -• •••••--•H··~·--.----~----•••••

would specify that the reach of ;1 pole must be 2, 3, 4 or 5 metres.

In rare cases, we may wish to allow an xor reference scheme, involving an

exclusive disjunction of rwo 1: 1 reference predicates. We allow such cases to

be abbreviated by parenthesizing the names of the reference modes, separated

by a stroke "I" (see Figure 5.14). Here r
1

, r
2

may be lexical or numeric

reference modes, and ;:;:n , zn. are their associu.ted reference predicates.

= ·x
df

Figure 5.14 An xor reference scheme

I

I

' I

I
I

For example, suppose our application deals with the last few thousand

years and we wish to allow yeurs to be denoted using the Christian convention

(e.g. 500 BC, 1989 AD). This may be set out in short or long form as shown in

Figure 5.15. The use of the"*" in "BC*" is explained later in the chapter.

= df

has_AD_value

has_BC* """value

Figure 5.15 An example: of an xor refer:mce scheme

·If the reference scheme of Figure 5.15 is used, then year entries shown

in NIAM fact tables must include the "AD" or "BC" suffix. ·This suggests an

altemative way of conceptualizing this reference scheme (see Figure 5.16).

Equivalence between these schemas can be proved. Howew'", we generally

prefer the firSt approach because it simplifies the specification of +, - and

ordering operations on years (see later) as well as separate numeric subtype

constraints (e.g. [1.,6000] for BC and [0 .. 2000] for AD).

. has_year_nr

---/ '
1-----l ; {'AD', 'BC'}

'-----'----~ \ / -- has_year_:_suffix

Figure 5.16 An alternative but usu.::lly inferior conceptualization

In a somewhat similar vein, one i:night conceive of unit-based reference in

teri:ns of a composite reference in which the unit is objectified. For example,

Figure 5.17 might be proposed to deal with different units for Length. We

prefer our earlier approach for the same reasons (easier to specify number

like operations and related numeric subtypes).

has_length_unit

Figure 5.17 A generally inferior way to conceptualize lengths

Infom1~::~.):, a kind of subtyping scheme for all unit-based entities is

sometimes proposed. For example, an entity type Unit_based_entity might be

referenced by predicates to Real and Unit, with subtypes of Length, Mass etc.

However, this approach conflicts \.Vith our general philosophy of allowing

subtypes of the same supertype to be meaningfully compared, and it lacks the

simple advantages cited earlier. Hence we reject this approach.

-'Role-object constraints (sec. 4.5) may be applied to described objects

via their primary reference scheme. If A (r) { .. ,a, .. } is depicted, where the ·

reference mode r is either lexical or numeric with associated reference

predicate zr, m:d A plays role i of predicate R, then co,mecting this role arc

via a broken arc to a has the following semantics when a is marked as shown:

•
·{ .. ,a, .. }

{ ... ~ ... }

n·m { .. ,a, .. J

3x(x E R.i)-+ 3y(y E R.i & y zr a) .

3-?x(Rx & x-:::::: . a) _ _ I T

3n;mx(Rx & X·:::::: a)
_ - I T

;;:::c.;. o . .::. utuuat aspecrs 5-11

5.2 Global aspects

So far all our mapping rules from NIAM notation to KL have been specified so

that they can be carried out on diagram components, independent-ly-()f-therest

of thr diagram. This incremental approach grerrtly simplifies the ta~k of

either manual or automated mar::-'~ng. There are some aspects o+NIAM diagrams

however that must be interpreted on a global rathe; than lo.cal LJ.sis. In

particular, we :need to specify mutual exclusion between primitive described

object types, and cater for implicit mandatory roles. These .. -vatures are

examined in this section.

Earlier we partitioned the domain into described objects, numbers,

strings, pc>irs and {nil}. Any mutual exch:::7on between subtypes of String or·

subtypes of Real is implien by the subtype definitions. Any mutual exclusion

between pair types is implied by exclusion ben.veen their corresponding

component types or by other .constraint~, e.g. explicit exclusion constraints

between their role sequences. In rare cases, pair types may be explicitly

specified as subtypes of other pair types (e.g. differe-'it information might be

recorded for. (Person,Surject) pairs according to the subject): in such cases,

exclusion between <;ubtypes is determined from other constraints in the usual

way. However, we }1a,,e yet to consider mutual exclusion between described

object types.

An obje~t type is primitive iff it is not defined in terms of another

object type, i.e. iff it is not a defined subtype. Recall. (sec. 4.1) th~4T a

described object type appears as a solid ellipse, with no embedded roles, and

with a name that is not underlined. Once the whole conceptual schema diagram

is :.'1\'ailable, the described obje~l · types which are priu1itive ma: he

identified: their ellipses are not the sources of any subtype arrows.

For ·any conceptual schema there will be a finite number of primitive

. described object types A1, .:, An. ·The following; axioms aie no'v obtained from

the global cs to specify that the _described objecl.;; are partitiOJied into these

types:

This partition is portrayed in Figure 5.18, using the predicate names as

type names. Each of these primitive types appears as a solid ellipse on the

cs diagram, and each may have subtypes.

sec. 5.2 Global aspects 5-12

Described objects
Al A2

A3

.. An

Figure 5.18 Partitioning the described objects into primitive types

Note that the mutual exclusion aspect of partitioning axioms renders

false any assertion that objects in different primitive types are equal. For

example, if Person and Department are primitive, the sentence 3xy(Person x &

Department y & -:-.:: = y) is rejected. Moreover, the behaviour of other

comparison operations (e.g. · :$) has not been specified between objects of

mutually exclusive types. For example, we have axiomatized :$ between real

numbers and between strings, but not between real numbers and strings.

Likewise special comparison operations to be defined for described objects

will be relativized to the appropriate type, e.g. the predicate " .. is before

or simultaneous with .. " might be defined only for objects of type Date

(further details on this matter are discussed in the next section).

· · Mutual exclusion between primitive object types has been axiomatized. If

subtypes of the same primitive type are mutually exclusive, this is captured

by the subtype definitions. ·The term "mutually exclusive" should not be

taken to impJy that "migration between types" is impossible. For example,

. consider the schema of Figure 5.19. ·

{'G1,'T'}

Contract lecturer = di Lecturer having Status with code 'C'
Tenured_lecturer = di Lecturer having Status with code 'T'

Figure 5.1!? Migration between 'exclusive subtypes• is allowed

sec. o.2 C:ilobal aspects

When this schema is mapped to KL it is easily proved that the subtypes

Contract_lecturer and Tenured_lecturer are mutually exclusive. The key steps

in the proof involve the uniqueness constraint on has_status, the subtype
' __ ,..- --··-·~------·-

definitions, and the inequality "C" =/= "T". Yet we wish to allow (thankfu1ly!)

that migration from Contract_lecturer to Tenured_lecturer is possible. A

superficial analysis might suggest a contradiction here: how can the same

object belong to two mutually exclusive types?

Briefly, the problem is solved by saying that althongh we may not assert

that an object' is simultaneously both a contracte...: .and a tenured lecturer, we

may assert that the object is a contracted lecturer at time t
1

and a tenured

lecturer at time t
2

, so long as t
1

=/= t
2

; This is consistent with our earlier

analysis (section 3.1), where each interp'-~tation of a cs is a "CoD subworld,

and time-dependent sentences are indexed to their time of utterance.

We nmv consider a notation for specifyin~s MRCs (mandatory role

constraints) implicitly. This notion is discussed in our earlier work (NH89,

sec. 6.3), but our present treatment is more refined, and expands the

allowable range of conceptual schemas. A convention for implidt MRCs is

useful for the following reasons: to enable theorems about modal relationships

between subsche1w1~ to be expressed more concisely without loss of generality;

to emphasize the more important :MRCs; to simplify the drawing of CS diagrams

(by reducing the number of dots, and often avoiding the need to connect

disjunctive :MRCs); q.nd to encourage avoidance of lazy entitjes (see later) ..

Figure 5.19 has already made use of the implicit :MRC notation; but before

discussing this example we set out the general notation .. First nore that the

implicit :MRC notation may be used with an object type A if and only if both

the following conditions are satisfied: (1) all the roles played by A in the

global CS are specified; (2) a reference mode for A is cited in parentheses.

One consequence of .condition (2) i~ that the implicit :MRC nOldtion cannot be

used with subtypes, pair types, numeric types, or string types. With our new

approach, reference modes for pair types cannot be cited ori a CS diagram.

The simple case is set out in Figure 5.20. Here A is a described object

type with reference mode rm which may be lexical, numeric, r.omposiie,

disjunctive or defined (e.g. *yrnd). If globally, in addition to its ref~rence

role(s), A plays only the role R.l, an :MRC on this role is impljed.

0-1"+

IMR1
df =

where globally there are no other roles played ~y-~---------·--

Figure 5.20 A globally implied mandatory role constraint .

The disjunctive case is set out in Figure 5.21. Here, apart from its

reference role(s), A globally plays only roles R
1
.1, .. , Rn.l. It is implied

that the disjunction of roles R
1
.1, .. , Rn.l ismandatory.

IMR2

= df

where globally there are no other roles played by A

Figure 5.21 A globally ·implied disjunctive MRC

As indicated, we refer to these global abbreviation rules for implied

:ivm.cs as IMRI and IMR2. If Figure 5.19 includes all the roles played by

Status, Lecturer and Date in the global schema, then IMR.l tells us that both

the roles in the has_status predicate are mandatory. Although globally the

dot on Lecturer could have been omitted since it is implied, we recommend

including it to emphasize that the subtype defining role is mandatory. IMR2

tells us that, if Date play:S no other roles globally, the disjunction of the

two non-reference roles played by Date is mandatory.

Implicit. MRC notation is not used with numeric or string 0hject types,

since we do not wish to assert MR.Cs for such types (which often include

overlapping subtypes anyway). The notation is not used for subtypes or parr

types, siuce V·ie do not count it as remarkable for a role played, by a subtype

or pair type to be optional (for that type). Let us use the term plain entity

type (PET) to mean a primitive, describPd object type. Parenthesized

reference modes may be cited only for PETs. Hence IMRl and 111R2 apply only to

PETs.

It is very unusual to include in a schema.any PET which does not play a

mandatory Tole (or role disjunction) other than the roles needed to assen its

existence. Indeed, in 1\'B89 we effectively made it a cs formation rule that

each PET had to play some role (or role disjunction) other ·than its reference
. .

role(s). .The philosophy behind this approach was that there is little poiot

:::>- I:::>

in positing an object unless it actually does something. For reasons given

below, we no longer feel this should be a conceptual requirement, and have

downgraded the status of this viewpoint from a CS formation rule to an

implementation warning.

We call a described object which "does nothing" a lazy entity (i.e. the

only thing known about a lazy entity is that it exists). An entity type which

allows lazy instances is ·a lazy entity type (LET). To discourage the designer

from allowing LETs except in exceptional cases, we make it a foimation rule

that LETs must have their reference schemes specified explicitly, i.e. these

schemes must not be abbreviated by parenthesized reference modes. To take an

extreme example, Figure 5.22 shows one legal but boring global conceptual

schema diagram. · Here Lecturer is a lazy entity type, since its only non

referential role is optional. In this UoD we allow that we know the nan1e of

some lecturers but not their status.

has_ surname:
/ __ ,

{'C','T'}

Figure 5.22 An unusual. example where some lecturers are "lazy•

Note that it would be incorrect to try to abbreviate this global schema

by parenthesizing the. reference mode of Lecturer. If we did this, the

has_status role would be implicitly mandatory (cf. Figure 5 .19). There c.re

two main reasons for allowing the possibility of lazy entities. Firstly, they

are sometimes needed in practical applications (e.g. we might only know the

suri1aine of a lecturer and still want to record this information): attempts to

hanC:le such situations without lazy entities by adding a unary predicate

"exists" suffer the logical problems of trying to treat existence as a

predicate. SFcondly, the formal inclusion of LETs enatles a more uniform

treatment of conceptual schema transformations.

We define an active entity to be an entity which plays at least some role

other than its reference role(s). s~ an entity is active if and only if it is

not lazy. Typically, a lazy entity type may include some active er:tities,

e.g. Lecturer in Figure 5.22 may. be instantiated by objects who also

instantiate the has_status role. Though of little practical signific~mce, ·.ve

allow the possibility of described object types with no active entities. Such

-..1-1v

entity types are called completely lazy entity types. (CLETs). An extreme

example is obtained by removing the has_status predicate and the Status object

type from the UoD of Figure 5.22. If has_surname is the only role globally

played by Lecturer, then Lecturer is a CLET. Note that wliile-suot)rp-es--ana---

pair types may be LETs they may never be CLETs. Moreover, even CLETs must

have a mandatory 1: 1 reference scheme.

We conclude this section by adding a further graphic notation wh1ch

simplifies the drawing of large schemas. Sometimes, an object type (e.g.,

Date, Money) may play so many roles in the global schema that it is awkward to

connect all the relevant role arcs to the ellipse for this object type. In

this situation we allow, as an alternative, that the object type may be

displayed several times, using a double ellipse. Optionally, the notation "n

of m" may be added to indicate this is the nth occurrence of the object type

out of a total of m occurrences (see Figure 5.23).

Figure 5.23 Double ellipse notation allows multiple occurrences

In this case any mandatory role do~ is interpreted as applying to the

whole object type. However, before applying the globally implied mandatory

role constraint rules (IMRl-2), all the roles collectively played by all the

occurrences of the object type need to be included.

5.3 Delivation rules

Besides fact types and constraints, a conceptual_ schema may include derivation

rules. In this section ·we illustrate·how·derivation rules may be.formulated

in KL. The +, - and :s operators are ·axiomatized for most numerically

referenced entities, and used to facilitate the specification of derivation

rules and textual constraints. Finally we contrast subset and equality

constraints with derivation rules.

Basically, a derivation rule 1s a sentence whkh defines, at least

partly, a predicatf' o:t a function. For example, we might define the derived

predicate father_of in terms of the predicates parent_of and has_gender.

Although in some contexts the term "derivation rule" is used as an alias for

_ "inference:; rule", we do not treat these terms as synonyms. Modus Ponens is an

inference rule (or transformation rule) but not a derivation rule.

..:>V'-'. -..J.~ LJVJJVOLJUJI IUIC.:> ...,-.,

Derived predicates and functions are often depicted graphically in terms

of asterisked box-chains. In any case, they must be specified textually as

derivation rules, and any lexical or numeric constraints on associated object

types .must still permit the derived values (recall Figure·-5:T3):-·m· oui

formalization, a derivation rule must take the form of a universally

quantified biconditional or a universally quantified conditional. In

practice, biconditionals are typically far more common, so we examine these

first. Consider Figure 5.24. This might be part of a schema used by a book

retailer. Here the profit on a book is derived by. subtracting its cost price

from its retail price. Braces may be used with derivation rules to enclose

comments: these are intended only for humans, and are ignored when mapping

to KL.

* { profit = sales price - cost price }
Vxy[x has_profit y = 3zw(x costs z & x sells_forw & y = w-z)]

Figure 5.24 Comments may be included in braces

Notice theterm "w-z". We have not yet axiomatized- for Money objects.

Our earlier exampleof adding scores (Figure 5.13) is similar. In both cases

we have a numerically referenced entity type (here, Money and Score) for which

we found it convenient to use · or - a<; operators for addition or subtraction

on this type. We reserve the te~NRE (numeriC?ally referenced entity) for

objects belonging to a type with an injective reference link to Real. To

facilitate the formulation of derivation rules involving NRE types we now

axiomatize +,-and :s: for such types.

Let A be a primitive NRE type which is numerically refere'lcfd by the

reference mode:_, which is either nr or is unit-based (but not asterisked: see

later). Let zr denote the associated reference predicate (has_lc(A)_m or

has_r _value). Then for eac~ specific CS, the following axioms are added for.

each such A included in it.

NRE+ Vxyz[Ax & Ay & Az & z = x+y =
3:Xlylzl.(x z, \ & y zr)\ & z zr zl & zl = xl +yl)]

sec. o.s uenvauon rwes ::>-10

NRE- Vxyz[Ax & Ay & Az & z = x-y =
::lxlylzl(X :::::r XI & y :::::r Y1 & z zr zl & zl = Xl-yl)]

NRE:S Vxy[Ax & Ay -t (x :S y =
:3xlyl (x :::::r xl & Y zr Y1 & XI :S Y1))]

Apart from exceptional cases to be discussed later, these axioms define

addition, subtraction and ordering of numerically referenced entities of the

same type in terms of adding, subtracting or ordering the real numbers with

which they are in 1:1 correspondence via the reference predicate. This

predicate may be depicted implicitly with a reference mode, or explicitly. If

the reference mode notation is not used, and more than one injective reference

to Real is specified, then we pick the reference predicate whose name is

alphabetically prior. Each specific cs wl.ll have its own specific NR-r:;+; 1\TR.E

and NRE:S axiom lists.

Although the Reals are Closed under+ and-, the same cannot generally be

said for NRE types, e.g. lOOaC and500°C are temperatures but -400°C is not

(at .least according to current physics). We take the referent of such out-of

range expressions to be nil. Note that with our untyped calculus, any term of

the fom1 x+y wm refer once x and y have been assigned a value; so the main

aspect of NRE+ is ro specify when A x+y. Note also that A f(a1, .. ,~) is

equivalent to :3x[x=f(a1, ... ,~) & Ax]. Given the other constraints on the

referential predicate, the only extra information gained from using "="

instead of "-+" in axiom NRE+ is that when the right operand of "=" is true, z

= x+y (this rules.<:iut the possibility that ~A x+y). A similar comment applies

to l">i'RE-.

From N:R.f:+ and the real field axioms RFI-2 it follows that addition of

numerically referenced entities is commutative and associative. We have

already specified that· :S is transitive and antisymmetric for any type (axioms

TOl-2). From NRE:S and RT03 it follows that :S provides a total order for any

non-asterisked NRE type. We do not define +, - or :S for described entities

that are not NREs. Neither do we define + or - or :S between different

primitive NRE types, or between these types and numbers or strings. Moreover,

we do not generally define other numeric :Jperations such as * and I for NREs

since these will not always be meaningful (e.g. :;:-~mltiplying two temperatures) ·

and the result of such aE operation may not be of the same type (e.g. leng~h *
len·gth--. area).

In the next chapter, \\'e develop the notion of equivalence between

conceptual schemas in teirns oflogical equivalence.· So conceptually there are

a number of equivalent ways of specifying biconditionality dependencies (cf.

degrees of freedom in an equation). For example, consider Figure 5.25. This

is like Figure 5.24, except the sale price is derived by adding the profit to

the cost price, and UCs and MR.Cs are given fo~--~l:l:~~s>fit Q!!~_Il_ot_for

selis for.

* { sales price = cost price + profit }
Vxy[x sells_}or y i= 3zw(x costs z & x has_profit w & y = z+w)]

Figure 5.25 This describes the same UoD as Figure 5.24

The equivalence between the subschemas in Figures 5.24 and 5.25 may be

demonstrated with a deduction tree. Although logically equivalent, these

schemas lead to different implementations, e.g. profit facts are derived in

one but stored in the other.

So far all the constraints we have examined have been depicted

diagrammatically: we call these graphic constraints. Other constraints may be

specified by means of (possibly abbreviated) KL fommlae : we call these

textual constraints (TCs). These may be written below the diagram, with

explanatory comments in braces. The axiomatl.zation of +, - and !! for 1'-."'REs

often simplifiesthe.formulation of textual constraints. Figure 5.26 provides

one example.

born_in

died_in

TC1: { one's birthyr occurs on or before one's deathyr }
Vxy

1
y

2
(x born_:ir. 11 & x died_in y

2
-+ y

1
!! y

2
)

Figure 5.26 A textual constraint

sec. 5.3 Derivation rules 5-20

Now suppose that instead of using AD as the reference mode. for Year we

used BC. The constraint TCl would no longer be correct, since with the BC

scheme the smaller the number the later the year (e.g. 1 QQ 13.9_j§ -~:g:Eer than

50 BC). Clearly, here is a case where the NRE+-s axioms do not apply.

Another example is the standard astronomical method of measuring absolute

magnitude (the more negative the number the brighter the star). Such

exceptions were foreshadowed. To prevent the NRE axioms being incorrectly

applied t.o such unusual reference schemes, we demand that the names of such

reference modes or reference predicates be asterisked (e,g. "BC*"). Recall

that asterisked reference schemes· were excluded from the NRE+-=> axiom lists.

We lt~ave it to the designer to specify. specialized axioms for such rare,

exceptional cases if this is desired. For example, the NRE=> axiom could be

adapted for BC* by replacin rr "x ::; y " with "x =:: y "
- . "' 1 1 1 1.

Though it is never necessary, it is often convenient to ._.xpress some

derivation rules in functional notation rather than defining an equivalent

predicate formulation. As an example, which also illustrates that it is

useful to allow relationships between lexical objects, consider Figure 5.27.

Hereupcase is a derived function, which accepts a string argument a:Jd retu:ns

the string with all its lower-case letters shifted into upper-:case. For

example, upcase('phd') = 'PHD' and upcase('PhD') = 'PHD'. Though such

functions may be depicted graphically as predicates using asterisked braces as.

shown, usually they are. omitted from_the CS-diagram .

· * { upcase(x) }

... -,
I \

'\String 1

·:_:r;i_,
l__j___j * { upcase(x) }

has_upcase_form.

V'xy[Char x & Chary -4 (y = upcase(x) =
ord(x) f. [97 .. 122] & ord(y) = ord(x)-32 V ord(x) ¥ [97 .. 122] & x = y)]

V'xy[String x & Stringy-+ (y = upcase(x) = ·
head(y) = upcase(head(x)) & rest(y) = up-::ase(rest(x}))]

Figure 5.27 A derivec! :;Jredicate expressed in functional notation

In rare cases; derivation rules may take the fom1 of a conditional rather
. . .

than a biconditional. As a simple example, consider the subschema of Figure

5.28. There are several things to note about this example. First, to enable

. the predicate being defined to be v.rritten first, we introduce "if' as the

propositional operator for "is materially implied by", i.e. gn'en any wffs a

and B, a if B =df a -+ B .. We also allow "f--" as a variant for "if', and "iff"

as a variant for"=".

jTheisf
**

** Vx{Theist x if Christian x V Hindu x)

Figure 5.28 Conditional derivation rules are marked "**"

Note that two asterisks are used instead of the.usual one. We make it a

cs formation rule that biconditional derivation rules be singly asterisked,

and conditional derivation rules be doubly asterisked. This new notation

suggests that there is more being specified than just a simple derivation

rule. Placing two . asterisks besides a predicate indicates that the derivation

rule provides only a partial definition of the predicate. This is reflected

in the use of ''if' rather than "iff'.

In this UoD it is possible that some people are known to be theists

without being known to be Christian or Hindu (e.g. they might be Jewish, or we

might .simply not know what their religion is) .. With this schema, it is

consistent to assert that a p'erson is a theist without asserting that he or

she is a Christian or Hindu. From the implementiHion viewpoint, this means

that doubly asterisked predicates may be partly derived and partly stored.

On. acs diagram no predicate (asterisked or not) may appear more than

once~ However, when a derivation rule is specified textually, more than one

fonnula may be used (e.g. upcase(x)): in this case the de1ivation rule is the

conjunction of these formulae. If the predicate is singly or doubly

asterisked. ·· each such formula must be a biconditional or conditional

respectively. Unlike some systems (e.g. closed world Prolog), we do not treat

the conjunction of conditionals as implicitly a biconditional. For example,

if the derivation rule for Theist is Vx(Theist X if Christian x) & Vx(Theist X

if Hindu x), this is not to be interpreted . as Vx(Theist x iff Christian x V

Hindu. x). If the latter interpretation is intended, the predicate must be

singly asterisked and defii1ed as this biconditional.

Any doubly asteriskedpredicate must be included on the CS diagram with

all its constraints marl:ed. Moreover, these constraints must b.:· translated

into KL rather than be.ing ignored, since the dcr: .ration rule specifies only

part of the predicate .. From the implementation viewpoint, for any state of .

the knowledge base the constraints apply to the combined population of stored

and derived instances of the predicate. Since the stored instances can affect

the constraint satisfaction of this population, the constraints are not

implied by a correctly .formulated derivation rule (unlike the biconditional

case). For example, consider Figure 5.29.

**
as,it

as, it
1;2

** Vxz[x grandparent_ of z if 3y(x parent_ of y & y parent_ of z)]

Figure 5.29 Constraints on stored part of ** are not implied

The grandparent_ of predicate is often used in Prolog texts as a paradigm

case of a partly stored and partly derived predicate. Besides the

grandparenthood information derived from parenthood facts,. this approach

allows the assertion of grandparenthood facts for those cases where we rrilght

not know who any of the intermediate parents are. The population of·

grandparent_of (including these stored facts) must obey the constraints.

Note that our double asterisk notation replaces our earlier notation

(NH89, sec. 9.3) where we allowed a predicate to be shown twice on a diagrarn

(once for stored and once for derived). The old· notation is no longer

permitted. Our new approach leads to simpler diagrams, and tO derivation

rules being clearly specified as biconditionals (*) apart from exceptional

cases(**). · - ·
. .

In some, but not all, cases the same feature of a UoD may be captured by

either a biconditional/conditional derivation rule or an equality/subset

constraint. We now identify and provide design guidelines for these cases,

beginning with equality constraints, The general case is set out in Figure

5.30. We describe this by saying that at least one of the operands of the

equality constraint is a whole predicate. Here, the whole predkate S is one

of the operands.

where n ~ 1

,..----t"'--,1 --- -----,

R c=TI=m=KC=J
Figure 5.30 An equality constraint with a whole predicate operand

The equality constraint translates into the quantified biconditional

formula shown in Figure 5.31, where this UoD feature has now been set out as a

derivation rule. We generally recommend the derivation rule version since its

implementation avoids the need to store the predicateS.

wheren ~ 1

* Vx1 •• ~[Sx1 •• ~ = 3~(R~ & x1 = zii & .. & ~ = zin)]

Figure ~.31 Equivalent and usually preferable to diagram 5.30

For. example, in Figure 5.32 the right hand version is usually preferred.

In this UoD we cannot know that a person was an Olympian in a particular sport

unless we lmow one of the years in which this occurred. ·

0 = .. was_Oiympian_in ..
C = .. competed in .. in Olympic Games of ..

Figure 5.32 The right hand version is usually preferred.

In the· rare cases where both operands of an equality constraint are whole

predicates, either predicate may be selected as derived. For example, suppose

people own a car if and only if they drive it. If it is desired to use both

predicates Owns and Drives, one could be stored and updated while the other is

derived from Vxy(x ownsy = x drives y).

sec. 5.3 Derivation rules 5-24

If neither operand of an equality constraint is a whole predicate, then

we cannot recast this as a derivation rule. For example, if we want to know a

person's resting heart rate if and only if we also. wantt() ~-?-~~!~~~~~action

time then we specify this by means of an equality constraint between the first

roles ofhas_resting_heart_rate and has~reaction_time (see NH89, p. 172). We

cannot specify a derivation rule to enable a person's reaction. time to be

detem1ined from their resting heart rate.

Let us now consider subset constraints. First note that, being uni

directional, a subset constraint cannot express a biConditionality. In

situations where an iff is required, we usually specify a derivation rule (or

a subtype if subtype-specific knowledge is required\ For example, suppose we

want to know whether a person is a genius, and this can be precisely defined

by the person's IQ. If there is something we wish to know only about geniuses

then we create a subtype for Genius with this specific role attached (recall

Figure 5.9). However if there is no such· specific role we simply specify a

derivation rule for Genius: this will be identical to the formulation of a

subtype definition for Genius, e.g. Vx[Genius x = 3y(x has_iq y & y ~ .150)].

We cannot handle this case with a subset constraint.

With a subset constraint, the role sequence which is the operand pointed

to by· the subset arrow is called the target operand. Iri Figure 5.33 the

target operand of a subset constraint is a whole predicate.

where n ·~ 1

Figure 5.33 The target operand is a whole predicate

This subset constraint translates into the formula shown as a conditional

derivation rule in Figure 5.34. Although conceptually, both figures specify

the same UoD, the subset constraint version is usually preferable from the

point of view of implementation.

One example is our Olympian schema, n:.odified by replacing the equality

constraint with a subset constraint (so we can know a person v.as ~n Olympian

in a sport without knowing when this happened).

where· n 2: 1

Figure 5.34 Equivalent to but often less preferable thi:tn 5.33

A simpler example, based on a case we discussed in NH89 (p. 206), is

given in Figure 5.35: In this UoD if a person drives a car then that person

owns that car. The subset constraint approach is adopted in the left-hand

schema: here. both the operands of the subset constraint are whole predicates.

The subset constraint may be translated into KL as the formula used to specify

the derivation rule in the right-hand schema. Another alternative is to

attach Drives as a unary to (Person,Car) pairs in the Owns relation.

** Vx:y(x drives y.,.;. x ownsy)

Figure 5.35 Both schema diagrams portray tr1e same UoD feature

In NH89 we treated constraints ;:;,:; applying to the (stored) database. We

now treat constraints as applying to the UoD and hence the knowledge base

(what is known rather than what is stored). Which facts are stored and which

are derived is not.a conceptual issue: it makes no difference to tht..- UoD.

Hence to capture the UoD feature that people own any car they drive, the

designer may choose either of the schema diagrams shown in Figure 5 .35. Both

map to the same set of KL formulae (though we also copy the asterisks over

with derivation rules as an implementation directive to be acted on later).
. -

When it comes to implen:enting a conceptual schema, we must make a

decision as to what' is to be stored or derived. At this implementation level

we treat the diagrams differently. Consider the binary Olympian fact type in

Figure 5.32. With the equality constraint, Olympian facts are actually stored

and the constraint is enforceG on relevant updates. With the derivation rule

approach, the binary Olympian facts are not stored but are derived when

-- -·-· ·,.-~·-· ·- :::>-..::::0

relevant queries are issued. For further discussion on vanous ways of

implementing the two approaches with the owner-driver example, see NH89 (pp.

206-211, but recall that the diagram ·notation used there has been superceded
by our new approach). · ···· ----------------- ·

In NH89 (pp. ·184-90) we classified relational properties as positive or

negative according to whether the property could be used to deduce other

(positive) facts or the negations of such facts. For example, reflexivity,

symmetry and transitivity are positive whereas irreflexivity, asymmetry and

intransitivity are negative. We suggested that negative properties be

implemented as database constraints, but described how positive properties

could be implemented as database constraints or conditional derivation rules.

The subset case that we have just examined fits within the general

category of positive relational properties (though here two relations are

·involved). As a further implementation choice, it is always possible to

replace a partially derived predicate by a stored predicate (used for updates)

and a differently named fully derived predicate (used for queries), e.g. see

our Synonym example (NH89 p. 186).

The general issue of whether to implement a feature by means of a
.

database constraint or a derivation rule has been addressed by a number of

researchers. A good overview of this research is provided by Gallaire, :Minker

and Nicohs (1984, pp. 173-5). We feel that our analysis has shed further

light on this issue, by focussing on the nature of the derivation rule

(biconditional vs conditional), identifying the cases where the design .choice

exists, and pro·viding design guidelines. for these cases. For NIAM in

particular, our, analysis adds a further class of conceptual· equivalence

thec·rems, whicl- are formally provable in our system.

5.4 The database and definite descriptions

Recall that a knowledge base consists of a conceptual schema and a database.

We have seen how a NIAM conceptual schema may be specified in KL. In this

section we examine how the contents of a database state may be specified, and

provide a more detailed account of definite descripiiai1s.

Typically, a conceptual database state is a set of elementary facts. To

begin with, an elementary fact is an assertion that one or more objects

instantiate some predicate. Thus any elementary fact may be expressed in the

. . . -. - - -·--··- --- --.- - -···· ··-- - ---· ·r--· -· ·-

form Ror.on where R is an n-ary predicate (n 2: 1) and oi' .. , on are object

designators (i.e. each identifies an object in the domain of discourse) .

. Moreover, an elementary fact cannot be rephrased as a conjunction of smaller

facts without loss of information.

If a significant ·fact population is provided, elementariness can be

. verified by the projection-join check (see :N"H89 sec. 5.3); however the claim

of significance relies on the intuitive understanding of the Uo'D expert who .

makes the claim. On the other hand, simple checks are available to show some

classes of fact types are not elementary (e.g. if two roles are not spanned by

a UC then the fact type is not elementary; and a predicate used for a pair

type must have a full length UC (NH89, sec. 5.2).

Since elementarity has been discussed at length in NH89, and is not in

general fom18.lly decidable, we do not dwell on the notion here. Instead, we

address o.urselves to the syntactical question of what is acceptable as a
candidate elementary fact. We begin with a simple example (see Figure 5.36).

One advantage of NIAM is that populations of fact-types (stored or derived)

may be conveniently displayed in jacHables beside the fact-types. A

knowledge-base diagram (KB diagram) depicts a conceptual subschema as well

as a sample population. In l\TH89, KB diagrams were called "schema-base

diagrams".

was_born_in

Halpin 1946
Jones · 1946 .
Wang 1950

Figure 5.36 A simple knowledge-b~.·3e diagram

The first row of the fact-table in Figure 5.36 is read as the following·

elementary fact:

Fi: The Lecturer with surname 'Halpin' was born in the Year I 946 AD.

Such high level fact readings are determined by the following Read Fact

Algorithm (RFA) ..

.::;c::(..;. ::::u+ 111c:: ucw:t.ua.::;t: anu Ut:llli!Lt: ut:scnpuons

RFA:

Predica,tes are unabbreviated where relevant (see previous chapter);

Predicates are written with spaces for underscores;

Table entries are assigned their roles (predicate places) .by position;-------·--····--···- ...

Each table entry e is associated with iLS object type A;

If A is lexical then e ~ 'e';

If A IS numeric or the reference mode is nr then e is unchanged;

In all other unnestcd cases a reference mode r is supplied for A

and table entries are rephrased as follows

A (r) e--'---+ the A with r 'e'

A (z:) e ~ the A e r

A (r1, •• ,rn) ~theA with r1 'e/ and .. and rn 'en';

If A is a pair type, then if the entry is (er,en) this is rephrased

as (e/ , .. ,en') { where thee/ are as stated in RFA (recursive) }

The rephra<;ed entries are written in place;

The first letter of the rest! it :.:; capitalized, and a period appended.

F1 may be viewed as the infix elementary fact oj(o
2

, where R -

was_born_in ... , o
1

=the Lecturer with surname 'Halpin', and o
2

=the Year

1946 AD. Here the object designators are definite descriptions: this is
. .

always the case for described entities. RFA indicates how such descriptions

may be generated from the table entries (here: "Halpin", "1946") in the

context of the schema. If the objects are strings or numbers, they are

designated by string "consta::ts" or numeric "constants".

This use of definite detcriptions is a departure from conventional

formalizations of databases, which unrealistically adopt "unique name axioms"

in which all individuals are denoted by unique, unstructured, proper names·

(e.g, see Gallaire, :Minker & Nicolas 1984, p. lqO; Lundberg 1983, p. 91).

Note also that the same object may be referenced by different descriptions

(e.g. "the. subject with subjectcode 'CS112"' and "the subject with

subjecttitle 'Introduction to Information Systems'" rriay ·refer to the same

object).

As discussed earlier, all our reference schemes are injective. When KB

diagrams are used, we demand that aparenthesized reference mode (simple,

composite or xor) be cited for each plain entity type: this provides its

primary reference scheme for implementation. For a given knowledge base

state, any definite description generated by P.FA refers to exactly one object.

For our static analysis these definite descriptions ·may be regarded as

"structured individual constants".

If comparisons between objects are rriade across states, then the.question

arises as to whether these definite descriptions provide rigid designators

(i.e. must they refer to the same object in all states?). . Clearly, this will

usually be the intent (e.g. "the Year 1946 AD"). If flexible designators are

permitted then these must be qualified before object comparisons between

states are made (e.g. "the Lecturer with surname 'Halpin' attime~t1!!..),-------
0ur static analysis of reference schemes does perm~· tJw. same string or

number to be used within descrirt;~"1s of different objects. For example,

"Brisbane" may be used as a surname and a cityname within. the same

application. or course the object referred to as "the Person with surname

'Brisbane"' cannot be the same as the object referred to as "the City with

cityname 'Brisbane"', since our specific partition axioms would include an

assertion that Person and City are disjoint object types. Nevertheless it is

both meaningful and simple in o..:;: f.:;rrnalization to make indirect connections

between objects of disjoint types via the strings or numbers used in their

descriptions. f'·or example, allowing any single lower-case letter as an IV in

our primitive query language:

List the surnames of those who live in a city with the same name.

List {n: 3pc(p has_surname n & p lives_in c & c has_cityname n)}

List the surr.ames of anyone whose mass in kg is numerically greater

than his;1.er h-.igh~ in em.

List{n: 3pmxh(p has_"-.irnamen &p weighs m &m has_kg_valuex ··

&p t;Js_'ieighL h_&h has_cm_valuex)}

Although RFA proviJer a convenient fact· formulation· for human read

ability and communication, it is not actually used when the fact table is

translated into KL. We now expiain how the fact entries are translated, and

clarify the theory of definite descriptions we are using. A KB diagram is

translated in rwo stagc:s: first the ·schema -is translated into KL; then the

fact entries are translated. From our earlier work, and ignori1ig the generic

CS a-'\.ioms, the schema may be translated as in Figure 5.37. If the schema were

global, further axioms would be needed (e.g. implied 11RCs).

Notice how the fact entries have been translated. Instead of a definite

description fom1ulation, simple existential formulae have been used. For

exnmple, fact f1 may be read as fol':Jws (comp::ue this with Fl):

Some object with surname 'Halpin' was born in an object with AD value I 946.

---· I --·---.................. ,,_ -"":''''''"'"", ~ ,J,_,LIVII.;l

was_born_in

Halpin 1946
·Jones 1946
Wang 1950

schema:
Vx(Lecturer x V ·Year x-+ Described x)

2 Vx ~(Le-;turer x & Year x)

3 Vxy(x was_born_in y-+ Lecturer x & Yeary)

4 Vxyz(x was_born_in y & x was_born_in z-+ y = z)
5 Vxy(x has_surname y-+ Lecturer x & Stringy)

6 Vx(Lecturer x-+ 3 !y x has_ surname y)
7 Vy3?x x has_surname y

8 Vxy(x has_AD_value y-+ Year x & Real y)

9 Vx(Year x-+ 3!y x has_AD_value y)
10 Vy3?xxhas_AD_valuey

11 NRE+-:5 for AD

fact table:

f1 3xy(x has_surname 'Halpin' & y has_AD_value 1946 & x was_born_in y)
f2 3xy(x has_surname 'Jones' & y has_AD_value 1946 & x was_born_in y)
t3 3xy(x has_surname 'Wang' & y has_AD_value 1950 & x was_born_in }')

Figure 5.37 Translating a KB diagram

The reading cited for fact f1 is all that is required, since the schema .

(lines 3,5-10) provides the required context to ensure that there is exactly

one object with surname 'Ha!pin'_ and ~"1t this object is a Lecturer, and that.

there is exactly one object which has AD value 1946 and that this object is a

Year. Thi~ ::X.istential translation, in the context of our schema translation,

provides the pfecise semantics for the definite description facr readings

syntactically generated by RFA. This analysis generalizes straightforwardly.

to handle any n-ary elementary fact.

Our account of definite • descriptions entails that such descriptions

always succeed in refening Gust as individual constants and gronnd function. ·

terms do). Earlier we included nil as a referent for garbage terms (e.g.

"a"-t2). In some ,:. .. m-.Iysc.(e.g. ISO 1982, p. F-13) a·similar n;ferent is

proposed f·x "impos::;i.ble objects" e.g. square circles. 'Vith our approach, no

describe;} object can be nil. We place the onus on the designer to refrain

from introducirig impossible predicates; since the system has no forr.aal means

Of c,;tecting SUCh absurdities, if they are USed they .\ViJl be taken tO. refer

(e.g., "the Squarecircle with squarecirclename 'A"'). In practice, if such an

.. :u ~,..o •,.-,. 1 J 10 vcua.ua~c; QIIU Ut:i/JIJJLC: UV~l,/ljJLIU/1~ :::>-..::> l

unlikely predicate is introduced, to keep our formal system compatible with

possible world semantics we can always interpret the predicate in such a way

as to make it possible.

Of more relevance is the possibility of defiTJite descrip-tions-wh1ch do
not refer to real world objects, e.g. "the President with surname 'Raygun"'.

Again, we demand that such descriptions do refer. ·Recall our portrayal of a

UoD as a set of possible subworlds. In some possible worlds a president with.

this surname docs exist Our analysis of singular terms (including defi.nite

descriptions) ensures that there is at least one possible subworld in which

such terms do refer. This is all we need. While the conceptual information ·

processor can ensure that the database is consistent with the CS supplied to

it, it cannot ensure that the database is factual.

The treatment of definite descriptions is important, since our n-nr1_erlying \ - ·

formal proof mechanism (deduction trees) relies on successful reference. If j

instead we had adopted the Russelliim theory of definite descriptions, and

generated a branch formula such as (7x)Ax :/= (7x)Ax, this is merely equivalent

to,:S!xAx anddvcs not imply closure (e.g. see Rennie & Girle 1973, p. 215).

Hilbert's ~.nalysis of£ could be used, since it g:1arantees reference and hence

closure in this case. With our approach, no special openitors for definite \-

· description are needed, and the -non-identity of any ground term implies

closure. A useful discussion of philosophical issues concerning singular 1

terms is provided by I-:Iaack (1978,pp. 56-73).

Our earlier example of a KB diagram is typical, in that the ellipses

depicted described object types. However, some or all of the ellipses may

depict numeric .or string types.- Since our treatment of these possibilities

differs from conv::-'ltimial NIAM, we discuss a few examples. Relationships

between described and numeric objects must surely be admitted (e.g; F2-3), as

well as relationships between described and lexical objects (e.g. F4-5).

F2: Person (surname) 'Jones' knows_the_kanji_for 3.

· F3: Person (surname) 'Jones' has_IQ i20.

F~· Employee (ern_;:#) 'i234S' has_employee_name 'Jones, E'.

F5: Person (surname) 'Jones' cannot_spell'conceptualization'.

In the approach of Falkenberg (1986), any relationship betwee.1 a non

lexical object and a lexical object is classified as a reference rather than

as a fact. However; we feel that it is _more natural to treat examples like

F4-5 as facts rather than as references.

. -··- ------.........._,n.• 'V"VIIIIIL\,.o UV~l..ollfJLJU//;::i 5-32

In prinCiple, we permit relationships between numbers, though in practice

these would tend to be derived rather than. stored, e.g. 45 has_factor 5.

Relationships between strings may also be derived (e.g. upcase). In some

cases, we may wish to store relationshjps between strings, e.g. 'abbreviate'

hCJ.s_:_synonym 'shorten' (see NH89, pp. 185-7).

Wi~h fact tables, the objects being described are always strings, numbers

or described objects with parenthesized reference modes. If the relationship

type includes a described ob:~~t type with no parenthesized reference mode,

then for communication purposes one may enter a special symbol to denote the

described object. For example, the population of a 1:1 reference type may be

portrayed explicitly in a reference diagram as shown in Figure 5.38.

The table below the schemais a reference table. Here I-IaJpin, Jones and

Wang are depicted by stick figures. In the context of a lexical reference ·

scheme one could instead depict described entities by unquoted strings (Halpin

etc.); however, this would not work for NREs. Note that quotes are required

around the entries in the right-hand column since these are being used here to

denote strings.

e-has surname ,

I- I ~()
'======'====== ' -- , "

'Halpin'
'Jones'
'Wang'

Figure 5.38 A reference diagram

While referenc~..- tables are mainly used to help users understand reference

schemes, they may also be used to add simple-existence facts to the knowledge

base for those rare cases involving 1azy entities. For.example, the reference

table of Figure 5.38 tran&lates as the following three simple-existence facts.

In the context of the schema, these tell us that there are three lecturers

with surnames 'Halpin', 'Jones' and '\Vang'.

3x(x has_surname 'Halpin')

3x(x has_surname 'Jones')

3x(x has_surname 'Wang')

Note that we do not count simple-existence facts as elementary facts.

Although we have seen that elementary facts are translated as existentially

~t::c.:. o.4 1 ne aaraoase ancJ Cletinite descriptions 5-33

quantified formulae, in each case the scope of the existential quantifier must

be a conjunction of at least two conjuncts. This is true even of unary

elementary facts, e.g. 3x(x has_surname 'Halpin' & Tired x).

So each state of the database may be formulated as a set of facts. In

most cases these facts will all be elementary. In those rare cases where lazy

entities are allowed, we may have some simple-existence facts. These are the

only two varieties of fact that we permit in the dat1base. Our inclusion of

simple-existence facts adds to the expressibility of NIAM. Simple-existence

facts also simplify the treatment of certain schema transfommtions, and are ·

easily mapped down to relational database tables.

This completes our basic formalization of, and revisions to, NIAM

knowledge base theory. In the next chapter we use this framework to define

conceptual schema modalities (e.g. implication and equivalence) and fortnally

prove high level theorems concerning these modalities; These results are

later applied with .a view to improving the design of relational database

schemas.

6-1

6 Conceptual schema modalities

6.1 Satisfiability of conceptual schemas

In this chapter we define various modal properties of, and relationships

between, conceptual (sub)schemas. This first section focusses on·

satisfiability, while later sections examine constraint implication and

subschema equivalence.

A conceptual schema (CS) is a set of I:L sentences conforming to the CS

formation rules. All permitted graphical components of a cs were discussed

earlier, but we have not yet provided fom1ation rules which define which

combinations of these components are permitted. A basic set ofNIAMformation

rules for a graphical CS were specified by Leung (1988, sec .. 5.3.1). We

summarize and refine·these in our terminology as follows: each object type

plays a role; a pair object type cannot play a role used in its definition;

intra-predicate UCs on n-ary predjcates mt:st span at least n-1 roles (we

downgrade- this from a formation rule to a warning that the fact type is

compound if this rule is broken); inter-predicate UCs have a common join

object type; subtype graphs are acyclic and no rransitively implied links are

shown; and subset, equality and exclusion constraints connect compatible (same

primitive supertype) sequences of object types.

Y.l e have reformulated the last of these rules to allow cases which were

excluded in Leung's specification (e.g. an exclusion constraint between 1he

roles of a homogeneous binary -- Leung demanded that the operand predicates

differ). We have ruso omitted the requirement that the cs graph be connected.
. .

Typically, connectivity will apply (especiaily if we allow implicit connection

via Real or String); however in some cases it is useful to consider schemas

without this property (e.g. arbitrary subschemas).

Some other formation rules may be obtained by verbalizing those aspects

pf Leung's metaschema (1988, p. 7-5) that are consistent with our formalism.

For example, each role is played by exactly one object type, and each.

predicate has at least one intra-predicdte uc. Additional formatior. rules are

needed to cater for our extensions to NIAM, but these are straightfo;ward and

are not documented here. However we do consider whether furtht..r formation .

rules should be added to prevent the .user from specifying conceptual schemas

that are only trivially satisfiable.

As discussed in chapter 3, a CS specifies· a structure of interest known ·

as the UoD, which may be regarded extensionally as a set of possible

subworlds. Each such subworld provides a dy,.,1mic interpretation of the CS.

Each state of knowledge (KB state) about one of these subworfds-provides a·
static interpretation of the cs. In this thesis we examine only static

interpretations. For convenience we· use the terms "interpretation",

"equivalence" etc. without qualification. to mean static interpretation, static

equivalence etc. Our formali.zation uses the standard notion of an

interpretation of a first order theory, restricted to KL sentences.

An interpretation of a cs comprises a non-empty domain D of objects

(individuals), together with the following assignments: each IC ma.l-'u to one

object in D; each predicate symbol maps to a relation over D; each function

symbol maps to a function witharguments and values in D; the operators~, &,

V, -+ and = are giVen their usual truth-functional interpretations; the

quantifiers v, 3 are interpreted by conjunctive and disjunctive expansion over

D; = is interpreted as the identity relation; and all other KS constants,

predicates,· functions, operators, ·and abbreviations are interpreted as.

specified for KS earlier.

An interpreta:ion I o~ :1 conceptual schema CS, where CS is formulated as

·a set of KL sentences, is. a model of cs iff each ·sentence of cs is true for

I. A conceptual schema is satisfiable i±I it has a model. In practice this

notion of satisfiability is too weak, since it permits schemas with constraint

patterns that are satisfiable only because these patterns • are not populated.

For exampJe, con!;ider the KB diagram of Figure 6.1. Altt1.ough the CS is well ·

formed· according to our present formation rules, it is "silly" to assert both

the frequency ru"1d uniqueness ccmstraint on Teaches (these constraints are

labelled C1 and C2 for ease of reference).

I Jones 40ooo I
FigUie 6.1 Undesirable sctJemas may be trivially satisfiable

u-..::>

The KB diagram can be used to construct a model for the CS, in which

Jone$ is the only lecturer, earns $40000, but doesn't teach any subjects. So

the schema is satisfiable. But asserting constraints C1 and C2 means that

anyone who teaches teaches exactly two subjects, and ariyorie--wlio teaches
. .

teaches exactly one subject. This "silly" constraint combination is trivially

satisfied in our model, where nobody teaches.

The unsatisfactory nature of trivial models in relation to constraints

has been noted in the literature. For example, Meyer, Weigand and Vlieranga

(1988, p. 13) attempt to avoid the problem by demanding that all models be

non-empty. However, this is not a strong enough requirement. In our system,

all.rnodels are non-empty anyway; but this does not avoid problematic cases

like that 6f Figure 6.1.

It is clearly undesirable to have a knowledge base design which may work

with trivial populations only to fail with comprehepsive populations. We

address this issue by proposing a stronger notion of satisfiability. In ·

preparation, we first define the term "underhired". To keep this discussion

brief we make use of familiar set theoretic terminology' and postpone a

detailed treatment of relevant cardinality and constraint implication results

till the next section.

A set of roles r
1

, •• ,rn is said to be underhired iff the roles are

mutudly exclusive, their object types are compatible, and their cardinality

limit (i.e. the maximum cardinality allowed for the union of the role

populations) is less than n. Basically this means we have not "hired" enough

actors for all the roles to be played simultaneously. Figure 6.2 illustrates

the situation where each role is played by the same object type. The

cardinality of the population of this object type· sets an upper bound for the

·cardinality of the union of the n role populations.

The. general definition of "underhired" allows that some of the n roles

may be played by different subtypes of the same head supertype, and that the

mutual exclusion and cardinality constraints might be implied rather than

specified explicitly.

. c.--T0-~J
--~--o·mG' ·__- ···· ... , ·'~--- . . A 1--- :"lVI

~'~[· --:_~- -,n • -~~].\C/
. L __ h_l __

If m < n then {r
1

, .• ,rn} is underhired

6-4

As an example including both the simple and more complex cases,

consider the UoD specified brieiJy as: President has Gender {'m','f};

President is_given CompanyCar or is_assigned Taxi.~ar~_: __ ~~-~--~()t both;

MalePresident born_in Year; FemalePresident has Maiden_name; there is only

one President. Here it is impossible to simultaneously populate more than one

of the predicates is_given and is_assigned, or more than one of the predicates

born_in and has_maiden_name. So here we have two underhired role sets.

We now discuss some proposals for a stronger notion of schema

satisfiability. To begin with, one r::aight argue that a CS should have a model

in which all its predicates are instantiated. However, this requirement is

too strong, since as we have just seen, legitimate schemas may violate this

condition by including underhired role sets. Instead, we demand that each

predicate be individually instantiable:

A conceptual schema CS is strongly satisfiable if and only if, for each

of its predicates, there is a model of CS in which that predicate is

instantiated.

While·strong satisfiability can be proved simply by creatively producing

models, a formal proof is required to show that a cs is not strongly

satisfiable. The CS is formalized in KL and existential clauses are added to

produce an arbitrary candidate model for that case; a deduction tree is then

used to determine whether the case generates a contradiction; if any of T::ese

arbitrary cases generates a contradJc-~ion, a model of this type is not

possible and hence the CS is not strongly satisfiable. The logici;r can

usually use his/her intuitions to quickly select a candidate case that closes

(and save work by translating only the relevant part of the cs which generates

the closure).· Since such proofs are generally straightforward but often . .

lengthy, we do not include them in the body of this thesis. Appendix II

contains some sample proofs of various results: proof 1 is a simple deduct:on

. to show that the schema of Figure 6.1 is ncit strongly satisfiable.

Often the designer can easily "se::." Lhat a constraint pattern is not

strongly sati:5fiable, and has no need to check this intuition with a formal·

proof. The C1, C2 pattem in Figure 6.1 is such a case. Hov-.'ever, the

expressiveness and constraint imcr-dependenc.y aspects of NIAM lead to many

possible.> COI~"iJ"aint patterns for whic!' it is not intuitively c~viuus vvhether

the pattern is strongly satisfiable. Indeed, sorrie of n1 :· students have even

had trouble pi.;king the faults with simpk cases like the subschema of Figure

6.3. The subt:·pe definitiJn is or::-::.itred as it is ii-relevailt to our discussion.

6-5

2

{'b t 'b t 'b '}
1 ' 2 ' .. 3··-·----·-----··-·---·

Figure 6.3 This is not strongly satisfiable on three counts

Figure 6.3 has three faults, any of which prevents strong satisfiability.

On pre-dicate R, the frequency constraint clashes · with .. the uniqueness

constraint (cf. Figure 6.1), and moreover any FC greater than 1 should be

rejected if it spans the whole predjcate. Secondly, the mandatory roles on A

imply an equality constraint between these roles; so if A is populated the

exclusion constraint cannot· be satisfied (implication is discussed in detail

in the next section).

Finally, the FC of 3 on S.1 cannot be satisfied once A is populated. If
it were satisfied then C would include at least 3 instances (since each tuple

ill S is unique); but fnis is impossible since Cis a proper subtype of B (only

proper subtypes are allowed in NIAM), and hence C has a maximum cardinality

below 3 (because of the lexical constraint on B: we formalize such

cardinality-based reasoning in section 6.2):

The argumentation in the two previous paragraphs would typically be

accepted as a "high level proof' of the faults in the subschema. In most

cases we argue at this level. In cases where some aspects are difficult to

see at the high level, or where we feel a need . to check our high level

reasoning, low level Jonual proofs by deduction trees· or similar mechanisms

are used. One aim of. this tbesis .is to iay the form:al gro~nd\Vork for the

construcricn of various interactive schema design modules, including a proof

editing environment to support high level reasoning about conceptual schemas.

Once a proof has been constrJir.~ed to show that a constraint pattern is

not strongly satisfiable, it may be desirable to incorporate this resuh in
..

the stt of CS forrnatim1 rules. Although this adds to the comple"ity of the CS

parser, as well as lengthening the list of formation rules with which the

designer should be familiar, in most cases i~ is better tb have such faults

detected as early as possible. Moreover, by pushing such -results down to the

syntax level, the later semantic work is simplified sin:::e it can assume the cs
is free of these faults.

' .. ,

6-6

With this in view, we propose that the following rules be added to the

set of graphic cs formation rules. These cover the cases discussed here, as

well as some others. We use the term "sequence" and "product" to allow unit
• '" < ··-·--·------- .. ·-·-------------·····- • ··-- -~

cases: a sequence or product of one term is identical to ·that term. A

sequence of.n roles is "exactly spanned" by a UC iff the uc spans it and no

other roles. Intuitively, a role population is the set (not bag) of objects

playing that role in the given interpretation. The maximum cardinality of a

role population equals the maximum cardinality of the population of its

attached object type. Further background justifying Rule 7 is provided in the

next section.

Additional CS formation rules:

i An FC of i is never used (the UC form must be used instead).

2 An FC cannot span a whole predicate.

3 No role sequence exactly spanned by a UC can have an FC.

4 No UC can be spanned by a longer UC.

5 An exclusion constraint cannot be specified between roles if at least one

of these roles is marked as mandatory.

6

7

An exclusion constraint cannot be specified between two roles attached to

object types one of which is specified as a subtype of the other.

An FC with upper bound n cannot be specified on a role sequence if n is
..

less than the product of the maximum cardinalities of the other role

populations for the predicate.

These additional rules are not exhaustive,. but we do not discuss other

examples here~ We .leave it as a topic for further research to identify

further cases of constraint patterns which. are only trivially satisfiable, and

compile a more comprehensive list of cs forrnatiQn rules.

It should be noted that NIAM advises the designer to check each fact type

agairist a sample population. If correctly carried out, this practice helps to

minimize the occurrence of schei.nas which are only trivially satisfiable, since·

the first cond~jon for stror..,., satisfiability is then satisfied. However,

this practice does not eliminate the problem entirely. It is possible, albeit ·

unlikely, for the designer to make a mistake by failing to see that the sample

population contradicts some of the constraints. }.1oreover, the second or third

conditions for strong sarisfiability might not be satisfied. Finally, it is

possible that the designer might make a typographical error when entering the

schema into the system.

For such reasons, it is important to make the set of cs formation rules

as comprehensive as possible, and to construct an automated cs parser to

enforce these rules. If the parser detects a syntax error, it should

highlight the violation for the desig11er, giving specific defciils~-an-a--piompf

the designer to edit the design.

There are many cases in which constraints which are not explicitly

specified (e.g. by being marked on the cs diagram) are nevertheless implied.

In some cases, constraint patterns may be misleading to humans (e.g. because

·the i~plied constraints might not be obvious, especially with implied

mandatory roles or implied uniqueness constraints). One might address this

issue by specifying additional formation rules to reject such cases.

For example, the additional CS formation rules 5 and 6 might be amended

to include subset and equality constraints. However, we feel it is _more ·

appropriate to have the automated design tool suggest a generally preferred,

replacement constraint pattern to the designer, but allow the designer to

decide whether to accept the replacement. Implied constraints and preferred
. -

con;,traint patterns are discussed in the nexL section.

In formalizing NIA11, we distinguished those features that can only be

considered globally, so that the theory may be applied to any subschema of

interest. G-ur work on satisfiability, implication· and equivalence also

applies equally well to subschemas and global schymas. In a practical

application where the global s;.:1ema is large (e.g. a few thousand fact types),

the designer typically works with only a small subschema at a time.

_ Currently, NIAM provide•: little in the way of "top-dow~" guidelines ,for

modularizing a global schema into subschemas. _ Clearly, some of the
-

modu:;:..-rization strategies used in other methodologies could be adopted, if

only to provide the designer with a range of manageably sized views of parts

of the global schema. For example, modules might be selected according to

their function, and "sparse schemas" can be displayed which show object types

without their "attributes". For further discussion of conceptual schema

abstraction and modularization guidelines with specific reference to the

binary-relationship version ofNIAM, se;; Vermeir (1983) and Shovctl (1985).

NIA1,1 does facilitate the "bottom-up" approach,allOwing the designer to .

start with any suoschema of immediate interest. However, even if each

subschema is "validated" ir is possible that the global . sche.ma might be

faulty, since subschemas-may impact on one another. \Ve leave the problem of

specifying an adequate means of dealing with subschema integration in NIAM as

a topic for further research.
,,

.. :n:a U • .C. VVII.:>LI Ql/1~ 1/II}J/Ir._;d.l/U{{ o-l::l

Also worthy of further consideration is the notion of ''finite

satisfiability" proposed by Bry and Manthey (1986). They argue that database

states should have finite models, i.e. "the constraints have to admit a finite

set. of (stored as well as deriva,ble) facts". While we 'feel-that--at the

conceptual level this requirement is too strong (e.g. in our formalization

both Real and String are transfinite sets), in practice the restriction does

make sense for all stored facts as well as facts (stored or derived) about

· most Described objects.

Taking an example from Bry and Manthey, suppose the homogeneous

binary predicate works Jar is irreflexive and transitive, and its first role

is mandatory. The only models for this relation require denumerably many

workers, which is umealistic. So we ought to complement our notion of strong

satisfiability with at least an implementation warning to promote finite

s:.-,tisfiability for described objects. As noted by Bry and Manthey, finite

satisfiability is semi-decidable; and semantic tableaux offer one promising

approach for automating checking of this property.

6.2 .. Constraint implication

In this section we define the notion of constraint implication with respect to

a conceptual schema, identify several important cases of constraint . ·

implication, and provide notations for marking implied constraints on schema

diagran1s. Ideally, automated support should be provided so that the display

of implied constraints can be t?ggled on or off by the user.

We have specified how to translate a NIAM conceptual schema as a

conjunction of KL sentences .. Let CS be any well formed NIAM conceptual

schema, and C be any well formed, static constraint on CS (but not necessarily

included as a conjunct of CS), where both CS and Care expressed in KL. Then

CS implies C iff C is true in all models of CS: we write this as CS ::9 C. If ..
in this context we treat a knowledge base state (UoD subworld glimpse) as a

possible world, then "::9" may be construed as a modal operator for necessary

implication, i.e. a =? 13 =ctr D(a -+ 13).

The detection of implied constraints is important for both conceptual and

implementation reasons. For example, the removal of an implied constraint

from a cs usually provides a simpler picture for the human design~r, and

improves the efficiency of the implementation by avoiding the overhead

associated with coding and enforcing the constraint. Additionally, knowing

that some constraints are implied by others can assist the designer to

reformulate the schema into another one that .is equivalent--but-preferable.

For such reasons, considerable research has been conducted on the general

problem of detecting implied constraints.

Most of the research in this area has focussed on functional and multi

valued dependencies within the context of relational. database schemas as

standardly portrayed in terms of a universe of attributes and a collection of

data dependencies (e.g. Beeri 1980; Beeri & Kifer 1986). Other kinds of

dependency within this relational model have also been studied (e.g. Sadri

1987), but as more kinds of dependency are considered the complexity of the

problem rapidly escalates. 1\'IAM is very rich in the range ofdependencies it

incorporates, and a compre:1en~ive study of constraint implication within NIAM

is beyond the scope of this thesis. Such a study would benefit by including a

mapping of the major results of .the relational research into NIAM. The

mapping of the relational model itself into NIAJ\.1 is fairly straightforward.

1\'IAM' s graphical notation helps the designer to visualize whether a

constraint is implied. To show a constraint is not implied, a counterexample

is needed (i.e. a case in which the cs is satisfied but the constraint is

not). Tb show a constraint is implied, a formal proqf is strictly required,

if only to confirm one's intuitions. We now list a number of constraint

implication theorems. for NIAM: their names start with the letter 'T' (for

"Implied"). The other non-digit characters in the name suggest the kind of

constraint that is implied (A = Asymmetry, E = Exhaustive subtypes, F =

Frequency, FD =Functional Dependency; I= Irreflexive, M =Mandatory role, X

=eXclusion, S = Subset, U =Uniqueness;#= cardinality). Examples for many

of these were discussed in NH89.. Their proofs are straightfo:L\vard; as a

trivial example to demonstrate the basic technique, ISl is proved in Appendix

II (proof 2).

IS1 If an object type A plays roles r
1

and r
2

, and r
1

is mandatory then a

subset constraint from r
2

to r
1

is implied (see NH89, p. i77).

Corollary i:

Corollary 2:

If roles r
1

and r
2

are· mandatory for A, an equality

constraint is implied betweep them (NH89, p. i 73).

If A is an object type playing role r
1

which is mandatory,

8 is a subtype of A, and 8 plays role r
2

then a subset

constraint from r
2

to r
1

is implied.

sec. 6.2 Constraint implication 6-10

/S2 A subset constraint from the role sequence r
1
..rn to the role sequence

s
1

•• sn implies subset constraints from ri to si, i = 1 to n (NH89, p.

181).

Corollary: An equality constraint between the role sequences r
1
..r n

and S
1
.. sn implies equality constraints between ri and si,

i = 1 ton.

lX1 An exclusion constraint between role r of predicate R and role s of

predicate 8 implies an exclusion constraint between any role sequence of

R which co1"1tairis r and any role. sequence of 8 which contains s provided

the role sequences are compatible (i.e. their corresponding object types

.are of the same corresponding primitive types) and r and s occupy the

same position in these sequences (NH89, p. i S"l gives a simple example).

The COi.>.rerses of ISl-2 and IXl do :hot hold (e.g. subset constraints from

each role of one role sequen~e to corresponding roles in another sequence do

not imply a subset constraint from the whole of the first sequence to the

whole of the second). As an aid to visualiz~~1on, ISl, the binary form of

IS2, and one of the binary forms of IXl are illustrated in Figure 6.4: here

the asterisked constraints are implied.

p=
C \ . j :*

I .

b
Figure 6.4

[~ w
: ' *: ·* X X*

.. +
"" I

Constraints marked '*' are implied

We now consider some implie_d mandatory roles. IMl involve~ notjust

implied but equivalent representations. In its simplest form there are two

roles involved, as shown in Figure 6.5. Consider the left diagram: the subset

consrraint tells us that any object playing r
2

also plays r
1

; the mandatory

role disjunction- ensures that each object instantiating /\. plays r
1

or r
2

;

hence each object instantiating A plays r
1

; so r
1

is mandatory, as shown on

the right diagram.

IM1 If a disj•Jnction of roles r
1

, .. ,Tn is mandatory and a subset constraint

runs tram each of r
2

, .. ,rn to r
1

then r
1

is mandatory. In this case r
1

should be marked as mandatory and these subse: constraints should be

omitted (NH89, p. 25i) ..

Figure 6.5

--+ veu= ~,(_ ,--r- - - -- -- --
L:__l

An example of IM1: choo:::,e 1he right-hand version

t:.>- I I

Although equivalence between (sub)schemas is not precisely defined until

the next section, it should be fairly clear that both the diagrams in Figure

6.5 express the same information. As indicated in IMl, we suggest that the

right-hand version always be chosen: this provides a simpler conceptual

picture for the human de~-igner. If desired, an implied :MRC may be depicted by

marking a white dot (i.e. an "o") on the relevant role arc.

Often, more than one constraint implication theorem can be applied.

Consider Figure 6.6. Taking the left-hand diagram, IS2 is used to deduce

subset constraints from r
1

to s
1

and from r
2

to s
2

; then IMl is applied twice

to obtain the right-hand diagraiil, which is preferred.

Figure 6.6 Using 182 and IMi, the right-hand diagram is chosen

IMl argues for the same display preference in all cases. With most

equivalence situations there is a usually_ preferred choice which may be

rejected, for good reasons, in rare cases. L1.deed, the right-hand version may

itself be transformed by _objectification (see later) or by use -of a

conditjonal derivation rule (cf. Figure 5.:34).

IM2lists two cases where the preferred versiGn should always be chosen.

This theorem is illustrated in Figure 6.7.

1M2 If role r
1
_ is marked optional, and role·. r

2
is marked mandatory, and a

subset or equality constrai.lt runs from r
2

to r; then r
1

is manda:-ory.

In this case r
1

should be marked as mandatory, and the subset or equality

constraint should be omitted.

sec. 6.2 Constraint implication 6-12

or

Figure 6.7 1M2: choose the right-hand version

Two applications of theorems IS2 and IM2 are shown for the schema

fragrnehts in Figure 6.8. The mandato;y role constraints indicated by the

white dots are implied by the other constraints. In such cases all the

constraints should be shown (the pairwise subset constraint is not implied by

the two mandatory roles). Note that the "colour" of the dots matters here:

swapping black for white fails, i.e. if the top role played by A is mandatory;

ahd the subset constraint is as shown, it does not follow that the other role

played by A is mandatory. Note also that similar results apply if the subset

constraint is replaced by an equality constraint.

. Figure 6.8 The white mandatory role dots are implied

The next three theorems indicate exclusion is stronger than asymmetry

which in tum is stronger thin irreflexivity. · The binary case for each is

summarized in Figure 6.9. Proofs of IAl and Ill for this case are given in . .

Appendix II (Proofs 3, 4). II2 follows directly from IAl and Ill.

!A 1 An exclusion constraint between roles r
1

and r
2

implies an asymmetry

constraint betvveen them.

..
111 An as~·.,metry constraint between role$ r

1
and r

2
implies an irreflexivity

constraint 0etween them (NH89, p. 189).

112 An exclusion constraint betweer1 roles r
1

· and r
2

implies an irreflexivity

constraint between them (NH89, p. 189).

.::;t;:c.;. 0.0::: vUW::ilfi::I./1/L lfTif.JI/Cal/On

,. .. ·X· ...

Figure 6.9

as*
ir*

as
ir*

The asterisked constraints are implied

ti-1 ;j

In formalizing NI!cM we introduced set-like notations as abbreviations

without actually positing sets as objects. We now introduce some more

abbreviations to help specify later results. The first notation is used for

discussing cases where A is a subtype of B, where B plays R.1. English

r~adings for the other notations are shown in parentheses.

A= 8 R-ing C =ctr Vxy(xRy.,. 8x) &Vx[Ax = 3y(xRy & Cy)]

XEA.U8 =df Ax V 8x { x belongs to A union 8 }

X E An 8 =df Ax & 8x { x belongs to A intersect B }

An8={} =df ,..,3x(Ax & 8x) { A and 8 are disjoint }

In section 2.1 we discussed a simple example of deducing exdusion and

exhaustion constraints among subtypes, using the subtype definitions and

constraints on the defining fact types. Before specifying the relevant

theorems. (I-X2-3) to cover such examples, we state a simple lemma using

standard mathematical language.

Lemma 1: If f is a function which maps set /\ into 8
1

and set A
2

into 8
2

, and

8
1

and 8
2

are disjoint, then /\ and A
2

are also disjoint.

To prove this lemma, assume it is false. Then there must be an object, a

say, in A
1

n A
2

• Since a E A
1

, f(a) E B
1

• Since a E A
2

, f(a) E B
2

• So j(a)

E B
1
n B

2
• But this is impossible since B

1
and B

2
are disjoint. So the lemma

is true. This lemma is the basis for iX2:

IX2 If -R is a functional (n:1) relation from A to 8, and A
1

and A
2

are

subtypes of A- defined as R-ing disjoint subtypes of 8, then an exclusion

constraint is implied between A
1

and A
2

(and hence between any role

played by A
1

and any role played by A
2
).

This is depicted in Figure 6.10, where the implied exclusion consrraint

is asterisked and is taken to mean: ..,::JxC\x & A
2
x). Since. we specify theorems

in tem1s of subschemas rather than global schemas, it is not necessary that

R.l be mandatory br A.

sec. 6.2 Constraint implication

A
1

= A R-ing 8
1

A
2
= A R-ing 8

2

81 () 82 = {}

Figure 6.10 The populations of A
1

and/\ must be mutually exclusive

6-14

To apply this theorem in a. particular case, we first need to show that B
1

and B
2

(as captured by the explicit definitions for A
1

and A) are disjoint. ·

If B is lexical . or numeric then the .disjointness of B
1

and B
2

can be

determined from our lexical and numeric axioms. If B is described, then the

disjointness of B
1

and B
2

can be determined by applying Lemma 1 to the

reference function which maps B into the lexical/numeric subtypes used to

reference B and noting whether these latter subtypes are disjoint.

For example, consider the functional (n: 1) fact type: · Student (name)

scores Rating (nr) [1..7]. Define two subtypes: Passer = Student scoring

Rating 2: 3; Failer = Student scoring Rating < 3 (i.e. Vx[Passer x = 3yz(x

. scores y & y has_rating_nr z & z 2:· 3)]; Vx[Failer x = 3yz(x scores y & y

has_radng_nr z & z < 3)]). The numeric subtypes [3 .. 7] and [1..2J are

disjoint. By lemma 1, the Rating subtypes which map via the has_rating_nr

function to [3.,7] and [1..2] are disjoint. So by IX2, the populations of

Passer and Failer, which functionally map (via Scores) to these disjoint

Rating subtypes, are mutually exclusive.'

While· on the subject of exclusion constraints, we note the following

theorem. This is trivially proved from TXC6 and TXC2.

IX3 A mutual exclusion constraint between n roles implies an exclusion

constraint between any two of these roles.

. .

In general, sets A
1

, •• ,An are said to exhaust B iff A
1

U .. U An= B. We

. now specify the main situation where the populations of a numbe:- of subtypes

must (collectively) exhaust that of their conimon supertype.

/£1 If R is a relation from A to 8, R.1 · is a mandatory role for A, and

A
1

, •• ,An are subtypes of A defined as R-ing subtypes B
1

, .. ,8n which

exhaust 8, then A
1

, .. ,An exhaust A.

sec. 6.2 Constraint impiication 6-iS

This is depicted in Figure 6.11, where the circled dot means A
1
,..,An

exhaust A. Note that while R.l must be mandatory, it is not necessary that R

be functional .

. ;,;.A,HRI

'st ·; I .\ .· '
\· \ fAl I· .. · .. / An I

\.___- I ', . ' •' I ., ··e:·~ ., A·= A R-inu B. i = 1 ton .
I 0 Z'

B1 U .. U Bn =B

Figure 6.11 The populations of A
1

, .. ,An must exha.c,.::t that of A

A sketch of the proof for Theorem IE! follows. Assume the conditions are

satisfied but A
1
, •• ,An are not exhaustive. Then there is some element of A, a

say, which does not belong to any of A
1

, .. , An. Since R.l is .mandatory, a

maps to at least one element, including b say, of B. Since B1, .. ,Bn exhaust

B,. b belongs to one of these, say Bi. But Ai is by definition the set of all

elements of A which map h.; Bi. Hence a E Ai, which contradicts our first

deduction: Hence the miginal assumption is false and the themem is proved ..

In applying IEl, if B is lexical/numeric then exhaustion by B
1

, .. ,Bn is

simply determined. If B is described, then the 1:1 reference mapping is used

to deduce exhaustion from that of the lexical/numeric images. As a simple

example, IEl may be used to prove that Passer and Failer, as defined earlier,

exhaust· Student. Note that for this example, both IX2 and IEl apply; so

Passer and Failer form a partition of Student.

We now consider implied cardinality constraints, and related issues

concerning cardinality. The cardinality of a set is the number of distinct

elements in. it. In Appendix ill we use the notation "n(A) II for the

cardinality of a set A. However, in the body of the thesis we use the Z

nota:ion for this function, i.e. "#A". Syntactically, we treat # as an

operator with minimum scope, so brackets are needed if# is applied to complex

setexpressions. Forexample:#{S,3} =2;#({5,3} U {5,7})=3.

We determine the cardinality of a lexical or numeric object type as

follows. If o
1

, .. ,on are all string constants or all numeric constants, then

#{o
1
, .. ,on} = n. For closed integer subranges, #[n .. m] = m-n+l, e.g. #[3 .. 7]

= 5. Though rarely used, cardinalities are easily obtained for the- other

· lexical and digital subtype notations (sec. 4.3). For example: each of #<nd>

and #<dn> equals 1 on; if there are k letters then #<na> = JC!, and #<an> = k +

sec. 6.2 Constraint implication t>-1 b

k2 + .. + Jd'L; and #(±dn.dm] = 2 X lQn+m.- 1. In principle, ·though not in

practice, transfinite cardinalities (~0 and ~ respectively) are assigned to

open integer ranges (e.g. [n ..]) and continuous stibranges of Real.

For a given KB state, an object type A is (statically) interpreted as l.is ______ -
population (i.e. the set of objects instantiating· A in that state). Though

for brevity we often speak of imposing constraints on "types", we understand

this to mean that, for each KB state, the constraints apply to populations of .

the types. Recall (sec 4.5) that a cardinality ~onstraint of O;n on A means

3o;nx Ax (i.e. for any given KB state, there are at most n objects in the

population of A for that state). Similarly, #A is the cardinality of the

,population of A (i.e. the number of objects instantiating A in that KB state) .

. So asserting that #A s n is equivalent to imposing a cardinality constraint of

O;n on (the population of) A.

·If -we ever wish to talk non-statically about an object type A itself

(i.e. the set of all possible objects of that type, including all possible

states) we may denote this by "typeA". From the KS axioms, and our agreement

that terms always refer, it follows that the object types String and Real and

their subtypes arefully populated in all KB states: their .extension and hence ·

interpretation is fixed. For any lexical or numeric type A, #A always equals

#typeA.

However, a described object type A (e.g. Lecturer) may have different

extensions in different KB states: the population of A may Vary from state to
'

state, and hence so may #A. In rare cases, cardinality· constraints might be

explicitly specified for A. Typically however, upper bounds for #A have to be

deduced. There. are many. ways in which such implied cardinality constraints

may be deduced. The most general method maps the population of the described

object type into a sequence of lexical or numeric types via its injective

primary reference scheme and then uses the product of the known cardinalities

of these types as an upper bound. We now specify this method in more detail.

Each described object type has an injective (1:1 into) primary reference

scheme in which it plays n roles, where n ~ 1, and each nested object type

formed from an n-ary predicate is referenced via a 1:1 function whose argument

types are the. object types playing the roles of the defining predicate. So

any described object type A has ann-part pri:rpary reference schemeproviding a

· direct injective map to a sequence of object types T1, .. ,Tn, say, where the Ti

are not necessarily distinct. If any -of these Ti is described, . map it

likewise; continue until A is mapped into a sequence of string/numeric types.

. . Any population of A must inject to the set of tuples of this type sequence.

sec. 6.2 Constraint implication 6-17

We define a head type to be any object type which is not specified as a

subtype. · If A is a described head type then, in the absence of stronger

constraints on its cardinality, any tuple from the type sequence -Tj;-.--:;Pn.----- -

might be used in referencing a member of A. So, if A is a described head

type, the cardinality of the .set of all such tuples determines dmax#(A), the

default maximum cardinality for the population of A. The above reasoning is

summarized by the following pseudocode specification for the recursive

function dmax#, and by theorem ISll.

Function dmax#(A: described_head_type): Posint;
· { return default maximum cardinality for population of A }

var cardinality: Posint; { evolves into the required cardinality }

function image(A: described_object_type): object_type_sequence;
. { return the sequence of lexical and/or numeric object types

to which A ultimately injectively maps }
begin

replace A by the sequence of object types T
1

, .. ,T n

to which it directly injects via its n-part primary reference scheme;
for each Ti

if Ti is described then Ti := image(Ti);
return

end;

Begin
·cardinality : = 1 ; ·
for each object type T in image(A)

cardinality : = cardinality * #T;
return cardinality

End.

{ T is lexical/numeric }

1#1 If A is a described head type, #A~ dmax#(A)

For example, from Gender (code) { 'm' ,'f'}, Mass (kg) [50 .. 150] and Room

(floor#,cell#) <d,d2> we deduce dmax#(Gender) ~ 2, dmax#(Mass) =.101 and··

dmax#(Room) = 1000. Hence #Gender ~ 2, #Mass ~ 101 and #Room ~ 1000. If

a stronger cardinality constraint is specified, this overrides the default.

For example, if 0;500 is specified for Room, then #Room ~· 500.

For each KB state, #A ~ #typeA. If A is described, the CS does not

include an explicit equation to fix the value of #typeA. However, if A is a

described head type, we may equate #typeA with dmax#(A) if we assume that no
. .

object in A can change its (state-unqualified) primary· identifier. This

assumption is usually justified, but in rare cases there may be exceptions.

!

sec. 6.2 Constraint implication 6-18

For example, suppose lecturers are identified by their name, and a woman

lecturer changes her surname when she marries; or one lecturer leaves and

another with the ~arne name arrives. In practice, these cases can be a':'()~~ed --·--··

by choosing a state-independent primary reference scheme (e.g. employee#).

Even if the primary-:reference scheme for A is state-dependent (i.e.

identifiers must be r.:ualified by the state), dmax:ff(A) is still an upper bou'1d

for #A; and this is the main isc;ue.

In those rare cases where the environment dictates a change in the

primary referer ·e scheme itself (e.g. metrication of the unit system, or

amalgamation of two systems with common object types but different reference

schemes) special arrangements are needed (e.g. conversion rules). This is one

aspect of the general problem of catering for cases where the cs itself

evolves. Though this problem is an important one in practice, we do not

explore this point further.

The next theorem (!#2) is specified diagrammatically. The cardinality of

a role is the number -of objects playing that role. In the case shown, R has

arity m+ 1 and is piayed by object types A and B
1
, •• ,Bfl. The asterisked role

cardinality constraint is clearly implied, since the number of possible

pennutations of B
1

, •• ,Bn is the product of their ca,·dina1?!ies, and the

uniq,ueness constraint across all but A's role implies that each permutation is

associated via R with at most one member of A.

1#2

R

As a corollary, if R.i is mandatory for this situation, then the

cardinality of A must be at most the product shown, since all members of A's

population play R.i. This result is specified graphically as 1#2'.

1#2'

xn
m

sec. 6.2 Constraint implication . 6-19

If instead of a UC on the permutations of B
1

, •• ,Bn we have a frequency

constraint upper bound u, then each permutation may be associated with u

objects from A. Hence:

1#3 If the UC in 1#3/1#3' is replaced uy an FC with upper bound u, then the

prOdUCt n
1

X •• X nmShOUid be replaced by U X n
1

X ,, X nm'

Let us use.the term "max#"A for the maximum permitted cardinality of the

population of A, for any object type A. If A is lexical or numeric then max#A

equals #A which equals #typeA. If A is a described head type then max#A

equals dmax#(A) by default; if the cardinality constraint O;n is asserted on

· A, and n < dmax#(A) then max#A = n.

Since NIAM permits only proper subtypes, if A is a subtype of B then

#typeA < #typeB, and #A ~ #B. Although for a given state it is possible

that #A equals #B, the maximum permitted cardinality of A's population is less

than that for B. This general result (1#4) is independent of the specific

defin] tion for A, and was used earlier in discussing Figure 6.3.

/#4 If A is a subtype of 8 then max#A < max#8.

If A is a described subtype, the definition of A, combined with

constraints on the predicates participating in this definition, can often be

used to deduce an upper bound for #A that is smaller than max#B-1 where B is

its smallest supertype. We now state the main results in this regard. These

are intuitively obvious, and their formal proofs are straightfon:vard.

/#5 If the n-ary predicate R is played by object types 8r,8n (not

necessarily distinct), a uniqueness constraint of length n-1 exactly

spans all but the ith role, and A is defined as the subtype of 8i which

plays R with specified · subtypes 8
1
', .. ,8i-1'•8i+/' .. 8n' of the other

types, then #A~ #8
1
' x .. x #8i_

1
' x #8i+

1
' x .. x #8n'·

1#5 is obvious since the uc provides a function from the specified

population sequence to the population of A. If instead of a UC we have an FC

with upper bound u .then each member of the population sequence may be

associated wilh u objects in Bi. Hence:

/#6 If the UC in 1#5 is replaced by a frequency constraint with U;Jper bound

u,then#Asux#8'x .. x#8. 'x#8. 'x .. x#8 '.
1 1-1 I+J n

sec. 6.2 Constraint implication 6-20

As a simple example of I#5 and 1#2, consider Figure 6.12. Here the same

official may be president, secretary and treasurer, but each of these

positions is held by only one official. So there is at IIl:Q§t_ __ _pne_p_r~~-~c;:lenJ,

and at. most two officials fill the other positions. These upper bounds on

#President and #Sec_or_Treas are shown as implied cardinality constraints,

using asterisks. The implied constraint on #Holds.1 follows from 1442.

{'P', 'S', 'T'}

* #Holds.1 ::; 3

Vx[President x = :3y(x holds y & y has_positioncode 'p')]

Vx[Sec_or_ Treas xi= :3y(x holds y & y has_positioncode 'S'

V y has_positioncode 'T')]

Figure 6.12 The asterisked cardinality constraints are implied

As a simplt example of 1#6, suppose the uc on Holds is replaced with an
FC of 1;2. This allows at most two presidents, at most two secretaries, and. ·

at most two· treasurers. Clearly, the implied cardinality constraints on the

population of President and Sec-Treas are 0;2 and 0;4 respectively.

In sections 4.5 and 5.1, we discussed role-object constraints to specify

cases where a UC or FC. applies to only some of the objects playing a role

(TROC2-3). These constraints can be used to set an upper bound for #.1 in the

absence of a UC or FC on the other n-1 r.oles. 1#7 sets out the simple case.

1#7 If a subtype A consists of those objects playing one role of a binary

predicate R . with an object which has a role-object UC, or FC of upper

bound m, with respect to the otner role of R, then #A ::; 1 or #A ::; m

respectively.

Before illustrating 1#7, we consider one more result. In general, if A

and B are sets then the cardinality of their union. is the sum of their

cardinalities minus the cardinality of theii intersection, i.e. #(A U B) = #A

+ #B- #(A n B). In naming subtypes based on unions/intersections we often

include "or"/"and" (e.g. "Sec_or_Treas"). The wording of the following

theorem reflects this practice (of course it does not matter what the subtypes

are called).

---· --- ---·--·---·· ·-·;r-·------·· t ;;2.)

l#B If AorB and AandB are equated with A U B and A n B respectively, then

#AorB = #A + #B - #AandB.

As an example of 1#7-8, suppose that the Holds predicate--Gf-F-i.gure-6.12.

is · m:n (i.e. the UC exactly spans both roles), but that role-object

constraints are applied to position codes (and hence to positions) as follows:

Now we have at most one president, at most one treasurer and at most two

secretaries. From 1#7 the cardinality constraint 0; 1 is implied for the

subtype President; and if subtypes for Secretary and Treasurer were introduced

they would have implied cardinality constraints of 0;2 and 0; 1 respectively.

For this UoD the same official might be both a secretary and the treasurer;

when Secretary ·an.d Treasurer are fully populated it is possible that their

intersection is empty. If we add a UC on the first role of Holds, we know

this intersection is empty. In either case, 1#8 yields a cardinality

constraint of 0;3 on Sec_or_Treas. If a textual constraint is added to assert

that anyone who is trea:;::1rer must also be a secretary then. I#8 yields a

cardinality constraint of 0;2 on Sec_or_Treas .

. · · Suppose hov.;ever that the role-object constraints are as just stated but

a~ FC of 2 applies to the first role ofHolds, and this role is now mandatory

(it could have been optional before since Figure 6.12 is a subschema). In

this UoD an official holds either no position or two positions. The role

object constraints now imply that the only way of filling all positions is to

have exactly two officials: one is the President and a Secretary; the other is

Treasurer and a Secretary. But this implies that Sec_or_Treas equals

Official, which violates the metarule that only proper subtypes are allowed

(cf. 1#4). Hence this subschema would not be strongly satisfiable.

As the previous example demonstrates, the full implications of a

particular constraint pattern may not be immediately obvious. This can also

be the case with implied uniqueness constraints. Consider Figure 6.13. Here

we ·have two binr-:ies connected bj' a binary subset constraint (each ordered

pair in R must also be in S). A uniqueness constraint on one of the target

roles implies a UC on the corresponding source role. As an alternative to

marking the implied UC with an asterisk (which might perhaps be mistc.ken to

· mea.11 the fact type itself is implied) we use a broken uniqueness bar: its

arrow tips may be omitted if the roles are contiguous.

:>t:t;. O.L: vtJII:>Ual/ll J/llfJI/t;aL/tJf/ 0-~

IU1 If a binary subset constraint runs from the binary predicate R to the

binary predicate S, then a UC on S.i implies a UC on. R.i, i = 1 to 2.

scp ·s
t

R R

Figure 6.13 The UCs shown as broken bars are implied

A sketch of the proof for the left hand part of IUl follows. Assume the

implied uc does not hold. Then there is a state in 'vhich Ra
1
b

1
and Ra

1
b

2
, for

some a1, b1, b
2

• The subset constrain~ implies that in this state Sa
1
b1 and

Sa
1
b

2
, which contradicts the UC on S.l. So the assumption is false, i.e.

there is a UC on R.l. SimilarJy, the right hand part of the theorem is

proved.

Note that for the subset consrraint pattern of Figure 6.13, a uc on a

source role does not imply a UC on its target role. Non-implication may be

shown by dting a counterexample. One counterexample here is: Ra
1
b

1
; Sa

1
b

1
;

Sa
1
b

1
; Sa2b1• In this state, tht subset constraint is satisfied as well as

ucs on eac:b of the source roles, but neither target role has a UC.

Note also that with unary subsel constraints, a uc on one role (source or

target) does not imply a UC on the role at the other end of the subset

constraint. For example, in the following state, subset constraints run from

R.l to S.l and R.2 to S.2 and UCs apply to S.l and S.2, but UCs do not apply

to R.l or R.2: Ra
1
b

1
; Ra

1
b

2
; Ra

2
b

1
; Sa

1
b

1
; Sa

2
b2•

In most modelll.ng approaches: the· most important kind of c~nstraint is

· thefimctional dependency (FD). Within our framework we may speak about an

FD from one role(sequence) to another role. The simple case of an intra:

predicate FD from one role to another may be specified as shown in Figure

6.14, usjng a solid ~·':Tow to show. the direction of the~FD. This means each

object instantiating R.i is associated via R with only one object in R.j. If

Ai and Aj play R.i and R.j respectively, we may express the FD shown by saying

that AJunctionally detennines Aj in R.

"'~'-'. o . ..::: vun~uamr 1mp11cauon

---·-. --·-·-;-·--·~·-····------------. -

VX'f'J5. [R~ & xi = x & xj = y ~ V~(R~ & xi = x ~ xj = y) J

· Figure 6.14 An FD from role i to role j

The following theorem is obvious, since arole(sequence) gm'erned by a UC

can only be instantiated once.

!FD1 A UC on a role(sequence) in a predicate R implies FDs from this

role(seqUence) to each other role in R.

R[5lb
+----+

The converse of this theorem also holds (IU2). The proof is trivial: if

the FDs exists, each instantiation of the source role(sequence) is associated

with a single object for each of the other roles; if the source is duplicated

then the same target objects obtain, which contradicts the default UC across

. the:whole predicate.

!U2 Given any predicate R, if FDs stem from a role(sequence) in R to each

otheUole in R then a UC spans this role(sequence).

To help ensure that all fact types are elementary, NIA1vi demands that no

fact type has a UC which fails to span two of its roles (see NH89, sec. 5.2).

A UC on a single role provides a simple key, and a UC spanning more than one

role provides a composite key. Clearly, only binary fact types can have a,
. . .

simple key.

In NIAM~ so long as the fact types actually are elementary, there is no

. need to introduce a special notation for functional dependencies within a

fact type, since if a fact type is elementary all its FDs are captured by its

UCs. If we find the need to assert an FD on a fact type. which is not ca.ptured

by a UC then we know the fact type is not elementary, and. we should split it

on the source of the FD, Bac~ground on such "splitting" is given in section

5.2 ofl\TH89.

Suppose we have a situation like that of Figure 6.13 except that R is

longer than a binary. By a proof similar to that for IUl it may be shown that

an FD is }mplied as shown by an asterisked solid arrow in Fig'Jre 6.15. But

sec. 6.2 Constraint implication 6-24

this entails that R is not elementary. R should thus be split on the object

type playing the source role for the FD. The result is specified as theorem

IF'D2. ··-··- ~------·--··---------·-·-·-

s cp s I
I

. j

R C6Is;lltA R C&.J.;mA
Figure 6.~5 Because of the implied FD, R should be split

IFD2 If. R is at least a ternary, and a binary subset constraint runs from

R. i ,2 to the binary predicate S, then a UC on 8.1 (or 8.2) implies an ·

FD from. R. 1 to R.2 (or from R.2 to R.1). In this case R should be

split on the object type playing R.i (or R.2).

Clearly, IF'D2 may be generalized so that the source roles for the subset

constraint may occur in any position of the predicate R. We discuss an

important application of IF'D2 in the next chapter (a Lecturer-Subject-Student

schema requiring Boyce-Codd Normal Form). This application also illustrates

the next theorem.

IU3 Jf role i of predicate R is functionally dependent on some other role

of R. then a UC across all but the ith role is implied.

For example, consider Figure 6.16. If the implied UC did not hold then it

would be possible to have a state where Ra
1
b

1
C

1
and Ra

1
h

2
c

1
, which contradicts

the FD from R.l to R.2.·

R I
~-- ----+

Figure 6.16 The UC is implied by the FD, and R is splittable.

If the predicate R in IU3 is binary, the theorem is equivalent to IFDL

If R has a higher arity then R is splittable on the source of the FD. This

· theorem can be useful in examining questionable fact types, as well. as

composite fact types in output reports.

sec. 6.2 Constraint implication 6-25

We now briefly consider implied frequency constraints. The most useful

theorem in this category is as follows. Its proof is trivial.

IF1 If roles i and j of R are played by A and 8, a UC exactly spans these

· roles, and #8 :S n, then role i has an implied FC of i ;n.

' \
I . B , O,n _,

Other examples of implied frequency constraints are discussed in NH89

(pp. 152-3). Because of the large variety of constraint categories in NIMf,

the constraint implication theorems we have considered in this section are not

exhaustive. However, the theorems we have considered do have substantial

practical application. We recommend th' development of further theorems of

this nature as a worthwhile research activity.

Before closing this section we mention two more theorems (IS3 and IU4)

that are relevant to specific schema optimization examples discussed in the

next chapter.

IS3 The subset constraint in the following figure is implied by the other

constraints.

O;n

The proof of IS3 is simple. Because of :he uc, the frequency constraint

arid the cardinality constraint, any object a playing R.l plays with all

objects in the type B. Since- R.l is mandatory, all (a,b) pairs in the

database must occur in R.l-2. Hence any pair in S.l-2 must occur in R.l-2.

V-/e make use of this theorem in the Zoo example of section 7.2.

The last theorem (IU4) is fairly specific. ·we cite it here to shorten

discussion of a BC:t\1F example in section 7 .2.

'":""-:'-~ --- --··-.. ·-···'-· ,,,,,.,,,_ 11.1'-''' u-.:::o

!U4 The asterisked UC in the following diagram is implied by the other

constraints.

The proof of IU4 is by. reductio ad absurdum. Assume the asterisked

constraint does not hold. Then without loss of generality, there are 2 tuples

(al,bl,cl) and (a2,bl,cl) E R*S. Hence { (al,bl),(a2,bl)}" ;; R and

{ (al,cl),(a2,cl)} ~ T. Because of the equality constraint, {al,a2} ~ S,l.

Because of the subset constraint, and the UC on R, al and a2. must be paired

with bl in S (pairing wi-•h anything else, say b2, would imply a1Rb2 which.

violates the UC on R). But this violates the inter-predicate Uc between Sand

T. Hence the inter-predicate constraint between R and T must hold .
..
;_

·'

---- --- --,----·-··-- -·--··--,-·----·--·~-···-OW'

6.3 Equivalence. of conceptual schemas

In this major section we discuss equivalence between conceptual (sub)schemas.

Although limited to static interpretations, this notion,_ c:;~~~:r:~ __ fQt _the

possibility that the schemas may differ in their predicates. . Our

formalization is used to establish several important equivalence theorems.

These theorems are applied in the next chapter to perfom1 conceptual

optimization.. Further background on schema equivalence in NIAM is given in

. chapter 10ofNH89.

Considerable research has been conducted on the general problem of

determining whether two schemas are equivalent. However the bulk of this

research has focussed on the equjvalence of relati.cnal schemas (e.g. see

Kobayashi 1986). Some work has also been done on equivalence between

conceptual schemas based on ER-modellir:g (e.g. D'Atri & Sacca 1984). Within

NIAM, four basic equivalence results have been stated (e.g. Falkenberg 1986,

pp. 7-14/20) but, apart frorri our own work, we are not aware of any formal .

treatment of these results. Our formalization enables NIAM equivalence

theorems to be precisely specified and rigorously proved. We also introduce

some new equivalence theorems .. Appendix ill briefly considers how our results

may be used within the ER framework

Let T
1

and T
2

be conjunctions ofKL sentences, and let "model" abbreviate

"static KS model". Then T
1

implies T
2

iff each model of T1 is also a model of

T
2

, i.e. T
1

:;. T
2

=elf D(T
1

-+ T
2
). T

1
and T

2
nre equivalent iff they have

exactly the same models, i.e. T
1

T
2

=elf D(T
1
= T). Recall that KS is a

first order theory. T
1

and T
2

are equivalent if each may be proved from the

other inKS. So "equivalent" is short for "KS-equivalent" .

.Let CS 1 and CS2 be two conceptual schemas (either subschemas or global

schemas), .each of which is expressed as a conjunction of KL sentences. Let K

be the conjunction of the axioms ofKS. Let si and S2 be the specific axioms

of CSl and CS2-respectively, expressed as a conjunction of:KL sentences. So

CS 1 is K & S 1, and CS2 is K & S2. Let Rl and R2 be the sets of predicate and

function symbols ofCS1 and CS2 respectively, that are not used inK.

Since the J-:s axioms are included in all schemas, the languages of CS 1 and

CS2 can differ only in their predicate and fm1ction symbols. If R1 equals

R2, then eq1..:ivalence between CS 1 and CS2 is defined as previously (by default,.

symbols common to both are given the same interpretation).

If Rl differs from R2, or some symbol common to R1 and R2 is to

be interpreted differently in the two schemas (such schemas cannot be included

in the same global schema), then implication and equivalence between CS 1 and

---~ --- _"-f....,l11'-.l...,ll..., _., ..._,\JII"-'l,;f-'LUU.I ~\.#'IJVIIIU..:> G-2~

CS2 can only be specified within the context ·of rules which translate the

predicate and function symbols of each purely in terms of the symbols of the

other. If such rules are supplied, then it is useful to know whether the

schemas are equivalent in the context of these rules. · · -·--·- .. ·-

LetDl'be a conjunction ofKL sentences defining the symbols ofR1 purely

in terms of the symbols of CS2. Similarly let D2 define R2 purely in terms of

the symbols of CS 1. Then CS 1 is contextually equivalent (under D l/D2) to CS2

if and only if CSl & D1 8 CS2 & D2.

We set out definitions of predicate/function symbols as universally

quantified biconditionals/identities. The definiens is always shown as the

left operand. Definitions for symbols common to R1 and R2 may be omitted,

with the tacit understanding that they have common interpretations.

The theories CS 1 & D1 and CS2 & D2 provide a conservative extension to

the theories CS1 and CS2 respectively. The extension is conservative since no

new primitives are introduced. For formal background on conservative

extensions and isomorphic embeddings see Keisler (ed .. Barwise 1977, p. 56),

Chang & Keisler (1977, Ch. 3) and Hunter (1971, pp. 201-5).

Conceptual equivalence between (sub)schemas licences the interchange of

their def.nitionally extended forms, usually for conceptual simplicity or

later implementation efficiency; In practice, this usually takes place within

a large global schema. It is possible that some predicate or function symbols

in the replacing subschema occur in the global schema but not in the replaced

subschema (except in the contextual definitions). In this case the

interpretation given to these syrnbols in the contextual definitions must agree

with their interpretation in the global schema. If the symbols· Lave different

readings in the two contexts then renaming to avoid this ambiguity is req .. ared

before the replacement.

Before specifying general purpose equivalence theorems we clarify, by

means of examples, some finer points concerning object type introduction. To

. begin with, consider the subschemas in Figure 6.17.

CS2:
has gendercode {' m', 'f'}

e)-'~ -l_j-(--.. ,,
. -- _,,.,

Figure 6.17 Is the.re a context in which CS1 and CS2 are equivalent?

..:::.cv. V.V Ll..fUIVCIICIIL.-c::' Ul l,U/It .. /Oj..JLUC/ \:>V/IV/IJC:.;::,

Here tl).e predicates Male and Female occur in CS 1 but not CS2, and the

predicate Has_gendercode appears in CS2 bm. not CS 1. The reference mode for

Person has been omitted since it is not relevant to our discussion. Leaving

aside: some finer poir:ts, cs 1 roughly says that nobody cari he ooiF-maie arid .

. female, and CS2 roughly says that a person can have only one gende:-code and

this must be "m" or "f'. Using our intuitive understanding of the connection

between the:,•: predicates, we might feel that CS: and CS2 are equivalent since

they appearto "say the same thing" in different ways.

while useful, this kind of "gut feeling" approach towards equivalence

suffers from two major drawbacks. Firstly, our gut feelings are not always

reliable: we might miss some subtle aspect that is captured in one

representation but not the other: · Secondly, if \Ve wish to have computer

support for determining equivalence, we need to formally capL1re our intuitive

connections between the predic:r>t~s. As Brachman (1988, p. J 0) says,

"Intuitions about the meanings of English words, which are available to us and

allow us to make inferences without conscious effort, are not magically

present in .the machine". So we need to specif); definitions to translate

between the predicates used in the different schemas.

An appropr~a.te specification is set out in Figure 6.18. For convenience,

each predicate has been abbreviated to its first letter.

CS1: CS2:
{'m','f'}

~ J~'··'
I p \ . ~~ .~ J \ . ~ - \ /
'-._../ . -- ' _

01: Vxy(xHy = Mx & y='m' v Fx & y='f') 02: V~(Mx = xH'm')
Vx(F>- = xH'f')

Figure 6.18 CS1 &. 01 8 CS2 & 02

Hv .:an intuition is requirec1 to provide candidate formulae for Dl and D2;

ho·vvev~r, once stated, tht.y c<:.n be formally tested. The formulae in D2 define

Male anC Fem....ie in-terms of the language of CS 1 ('m' and 'f are i···iiv.i.dual

constants in both schemas since each schema embeds K). The D2 formulae are

easi:Ly produced. The definition Dl, though obvious in hindsight, is harder to

create.

Frum our experience, we suggest the following r:1ethod for de /elopi::g

formulae for Dl and D2 for other cases. Use your intuitions to make an

educated guess forD 1 and D2. Test this by means of a deduction tree for CS 1

& D1 <? CS2 & D2. If a permanently open branch inoicates failure, use the

counterexample generated from this branch to produce new candidates for D 1

and D2 which avoid this counterexample. Continue-L:his-refinement.:by.:

counterexample process until the fonnulae chosen are proved correct. We

regard counterexample generation to be one of the main benefits of approaches

which incorporate semantic tableaux.

A formal proof for the assertion in Figure 6.18 that CS 1 and CS2 are

contextually equivalent under D 1/D2 is given in Appendix IT (proof 5). To

perform the proof, the subschemas must first be translated into KL using the

rules provided Iri earlier chapters. This gives:

CSi: Vx(Px-+ Described x)

Vx(Mx-+ Px)

Vx(Fx -+Px)

Vx~(Mx & Fx)

K

CS2: Vx(Px-+ Described x)

Vxy[xHy-+ Px & (y= 'm· V Y= 'f')]

Vxyz(xHy .& xHz-+ y=z)

K

Since K is included, we know that 'm' =f:. 'f' (from theorem CC=f:.). This is

needed. The deduction tree · proof shown in the Appendix is now

straightforn•ard, but lengthy (three pages of formulae). Such proofs can be

facilitated by autorr;a.ted support. Substantial research has been carried out

to deve:lop automated theorem provers (e.g. see Bledsoe & Lovelandeds. 1984)

and. interactive proof editors (Robinson & Staples 1988), including automated

support for semantic tableaux (e.g. see Reeves, 1987) .. Lindsay (1988)

provide~ a survey of computer support for formal reasoning. · Our own

experience with proof generation indicates that the -development of a proof

editor specifically designed-to assist reasoning about NIAM conceptual schemas
.,. . .

would be of considerable research value. Though not discu·ssed in this thesis,

we have begun dc:~ign and coding efforts in this regard.

Because the definitional rules are l>l-directional, both defined and

defining predicates can, in principle, be used for both update and query.

Behaviourally, CS1 & Dl and CS2 & D2 will generate the same responses for

any update/query. In typical practice however, once a choice has been

made, only the defining predicate is used for update. To indicate this, the

definition may be asterisked, since it then has the implementation status of a

derivation rule.

Once a subschema has been replaced b) another to which it is contextually

equj'-·alent, the designer will often decide that contextually defined

predicates unique to the replaced subschema are no longer of interest. In

this case, a deliberate decision may be made to drop the defined predicates

from the schema. For example, after transforming from the unary to the

binary version in Figure 6.18, the designer might decide-tO drop- tfiE :hiles -in

D2. This loss of context means that equivalence is also lost. For example,

assuming people are referenced by surname, the following conceptual sentence

may be used in an update or query for CS1, but not for CS2 without D2: 3x(x

·has_surname 'Halpin' & Male x).

So long as the designer is aware of the context in the first place (as

specified in our equivalence theorems), he or she will be aware of precisely

what information is being discarded, and hence can maintain conscious and

precise control over the semantic impact of schema transformations.

In .some cases, contextually equivalent subschemas may both be present

within the same global schema. In this case, if D1 (or D2)js a theorem of

the global schema, then S2 (or S1) may be deleted, provided its impact (if

any) on the global schema is catered for._ The need to cater for global impact

when making local changes also arises when -one subschema is replaced by

another, since the original subschema may share - constraints with its

environment (e.g. inter-predicate constraints and nesting). Let's consider a

simple example.

--A science fiction novel by Asimov (1986) describes a planet Solaria,

whose people are hermaphrodites. Suppose ourUoD includes both humans and

Solarians, .and we use the terms "male", "female" and "hermaphrodite" in a

mutmilly exclusive sense. We might portray this situation by Figure 6.19.

Figure 6.19 A UoD with both humans and Solarians

Since an exclusion constraint is -implied between Male and Female, the

equivalence theorem of Figure 6.1.? may be applied to the subschema containing

just the top two fact types. Ho-Never, to preserve the stronger exclusion

constraint of Figure 6.19, an exclusion constraint must now be added between

the Hermaphrodite predicate and the first role of Has_gendercode.

Of course, a better transformation would be to replace the three unaries

with a single binary (Has_sexcode) using {1m 1 ,'f ,'h 1 } (see right half of

Figure 6.20). Note that this binary has a simple key: this des:irable feature

derives from our decision to make the three sexes mutually excfusive;-rathei

than defining a hermaphrodite to be both male and female, which ·would lead to

a composite key (see left half of Figure 6.20). The contextual equivalence

between the two versions is as shown. The predicates Has_gendercode _ and

Has_sexcode are abbreviated as "G" and "H". Transforming composite keys

into simple keys is useful for reducing the number of tables required in

relational databases.

The notation "*CWA" below CS 1 means _ the relevant closed world

assumption is required for CS 1 (a hermaphrodite cannot have just one sexcode

recorded). For some recent discussion of the closed world assumption arid

incompleteness in therelational model see Motro (1986) and Gottlob & Zicari

(1988).

CSI: {'m 1
,

1f 1
}

, - ...
, I

---! I
. \ _..,

01:-
VxY[XSy = 3ly(xGy & (y= 1m1 V y= 1f'))
- V xG 1m1 &xG'f1 & y='h']
-*CWA

CS2: {1m1,'f','h 1
}

-~~~-_
\ I ... _.,

02:
Vxy[xGy = y='m 1 & (xS'm' V xS 1h1

)

V y= 1f 1 &(xS't' V xS 1h')]

Figure 6.20 T~eright-hand version is usually preferred

If a lexical or numeric subtype is given a specific name in just one of

the schem;_-:.;; then this information mus: be included in the contextual

definitions below the other schema. For example, suppose {1
ill

1,'f} in Figure

6.18 is given the riame "G" (abbreviating "Gendercode"). The equivalence

CS 1 & Dl # CS2 & D2 holds so long as we rephrase S2 and Dl to include this

new feai.ure, i.e.

Si: Vx(Px.,... Described x)

Vx(Mx -+ Px)

Vx(Fx-+ Px)

Vx,..;(Mx &. Fx)

Di: Vx(Gx = X=
1m 1 _v X=

1f 1
)

Vxy(xHy"" Mx & y='m 1 V Fx & y='f1
)

82: Vx(Px -+ Described x)

Vxy(xHy -+ Px & Gy)

Vx(Gx = x= 1m 1 V x= 1f 1
)

Vxyz(xHy & xHz-+ y=z)

02:- Vx(Mx = xH 1m 1
) ·

Vx(Fx = xH 1f')

The types Strir,g £Wid Real are defined in all schemas. But the choice of

Described object. t)tpes is up to the designer. E:'i::h cs partitions the domain

of described objects into a set of primitive object types. So long as the

domain D is the same, it is possible for schemas to specify different

pru"'iitions but still be equivalent. Figure 6.21 illustrates two partitions,

one demarcated by single lines and the other by, double lines-:-·---------------

Figure 6.21 Two different partitions of the same domain

If two schemas differ in their described object types, then any claim

of contextual equivalence must include definitions which enable these

type ·predicates to be translated frorri one schema to the other. If the

domains are not the same, this simply cannot be done. For example, consider

the schemas shown in Figure 6.22. Both schemas have the object type Person .

but only CS2 has the object type Gender.

CS2:
has_gender {'m','f'}

8
Figure 6.22 · Schema CS2 has an extra described object type

Since the described 'object types differ it is necessary to consider their

formalization. The solid ellipses translate via TSE to Vx(Person x -+

Described x) and Vx(Gender x -+ Described x). The global partition axioms P3

and P4 also make assenions about these types (sec. 5.2). Further, CS 1 alone

cannot accept some assenions that are acceptable for· CS2, e.g. that there is

a gender with code 'f. V/ithout access to global described object types which

might make possible a translation of Gender, there is no way that CS2 can·be

converted into CS 1 ~

In .the absence of such global information, the only way that a contextual

equivalence for such cases can be specified is to include all locally

primitive, described object types and their reference schemes in both schemas. ·

This is done in Figure 6.23. Here ''H","G","c","C" abbreviate "has_gender",

"Gender", "code", and "has_gendercode".

sec. o.:3 1=qwva1ence ot conceptual schemas

·~

~m','f'}
01: Vxy(xHy = Mx & yC'm' V Fx & yC'f')

CS2: {'m', 't'}

02: Vx[Mx = 3y(xHy & yC'm')]
. Vx[Fx = 3y(xHy & yC'f'))

Figure 6.23 Notice that G(c) {'m','f'} appears on both sides

6-34

Notice the need to specify the definitions using the reference schemes.

To our knowledge, all previous treatments of this kind ofequivalence have

used individual constants to directly name ·the described objects (e.g; see

NH89 p. 219). We now argue that this is a mistake, since this practice.

implies that the objects so named exist in. all states of the knowledge base

(since res must refer). Apart from other problems, this would make nonsense

of the treatment of mandatory roles; for example; suppose we replaced "Gender

(code) {'m','f}" in the diagram by "Gender {m,f}", and made the second role

of Has_gender mandatory. This entails that in each state of the knowledge

base we must know the gender of at least one male and at least one female

person: this is unacceptable. Notice that no such problem arises for lexical

and numeiic objects.

Although e.guivalence transfommtions must preserVe described object

types, in practice the designer may be satisfied with less than equivalence

and decide to delete the old types. For example, suppose the: bina1;' in Figure

6.23 is replaced by the unaries and the Gender node. If Gender does not occur

elsewhere in the global schema, and there is no need to support its form of

expression, the designer may simply drop the Gender node as well as the

definition D 1. Again, we have controlled information loss.

· Informal versions of the equivalences we have been discussing are called

object-role reduction/composition byFalkenberg (1986). In NH89 we called

them "entity type- fact type conversions", where the most important theorems

were labelled "T2" and "T3 '(NH89 pp. 222-3). We are now in a position to

specify these theorems rigo7:"ously.

In this thesis all equivalence theorems have labels starting with "E".
In each case CS 1 & :Ul # CS2 & D2 is understoq:J. as being asserted, where the

left/right side is side 1/2. Because of space limitations, we do not provide

further proofs. However, these may be proved by deduction trees in a similar

manne;· to proo{ 5 in Apped.ix TL . Tht. unaiy-bino.s.ry. conversion for the

sec. 6.3 t:.qwvalence of conceptual schemas 6-35

lexical/numeric case is set out in EUBl. Recall that when an object type must

be either· lexical or numeric it is shown as a half-solid circle with the type

name underlined. Here we haven unary predicates, \\'~e.:_e n i~y posit~ye.

integer (in the trivial case n = 1, tlie exclusion constraint is vacuous).

EUB1

Vx(Bx = x=b
1

V .. V X=bn)
Vxy(xSy = R

1
x & y=b

1
V .. V Rnx & y=bn)

Vx(R
1
x = xSb

1
)

Vx(Rnx = xSbn)

The described object case is set out in EUBI'; Iii general the described

object version of a theorem is named by priming the name of the corresponding

lexical/numeric version. The members cif. {b
1
, •• ,bn} are always lexical or

numeric constants, and ":::::/ denotes the reference predicate for the simple

reference mode r.

EUB1'

Vx[R
1
x = 3y(xSy & y:::::rb

1
)]

Vx[Rnx = 3y(xSy & y:::::rbn)]

Clearly, if the exclusion constrai~t is deleted from CSl, the uniqueness

constraint in CS2 must be deleted as well. We have deliberately avoided

specifying any mandatory role coi .. straint, so that the theorems have wider

applicability. If the disjunction of R
1
.1, .. , Rn:I is mandatory then of

course so is S.l. Of more importar1ce is the binarj-ternary conversion (1\TI:I89

.. pp. 222-5). The basic theorems are EBTI and EBTl':

.:s~c:. o.:.1 cqwva1ence or conceptual schemas

EBT1

Vx(Bx = X=b
1

V .. V X=bn}
Vxyz(Sxyz = xR

1
z & y=b

1
V .. V xRnz & y=bri}

EBT1'

Vxy(xR
1
y = Sxb

1
y)

Vxy(xRny = Sxbny)

6-36

Vxy[xR
1
y = ::Jz(Sxzy & z~,b)]

Vxy[xRnY = ::Jz(Sxzy & z~,bn)]

In NH89 (pp. 224-5) we introduced some new ·variations on the binary- ·

ternary conversion. We now specify these for the n-ary case. To save space,

diagrams are omitted.

EBT2 An occurrence frequency of n on S. '1 in EBT1 or EBT1' is equivalent

to an equality constraint between roles H
1

• i , .. ,Rn.n.

EBT3 · An occurrence· frequency.· of n combined with a mandatory role

constraint on 8.1 in EBT1 or EBT1' is· equivalent to mandatory role

. constraints on each of R
1
.i, .. ,Rn.n.

As a prelude to specifying further variations, we examine a binary

ternary transforElation presented by Falkenberg (1986). This example also

illustrates how a fom1al approach can be used to clarify and check proposed

equivalences needed for applications. Consider the two schemas of Figure

6.24. To simplify the discussion we have made Statuscode lexical, and

shortened "supervisor" and "worker" to "s" and "w".

According to Falkenberg, the schemas in Figure 6.24 may be transfom1ed

into one another. However, even if definitions were supplied to translate

between the different predicate symbols, the constraint patterns shown are not

equivaJent. The uniqueness constraint in CSl is not captured by CS2, since

the latter permits an employee to be both a worker and a supervisor on the

same project: what is required here is a pairwise-exclusion-constraint-between·

the two binaries.

CS1:

-- -- ~

/ '
r Statuscode'{'s' 'w'}
\ I ' ' . "'

.. has on .. a statuscode of ..

works_on

CS2:

supervises

Figure 6.24 Under what conditions are CS1 and CS2 equivalent?

Moreover, the lower uniqueness constraint in CS2 is not captured by CS 1:
. .

we 'nef'd to add to CSl the constraint that each project has at most one

supervisor. There is no graphic notation in NIAM to do this, so we add it as

a textual constraint in KL (a graphic notation could be devised, as suggested

later). The contextual equivale~ce is set out in Figure 6.25, with predicate

symbols ~hortened to one letter. Here we have separated the schemas from the

contextual definitions by a broken line. Note that the textual constraint

(below the diagram) is part of CS 1, not D 1.

CS1: {'-s', 'w'}

Vx(Px-+ :i?y Hyx's')

01: Vxy(xWy = Hxy'w')
Vxy (xSy = Hxy 's ')

CS2:

02: \lx(Cx = x= 's' V x= 'w')
Vxyz(Hxyz = xWy & z= 'w' V xSy & z= 's')

Figure 6.25 The conditions for equivalence are specified

G-38

Note the similarity between Figure 6.25 and EBTL Each uses a type

· enumeration to juggle between shorter predicates and a longer predicate. The

crucial differences are the constraint patterns. One systematic and efficient

way to deal with such transformations is to first spedfy"-n1iire-geneni.r

equivalences, and then specify the changes required when further constraints

are added .. EETl and EET1' are general equivalence theorems which licence

transformations between n predicates of arity m and a single predic'ate of

arity m+J. one of whose object types is, or injects to, an enumerated set of n

objects.

Although EETl-2 allowS to be transformed into a disjunction of smaller

fact types, this does not entail that S is compound. A fact type is compound

(non-elementary) iff each instance of it is equivalent to a conjunction of

smaller facts. So S may still be elementary.

EET1

Vx(Bx = ;>;:::: b
1

V .. V x=bn)
V~(S~ = R1~ & y=b1 V .. V R12~ & y=bn)

EET1'

G \-- .. 1 ..._ • •

'

~5[·.-
Rn

-'-----'

{ ~ = x., .. xm}

V~[R1~ = 3y(Sry & y::::rb)]

V~[R,C = 3y(Sry & y:::::rbn)]

sec. 6.3 Equivalence of conceptual sc;hemas 6-39

For convenience we specify theorems with the enumerated type B in a

particular position. Analogous theorems apply when B is shifted to any other

position. Theorem ERP allows roles to be permuted in ~~--~rder by ren~~$

the predicate. For example, we may wish to replace the fact type Person

works_for Department by the fact type Department employs Person.

ERP

\t\ .. xn (Rx1 •• xn = Sxicxi)
{ i

1
•• in is a permutation of 1 .. n }

Theorems EETl-1' made no mention ofuniqueness constraints. Since a uc

spanning all roles of a predicate adds no information, the theorems entail

that a-uc spans all of S if and only if ucs span .each R_;, j = 1 to n. If a uc

is stronger it must span all but one role (otherwise the . fact type is

compound). We divide these stronger situations up into three. cases and

spc:.cify the relevant theorems. In the first two cases, the role played by B

is i~cluded in the scope of the UC. In the first case S is not a binmy.

EET2 Corollary to EET1-1' where S is at least a ternary: if a UC is added
. ' .

which spans all but role f bf S, ·where i ~ m, then. for each Rj, j

1 to n, a UC must be added spanning all but role i; and conversely.

The UC constraint mapping for EET2 is summarized in Figure 6.26. Here

we take it that B either is {b
1

, .. ,bn.} or injects to this via some reference

scheme. Given generalization by role permutation, it is clear that EBTl-1'
. . ~ .

are just special cases of EET2, where m = 2.

s m:::2

j = 1 ton

Figure 6.26 Mapping uniqueness constraints in theorem EET2 ·

.....,. -~- ,_.'"f'-"' .. _,....,, ,...., -· __ , ~--f-'&.'-""-"1 ~VII VI I IU.._.,

Consider the schemas ofEETl-1' when m = 1 and a UC on S spans only the

role played by B. If S maps each object in B to at most one object in A, each

Ri can have at most one member. This leads to theorem EETI. Its simpler

version (where B is lexical/numeric) is depicted in Figure-62T

EET3 Corollary to EETi-1' where S is binary: if a UC exactly spans the

role played by 8 then #R
1
~ 1 & .. & #Rn ~ i; and conversely.

'"-0']-(i• . 8\ I . I
I . - I

~ ,

·--------------------------------------~

\fx(8x = x=b
1

V .. V X=bn)

Vxy(xSy = R
1
x & y=b

1
V .. V Rnx & y=bn)

; __ Figure 6.27 The simpler version of EET3

As a:n example of EET3 where B .is described, recall the folloV..'ing n:l

binary fact r;1>e from section_ 6.2: Official (name) holds Positi~n (code)

{'P','S','T'}. Under the context specified, this may" be transformed into a

schema with three unary predicates (Is_president, Is_secretary, Is_treasurer)

each of which has a cardinality limit of 1.

If, for the situation of EET3, the role S.l is· mandatory then the

disjunction R
1

V .. Rn ismandatory and #A :> n (cf. implication theorem 1#2').

The next theorem deals with the case where the UC spans all roles except
. ·.

the one played by B. The basic correspondence between the exclusion:

constraint in one schema and the UC in the other is shown in Figure 6.28 .

. Each o_:;;erand of the exclusion constraint is a whole predicate.

Thecrern EET4 applies for all values of m. Clearly, EUBl-1' are just

special c~,,es of EET4 when m = 1.

"'":"'""· o.v C::::l{WVdJt:llc.;r::: w c.;w1r.:~pruat scnemas 6-41

EET4 Corollary to EETi-2: if a UC spans all roles of S except for B's

role, then R , .. ,R are mutually exclusive; and conversely.
1 n . .

· .. ;:g;n .·
G. =r. ~',

·'- · ... A '
l\§I/-. . . . :·:~® . m_)

- -····

. .

Figure 6.28 The UC in one schema corresponds to the X in the other

Figure 6.29 illustr:~:es both EET2 and EET4 for the case m = 2. The

definitions abbreviate :the predicate symbols to their first letter. The

leftmost UC maps to the exclusion constraint (EET4); the other UC in CS 1 maps

to thr two simple ucs in CS2 (EET2).

CS1:

.. has on .. a status code of ..

01: Vxy(xCy = Hxy'cap')
Vxy(xly = Hxy'co')

CS2:
captains

is_ copilot_for .

02: Vx(Sx = X= 1cap' V x='co 1
)

Vxyz(Hxyz = xCy & z= 1 cap 1 V xly & z= 1 co')

Figure 6.29 Constraint mapping examples of EET2 and EET4

Another application of EET4 for the case m. ~ 2 is the equivalence

considered earlierin Hgure 6.25; however we still have to specify a general

theorem 10 cover the correspondence between its textual constraint and the

simple uc. · To facilitate this task, we first classify this kind of textual

constraint. Suppose the ith and jth roles of predicate R are played by object

· types A and B. Then if the combination of each object in A with a given

object b from B is ucique . within R, we say that there is a restricted

uniq::eness constraint on R between A and b. Such constraintsmay be specified

textually (see the formula in Figure 6.30).

sec. 6.3 Equivalence ot conceptual schemas o-4<:::

+---- - b'-+

Vx[tv'.-+ 3?y(Ry & y. = x & y. = b)]
- - l J

Figure 6.30 A restricted UC on R between A and b, where b E B

As ·an aid to visualization, we have also shown this constraint

graphically as a broken uniqueness bar including an "image" of b. This image

b' is written the way a table entry forb would be written: if B is numeric

then b' is b; if B is lexical then b' is b with the delimiting quotes deleted;

if B is described and b :::: r e then the table entry form of e is used~ Since

NIAM already has many graphic notations, this new notation may be ignored in

favour of the textual version. Note that if B is described and b ::::r e then

the condition Yj = b is expressed as Yj ::::r e.

The textual constraint in Figure 6.25 is thus a restricted UC on H

between P and's' (this could be shown graphically as"+----- s ----+".below

the roles for P and C). The following theorem specifies how such constraints

traiJ:sform into ucs in the context of EETl-1 '. The case where S is a binary

may-be ignored since it is already covered by EETl-1' (a full uc must exist

between A and B).

EET5 Corollary to EET1-1': if S is at least a ternary, and a restricted

UG is added between Ai and b, where b is or injects to bi' then a UC

must be added to Rjon the role played by Ai; and conversely.

If S is longer than a ternary, then Rj is splittable, since it has a

simple key on R/i, and Rj is at least a ternary. A general requirement of

the conceptual schema design procedure is that compound ·fact types be

eliminated in favour of ~lementary fact types. Hence, in this case, Rj must

be split on Ai into binaries with each of the other A's, with a simple uc on

the role played by Ai in each of these binaries. We discuss splitting

transfofl~~·,~.ions shortly.

Note that the EET transformations cannot simply be adopt~d when the

enumeration constraint {bl, .. ,bn} is replaced by a cardinality constraint of

O;n on B. To develop analogous theorems for cardinality constraints we need

to know that #typeB s n, not just #B s n. Moreover, we need to identify. the

se::c.:. o . ..:l' r:::.qwvatence or conceprua1 scnemas 6-43

members of B to supply translations between the predicates in the different

schemas. So in practice an enumeration is needed ..

Sometimes, for the same predicate, more than one object type is
-. --·~·---·----~-----··· . -···-·····

enumerated (e.g. see NH89, p. 152~ Figure 6.43). In this case the EET

theorems may be applied more· than once. Theorems EBT2-3 have obvious

generalizations for. this situation (note that when an n-item object typ~ is

eliminated here, the relevant frequency constraint is divided by n).

We nov' discuss a Class of equivalence theorems (ESCL) for splitting

compound fact types or combining simpler fact types. The splitting and

·combining transformations basically correspond to the relational operations of

projection and natural inner join respectively (e.g. see NH89, sections 4:3,

5.3). For conceptual schema design purposes, ESC equivalences are always used

in the direction of splitting, since we aim to eliminate compound fact types.

For relational database design, some recombination usually takes place,

A fact type . is . compound if and only if it can ·be expressed as a·

conjunction of simpler fact types. ·. A fact type which is not compound is

elementary. By far the most important case is deciding whether a ternary fact

type is splittable. · We first examine this case generally, and later consider

the impact of functional dependencies. For a ternary predicate R over object

types A,· B and C (not necessarily distinct), we need to consider the

poss~_bility of splitting on A (i.e. splitting into two binaries over A-B and

A.:q, on B, on C, or into three binaries. ESCl specifies the predicate
. .

translation context for splittir~g/coinoining onA ..

·ESC1

Vxy(xR
1
y s 3i Rxyz)

. Vxy(xR;_y 5 3z Rxzy)

~-.
~ ~'-

' ..

Notice the equality constraint. This is required since we do not allow

null values at the conceptual level. The contextual translations are crucial:

unless these. hold, the splitting/combining cannot take place. Analogous

theorems apply fo:: splitting!r~'11bining on B or C. -The 3-v.·ay split is

specified in ESC2.

sec~ 6.3 Equivalence of conceptual schemas

ESC2

. \:lxy(xR
1
y =:_ :3z Rxyz)

\:lxy(xR
2
y = :3z Rxzy)

\:lxy(xR
3
y = :3z Rzxy)

6-44

If a role is a simple key or functionally determines other roles then its

object type is usually chosen as the node on which the splitting takes place.

If this happens for more than one role, a choice exists; we do not consider

such cases here. The next few theorems specify the impact of some additional

FDs. To save space, diagrams are omitted. · ESC3 and ESC5 are easily proved,

and ESC4 follows immediately from ESC3 and IFDl.

ESC3 Corollary to ESC1-2: if A functionally determines B (or C) in R,

then A has a simple UC in R
1

(or RJ; and conversely.

ESC4 Corollary to ESC1-2: if A has a. simple UC in R then it has a simple

UC in R
1

and R
2

; and conversely.

ESC5 · Cqrollary to ESC1-2:· if B and G form a composite . key for R thE:m a

ub.!·applies between H
1
.2 and R

2
.2; and conversely.

As the arity of a .fact type .increases, the number of potential ways in

which it might be split increases rapidly. We specify only the most irllponant

case (n-ary fact type to/from n-1 binaries with common node).
~ - .

ESC6

\:lxy[xR1y = :3~(R~ & X=-=Z1 & _y="=z)]

Vxy[xRn_1y = :3~(R_:: & x=z1 & y=zn)]

ESC6 dl.)icts · splitting ·on A
1

• Analogous results hold for. splitting on

. other nodes~ Equality constraints arc specified between adjacent frrst roles .

(~.1 and R
2
.1, etc.). Smce the identity relation (=) is transitive this

implies that all first roles have identical populations.

sec. 6.3 Equivalence of conceptual schemas 6-45

The following theorems are generalizations of ESC3-4 to the n-ary case

just considered. Theorems ESC6 and ESC8 are of special importance, since they

are used in the proof of the ONF (optimal normal form) _grouping_algorithm. ____ .

ESC7.

ESCB

Corollary to ESC6: if A
1

functionally determines Ai in R then A
1

has

a simple.UC in Ri-1; and conversely.

Corollary to ESC6: if A
1

has a simple UC in R then it has a simple

UC in each of R
1

, •• , Rn_
1

; and conversely.

The research literature on the relational model of data includes numerous

examples of splitting/combining transformations. In NIAM, these form one of

the four classes of equivalences cited by Falkenberg (1986). While the

formulation of the ESC theorems in terms of contextual equivalence is our own,

the ESC theorems stated here have well known parallels in relational theory.

We now consider a class of schema implications and equivalences based on

frequency constraints .. Over the last few years we included examples of this

class in our lecture notes and exercises: In an earlier paper (1988c) we

referred to this class as "role disjunction". · , Though exai:nples in. this class

often occlir in practical applications, the only discussion besides our o\m

that we have se~n in prim is by Leung (1988), who states, without proof, two

results for the ~~inary case. Developed independently, our approach differs

from Leung's by being more general, and formally rigorous: though stated-as

equivalences, Leung's examples are actually just one-way implications.

Before specifying some general theorems, we ·consider a simple example

·(see Figure 6.31). In CS 1 each employee has at most two phones.· In CS2 each

employee has at most one phone1 and at most one phone2 which must differ (if

we wish to assert that an employee has a phone:! only if he/she has a phm1e1, a

·. subset constraint should be added fro~ has_phone2.1to has_phone,Ll). Can a~
equivalence context be specified for transforming between CS 1 and CS2?

CS1:

has _ph0ne2 .

. Figure 6.31 Can ~n equivalence context be specified?

sec. b.::i t:::qwva1ence or conceptual schemas 6-46

CS 1 r_nay be defined in terms of CS2 by adding D2: Vxy(x has_phone y = x

has_phone1 y V x has_phone2 y). But there is no feature of CS 1 which can

provide a definition D 1 of the predicates in CS2. ~ t~i~ --~-~~-~_:_g~~- i,~_ .
"stronger" or more informative than CSl. Similarly, the captain-copilot

schema in Figure 6.29 is stronger than a schema with a single binary saying

that a flight has at most two pilots.. The stronger schemas have the added

advantage of having simple UCs, which enables the information to be stored in

the same table with other attributes of the key.

In such cases the designer will often choose the stronger schema. We now

set out some relevant schema implication theorems. To distinguish schema

. implication theorems from constraint implication theorems, the names of the

former start with "Irn".

lmFC1

1mFC2

0\-~ .. 8---.
I .I

I '
"' I

1;n

CoroJiary to lmFC1: if an equality constraint applies among roles

R
1
.1i; .. ,Rn.1 then R.1 has a frequency constraint of n.

lmFC3 Corollary to lmFC1: · if. roles R
1
.2, .. ,R~.2 ·are tnutually exclusive . and

each has a s.imple UC, then R.2 has a simple uc.

· Sometimes an equivalence, rather than just an implication result; can be

obtained by using additional context which enables each of the disjuncts to be

defined in terms of the other schema. For example, let us modify the

situation of Figure 6.31 so that globally, each telephone has exactly one

location-code which classifies it as a work or home phone. An equivalence may

now be specified as .. shown in Figure 6.32. From IX2 the subtypes are

exclusive and so are the roles . W.2 and H.2: we ·omit these exclusion

·constraints since they are implied. The textual constraint says that no

employee has two phoneswith the ·same]ocation code. The predicate dictionary ·

is: E = Employee, T = Telephone; WP = Workphone; 'HP = Homephone; P =
. .

h:ts_phone; W = has_worh.-phone; H = has_homephone; L = has_locationcode.

''""'-'· V.v l.C.lfUIVa/vl/1.-t::i Ul L'UIIL't:::f.JLUi::l.l l:iG//1:1[[/i::fS

,- ""\
{'w','h'}

' I _,..,

{ No emp. has 2 phones With the same locationcode }
Vx:yzuv(xPy & xPz & yjz & ylu & zlv-+ ui:v)

· VxryvP x = xL'w')
Vx(HP x = xl'h')

· Vx:y(xWy = xPy & yL'w')
Vx:y(xHy = xPy & yL'h')

o-47

. '

{'w'.:h'J '
....... ,

VxryvP x = xL'w')
· Vx(HP x = xL'h')

Vxy(xPy = xWy V xHy)

Figure 6.32 The additional contexi supports equivalence

In practice, the stn1cture of the ·additional context required for

equivalericc depends on the particular case, though the basic form in this

example is the most common. For simplicity, we specify our equivalence

theorems for those cases where the context can be provided as simply as in

this example;·described object types may be catered for in the usual way (we
-

give an example in the next chapter). The constants C
1

, •• ,C
71

are lexical or

·numeric. If the additional context is not required globally, thed<;>:signer may

deliberately weaken the schema by deleting this context.

EFCi

.· EFC2

.•,
c ~
- I

.;

1 ;ri

' \

8 t
J

·', c.,
_I

/

Vxyzuv(xRy & xRz & y:Fz & ySu & zSv ·-+ u:j=v)

Vx(Bix = xSci), i = 1 ton .

Vx(xRy= xR~ & ySci), i = 1 to n

·Corollary to EFCi: if an equality constraint applies among roles

R
1
:1, .. ,R

71
.i then R.i has a frequency constraint of n; and

conversely.

~-

sec. 6.3 Equivalence of conceptual schemas 6-48

EFC3 Corollary to EFC'1: if roles R
1
.2; .. ,Rn.2 each has a simple UC, then

_ R.2 has a simple UC; and conversely.

We now briefly discuss nesting/flattening .transformations. In NH89

(section 10.3) we extended the traditional treatment of these transformations

by conside:·in.;; the impac: of mandatory roles, and developing an algorithm

based on the degree of overlap of participating pair types. We have space

here only to· discuss a couple of examples. In the next chapter we discuss

some applic2.tions of the overlap algorithm. The following theorems are among

the more important in this class, and -should be sufficient to illustrate the

- relevant forinalization issues.

ENF1.

Vxy[xTy '-" 3zw(x = (z,w) & Rzwy)J Vxyz(Rxyz = (x,y)Tz)

In ou-r formalization, since the pair function is generic there is no need

to introduc-e a special function or predi';ate to handle specific cases of

ne~}ing, and hence no separate clause is needed to translate_ the embedded pan

in~the fiatteDf"' version.

- -

ENF2 __ Corollai}' to ENF'1: if an equality constraint --exists between -S and

R.1-2 then the role T.1 is mandatory; and conversely.

If it is not desired to actually store S in the flattened version, then

it may. be specified instead as a derivation rule. This is set out as ENF2*.

Compare this with ENF2.

ENF2*

Vxy[xTy = 3zw(x = (z,w) & Rzwy)J

_ Vxy(xSy = 3z Rxyz)

Vxyz(fi;.;.yz = (x,y)TZ}

sec. 6.3 Equivalence of conceptual schemas 6-49

The next theorem discusses the impact of uniqueness constraints.

ENF3 Corollary to ENFi and ENF2*: if a UC exactly spans-8..1.:2-..tben-a. __ _

simple UC spans T.1; and conversely.

Further nesting/flattening theorems and several examples are discussed in

NH89 (section 10.3). As discussed later, we genera1ly prefer the flattened

version unless the parr type plays more than one role or at least one optional

role.

The last of the four traditional NIAM schema transformations deals with

the use of a compositely described object type (see NH89, section 10.4). This

is analogous to nesting/flattening for the mandatory role case. The following

two theorems in this category are representative. For naming purposes, we now·

include these within a more general class of transformations we call object

type addition/deletion. ·

EOA1

Vxy[xUy = 3zw{xSz & xTw & Rzwy)] Vxyz[Rxyz = 3w(wSx & wTy & wUz)]

.· . .

In· practice, if the ·left-hand option is chosen, D is .deleted unless there

is a good reason for retaining it (e.g. if D plays other roles globally).

EOA2 Corollary to EOA i: if a UC exactly spans R.1-2 then a simple UC

spans U.1; and conversely.

Otject types may be introduced simply because the designer finds it

conceptU3Jly easier to think i:1 terms of them, ·or because they play· other·

roles in the global schema. :'h~s may even happen with simply described types.·

For example, the fact that Reagan has a gender with code 'm' could be handled

as a simple binary between Person and Gendercode. But usually one wishes to

think in terms of Gender: in this case the :ilfonnation is hanr:P·~-'~ as two.

s·ec. b.J 1:::qwva1ence ot conceptual schemas 6-50

binaries (one fact and one reference). Introducing a new described object

type leads to a stronger schema, as indicated in the following schema

implication theorem ..

Im0A1

Vxy[xTy = 3z(xRz & zSy)]

We briefly note another class of schema equivalences dealing with choice

of derived predicat~, according to the degrees of freedom available: · For

example, the schemas in Figures 5.24 and 5.25 are equivalent. What is perhaps

surprising is that the alternative derivation rules are not equivalent by

themselves. To obtain equivalence, the complete constraint patterns'shown in
these schemas must be included. Though not included in this thesis, the

formal. proof (by deduction tree) is instructive in highlighting the part

played by each constraint to produce the equivalence.

Another practical example. of this kind is discussed in NH89 (p. 168),

The basic schema is set out in Figure 6.33. Here a subject may be identified

either by its subject code (e.g .. "CS112") or by the combination of its

discipline, level and serial#. However the subject code is just the

concatenation of the disciplinecode, levelcode and serial#. So one has the

option ofmaking the subjectcode predicate derived or of making all the other

three predicates derived (mandatory role dots on the derived roles are implied

and are bes~' omitted). Conceptually, either choice may be taken, and our
''

· formalization. of String operations and reference enables the derivation rules

to be specified without difficulty. The two different schemas resulting can

. be formally proved to be equivalent.

--- - ...
(fubjectcod~< aaddd> _____

. . .
. . .

. Figure 6.33 · A basis for two choices of primar)i reference scheme .

sec. 6.3 EquivalencE. of conceptual schemas 6-51

One new equivalence theorem that we will make use of in the next chapter

is set out as ESSl. It deals with the case where binary predicates with

simple keys are bound by a pairwise subset constraint .f:r2.!_Jl IFD2 and nJ~iL
follows that R.l is a simple key. The rest of the proof is obvious. In

practice the transformation from: left to right is usually preferred.

ESS1

Vx(Tx = 3y xRy) Vxy(xRy = xSy & Tx) .

Other equivalence theorems have been developed (e.g. to transform·

between figures 5.15 and 5.16), but there is no space in this thesis for a

full account of our work in this regard. The main contribution of this

section has been the provision of a rigorous foundation for specifying and

proving theorems concerning schema equivalence and implication.

/-1

7 Some applications to relational data

base systems

7.1 The ONF algorithm: constraint mapping

In this chapter we discuss some practical uses of conceptua.J. modelling in the

· formulation of schemas to be implemented in relational database systems. This

section indicates how conceptual constraints may be mapped onto relational

constraints. The . next section illustrates various ways in which the

conceptual schema may be optimized before the relational mapping takes place.

In the fmal section, a global optimization procedure is outlined for

selecting transformations to apply to a global conceptual schema.

A relational schema specifies the UoD in terms of constructs supported by

relational database systems. We assume the reader is familiar with relational

database systems, and SQL in particular. Relational schemas differ from NIAM

. conceptual schemas in several ways. In a relational schema, fact types are

often compound, and may include null values. The roles of these predicates

(table types) are given attribute (column) names. Object types are called

domains,. but few systems provi(le support for domains other than lexical, ·

.numeric, date and time. General subcyping is not directly supported, but

subtype constraints may be coded as procedures.

The distinction between stored and derived fact types is important for

relational sy~tems. Stored fact types (base tables) may be used for updates.

and queries.' Derived fact types coded as procedures can be used only for

queries. Some derived fact types may be defined as views (virtual tables):

these may be queried but only in simple cases can these be updated (e.g. views

defined in terms of a join are non-updatable).-, Some constraints may be

enforced within base table and index definitions, but many constraints need to
. . .

be coded as procedmes. Typically, relational database systems do not support .

recursion, so. recursively derived fact types (e.g. ancestorhood, parts

explosion) are usually handled by embedding the system within a recursive

.language (e.g~ Prolog).
' .

):n contrast to traditipn:il :1ormalization approaches, NlAM first produces

a conceptual schema and then maps this down onto a relational schema. In NH89

·.-.

sec. 7. 1 The ONF algorithm: constraint mapping 7-2

· (pp. 247-273) we. discussed the mapping process in detail; we have space here

only for a brief treatment, focussing on constraint mapping.

Although not discussed here, a rigorous treatment of.this.mapping.may .. be ... ____ :

developed within our (om1alization by extending our conceptual framework to

cater for null values in the relational sense. Basically this can be done by

allowing the null object to play any non-referential conceptual role, and

providing appropriate semantics~

ln NIAJv1, a conceptual schema has its · stored .fact types grouped into

relational base tables via the ONF (optimal normal fonn) algorithm. Each

fact type is grouped into only one table (hence no redundancy). Composite

· keys map to separate tables. Simple keys attached to the same object type are

grouped into the saine table, keyed on the object type identifier. Each·

remaining fact type maps onto a separate table. _With 1:1 fact types a choice

is made favouring fewer null values. Subtypes are absorbed into · their

primitive supertypes before mapping. We make no claim to originating this

algorithm, which has long been used w!thin NIAM and other methodologies.

Provided the conceptual fact types are elementary, the .tables produced

by the ONF algorithm are in 5th normal form. The term "optimal normal form" ·

was used by Nijssen to emphasize that not only are the tables in 5NF but also

. some optimizationhas been achieved (e.g. a effort has been made to minimize
. .

the niimber of tables). The algorithm can be refined further to result in
. . .

fewer tables for certain 1: 1 cases, but we do not discuss this refinement in

this thesis.

The.· .OJ'..i"'F algorithm applies to . global schemas. It also applies to

subschemas so lorig as rio object type in the subschema has an additional simple.

key attached :lri the.global schema. While the ONF algorithm providesa simple,

· safe and reasonably efficient means of grouping fact types intQ tables, it

· fails to specify how constraints are :q1apped (except for keys). Apart from our

own work, we know of no analysis which augments the ONF algorithm by

comprehensive constraint mapping. · Various aspects of constraint mapping

·were introduced in NH89. We now summarize and expand on this work.

·In specifying relational schemas, we use a shoi1~hand notation which

includes constraint markers. Many. of the conceptual- notations are· used or

adapted; in some cases new notations are used. An intra"'table uniqueness

constraint is shown by underlining the names of co~umns spanned by the UC;

aJ.Towheads are added if the colum::1s are not contiguous. If there is r:1ore than

one qndidate key; the primary key is doubly underlined. Equality constraints
,• M ' • 0 •

are shown as dotted lines without arrowheads.

sec. 7. 1 The ONF a/godthm: constraint mapping · 7-3

While most NIAM constraints map directly to relational constraints,

special. treatment is required for mandatory roles since object types are not

directly supported. A column is assumed lr1:9:!Jdci!Q!Y. to_i1s.Ja.ble (i.e. not

null) unless an optional marker "OP" is appended. Mandatory and optional

roles of the same object type that map to columns· of the same table are

declared mandatory and optional, respectively, for that table. When two roles

played by the same object type map to columns of different tables, proceed as

follows: if both roles are mandatory, specify an equality constraint. between

their target columns; if only one role is optional specify a subset constraint

from its target column to the target column of the other.

To illustrate the b~sic idea of constraint mapping, consider the output

report shown in Table 7.1. Here the codes "C" and "S" denote the possible

coal kinds (coking and ·Steaming), and "?" denotes a null value, indicating

that for some reason or other an actual value is not recorded.

mine country yr_opened coal kind reseNes (Mt)

Lucky USA 1985 c 120
s 120

Rocky USA ? c 395
s 0

Newie UK .? ? ?

Table 7.1 Extract from a report about coal mines

Assuming the populatioiL,_.of, this ·table is significant, one way of .

conceptually schematizing this is shown in Figure 7.1.

. . .. has reserves of ... in amount ...

Figure 7.1 A conceptual schema for Table 7.1

Using the ONF algorithm, the three conceptnc.l fact types map into two

tables as shown_ in Figure 7.2, with keys as indicated. The mandatory role

constraint is captured by the (default) declaration. that columns mine and

country are mandatory for table Coalmine, together with the subset constraint

from CoalReserves.mine to Coalmine.mine.

sec. /.1 1 ne UNt- a1gomnm: constramt mapping 7-4

Notice also. that the frequency constraint of 2 and the enumeration

constraint ('C','S'} carry directly across. Tho11gh not shown here, the

syntactic data types for the columns must be specified to be consistent with

the reference schemes: so mine and country are lexical (e.g. varchar) and

yr_opened and reserves are numeric (e.g. smallint). In NH89 we gave examples

of specifying syntactic domain constraints below the column names (e.g. a

conceptual constraint of <c20> on Countrycode ·may be written as vc20,

meaning vru,-char(20)).

Coalmine (mine, country, yr_opened OP) · ·-.,.-
CoaiReselves (mine, coalkind, reseNes)

2 {'C','S'}

Figure 7.2 A relational schema for Table 7.1

Once the relational schema has been specified in this way, it is

translated into code (table definitions, procedures etc;) understood by the

particular database management system (DBMS). Both the mapping from the

conceptual to the abbreviated relational schema, and the subsequent mapping to

· the DBMS code can be fully automated; However, the latter mapping depends to

varying degrees on the target relational DBMS. Figure 7.3 illustrates the

mapping of the schema in Figure 7.2 to an SQL system based on extended ANSI

SQL (see Date 1987, ch. 11), assuming appropriate syntactic domains have been

specified.
.

The code for the frequen~y constraint assertion is not standard, but this

kind of facility is provided in some versions of SQL. In basic SQL the

constraint can be enforced by storing the embedded select comm~d as a ro~tine

and running this each-time an update. is" attempted (with autocommit off). For

efficiency reasons, if many elementary updates involving such constraints are

issued, they are best processed as a bulk transaction.

Many current SQL systems do not even support the ANSI extensions used

here. With such systems the primary key constraint can be enforced either by

creating a unique index or by running a query to check for eritry groups having
. . .

count(*) above l. The subset constraint expressed in the references clause

can also be enforced. by ch;;cki !1g that no rows are returned by the follovr'ing

query: select mine from CoalReserves wher:: mine not in (select mine from

Coalmine). This is an example of "referential integrity". A similar approach

may be used to code equality and exclusion constraints.

sec. 7. 1 The ONF algorithm: constraint mapping

create table Coalmine
mine varchar(20) not null primary key,
country varchar(20) not null,
yr.:...opened smallint)

create table CoaiReserves
mine varchar(20) not null references Coa!mlne,
coal kind char not nul!

check (Coalreserves.coalkind in ('C','S')),
reserves smalfint . not null,
primary J<ey (mine, coalkind))

on insert, delete, update of Coal Reserves
if exists ·

(select mine from CoaiReserves
group by rr11ne

having count(*) <> 2)
then cancel,

print 'Rejected: each mine must occur exactly 2 times'

Figure 7.3 Extended SQL code for the schema of Figure 7.2

7-5

Intra-table uniqueness constraints other than those on a primary key are

specified in extended ANSI SQL at table creation time by prepending the

keyword unique to the column list spanned by the uc. Alternatively, the .

unique index or group count approach may be used. Inter-table uniqueness

constraints may be enforced by checking that no rows are returned when the ·

tables are.joined and the relevant group count is specifiedto be above 1. An

example from the next section includes a UC between Assigned.subject and

Instructs.student where the join attribute is lecturer: this UC may be coded

by checking that the following query retlli"TTS the null set.

select student, subject from Assigned, Instructs

where Assigned.lecturer = lnstructs.lecturer

group by student, subject having count(*) > 1

The enforcement of irreflexivity is very efficient since this is a

·~restriction predicate", i.e. the constraint can be teste~· for a given row by

examining that row alone. Hence, in extended ANSI SQL this may be specified

as a check clause. For example, if the relation Examines (examiner,

candidate), where the columns are defined over the same domain (say

Academic), is irreflexive this constraint could be coded as:

check (Examines.examiner <> Examines.candidate)

sec. 7. 1 The ONF algorithm: constraint mapping 7-6

In basic SQL, this constraint may be enforced by check~ng for a null return

from: select *.from Examines where examiner = candidate.

Asymmetry and intransitivity constraints may b~ ~~forced using correlated __ ...

subqueries. For example, the relation Father_of (father, child) is both .

asymmetric and intransitive: these constraints may respectively be enforced by

checking that the following queri~;;;:; return the null set:

{ asymmetry check }

select* from Father of X
where exists

· (select * from Father of

where father = X.child and child = X.father)

{ intransitivity check }

select * from F;:;ther of X

where exists

(select* from Father_of Y

where father = X.child and exists

(select* froin Father_of

where father = X.father and child = Y.child))

The basic approach of checking for a null return from the relevant query

can be used to code the relational version of . every NIAM conceptual

constraint, including subtyping, that we have discussed. The coding is

straightfor.va:rd, but we discuss no further cases here.

Database design workbenches are available which produce relational table

definitions from higher level specifications. Some automated design aids even

generate code for a number of basic constraint types, including referential

integrity (e.g. see Casanova & Tucherrnan 1988). However, we know of no

software product which performs a mapping of NIAM constraints to the extent

discussed here. We plan to implement such a mapper in the near future.

sec. 7.2 Conceptual schema optimize:zion 7-7

7.2 Conceptual schema optimization

Recent work by Falkenberg (1988) argues for deterrriinistic modelling, in

. which each given UoD has only one "correct" conceptual·schema::--Whil"eour ··

approach does include default guidelines for selecting schema trans

formations, it sdi :caves a reasonable amount of freedom to the designer in

modelling the t:,,D (cf. Kent 1982). In this section we discuss the notion of

"qptimizingu a conceptual schema before applying the ONF mapping. The next

section o-utlines a procedure for optimizing a global schema. · It is beyond the

scope of this thesis to provide a complete treatment of this topic.

We allow that the same UoD may be portrayed by different, but equivalent,

conceptual scherru•.< These may produce different relational schemas when the

ONF mapping is performed. Not only the width of the tables but also the

number of tables may differ. For.-~ given application or expected query /update

pattern, one of these relational schemas will be most suitable. One could

start with any of these relational schemas and then perform relational

transformations to improve the efficiency.

However, rather than perfon.;:l all the optumzation· at the ·relational

level, we argue that it is better to perform preliminary optimization at the

conceptual le1·d by transfo:r:rr.ing the conceptual schema into a version wrnch

·yields a better ONF map. The higher level semantics are easier to work wj_1:~,

. the restriction to elementary fact types simplifies the transformati~n steps,

and the ONF algorithm is kept simple. Of course, further -optimization may be

applied later (e.g. tuning with controlled redundancy). A somewhat similar.

approach in the context of ER modelling has been recommended by Teorey,

Yang anJ Fry (1986 p. 220).

Thus, although optimization is not strictly an is::uc at the conceptual

level, once it is decided that a relational DBMS will be used .and an overview . . .

of the expected query/update pattern is available, there is much to be gained

by optimizing ·the con;-eptual schema for. this situation. N0!e that

"optimiza:iJn" is. a relative term: it is always possible to find a

.•. query/update pattem to mak:t any schema from a class of equivalent schemas the

most efficient for that pattern.

However, our default guidelines are designed to favour conceptual

schemaswhich provide an ONF map withfewer tables. This reduces the number

of potential table joins,. thus leading to faster data retrieval for, as well

as simplifying the formulation of, queries which would have otherwiserequired

3-dditional joins. In addition, updates which formerly involved inter-table .

constraints may be facilitated by conversion to intra-table constraints.

We gave one example of conceptual optimization in NH89 (pp. 226-7). As a

further example, consider the schema of Figure 7.1 (see previous section).

The composite key on the ternary requires a separate table in the O:NF map.

Because of the enumerated type constraint-·on·--Goal:kind-we·-can-replace this

ternary with two binaries. Using theorems EBT2 and RBT3 we obtain the

alternative conceptual schema shown in Figure 7 .4.

is located in has coking reserves of

opened in has steaming reserves of

Figure 7.4 An optimized conceptual schema for Table 7.1

Instead of a composite key we now have two simple keys atta.::hed to an

object type (Mine) which already has a simple key attached: so the new

binaries can be grouped into the table which records attributes of Mine. When

input to the ONF algorithm this results in the relational schema of Figure

7.5. The equality constraint line between the "OP"s indicates equality

between the null value patterns.

- / r-~------,

Coalmine (mine,;country, yr_opened OP, c _ _:reserves OP, s_reserves 0P)

Figure 7.5 _ . The relational schema obtained from Figure 7.4

. For niost situations the relatio:qal schema of Figure 7.5 is more efficient

than that of Figure 7 .2. _ Instead of two tables we have just one table. So

queries that fom1erly required a join of two tables can now be specified in

tenns of a single table. As a default guideline we select an equivalence

transform (or an implication transfo:rrll if we agree to the specified loss or

gain ofinforrn:...tion) if we thereby replace a unobjectified.compositekey with

simple ~eys attached to the same object type. This selection criterion

becomes stronger if the object type already has other .simple keys attached; if

this is not the case, ·we at. least sim;::Jify some queries which would have

required a self-join.

- - ·- - ---- -,----· --··-···-,,..._-. ... -..

Note that the case where the composite key applies to an objectified

tuple type was excluded from the previous guideline. We now discuss an

example which illustrates the reason for this qualification, as well certain

other issues. Sometimes, using an. equivalence to· fransi6rii1ii-subschema

ptqduces an object type which is already present in the global schema. In

this case, care is required to avoid duplicating the object type op the schema

diagram and to ensure its mandatory role constraints are specified correctly.

Consider the UoD depicted by the schema of Figure 7 .6. Here animals are

classified as herbivores, carnivores or omnivores (h, c or o) according as

they eat just plants, just meat or both. For each zoo, the number of animals

in stock must be recorded. Optionally, for any given zoo and animal kind the

relevant food bill may be recorded.

has herbivore food bill

Figure 7~6 A conceptual schema about zoo animals

This schema has an 01'-.'F map with two tables, as shown:

3 {h,c,o}
Stock (zoo. animalkind,. quantity)

t

Food (zoo, h_foodbill OP, c_foodbiii OP, o_foodbill OP) ·

One way of improvingit is to use theorems EBT2 and EBT4 to replace the

ternary with thre"' ":""'andatory binaries with simple keys: Zoo· has herbivore

stock of Qty; Zoo has carnivore stock f Qty; Zoo has omnivore stock of Qty

Zoo then has six simple keys attached, so the revised conceptual schema maps

to just the following 01\"'F table:

Zoostock (zoo, herbivore;_qty, carnivore_qty, omnivore_qty, .

herbiv_foodbill OP, carniv_foodbi\1 OP, omniv_foodblll OP)

sec. 7.2 Conceptual schema optimization 7-iO

However, an alternative optimization strategy may be used. Using theorem

EBTl ', the three binaries of Figure 7.6 may be replaced by the ternary: Zoo

has Animalkind food bill of Money (see Figu~~_'?_:8):_ _____________ _

... has a ... stock of ...

Figure 7.7 An alternative conceptual schema for the Zoo UoD

This schema has an ONF map with two tables:

3 {h,c,o}
Stock (zoo, animal kind, quantity)

'

Food (zoo; animalkind, foodbiii)

But notice the implied subset constraint (this follows from theorem IS3):

the set of (Zoo; Animalkind) tuples in the new ternary is a subset of the

(Zoo, Animalkind) tuples in the original ternary. . This brings into play the

overlap algoritfun which we introduced in NH89 (pp. 233-8) to extend and

provide guidelines for the nesting/flattening transformations.

TI1e · b<is1c idea is to avoid duplicating the overlap of tuple ·sets by
. .

objectifying the union of the pair types involved. In this case the algorithm

di~tates that we absorb the su_bset ii]- the superset, which becomes objectified

with two atnibutes as shown in Figure 7.8.

has count

Figure 7.8 An alternative schema based on the overlap algorithm

sec. 7.'2. c;onceptuat schema optimization 7-11

· The overlap algorithm reduces the number of tables in the ONF map. In

this case, the schema of Figure 7.8 yields an ONF map with a single table,

keyed on the objectified pair type:

3 {h,c,o}

Zoostock (zoo, animalkind, quantity, foodbill OP)

In most cases, this relational schema would be regarded as preferable to the

single table option discussed earlier. Note that the role played by Zoo is

marked as mandatory iri Figure 7.8 since this constraint is to apply even if

Zoo plays other roles in the global schema: in such a case this mandatory role

constraint must l;>e captured by ·inter-table equality or subset constraints as

discussed earlier.

We now briefly discuss the general overlap algorithm. Though developed

independently, our algorithm has some aspects in common with other research

on merging: relational schemas (Navathe, Sashidhar & Elmasri, 1984). In

contrast to the approach of Falkenberg (1988), we permit nes~ing only when the

pair type plays more than one role, or an optional T()le. In other cases the

flattened approach is simpler and preferable, particularly with respect to

specification of uniqueness constraints.

Suppose that the schema includes two predicates which include role

s~quences that are compatible (i.e. the corresponding roles are played by the

same primitive object type), and each role sequence is exactly spanned by a

uniqueness constraint. Figure 7.9 pictures a simple but common case. where

each seqll:ence is a contiguous role pair. Let R and S denote the pair types

whose p~pulations are the sets of tuples constructed from the objects playing
',r· . ,

the roles 6£ each sequence. Since Rand _S are compir~ible it is meaningful to

compare their population: for each state.

s

R

Figur~ 7.9 The populations of R and S may be compared

sec. r .it vonceprua1 scnema opHmJzanon 7-12

Because of the uniqueness constraints, the possibility arises of

objectifying (making an explicit pair type from) RandS. In most cases Rand

S may overlap. While this is allowable, it is generally preferable to avoid
.. -··-·-·--·-·----

duplicating the intersection between R and S by absorbing each into their

union. A role sequence is partial if its predicate has other roles; otherwise

the role sequence is whole. The algorithm is summarized below: ..

Overlap algorithm

case overlap condition of

R n S = { }: { disjoint }
add an exclusion constraint;

R n s =1= { } & R g S & S g R: { proper overlap }
objectifY R U S, attach other roles as a mandatory disjunction;

R ~ S & H =!= S: · { R is a proper subset of S } · .
objectify S, attach other roles of S as mandatory and other roles
of R as optional (if R is whole replace it by an attached unary)

s ~ R & s =1= R: { Sls a proper subset of R}
objectify R, attac.h other roles of R as mandatory and other roles
of S as optional (if S is whole replace· it by an attached unary)

. R = S: { identity }

end.

if R or S is partial then objectify R U S and attach other roles
as mandatory, else collapse to one relation with rest derived.

In applying this algorithm the designer must choose names for the hew

predicates,· and accept the definitional context specified in our equivalence
. '··

theorems. An .~xample of the proper subset case was considered earlier (this

led to Figme 7 .8) .. As a.h examp1e of the identity case with partial role

pairs,. consider a schema comprising the two ternaries: :rvrine has measured coal

reserves of Coalldnd in· Mass; Mine has indicated coal reserves of Coalkind in

Mass. Moreover, kt there be an equality constraint between the embedded . ·

(Mine,Coalkind) populations for these fact types. We may now transform the·

schema into a nested version, objectifying the pair type formed from the

binary :rvrine has reserves of Coalkind, with mandatory roles attached for

measured and indicated amounts, (and an occurrence frequency of 2 for Mine's

role)~ This maps to a single ONF table whereas the flattened version maps to

two tables.

sec. 7.2 Conceptual schema optimization 7-13

As an example of proper overlap on whole relations, consider the two m:n

binaries Person plays Sport and Person coaches Sport, where the populations

may properly overlap. Tnis maps to an ONFsch~ri1?-_~_H_htWQ.!9:.hl~~' Fonn the

binary Person is_involved_in Sport and objectify its pairs, with the following

roles attached as a mandatory disjunction: Playing; Coaching. The new schema

maps to a single ONF table.

Other examples of this overlap algorithm are included in NH89. We now

consider some more complex cases of conceptual schema optimization. Table

· 7.2 is an output report for a UoD based on an extended version of a clas~;l:

and awkward problem (see Date 1986, p. 377). Here lecturers are assigned to

teach exactly one subject, though many may be assigned to teach the same

subject. For each subject taken, students have only one lecturer. Lecturers

n1ay teach only the subject which they have been assigned. A lecturer ~ight be

assigned a subject but not teach it(e.g. because of poor enrolments).

student subject

Brown A ·cs11s
Brown A CS1 02
Smith J CS113
Smith J CS1 02
WangJ CS113
? CS226

lecturer

Halpin
Rose
Nijssen
Rose
Halpin
Bloggs

Table 7.2 An output report

Let us assume that no lecturer can .be a student. Figure 7.10 indicateS

an attempt to schematize this UoD. For simplicity, reference modes are

omitted as they are not gennane to our discussion. The uniqueness constraint

mark~d by a broken bar is implied (frqm IFD2 and IU2), but is sh9wn in case it

is notobvious. · Prior to our analysis of constraint implication, this schema

would have been acc.eptable in NJ.A.\1.

is assigned

--e
+--- -- ...

... teaches ... to ...

Figur:- 7.1C A first attempt to scherr,atize Table 7.2.

sec. 7.2 Conceptual schema optimization 7-14

However, from theorem IFD2, the combination of the subset constraint and

the uniqueness constraint on the binary implies an FD from the first to the

second role of the ternary, i.e. Lecturer functionally _c:l~-~~:r:r:J:lin~~SuQj_ec:;! in

this ternary. So the ternary should be split on Lecturer, resulting in Figure
. .

7.1 L The equality constraint _follows from ESCl, and the lower inter-

predicate uniqueness constraint from ESC5. Throughout the transformation

process we assume that the-old predicates may be retained as derivation rules

if desired (the precise form of these rules is given in the equivalence

theorems of the previous chapter).

is assigned.

Figure 7.11 Fact types are now elementary

Two implied constraints are shown. The simple UC on the new binary is

implied by the UC on the top binary and the subset constraint (theorem illl);

it is also impljed by ESC3. The upper inter-predicate UC is implied by the

other constraints (theorem ru4). Notice that the keys associated with the

subset constraint are now simple. Use of theorem ESS 1 now yields Figure 7.12.

The forme:rly implied inter-predicate umqueness constraint must now be

specified since it is no longer impljed.

is assigned

@

Figure 7.12 Theorem ESE< has been applied

sec. 7.2 Conceptual schema optimization 7-15

Now consider the equality constraint. The connection between equality

constraints and derivation rules has been discussed in earlier chapters. For

implementation purposes it is now convenient to -remo:ve-the-unm:y-frem-the ·

graphic schema by treating it as a derivation rule; if this rule is no longer

required it may simply be dropped. We are now left with the final version

(Figure 7.13).

is assigned

@

in&rEtJ-8
Figure 7.13 The final,. optimized.version

. This maps to the following ONF relational schema:

Assigned (-leGturer, subject)

t
~

lnsrructs (lecturer,· student)

The transformation from the original table. structure into this structure

is often used as an example of moving from 3rd normal form to Boyce-Codd

normal forill, at the expense of requiring inter-table constraints~ In the

previous section we indicated. how these constraints may be simply coded in

SQL. ,The main point of our discussion here is to illustrate how such

tran~f~rmations can be visualized .diagrc.mmatically and justified from the

fact-oriented approach.

It is well known that this particular problem can be neatly handled by

functional depcnd~nc~: theory. However one first has to translate the problem

into FD theory. Moreover, the process of solving problems in FD theory is.

often less intuitive and harder to visualize. ·. Minor changes in· constraint

patterns (e.g. mandatory roles and subset constraints) can significantly

increase the complexity of the treatment in FD theory. We believe the

approach developed .here pmmotes a high level understanding of such problems

as well as highlighting the impact of constraints on the fact ·types of

interest.

sec. 7.2 Conceptual schema optimization 7-16

In the previous chapter we discussed several other theorems for replacing

composite keys with simple keys. We conclude this section with an example of

using a frequency constraint equivalence on_ a homog~n.e.ou_s_fak.tJ;)~p_e. Consider

the conceptual schema of Figure 7 .14. The textual constraint is added below

the diagram since no graphic exists for it: here predicate symbols are

abbreviated to one letter.

as, it

TC1: { parents of tile same .ci1ild must differ in gender }
Vx:yzvwu

1
u

2
(xPz & yPz & x=/=y & xHv & vCu

1
& yHw & wCu

2
-+ u

1
=I= u

2
)

Figure 7.14 A conceptual schema before optimization

Because of the frequency constraint and the capacity to define subtypes

in terms of the has~ender predicate, we are able to use theorem EFCl

(actually its refere,nce mode variant) to replace the compositely keyed

parent_of predicate with a disjunction of two simply keyed predicates

(father_of and moiher_of). The result is shown in Figure 7.15 (the definition

of parertt_of has been mnitted).

\fx[Man x = ::Jy(x has_gende; i & y has_gendercode_ 'm')}

Vx[Woman x = ::Jy(x has_gender y & y has_gendercode 'f')] ·

Figure 7.15 The o~~imized vel.:;ion of the previous schema

Unlike the earlier schema, which produces two ONF tables, this schema

generates only ::n.e table when passed to the ONF. algorithm (see Figure 7 .16).

sec. 7.2 Conceptual schema optimization 7-17

The subtype constraints are especially awkward to specify graphically on the

relational schema: we use subtype arrows annotated by a restriction condition.

Their coding in SQL is however straightforward.

{'m', 'f'}
.....---as,it

Person (name, gender, father OP, mother OP)

~n~s~~t = ~,j . J
l '= ~e- - gender = 't' -

Figure 7.16 The relational schema obtained from Figure 7.15

In this section, optimization of conceptual schemas has been illustrated ·

with some simple examples. For further discussion of related design

optimization issues within the relational_ model, see Arnikam (1985) and

Diederich & Milton (1988). While the theory developed here can be

l.mmediately applied by the schema designer in a freehand form,-· it is clearly

desirable that for large scale schemas such optimization should be automated

· as much as possible~

we· believe that such a conceptual optimizer . should be interactive, if

only to draw upon the ability of humans to provide meaningful narn:es for new

predicates and to check for synonymous object types. HumaJ1S also have a role

to play in deciding when to consciously strengthen or weaken a schema by

adding or deleting definitional context. Ideally, the system should input a

conceptual schema arid expected query/update pattern, and output an optimized

conceptual schema as well as the corresponding relational schema in both
. .

shortened and coded form for the desired relational DBMS.

The task of providing ·automated support for· sophisticated conceptual

optimization of large global schemas is non-trivial. . The next section

indicates some of the problems which need to be addressed, and provides some
,: ··· .. r-- ..

genel-aJ guidance for selecting transformations on a global schema.

sec.· 7.3 Optimizing global conceptual scl1emas 7-18

7. 3 Optimizing global conceptual schemas

In the previous chapter, several schema equivalence and implication theorems

were specified. These allow a conceptual schema to be replacecfby -another

. which is contextually. equivalent, or at least an acceptable substitute. In

the latter case, the substitute schema may be. stronger or weaker than the

original,· but since the theorems identify any differences the resulting

infonnation gain or loss is under the conscious control of the designer.

· In the previous section, various examples were given of how such theorems

. may be used to optim!ze a conceptual schema for implementation in a relational

DBMS. However, because there are so many theorems and choices, the designer

who wish:s to optin:ize a large global conceptual schema in this way may need

some assistance (preferably automated), at least in the way of general

guidelines. In this section we briefly indicate some of the relevant issues,

. and suggest some gui~elines for optimizing a global schema. A comprehensive

treatment of this topic is beyond the scope of this thesis.

There are three factors which need to be considered when optimizing a

· conceptual sche~a: the target system; the query pattern; and the update

. pattern. The targetsyste1n i::; the DBMS in which the schema must ultimately be

implemented. This might be a relational system (e.g. DB2), an object-oriented

system (e.g. Iris), an extended relational system (e.g. PostGres), or even a

hierarchic or network database system.

To illustrate the influence of the target system on optimization

decisions, rec<h~ that in NIAM all conceptual fact types are elementary; in

particular, sets are not directly supported as conceptual objects. . For
. .

·example, on a cs we inight specify subject enrolments in terms of the m:n fact

type Student enrolled in Subject, but not as ar n:l fact type Student enrolled
. .

in SubjectSet. Suppose .we also record the n:1 fact type Student born on Date.

~Yhen mapping to a relational system, because enrolment is m:n, enrolment arid

birihdate facts must go in separate tables. In a system in which set valued

fields are suppon~d however, both kinds offact may go into the same table.

While ex tending 1\'IJ...M: to support the design of non-relational systems

(especially object-oriented· systems) is a interesting research topic, in this

thesis our treatment of optimization assumes the target system is relational.

The next optimization factor is the .query pattern. By this we mean the

kindS of questions '.Vhich the sy~;tem Will be expected tO answer, together With

statistical information about . the expected frequency and priority of these

questions. Mimmally, one needs an estimate of which queries will be issued

most often, and which queries (if any) require shorter response times.

sec. 7.3 Optimizing global conceptual schemas 7-19

Finally, the update pattern must be considered, i.e. the kinds,

frequencies and priorities of the expected insertions, ·deletions and

modifications to the database tables.

Although space issues are still of some importance, storage techilology

advances continue to offer dramatic increases in primary and secondary memory

at cheaper prices. Herice we focus our optimization efforts largely on

reducing the time required for responding to the expected query/update

pattern, especially the frequent/priority queries/updates (these are sometimes

called the "focussed transactions").

The continuing trend towards distributed database systems has added

considerably to the complexity of design optimization (e.g. by introducing

factors such as communication tirnes for message passing between sites, and

.local versus global query/update patterns). However, for this thesis our

optimization guidelines assume we are dealing with a single system.

For a given conce:rtual schema one can always produce a query/update

pattern for which the schema is already optimal. For example, map the CS to

its ONF tables. Then let each query take the form "select * from T", where T

is one of these tables, and let each update be performed on just one of the

tables (although the update aspect might be complicated by join constraints).

·with practical applications however, rimch more complex queries are

typically required. The queries which tend to consume the most time are those

that inYnlve joins or subqueries. Usually, it is more important to have rapid

response times for queries than for updates. Hence our default optimization

strategy. aims to rni1iimize the number of focussed queries which involve joins

or subqueries.

We first consider jains or subqueries on a single table. For example,

consider the ternary Degree in Year cost Money which records yearly fees for

full-time enrolment in degrees. Assume such fees must be recorded for the 3

years 1988-90. This entails that we must know the fees for all three years

before we can populate the fact type. Let the corresponding relational table

be FTfee(degree, year, fee). Queries such as "How much has th-~ PhD fee

·.increased from 1988 through 1990?" or "What was the average PhD fee for the

period 1988-90?"!equire operations between different rows of the base table.·

For example, the first query may be formulated in SQL using a self-join thus:

select A.fee - B.fee

from FTfee A, FTfee B

where A. year = 1990 and A. degree = 'PhD'

and B.year = 1988 and B.degree = 'PhD'

.. ,.~,_

---· , ._. -r-o.u,,._,,::J ::J'--'""' V'-/IIV'-'fJU..IUI ~VIIOIIIQ~ f-LU

Notice that the conceptual schema for this ternary fits the pattern of

the right-hand alternative in theorem EBTl ', as qualified by corollary EBT3.

In such. cases, if the focussed queries require a join or subquery, we suggest

that the ternary by replaced by binaries (see--feff:nanooption~of EBTl ''1 .

.. With the present example, this yields the binaries: Degree in i 988 cost Money;

· Degree in i 989 cost Money; Degree in i 990 cost Money. Let the ONF algorithm

group these into the table: FTfee(degree, fee88, fee89, fee90). The queries

maynow be specified in terms of operations on a single row. For example, the

fee increase is obtained from:

select fee90 - fee88
from FTfee
where degree= 'PhD'

Apart from being easier to formulate, the focussed queries are now faster

to execute since the requirement for a join or subquery has been -eliminated.

This example was trivial and clear-cut. Unfonunately, life is not always so

simple. Applying EBTl' to this case requires that a finite enumeration be

specified for Year. In our example, Year was restricted to the period 1988-

90. Fiist note that in a global schema, Year might play lots of other roles,

so this restriction to 1988-90 might not hold globally. However, so long as

· the years that play in the Fee predicate are restricted to this period (and

hence form a subrype Fee Year) we may still transform the ternary into three

binaries (though the object type B in the right-hand alternative of EBTl' must

now be .treated as a subtype .. note that the othe;:- enumerated type

transfomwtions may be treated similarly).

A more significant issue is the cardinality of the enumerared type.

Suppose we must record fees for the period 195L19?0. To apply the same
- .

transformation theoren1 in this case would generate 40 binaries, arid lead to a

relational table with 41 columns: Frfee -(degree, fee51; .. , fee90). I~stead

of a very deep table we now have a very wide table. We suggest that once a

specified upper cardinality limit (5, say) js exceeded, the dd:::.ult guidc.Lr_,:;

·- for transforming to binaries should be ov~rridden. Cenainly a large number

of binaries would make the CS awkward to view for humans, and a wide

relational table would also be awkward to view (lots of horizontal scrolling)

and more difficult to print (except in lands~ape mode). However, if one can

live with such viewing disadvantages; one might still choose to transfonn to

binanes to speed up the focussed queries.

AnothF.:r related issue is the stability of the enumeration constraint.

Suppose we need to store the enrolment fees for each year from some specified

sec. 7.3 Optimizing global conceptual schemas 7-21

start year to the current year. For example, in 1991 we might need to store

the fees for 1988~91, in 1992 the fees for 1988-92, and so on. Alternatively,

we might be interested in storing fees only for the lates~-~::::ye~__p~p()d. I11

our formalization of NIAM we ignored all problems associated with schema

evolutjon. But in practice one may need to address such problems.

If all years in the currently designated period must have fees recorded

then both the ternary and binary solutions are subject to schema. evolution.

However~ the changes . ') the ternary solution are less drastic (the enumeration

constraint and frequency constraint are changed) than for the binary solu::on

(a new binary fact type is introduced). In terms of the relational tables,

the binary solution requires either that an extra column be added each year or

that optional columns be added initially in anticipation). If it is not

·necessary that fees be recorded for all years in a given period, then clearly

the ternai)' solution is stable but the bina:ry solution is not: this a.dvantage

may be enough to outweigh concerns about poor performance with focussed

queries. These considerations are summarized in the following guideline.

Table Width Guideline (TWG):

if a subschema matches the form of the binary-ternary equivalence theorem· ·
. .

(EBTl or EBTl'), the enumeration cardinality is small, and focussed

queries on the ternary solution require comparisons between different

rows, then the binary solution should normally be chosen. · In other cases

the ternary solution may or may not be preferable.

The pre\·ious guideline attempts to reduce the number of focussed queries

involving joins or subqueries on the same table. However, the main potential

for optimization lies in minimizing the number of focussed queries which

require joins or subqueries on two or more tables. These kinds of queries

tend to be the slowest to execute. To specify a comprehensive lninimization

algorithm is a major Iesearch problem in itself. In this thesis we content

.. · ourselves with providing some general guidelines to help reduce the number of
"]-'.. .

'such queries. We make no claims as to the completeness of our suggested

procedure.

Suppose we have a large global conceptual schema which we wish to

optimize in the se11se of reducing the number of focussed queries involving

multi-table joins or subqueries. Our basic aim is to reshape the schema so

that, when passed to the ONF algorithm, it results in fewer tables so that,

wherever possible, focussed queries may now take place on single tabJes ra.ther

than multiple t:1.bles.

sec. t.::J upttmtzmg global conceptual schemas

•

.•

Here are some of the main questions we now need to address:

Which subschemas are to be selected for optimiz~~?n? ·-------········
For each subschema, which transformations should be applied?
In what order should these transformations-be performed?

7-22

In answering these questions we confine ourselves essential1y to the

schema equivalence and implication tborems discussed earlier in the thesis.

To answer the first question, recall that the ONF algorithm maps. each •xt

type with a composite key to a separate relational table (with the usual

qualification for compositely defined objects). There are two main situations

with the potential for reducing the number of composite keys: (l) composite

keys which are compatible; (2) object i:ypes with both a simple and a binary

k'?)' attached. These situations are summarized in Figure 7.17. In case 1 the

composite keys may be binary or longer, but their corresponding object types

must be compatible; being elementary, the predicates can have at most one

other role not included in the key. In case 2 the predicate with the

composite key.must be either binary or ternary.

case 1: case 2:

/II r: \
~I

.~
Figure 7.17 . Potential patterns for optimization

Hence we select candidate subschemas for optimization by seal·ching the

global schema for one of these two patterns. In preparation for this search,

we frrstflatten any nested fact types where the pair type plays only one role

-,,_-.and this role is mandatory.

If a case 1 pattern is found we immediately apply the overlap algorithm

to it (see section 7 .2). If the pair types overlap at all, then they are

replaced by using a single pa:r type, so the number of composite keys has been

reduced. Various examples of the overlap algorithm were cited earlier.

If, in the process of carrying out the optimization, a fact type arises

that match"'s rhe pattern of one of our splittability theorems then the split

designated by the theorem must take place. To illustrate this, as well as the

sec. 7.3 Optimizing global conceptual schemas 7-23

virtue of preliminary flattening, consider Figure 7.18 (which is based on an

example from Bernhard Thalheim).

Figure 7.18 The constraints enable substantial optimization

Because the role played by the objectified pair type is mandatory, the

nested R-S part should be flattened to a ternary V(a,b,c)._ Because of the

subset constraints and UCs, theorem IFD2 shows that in V we have the FDs: c ~

b a...'1d c.,~ a; So by IFD2 (or IU2) we have a ternary V(a,b,c) which splits on c
. -=

into V1(~,a) and V2(~,b) with an inter-predicate uniqueness constraint between

a and b . catering for the a,b constraint in V. Because of the equality

constraint between V
1
and T, and between V

2
and U, T andU may be specified as

derived predicates or sin:.t-lY deleted. This kaves. V
1

and V
2

as the only

predicates needing to be stured, so the ONF algorithm results in V
1

and V
2

being recc·;~bined into V(a,b,£)· So whereas before optimization the schema

. would have generated two tables with inter-table constraints, the optimized

schema maps to a single table.

Returning· to the optimization procedure for case 1, suppose that

flattening and the overlap algorithm have been app1ied where relevant, but

that the pair types do not overlap_ (first subcase of the overlap algorithm).

In this case, if the keys span whole predicates then, since they are

compatible and mutually exclusive, they match the pattern of the left..:hand

schemain theorem EET4: we should now apply this theorem by introducing a

further enumerated c.'Jject type, transforming to a single, ·longer fact type.

This again has the desired effect of reducing the number of composite keys.

Once case 1 optimizations have been completed, we turn to case 2. As it

stands, this schema pattern maps to two tables. Basically we search. for some

way to cDnvert the binmy-keyed fact type into one or l1vo binaries which are

simply keyed on A. If this can be done, the resulting subschema maps to one

table keyed on this object type instead of the original two tables. We now

summarize ways in which this might be achieved.

sec. 7.3 Optimizing global conceptual schemas 7-24

If the binary-keyed fact type is a binary then let the other object type

be B. We list two possibilities for transforming this case. If B has an

enumeration constraint of cardinality 2 then replace it with_an __ Qbjec.Ltype of

cardinality 3 including the "both" option, and replace the predicate with one

simply keyed on A (as discussed for Figure 6.20 -- this example may be

directly restated as a theorem).

If the compositely keyed binary has a frequency constraint of l;n on A's

role then, unless n is unacceptably large, transform it into n exclusive

binaries simply keyed on A by using theorem ImFCI or EFCI

Now consider case 2 where the compositely keyed fact type is a ternary.

Let the other object type involved in this key be B. We list two

possibilities for transforming this case. If B has an enumeration constraint .

of cardinality n then apply the relevant EBT theorem(s) to replace the ternary

with n hinaries simply keyed on A.

If the ternary has a frequency constraint of l;n on A's role then, if n

is small, transform it into n binaries simply ·keyed on A. This particular

transformation was not discussed earlier, but all it involves is a simple

extension of theorems ImFCl and EFCl from the binary to the ternary case.

This overall process is summarized by the fewer tables procedure (FTP),

so called because it aims to reduce the number of relational tables obtained

from the ONF map ..

Fewer Tables Procedure (FTP):

"1 Flatten any nested fact types where the p~ir type plays only one. role and

this role is mandatory.

2 Apply the. overlap algorithm to any pattern of compatible composite keys.

3. Use theorem EET 4 to transform~ any case of whole predicates which form

compatible, composite but exclusive keys to a single longer predicate.

4 For each case where an object type A has both a simple and binary key

attached, wh;;;re the other role of the binary key is played by 8:

if the fact type with the binary key is just a binary

then if B is constrained by {b
1
,b

2
} then apply theorem of Fig. 6.20

else if A's role with B has an FC of "1 ;n and n is small

then apply lmFC1 or EFC1

else { the binary-keyed fact type is a ternary }

if B is constrained by {b
1

, .. ,bn}

then apply relevant EST theorem(s)

else if A's role with 8 has an FC of 1 ;n and n is small

then apply ternary version of lmFC1 .or EFC"1

~c:c..;. '·" upwmLillfi fJIUUi::I.J c;unct:pruai scnemas· T-25

We illustrate the use ofFIP on one last example. Consider Figure 7.19,

which describes a UoD concerning postgraduate topics offered in the computer

science department at the University of Queensland. When passed to the ONF

algorithm this schema results in four tables.

is co-lecturer of

{sem 1 :sem2,yr}

Figure 7.19 This sub-optimal schema generates 4 ONF tables

Suppose a focussed query for this application is: list all topics (code

and title) together with their chief-lecturers, co-lecturers, actual pre

requisites and preferred· prerequisites. With the OJ\lF schema for Figure 7.19,

this qriery involves a join of 4 tables and hence will be shw to run.

Applying FIP to this schema results in two main changes. Step 3 of the

procedure transforms the two prere..Juisite fact types i~to the ternary: Topic

has Subject as prerequisite with Statuscod.e {'a','p'}. Note that .each topic .

must have an actual prerequisite: th~s feature is not captured by theorem EET4

and hertce must be added in ternarizing; since no NIAM graphic exists to .

express ~ton the ternary we add the abbreviated textual ~onstraint Vx[Tx -+

3yz(Hxyz & z='a '). This underlines the following two advantages of one

advantage of our. earlier formalization: we know exactly which features are

.-'i,,captured in applying a transformation theorem; additional features may be

-treated orthogonally.

The s~cond change to the schema results from applying Step 4 of the

procedure: this replaces the colecturer binary by two binaries simply keyed on

Topic: Lecturer is colecturerl ·of Topic; Lecturer. is colecturer2 of Topic.

The optimized schema results in just two ONF tables, leading to much faster

execution of focussed queries.

sec. 7.3 Optimizing global conceptual schemas 7-26

We recommend that the TWG guideline be used after the FTP procedure has

been completed. The optimization strategies presented in this section are by

no means comprehensive. We recommend the specification of more detailed

optimization strategies as a worthwhile research topic. A workbench to

provide automated support for schema optimization is currently in the planning

stage. Among other features, such a design tool should provide default

optimizations, explain its strategies (including the possible advantages and ·

·disadvantages of suggested changes), accept guidance from the designer on

information gain or loss as well as better identifiers, and allow the designer

to modify its ·optimization decisions and take a ·more active part in

controlling the transfoim~tions.

1:5-1

8 Conclusion

···•·· -----------

8.1 Sun1mary

This section summarizes what we believe tO the main achievements of this

thesis. The next section provides a suggested list of related topics for

future research .

. A prioritized sumrmiry of ten contributions was presented in section 1.2.

Rather than consider each of these individually, we group them under a few

general headings.

The bulk of the thesis has been concerned, in one way or another, with

the formalization of. information structures in NIAM. Building on· the

foundation of first order predicate logic, we constructed a formal theory

general enough to capture all static aspects of NIAM conceptual schemas. To

our knowledge, this is the first time that a tru.ly formal framework ::tas been

specified in which 1\TIAM theorems may be rigorously stated and proved.

This framework was used to clarify, refine and extend many different

areas in NIAM. · In particu:.ar, we believe our axiomatization and semantics for

lexical, numeric and described objects has at last provided an adequate

account of definite descriptions w·ithin the database context, and that olir use .

of contextual definitions to provide inter-translatable cons,ervative

extensions of alternative schemas has finally made sense of claims of

equivalence and implication in NIAM. Our treatment of derivai:ion rules has

clarified the connection between conceptual and implementation concerns, and

our orthogonal. approach to fmmalizing schemas, including local/global
. . . .

aspects, has facilitated anincremerital, inc:>dUlai approach to schema design.

\Vhile we consider this work on theoretical foundations to be. the rriost

valuable general contribution. in the long tt:lm, of the thesis, many· new

results deriving from this wo;:k have been presented. These include new

theorems on constraint implicatior, schema equivalence and schema
..

r,

- i implication, as well as new results on satisfiability and schema formation
(/

.rules.

With regard to the implementation of conceptual schemas in relational

.database systems, the ONF algorithm has been augmented with constraint

mappin;, "md procedures have been presented for optimizing the conceptual

schema p1ior to executing this algorithm.

sec. 8.2 Topics for future research 8-2

We hope to have demonstrated within the thesis that NIAM, in the extended

form presented here, provides a knowledge base design methodology that is

both intuitively simple and rigorously1 grounded. Moreov.er ___ yy_c;_,.J:r.\.lsl_thaL

justification has been provided for the following comment by Dr. E. F. Codd,

the founder of the relational model, who questioned a database product

__ designer about support· for the existential quantifier, only to receive _the

reply, "I often get questions of a philosophical nature, but this is the first

time I've had a question pertaining to existential philosophy":

I thought, "what is this data base field doing if- the product
designers don't know anything about predicate logic?" I feel
predicate logic is an essential tool.
(Codd, quoted in Rapaport 1988)

8.2 Topics for future research

In relation to the subject matter of this thesis, the following research

topics are suggested as worthy of future investigation. The sugge$ted

implementation modules would complement one another in a comprehensive

knowledge base design workbench.

1 Extend the formalization to include dynamic constraints (transition

constraints). Temporal logic provides one promising approach to this

area.

2 Identify further constraint patterns which are only . trivially

satisfiable, and compile a more con1prehensive list of conceptual schema

formation rules (see sec. 6.1)

3 Specify a comprehensive procedure for merging subschemas (sec. 6.1).

4 Develop fU:nLer constraint implication theorems (sec. 6.2), incorporating

relevant existing work from other methodologies (e.g. functional

dependency theory).

5 Develop further useful theorems concerning equivalences and implications

between conceptual schemas (sec 6.3). ·

. !>
(

(__
i

sec. 8.2 Topics tor future research 8-3

6 Implement a: mapper for translating a conceptual schema into a relational

schema in various SQL systems, including complete mapping of constraints · ·

(sec. 7.1).

7 Develop further guidelines for optimizing conceptual schemas by

transformation prior t;:; the 01\iF map (sees 7.2-3).

8 Implement a conceptual schema design workbench, capable of supporting

conceptua: optimization.

9 Implement a computer aided environment for reasoning about conceptual
schemas (Appendix ll).

10 Explore the connections between NIAM and other approaches, such as

object-oriented databases, ER modelling (Appendix III), dependency

theory, and distributed databases .

Appendices

A-1

Appendix I: The nature and purpose of formalization

·As background, this appendix provides a brief overview of the forrnaJization

process in general: what it is and why it should be performed. Since our

approach is standard, this review is confined to a brief sketch of re;.;\ u.nt

ideas. fm1her details may be found in standard works, for example Hunter

(197]), Bu.rwise (ed. 1977), arid CLang and Keisler (1977).

A language is formalif and only if it can be defined without reference

to ail;' interpretation of its formulas (whose well-formedness is decidable). A

forma! system comprises a formal language together with a deductive apparatus

(for which the syntactic weD-formedness of proofs is decidable). Vlithin the.

gene:.:-d theory of semiotic (stedy of signs), fom1al systems can be treated

purely as a. matter of syntax (signs as unintP.rpreted objects) rather than

semantics ("meanings" and values of ~lgns) or pragmatics (intended use of

signs). Syntax includes the definition of the formal language and proof

theory. Before a formal system is applied to a real world problem,

approp:h.te s~mantics need t" l)e specified; this brings in model tteory (the

study of interpretations of for.nallanguages).

Aformal language may be identified with its set of wffs (we:i.l formed

formulas:· it has a vocab:::lary and a set a formation rules. The vocabulary

compn5=es a set of primitive symbols, and optionally a set of defined ."ymbols

together with the relevant definitions. The formation rules specify how wff~

may . be constructed from the primitive symbols. Programming and logic

provide many examples o.- l'ormallanguages.

Semantics may befo:mal or informal. An information sy::::crn deals only

with folT"'~' semantics: defined syri?-bols have an intension provided by their

definition.:, but the "meaning" of primitive predicates is given by their

possible extensions (relations over formal objects).· In contrast, humans mC~y
interpret formal objects in terms of the real world and may attach subjective

intensir~~ meaning to primitives.

P':oof theory is the study of formal systems without reference. to

interpretation. It deals with the deductive apparatus of formal systems. A

deductive apparatus is a set of axiums and/or inference rules. Axioms or

premises are simply starting fGimt:la~ rather than "ob. :Jus t'"uths'' (ind·~ed the

notion of truth is 0'"->ide the scope of proof theory). Inference rules (or

transformation rules) licence the derivation of some formulas from others.

'

Appendix I The nature and purpose of formalization A-2

Proof theory is a purely syntactic game. A proof is a finite sequence of

formulas each of which is either an axiom or an immediate consequence of

earlier formulas by application of the inference rulesA .. theorem_is_either...

an axiom, or a formula for which a proof exists. In contrast to our usage,

some authors don't count axioms as theorems (e.g. Hughes & Cresswelll968, p.

16).

An axiomatic system has axioms, and usually a very few inference rules.

A natural aeuuction or axiomless system has no axioms but does have inference

rules (usually several). Axiomatic systems are usually better for proofs of

metatheorems (proofs about the system). For simple systems (e.g.

propositional logic) deduction systems are usually better for proofs in the

system. For complex systems such as set theory and NIAM knowledge bases,

proofs-in are facilitated by axiom: :md several inference rules.

Model theory or semantics deals with interpretations of formal languages.

Its concepts include truth, semantic consequence and logical validity. A
model of a set of formulas is an interpretation in which every formula in the

set is true. A countennodel is an interpretation in which at least one

formula is false. A formula is a logical truth iff it is true in all

interpretations. An argument is a set of propositions one of which (the

conclusion) is claimed to follow from the others (the premises). An argument

is valid iff in each interpretation in which the premises are true, so is the

conclusion .

. Metatheory is tre theory of formal languages, formal systems and their

interprr•·''~,..,'1S. · The object I::mguage is the language that is the object of

study. The metalanguage is the language used to describe the object language.

In Australia English is used as the metalanguage to study a "foreign object

language, e.g. Japanese. When studying a formal object language, the

· metalanguage is often English supplemented by logic and set theory notations.

A theorem {n or of a formal system is a formula with a (syntactic) proof,

and has no meaning as such. Informally, a metatheorem (theorem about a

· · formal system)_ is a true, mea::1ingful stz.tement ab::mt the system, expressed in

the metalanguage.

; Given a set of fo:rmulae in the object language, the metatheory examines

such features as consistency, soundness, completeness, decidability and

independence. A systemS is simply consistent iff for no formula A of S are

bo.tl. .4 and the negation of A theorems of S. A system S is absolurely

consistent iff some formula vf Sis not a tl1Forem of S.

/

Appendix I The nature and purpose of formalization A-3

A system S is sound iff all its theorems are logical truths of S. An

inference rule A
1
.Aj:C is sound iff in every interpretation in which A

1
.An

are true so is C. A system S is (weakly) complete iff al1 ... i!~JQg!_~_a.L!futh~

are theorems of S. We ignore other notions of completeness. A systemS is

decidable iff there is an algorithm to decide for each fommla ofS whether it

is a theorem of S. An axiom A of a system S is independent of the other

axioms iff it cannot be proved from S -A (i.e. S with A removed). A non

independent axiom is redundant. Redundancy simplifies proofs in the system

but complicates proofs about the system

Two systems are isomorphic iff they have the same underlying structure.

Theorems in one system can then be mapped onto theorems of the other, e.g. the

isomo:;:-phism between propositional calculus and set theory enables mapping

between p V. ""P = F and A n A' = { } . Mapping between formal systems often

leads to practical efficiencies. For instance the numeric expression (42 X

93Y can be mapped via the logarithm transformation onto the logarithmic

system as (log 42 + log 93) x 5: this expression can be easily evaluated and

. the result mapped back via the antilog transformatiot1 to provide the solution

in the original system.

Mapping between inf~m1al and formal systems can also have advantages.

Roughly speaking, formal logic and pure mathematics involve the syntactic

development of abstract systems, physical science aims to· discover

isomorphisms between various aspects of physical reality and abstract systems, ·

and applied logic/mathematics pragmatically uses the ·isomorphisms so

disco':~"'"':'d, For example, consider Euclidean geon1etry: formally we may test

its axioms for consistency and derive theorems; but whether our space-time

continuum i~ Euclidean is a question for physics, not mathematics.

Formalization can help to explain and clarify difficult aspects of the

real ·..vorld, simplify the solution . of real world problems, guard against

logical error;, and enable new consequences to be deduced. Such formalization

is necessary if even some aspects of the orif'inal tasks from the real world

are to be coinputerized.

•;' -I
'

A-4

Appendix II: Sa1nple proofs

In this appendix, proofs are by deduction tree$. Thi~ 1Jl~tho.d_GQ_nJbjn~s trees
(semantic tableaux) with natural deduction. Background on trees and natural
deduction is given in Halpin & Girle (1981). Standard inference rules may be
used to make deductions, and ther;:;by shonen the proof and reduce branching.
Branching can be entirely eliminated by us~ of conditional proof if desired.
Formulae . are ticked (I') when replaced by equivalent fonm1lae. The
justification column on the. right annotates the proof; Lu::nbers here cite lines
used for this step; other abbreviations ~ ~1dicaJe tht :f'rJ:T'lUl:' status, or rules
used, e.g.

p Premise Ul Universal Instantiation
c Conclusion Sl Substitutivity of ldenticals
NC Nege.ted Conclusion DN Double Negation
PC Propositional Calculus tree rule AA Affirm the Antecprle'lt
ON Quantifier Negation (i.e. Modus Ponens)
El Exister.lial Instantiation AB Affirm one side of a Biconditional

Theorem: The following CS (Figure 6.1, p. 6-2) is not strongly satisf1able

Proof 1:

This fo1Jow~ since th~ '~'eaches predicat':' cannot be consistently populated, as

shown below. We abbreviate this predicate as T, and translate only the

relevant part of the cs.

I' 1 3xy xTy Populate T

2 Vxyz(xTy & xTz -t y = z) C2
3 'vxy[x1y-. 3z(xT2.. & y =f: z)] C1 conjunct
4 aTb 1 El

5 aTb -. 3z(aTz & b =f: z) 3 Ul
I' 6 3z(aTz & b =/: z) -4,5 AA

I' 7 aTe & b =/: e 6 El
E' ~-r- 7 PC '·
9 b::r=::: 7 PC

10 aTb & aTe 4 b = r; 2 Ul
11 aTb & aTe 4,8 conj

12 ·b = e i0,11 AA
X 9,i2

Appendix II Sample proots A-5

Theorem:If A plays r
1

and r
2

, and r
1

is mandatory then a subset

constraint from r2 to r
1

is implied (p~ 6-9, theorem ISl), i.e.

Strictly speal..'ing, there is a result of this form for each choice of A,

r 1 and r
2

• The proof-scheme may be expressed in agonizing, low level detail

by selecting arbitrary predicates R and S (not necessarily distinct) of

arities n and m, arbitrary role positions i and j, and expanding "x plays r
1

"

and "x plays r
2

" as "x E R.i" and "x E S.j", whiCh expand as ''3x
1

•• xn(Rx
1

•• xn

& - \" d " (Rx & -)" . H . . fr . x - xi, liD 3x1 •• xm 1 •• xm x - xm . . owever, smce x IS ee m

these latter formulae, and our human insight reveals that . the internal

structure of these formulae is irrelevant to the proof; we symbolize

membership in the role populations simply as:

Pl = x plays r1

P x::;; x playsr
2 . 2

We symbolize only the relevant aspects of the given cs in premises 1 and

2, and show that denying the subset constraint leads to a contradiction. The

argument is just a simple AAA syllogism (i.e. subsethood is transitive).

Proof 2:

I Vx(P
2
x ~Ax) P { from TPN (typing constraint) }

2 Vx(Ax ~ P
1
x) P { TMR2 (r

1
is mandatory for A) }

.; 3 \fx(P
2
x ~ P

1
x) NC { negate subset constraint }

.; 4 3x....,(P
2
x ~ P

1
x) 3 QN

.; 5 (P a~ P a)
2 I

4 E:

6 P
2
a 5 PC

7 -,...,r
1
a 5 PC

8 P2a~ Aa. I Ul

9 A a 8,6AA

10 Aa~ P a . I 2 Ul

11 P
1
a 10,9 AA

X 7,i i

''
::'·

~

~· '·
(

' -\;

A-&

· Theorem: If R is a binary with mutually exclusive roles then R is asymmetric

(p. 6-13), i.e.

. x

R I I as*

Proof3:
' . . .

. The exclusion constraint is traiJ.slated by TXCI as Vx,..,(x E R.I & x E R.2), and

the E notation is then replaced (see sec. 4.2) to yield the premise. This is

our first example with branching (see step 8).

1 Vx,..,(:Jy xRy & :JY yRx) P{dfX}

.; 2,Vxy(xRy -t,yRx) NC { ,.., df as }

.; 3 :Jxy,..,(xRy "'"* "'YRX) 2QN

.; 4 "'(aRb "'"* "'bRa) 3 El

5 aRb 4PC

6 bRa 4 PC,DN

.; 7 "'(:Jy aRy & :Jy yRa) 1 Ul

.; 8 "':lY aRy ,.:..:Jy yR2 7 PC

9 Vy....,aRy Vy,..,yF;a 8 ON

10,aRb "'bRa 9 Ul

X X 5,10; 6,10

Theorem: If R is ru1 asyrn111etric binary then R is irreflexive (p. 6-12).

as
R I ir*

Proof.4:

1 Vxy(xRy -t "'yRx) P { df as}
.; 2 "'Vx,..,xRx NC { "' df ir}
.; 3 :Jx xRx 2 QN,DN

4 aRa. 3 El

5 aRa "'"*,aRa 1 Ul

6 "'aRa 5,4AA

X 4,6

r\jJ}Jul /U/A. /1 ..:Jaiii}Jiu }JI VUI<> A-1

Theorem: The subschemas CSI and CS2, when extended by Dl and D2

respectively, are logically equivalent (p. 6-29, Fig. 6.18).

CS2:
{'m', 'f'}

0~(~~-)

01: Vxy(xHy = Mx & y='m' V Fx & y='f') 02: VxiMx = xH'm')
Vx(Fx = xH'f')

ProofS:

The subschEmas translate into KL as the following specific axioms, tog~ther

with the KS axioms. From theorem CC:#=, we know that 'm' :#= 'f.

CSi: Vx(P~-+ Described x)

Vx(Mx-+ Px)

Vx(F:x -+ Px)

Vx~(Mx & Fx)

CS2:. Vx(Px -+ Des,.,.;l-)ed x)

Vxy[xHy-+ Px & (y='m' V y='f')]

Vxyz(xHy S: xHz-+ y=z)

We prove the result by showing each representation implies the other (the

common axiom that Pis describ~d is safely omitted). A proof 1vindow may be

opened at any time to consider a subproblem (e:g. the proof of one conjunct in

the glob:1l conclusion). For a more general windowing technique for

interactive proof editors, see Robinson & Staples (1988).

Notice the way branching is reduced by resolving truth values. For a set

of such resolution rules see Halpin & Girle (1981, pp. 141-2): each such rule

may be specified as a der.i. ved rule of inference.

For efficiency ·reasons, we have modified the branching rule for

implication to Rg:·ee with the approach of St~ples. So a node of the form a-+

13 branches to ~a; a,13 rather than to ~a; 13.

The last window of the full proofincludes an example of the modified

·implication branching rule (Part 2 of proof:/:C4, lines 11,12 right branch):

this avoids having to prove closure for ~aHb on the right branch.

Appendix II Sample proofs

Part 1.~ CSJ & Dl =? CS2 & D2

Vx(Mx~ Px)
2 Vx(Fx ~ Px)
3 Vx,..,(rAx & Fx)
4 · Vxy(xHy = Mx & y='m' V Fx & y='"')
/: Vxy[xHy ~ Px & (y='m' V y='f')]

Vxyz(xHy & xHz ~ y=z)
Vx(Mx = xH'm')
Vx(Fx == xH'f')

.; 5 "'Vxy[xHy ~ Px & (y= 'm' V y= 'f')]

.; 6 ::Jxy,..,[xHy ~ Px & (y= 'm' V y= 'f')]

.; 7 "'[aHb ~ Pa & (b= 'm' V b= 't')]
8 aHb

.; 9 "'[Pa & (b= 'm' V b= 't')]

.; 10 aHb = Ma & b='m' V Fa & b='f'

.; 11 Ma&b='m' V Fa&b='t'
12 Ma~ Pa
13 Fa~ Pa

14 ,...,pa .; ,...,(b='m' V b='t')
15 ' b:tf:'m'

,-1_, 16 b:;:!:'t'

I
I

I
17 Ma Fa Ma Fa
18 b='m' b='t' b='m' b='f'
19. Pa Pa X X

X X

.; 5 ,...,yxyz(xHy & xHz ~ y=z)
· .; 6 ::Jxyz,...,(xHy & xHz ~ y=z)

.; 7 "'"'(aHb & aHc-+ b=c)
8 aHb
9 aHc

10 b:tf:c
.; 11 aHb= Ma&b='m' V Fa&b='t'
.; 12 aHc = Ma & c='m'. V Fa & c='f' ·
.; 13 Ma & b='m' V Fa & b='f'
.; 14 Ma&c='m' V Fa&c='t'
·.; 15 "'(Ma & Fa)

16 Ma Fa
17 b='m' b='f'
18 "'Fa ."'Ma

I I
19 Ma Fa Ma
20 c='m' · c='f' c='m'
21 b=C X X

X

Fa
c='f'
b=C

X

A-8

. ____ P ____ ·----··-····
p
p
p

/: C1

/: C1

NC1
5QN
6 El
7 PC
7 PC
4UI
8,10 AB
1 Ul
2 Ul

9 PC
14b PC
14b PC

11 PC
11 PC

C2
C3
C4

1_2, 17; 13, 17; 15, 18; 16,1 8
14,19

/: C2

NC2
5 QN
6 El
7 PC
7 PC
7 PC
4 Ul
4 Ul
8,11 AB
9,12 AB
3 Ul

13 PC
13 PC

·-15, 16

14 PC
14 PC

17,20;18, 19;18, 19;17,20
10,21

I

i
i

Appendix II Sample proofs

I
.(5 vx(Mx == xH'm')
.(6 ::Jx (Mx == xH 'm ')

7 (Ma == aH'rn')
.(8 aH'm' = tv.a & 'm'='m' V Fa & 'm'='f'
.(9 aH'm' = Ma & TV Fa & F
.(10 ~H'm' = Ma V F
.(11 aH'm' = Ma

12 Ma == aH'm'
X

.(5 vx(Fx == xH'f')

.(6 ::Jx (Fx = xH'f')
7 (~a= aH'f')

.(8 at-:'r' = Ma & 'f'='m' V Fa & 'f'='t'

.(9 aH't' = Ma & F V Fa & T

.(10 aH'f' = F V Fa

.(11 aH'f' =Fa
12 Fa= aH'f'

X

D

Part 2: CS2 & D2 =? CSI & Dl

1 Vxy[xHy -t Px & (y='m' V y=''t')]
2 VxyzlxHy & xHz -t y=z)
3 Vx(Mx = xH'm')
4 Vx(Fx = xH'f')
/: Vx(Mx -t Px)

Vx(Fx -t Px)
\fx (Mx & Fx)
Vxy(xHy = Mx & y='m' V F:i< & y='f')

I
.(5 ""Vx(Mx -t Px)
.(o 3x,...,(Mx -t Px)
.(7 ,...,(fvia -t Pa)

8 Ma
9 ,...,pa

.(10 Ma = aH'm'
11 aH'm' .

../ 12 aH'm' -t Pa & ('m'='m' V 'm'='f')

.(13 aH'm' -t Pa & (TV F)

../14 aH'm'~ra&T.
15 aH'm'.:.. Pa
16 Pa

X

I

··-···¥···

I

-

/: C3

NC3
5 ON
6 Er--~~-

4 Ul
8 R=,CC:y!:
9ld,CF
10ld
11 Com
7,12

/: C4

NC4
5 ON
6 El
4 Ul
8 CC:P,R=
9 CF,Id
10 ld
11 Com
7,12

p
p
p
p

/: C1
C2
C3
C4

/: C1

NC1
SON
6 El
7 PC
7 PC
3 Ul
.8,10 AB
1 Ul
9 R=,CC:yi:
10 ld.
11 ld
11,15AA
9,16

A-9

Appendix If Sample proofs A-iD

I /: C2

.; 5 ~Vx(Fx ~ Px) NC2

.; 6 ::Jx,..,(Fx ~ Px) 5QN

.; 7 "'(Fa ,. Pa) ""' ----······- 6EI~---···

8 Fa 7 PC
9 ~Pa 7 PC

.; 10 Fa;;; aH'f' 4 Ul
11 aH'f' 8,10 AB

/12 aH'f'~Pa&('f'='m' V 'f'='f') 1 Ul
.; 13 aH 'f' ~ P a & (F V T) 9 CC:fo,R==
/14 aH'f'~Pa&T 10 ld

15 aH'f' ~ Pa 11 ld
16 Pa 11,15 AA

X 9,16

I /: C3

.; 5 ~vx~(Mx & Fx) NC3

.; 6 :3x(Mx .<;, Fx) 5 QN,DN

.; 7 Ma&Fa 6 El
8 Ma 7 PC
9 Fa 7 PC

.; 10 Ma;;; aH'm' 3 Ul

.; 11 Fa;;; aH'f' 4 Ul
12 aH'm' 8,10 AB
13 aH'f' 9,11 AB
14 aH'm' & aH'f' ~ 'm'='f' 2 Ul ..
15 aH'm' & aH'f' 12,13 Conj
16 'm'='f' 14,15 AA

X 16,CC:fo
-·-

I /: C4

.; 5 ~Vxy(xHy;;; Mx & y='m' V Fx & y='f') NC4

.; 6 ::Jxy~(xHy;;; Mx & y='m' V Fx & y='f') 5QN

.; 7 ~(aHb;;; Ma & b='m' V Fa & b='f') 6 EI
8 Ma;; aH'm' 3 Ul
9 Fa;;; aH'f' 4 Ul

.; 10 aHb~ Pa & (b='m' V b='t') 1 Ul
I

I I
11 "'aHb aHb- 10 PC
12 I .; Pa & (b='m' V b='f) 10 PC
13 ./Ma & b='m' V Fa & b='f' Pa 7,11;12
14 I .; b='m' V b='f' 12 . I

F~ 15 Ma ./~(Ma & b='m'V Fa & b='f') 13; 7,11
16 b='m' b=- 'f' ~(Ma & b='rr') 13; 15
17 ~aH'm' ,..,aH'f' '""'(Fa & b= 't') 11 '16; 15
18 aH'm' aH'f' I 8,9,15 I . "

19 X X b='m' b='f' 17,18; 14

I 20. aH'm' aH'f' 11 'i 9
21 Ma Fa 8,9,20
22 Ma & b='m' Fa & b='f' 21,19

X X 16,17,22

0

A-i i

Appendix HI: Entity-Relationship modelling

In this thesis we have formalized and extended the information state component

of the fact-oriented modelling approach known as NIAM (Nijssen 's Information

Analysis Method). In particular, equivalence and implication between

conceptual schemas has been rigr·:ously examined, and guidelines have been

given for optimizing a conceptual schema by applying transformation theorems

before mapping it to a relational schema. Despite the strengths of NIAM, in

current practice the most popular data modelling formalism is Entity

Relationship modelling (ER). Some of the benefits ofNIAM over ERhave been

cited else,vhere (e.g. Nijssen, Duke & Twine 1988). In this appendix we

briefly compare NIAM with ER, with a view to making our results more

accessible to users of ER.

ER was first proposed by Chen (l976). Basically, ER views the real world

. as consisting of entities which ha;·c attributes (properties, e.g. gender) and ·

participate in relation!:hips. The domain of discourse also includes values.

A value is basically a typed constant (e.g. 'Codd':surname, '5':integer,

'male':gender); at the implementation level, value typing is typically .

implicit. An entity is a thing with independent existence, and a relationship

is an association amongst entities.

In Chen's original proposal, relationships may have attributes but do not

participate in relatipnships. Chen proposed a di2gram notation in •,·;:.ich

entity types and binary relationship types were depicted as named boxes and

di~'11onds respectively. Line segments connecting boxes to diamonds were

labelled "1", "n" or "m" to indicate whether the relationship type was 1:1,

1 :n, n:1 or m:n. Attributes and value sets were not shown on the diagram, but

were listed separately.

Chen's original version of ER is grossly lacking in expressibility. It

cannot specify mandatory roles, frequency constraints, subtyping, exclusion

constraints, su~s~t constraints, equa1ity constraints, some uniqueness

constraint patterns (e.g. overiapping and inn·a-predicate ucs), and so on.

Since. most of our formal results rely on the· capacity to express such

features, most of our conceptual schema transfom1ations cannot be rigorously

mapped into original ER. Of course, informally the ER designer may use some

of the basic ideas, but there is nc· formal way of controlling information loss

with this approach.

Appendix /II Entity-Relationship modelling A-12

Many researchers, including Chen, have since extended ER to enable such

features to be captured. The resulting models are usually called EER

(Extended ~R). Some of these models come very close to the ~~PE~~S.i?ility of_

NIAM. Unfortunately, there are dozens of different EER models. These differ

not only in the features that they support but in the diagram notation used to

picture such features.

For example, the relationship diamond might be replaced with polygons

(depending on the arity of the_ predicate) or simply deleted in favour of

adding role names to parts of the relationship line. Attributes might be

included as names attached 'by lines to their entity types; sometimes attribute

names are enclosed in ellipses. A l:n fact type might be specified with a

"craw's foot" symbol at one end. Mandatory and optional roles migh_t be

distinguished by solid and broken lines, or by double and single lines, or by

_ shading a "role" within the relationship polygon. Moreover, the same symbo]

may be used with different meanings depending on the EER model (e.g. a double

line might be used to denote a multi-valued attribute instead of a mandatory

role).

Of the many EER notations with which we are familiar, none appears to be

as simple or intuitive as the NIAM notation. In general, the more complex the

constraint situation, the more awkward the EER diagram becomes in comparison

with the NIAM diagram. For example, the typical EER notations make it

difficult if not impossible to graphically specify cases such as disjunctive

mandatory roles (inclusive and exclusive), subset constraints between

compatible pair types, and complex subtype graphs. Part of the problem ;with

most EER notations is their failure to focus on the roles in a relationship

type. This not only makes it hard to express constraints on roles but also

makes it extremc:Iy awkward to populate sche~a diagrams with fact instances

for validation purposes.

Because there is no stanGard EER notation, and EER notations are

typically awkward, we later suggest a version of our own which is closer to

NIAM. So long as the conceptual features are supported in some way, the -

designer should be able to trailslate his or_ her particular EER notation into

ours. If thL concept is not supported in the designer's EER graphical

notation, then the concept will have to be specified textually (e.g. by a

logical fom1ula).

Let us suppose that we have an EER notation that is as expressh·e as the

NIAMnotation. To use the theorems and optimization guidelines developed in

this thesis, one needs to provide an algorithm for translating between the two

Appendix Ill Entity~Relationship modelling A-13

notations. It is beyond the scope of this thesis to specify such an algorithm

in detail. However, we do sketch the essential aspects.

Once one has a sufficiently expressive EER model, i_t~~-g1~a.::r:_!h~Lther~

is more similarity than difference between NIAM and EER. Entity types, v:Jue

sets; and relationship types of EER basically correspond to entity types,

label types and relationship types in NIAM. Our specialized treatment of

definite descriptions, string types and number types can be easily applif.'d to

EER. There is only one fundamental difference in the conceptual basis of the

two formalisms: the notion of attributes.· The attribute concept is explicitly

emphasized in EER, but is not required in NIAM (though it is definable in

terms of NIAM's primitives). We now illustrate how attributes in EER can be

· translated into the NIAM framework.

The EER notior;t of an attribute may be s:.Jmmarized as follows. An attribute

is simple if it cannot be decomposed into simpler attributes, else it is

composite. For example, Gen¢ier is a simple attribute but Birthdate is

composite if we wish to individually access Birthyear, Birthmonth, and

Birthday. An attribute is single-valued if it maps each member of its entity

type onto at most one value (e.g. Gender is a function from Person to the

value set {'male':gender, 'female':gender}). A value set is also called a

domain. A multi-valued attribute maps each member of its entity type onto at

most one set of values. For example, LanguagesSpoken is a functioll from

Person to the power set of languages (where each language .is treated :::.s a

value, e.g. 'Japanese':language).

Each entity type must have an attribute (simple or composite) as its

primary identifier. Each other attribute is a descriptor. If an attribute

can be derived from others by means of a derivation rule it is said to be
. .

derived (e.g. assuming all grades are recorded, GradeAverage may be derived

from Grade). Different attributes m;:ty be defined over the same domain. For

example, Birthdate and Enrolmentdate may be defined over the domain Date;

Salary and Tax may be defined overthe domain Money.

For non-attribute aspects of our EER diagram notation we use the NIAM

notation. For example, entity types are shown as named ellipses (not boxes).

and relationship types are shown as named box.:sequences (not diamonds), and

the NIAM constraint notations are used.

We now specify a graphic notation for displaying attributes on a diagram .

. Each attribme has a (local) name. However, the local names "name", "code"

and "nr" rna~ be used for different attributes, so the entity type name is

prepended to the local attribute name to provide a qualified attribute name.

. ,":.''[

Appendix /II Entity-Relationship modelling A-14

Attributes which are primary identifiers are shown as NIAM reference

modes, i.e. in parentheses below the entity type name. Unlike our NIAM

diagrams,· we do not underline numerically based r~~~~~n~-~-m~de~ The

domains of attributes are typically listed in a. separate table: for domains

that are subsets of String or Real, we use the NIAM notation. We chose

numbers instead of strings for employee numbers (e.g. we might want to specify

simple rules for generating new employee numbers).

Descriptors have their (local) IJ.ames written at the end of a line segmenl

connected to their entity ellipse. If a descriptor is a 1:1 attribute, it is

underlined. If a descriptor is mandatory, a mandatory role dot is added to

the point where it is connected to it entity type. Some other constraints

(e.g. exclusion constraints between roles played by the entity type) n:·ty be

added. If a descriptor is derived it is preceded by an asterisk, ·and the

d;;rivation rule is written separately. Composite attributes hav~ their

components listed in parentheses, and multi-valued attributes are delimited by

braces. See Figure 1.

car office
.......... /-"""/.·---....- .

gender - ~Lecturer__ researcfl_lab .
· __...,._ (emp#),l

{ degree } ..--/'-...__../ "' name (surname, initials)
*title

* if 'PhD' in degree(Lecturer)
then title(Lecturer) = 'Dr'
else if gender(Lecturer) = 'f'

then title(Lecturer) = 'Ms'
else title(L.--:::urer). = 'Mr'

Fig>.rif' 1 Some attributes of Lecturer '

attribute

emp#
car
gender
office
research lab
surname
initials
degree

domain

[dddd]
<dddaaa>:car
{'m','f'}:gender
<d4>:room
<d4>:room
<a20>
<a3>
<a7>:degree

The translation of Figure 1 into NIAM is shown in Figure 2. As an

alternative, an object type LecturerName could have been introduced,

identified by sumame and initials. The main thing to note is that with

single-valued attributes the role played by Lecturer has a simple uniqueness

constraint, but this is not true for the multivalued attribute. Note that the

predicate names can be generated by prepending "has" to the attribute names

(recall our shortened predicate name rule for "has") .

Appendix Ill Entity-Relationship modelling A-iS

The object type names at the far-end of the predicate may be assigned the

domain names. Of course, the designer would often override the generated

predicate names with better ones (e.g. "was awardec:l" i]!._~~_lif!_gf "has_~CTJ."~~~L

In this example we have used meaningful names for the reference modes (e.g.

'reg#;): these need to be supplied by the designer (if desired, default names

could be automatically generated by appending "_id" to the domain name, e.g.

"car_id").

<dddaaa> has office

,--
/ '\

\ Surna!"':"1e1<a20>
. I , __ _,.,

* derivation rule as in Fig. 1

Figure 2 Figure 1 transla~ed into NIAM

A quick glance at Figures .1· and 2 indicates that if one wishes to v}e-;v

the attributes of Lecturer without the domain details, then the EER diagram at

the top of Figure 1 might be preferred for this purpose since it is more

compact. Indeed, it is sometimes argued that N1AM's notation is less suitable

than EER' s because a N1AM diagram packs all the information onto one figure,

swamping the human viewer with too much detail.
. -·

There is no doubt that in \Vorking with conceptual schemas there is a need

to support infomwtion hiding in variou.s ways. An automated design tool

should enable the designer to choose bow much of the conceptual schema he or

she wishes to view at ", particular time. If it is desired to view just a

sing1e entity type and its attributes without domain detail, then we have no

objection to a view such as that at the top of Figure 1 being used: this could
. I

c be accepted within1\'1AM simpl;· as ar. i!.lcomp1ere abbreviation of the relevant

fact types. Of course, other kinds of information hiding should also be

supported. For example; the designer may wish to choose which fact types to

view (e.g. show a local subset of the entity types and their fact types;

excluding "attributes"), which kinds of constraint to see, and so on;

.);

Appendix /II Entity-Relationship modelling A-16

Having said this, we emphasize that there are many occasions in which it

is extremely advantageous to be able to see all the relevant constraints at

once. In such situations l\"'IAM diagrams can mak~_jL~~i_~~!.? ___ s:p()t

important constraints, and to suggest further optimization. In contrast,

unless managed very carefully by the designer, EER diagrams can be dangerous

because they hide relevant information. For example, consider Figure 3 (this

is a simpler version of a problem discussed in section 7 .3).

G.
(code)

has preferred prerequisite

Figure 3 A NIAM schema in need of optimization

Using EER, a designer might come up with a schema diagram equivalent to

that shown in Figure 4.

lecturer_in_charge . ·~K· {actual prerequisite} ·
IOpiC

{ colect:..:~er} -- (code)., · { preferred prerequisite }

Figure 4 An EER schema missing important constraints

Clearly, Figure 4 does not capture the following constraints which are

captured in Figure 3: there are at most two colecturers for a given topic; ·a

lecturer in charge of a topic cannot be a co lecturer of tbf' same topic; ~.
subject which is an ac~ual prerequisite for a topic cannot be a preferred

prerequisite for that topic. Apa.."i: from being important constraints to

enfo;ce, the fre.:;_r.ency constraint and the right-hand e·o;.:lusion constraint

enable the NIAM schema .to be optimized so that only twc tables (instead of

four) are generated when the schema is pass~d to the ONF algorith.rn (see

section 7.3).

The moral here for EER is to avoid use of multi-valued aTtributes when a

frequency constraint is involyed, or when there is more than one such

attribute based on the same domain. With this gujdeline, one can produce an

EER diagram for this example using four relationship types; arid if the NIAM

·.'.l·.····'-.· ... · ...
.. .. . ' ~·.

''~ . ,. .

1
f

L.

Appendix III Entity-Relationship modelling A-17

notation for predicates and constraints is adopted we get the same diagram as

the earlier NIAM diagram. This can now be optimized in the same way.

It can be seen from this example (and many others) that one problem with
·-·-··-·--·· _----···-·---···- ,,_______ --

EER is that important connections might go unnoticed by not revealing the

domains of attributes on the diagram.. Another related problem with EER is

that there are too many choices as to how to capture an aspect of the UoD. A

classic example here is the 1:1 head-of-department fact type: is Head an

attribute of Department; Department an attribute of Lecturer, or do we have a

relationship type.instead?

Moreover, in EER we may need to revise our. schema when some aspect

chosen as an attribute (e.g. { subjects } as an attribute of Student) must be

recast as a relationship (e.g. we may later decide to record the c1·edi: point

value of each subject). :N!AM avoids the need for such agonizing choices ancl

revision, by proving a simple.1 direct and uniform treatment of all fact types.

In summary, EER -sty 1~ diagrams can be useful for providing external views

which hide unwanted detail; but in order to use such diagrams safely one needs

to be sure that the hidden detail is actually irrelevant to the task at hand,

.·Just vvhat aspects are relevant might not always be obvious. If one wishes to

deal rigorously with tre notions of schema equivalence and implication then

information about domains and constraints needs to be made .explicit. NIAM

provides a convenient way of displaying this on a single diagram.

-1 .. '.,.·,,·,.,,·,.
·.:: .. · _~, :<.

' ·. ,,

•,',,

. ··: .. -:

.. ·.'1: ··:_···

t
l

f
1.':,

B-i

Bibliography

During preparation of this thesis, the extensive literature on relational

database design has been kept under review; hut works of this nature which are

not directly relevant to this thesis have not beeP cited here.

Amikam, A. 1985, 'On the Automatic Generation of Optimal Internal Schemata',

Inform. Systems, vol. 10, no. 1, Pergamon, pp. 37-45.

Andrews, J. 1987, Trilogy User's Manual, Complete Logic Systems, Vancouver,

Canada.

Asimov, I. 1986, Foundation and Earth, Collins, London.

Australian Government· Publishing Service 1988, Style Manual for Authors,

Editors and Printers, 4th ed., AGPS Press, Canberra.

Barwise, J. (ed.) 1977, Hp.ndbook of Mathematical Logic, North-Holland

Publishing Co., Amsterdam.

Bledsoe, W.W. & Loveland, D.W. (eds) 1984, Automated Theorem Proving: After 25

· Years, American Mathematical Society, Providence.

Beeri, C. · 1980, 'On the Membership Problem for· Functional and Multivalued

Dependencies in Relational Databases', ACM TODS, veil. 5, no. 3, pp. 241-

259.

Beeri, C. & Kifer, 1'1. 1986, 'An Integrated Approach to Logical Design of

Relational Database Schemes', ACM TODS, vol. 11, no. 2, pp. 134-158.

Brachman, R.I. 1988, 'The Basics of Knowledge Representation and Reasoning',

·AT&T Tech. Journal, vol. 67, no. 1, pp. 7-24.

;Bradley, R & Swartz, N. 1979, Possible Worlds, Basil Blackwell, Oxford.

Bry, F. & Manthey, R. 1986, 'Checking Consistency of Database Constraints: a
- '

Logical Basis', Proc. Twelfth International Conf on Very Large Data

Bases, VLDB, Kyoto, pp. 13-20.

Bubenkc:, J.A. jr 1986, 'Information System Methodologies - A Research View',

Information· Systems Design Methodologies: Improving the Practice, eds

T.W. Olle, e.G. Sol & A.A. V(:rrijn-Stuart, North-Holland, Amsterdam.

Casanova, M.A. & Tuchem1an, L. 1988, 'Enforcing Inclusion Dependencies and

Referential Integrity', Proc; of the Fourteenth Conf. on Ve1y Large Data

·Bases, VLDE, Los Angeles, pp. 38-48.

Chamberlin, D.D., Astrahan, M.M., Eswaran, .K.P., Griffiths, P.P., Lorie, R.A.,

Mehl; J.W ., Reisner, P. & \Vade, B.W. 1976, 'SEQUEL 2: A Unified Approach

Bibliography B-2

to Data Definition, Manipulation and Control', IBM J. Res. Develop., Nov.

1976, pp. 560-75.

Chang, C.C. & Keisler, H.J. 1977, Model Theory, ___ 2nd_e...dll, __ North-:Holland

Publishing Co., Amsterdam.

Chen, P.P. 1976, 'The Entity-Relationship Model - Toward a Unified View of

Data', ACM Transactions on Database Systems, vol. 1, no. 1, pp. 9-36.

Chen, P.P. & Dogac, A. 1983, 'Entity-Relationship Model in the ANSI/SPARC

Framework', Entity-Relationship Approach to Information Modelling and

Analysis, ed. P.P. Cheri, Elsevier Science Publishers B.V., North Holland.

Codd, E.F. 1970, 'A Relational Model of Data for Large Shared Data Banks',

. Communications of the ACM, vol. ,13, no. 6, pp. 377-87.

Date, C.l 1986a, An Introduction to Database Systems, vol. 1, 4th edn,

Addison-Wesley, Reading MA.

Date, C.J. 1986b, Relational Database: Selected Writings, Addison-Wesley,

Reading MA. pp. 269-310.

Date, C.J. 1987, A Guide t.J The SQL Standard, Addison-Wesley, Reading MA.

D'Atri, A. & Sacca, D. 1984, 'Equivalence and Mapping of Database Schemes',

Proceedings of the lOth International Conference on Very Large Data

Bases, VLDB, Singapore, pp. 187-95.

Debenham, J.K. 1985, 'Knowledge Base Design', The Australian Computer Journal,

vol. 17, no. 1, pp. 42-8.

Diederich, J. & lvlilton, J. 1988, 'New Methods and Fast Algorithms for Database

. Normalization'; ACM Transactions on Database Systems, vol. 13, no. 3, pp.

339-365.

Falkenberg, E.D. 1976, 'Concepts for Information Modelling', Modelling in

Data Base Management Systems, ed. G.M. Nijssen, North-Holland, Amsterdam.

Falkenberg, E.D. 1986, Data Bases and Information Systems 1: Lecture Notes,

University of Nijmegen, The ~etherlands.

Falkenberg, E.D. · 198£, 'Deterministic Entity Relationship Modelling',

discussion paper for FRISCO workshop.

Gallaire, H., Wilnker, J. & Nicolas, J.-M. 1984, 'Logic and Databases: A

Deductive Approach', Ar;;M Computing Surveys, vol. 16, ho. 2.

Girle, R.A., Halpin, T.A., Miller, C.M. & Williams, G.H. 1978, Inductive and

Practical Reasoning, Rotecoge, Brisbane, pp. 149-57

· Gottlob, G. & Zicari, R. 1988, 'Closed World .Databases Opened Through Null

Values', Proc. of the Fourteenth Conf. on Very Large Data Bases, VLDB,

Los Angeles, pp. 50-61.

Haack, S. 1978, Philosophy of Logics, Cambridge University Press, London.

Bibliography o-u

Halpin, T.A. & Girle, R.A. 1981, Deductive Logic, 2nd edn, Logiqpress,

Brisbane.

Halpin, T.A. 1986a, 'Conceptual Schemata and Predicate Logic', Proceedings of

the First Australian AI Congress, Melbourne.

Halpin, T.A. 1986b, 'Logic Diagrams and Query Formulation in SQL'; Technical

Report 77, Dept of Computer Science, University of Qld.

Halpin, T.A. 1987, 'Information Design and IPT', Computers in the Curriculum:

Proc. of 1987 CEGQ Conference, Computer Educ. Group of Q1d, Brisbane.

Halpin, T.A. 1988a, CS112 Lecture Notes, Dept of Computer Science, University

of Queensland, Brisbane.

Halpin, T.A. 1988b; 'Information Systems Design', Technology and Autonomy:

Proc. · of 1988 CEGQ Conference, Computer Educ. Group of Qld, Brisba.ne,

pp. 16-21.

Halpin, T.A. 1988c, 'Conceptual Schema Transformations', Dept of Computer

Science, University of Queensland, Brisbane ..

Halpin, T.A. 1988d, CS113 Lecture Notes, Dept of Computer Science, University

of Queensland, Brisbane.

Halpin, T.A. 1989, 'Venn Diagrams and SQL Queries', The Australian Computer

Journal, vol. 21, no. 1, pp. 27-32.

Hughes, G.E. & Cresswell, M.J. 1968, An Introduction to Modal Logic, .Methuen,

London.

Hunte>r, G. 1971, Metalogic: An Introduction to the Metatheory of standard

First-Order Logic, Macmillan, Londpn.

IS0 1982, Concepts and Terminology for the Conceptual Schema and the

Information Base, ed. J.J. van Griethuysen, ISO TC97 /SC5/WG3, Eindhoven.

Jardil:...:::., D.A. & Reuber, A.R. 1984, 'Information Semantics and the Conceptual

Schema', Information Systems, vol. 9, no. 2, pp. 147-56.

Jardine, D.A. & van Griethuysen, J.J. 1987, 'A logic-based info:trnation

modelling language', Data and Knowledge Engineering, voL 2, North

Holland, pp. 59-81.

Kent, W. 1978, Data and Reality, North-Holland, Amsterdam.

Kent, W. 1982, 'Choices in Practical Data Design', Proc. of the Eigth Int.

Conf. on Vel}' Large Data Bases, VLbB, pp. 165-180.

Kent, W. 1986, 'The Realities of Data: Basic Properties of Data Reconsidered',

Database Semantics, eds T.B. Steel Jr & R.A. Meersman, Elseviers Science

Publishers B.V., North Holland.

Kobayashi, I. 1984, 'Validating Database Updates', Inform. Systems, voL 9,

no. 1, Pergamon Press, pp. 1-17.

Bibliography B-4

Kobayashi, I. 1986, 'Losslessness and semantic correctness of database schema

transformation: another look at schema equivalence', Inform. Systems,

vol. 11, no. 1, Pergamon Press, pp. 41-59

Leung, C.M.R.. & Nijssen, G.M. 1987, 'From a NIAM Conceptual Schema into the

· Optimal SQL Relational Database Schema', Australi"an Computer Journal,

vol. 19, no. 2, pp. 69:.75.

Leung, C.M.R. 1988, 'On Design and Implementation of a Fifth Generation

Information System', PhD thesis, Dept of Computer Science, University of

Queensland.

Levesque, H.J. 1984, 'A Fundamental Tradeoff in Knowledge Representation and

Reasoning', Proc. CSCSI-84, London, Ontario, 1984, pp. 141-152

Lindsay, P.A. 1988, 'A survey of mechanical support for formal reasoning',

Sofrn-'are Engineering Journal, Jan. 1988, pp. 3-27.

Loux, M.J. (ed.) 1979, The Possible ai1d the Actual, Cornell University Press.

Ithaca.

Lundberg, B. 1983, 'On Correctness of Information Models', Inform. Systems;

vol. 8. no. 2, Pergamon Press, pp. 87-93.

Luk, w;s. & Kloster, S. 1986, 'ELFS: English language From SQL', ACM

Transa::tions on Database Systems, vol. 11, no. 4, pp. 447-472.

Maier, D. 1983, The Theory of Relational Databases, Computer Science Press,

Potomac, Md.

Mark, L. 1987, 'The Binary Relationship Model - lOth Anniversary', Proc. VIM-

47 ElvfDA Conf., Minneapolis, Nov. 1987.

McGrath, G.M. 1987, 'The Transition to Fifth Generation technology:· Conceptual

.Schema Implementation', The Australian Computer Journal, vol. 19,. no. 1,

Feb. 1987.

Meersman, R..A. 1981, 'RIDL: A Query System as Support for Information

Analysis', ECODO, vol. 32, S_eptember 1981.

Meersman, R.A. 1988, 'The Future of Relational Database Design', Proc. Oracle

User Conf, Paris.

Meyer, J., Weigand, H. & Wieringa, R. 1988, 'Specifying Dynamic and Deontic

Integrity Constraints', Rapport IR.-175, Vrije Universiteit Amsterdam.

Morgenstern, M. 1984, 'Constraint Equations: De.clarative Expression of

Constraints with .Automatic Enforcement', Proc. of the Tenth Int .. Conf. or;.

Very Large Data Bases, VLDB, Singapore, pp. 291-300.

Motto, A. 1986, 'Comp1eteness Information and Its Application to Query

Processing', Proc. of the Twelfth Int. Conf on Very Large Data Bases,

VLDB, Kyoto, pp. 170-178.

.!
1
I
I
J
i.
I
l

I
I

,(,',,

Bibliography B-5

Navathe, S.B., Sashidhar, T. & Elmasri, R. 1984, 'Relationship Merging in

Schema Integration', Proc. of the Tenth Int. Conf. on Very Large Data

Bases, Singapore, pp. 78-90.

NH89: see entry for Nijssen & Halpin 1989.

Nijssen, G.M. & Falkenberg, E.D. 1983, Design of Conceptual Schemata and Data

Bases, Lecture notes, Dept.· of Computer Science, University of Queensland

. (106 pp.).

Nijssen, G.M. 1985, 'On Experience with Large Scale Teaching and Use of Fact

based Conceptual Schemas in Industry and University', Database Semantics:·

Proc. IFIP Conf on Database Semantics, eds R. Meersman & T. Steel, North .

Holland Publishing Co., Amsterdam.

Nijssen, G.M., Duke, D.J. and Twine, S.M. (1988), The Entity-Relationship

Model Considered Harmful, Proc. 6th Symposium on Empirical Foundations of

lnfonnation and Software Sciences, Atlanta, Georgia.

Nijssen., G.M.,. Gillner, R., Halpin, T.A., ·Mansfield, T., Sargent, M. &

Willmore, R. 1988, 'The General Architecture for Information Systems -

illustrative example: Inventory Control System - (Predicate Logic)',

Working paper for the IFIP WG 8.1. Ta:;,k Group FRISCO, Dept of Computer

Science, University of Queensland.

Nijssen, G.M. & Halpin, T.A. 1989, Conceptual Schema and Relational Data~ase

Design, Prentice Hall, Sydney.

Olle, T.\V., Hagelstein, J., Macdonald, I. G., Rolland, C., Sol, H. G., Van

Assche, F.J.M. & Verrijn-Stuart, A.A. 1988, Information Systems

Methodologies- A Framework for Understanding, Addison-Wesley, Wokingham,

England.

Osborn, S.L. & Heaven, T.E 1986, 'The Design of a Relational Database System

with Abstract Data Types ~or Domains', ACM Transactions on Database

Systems, vo~. 11, no. 3, pp. 357-73.

Rapaport, M. 1988, 'Dr E.F. Codd: The relational model and beyond', Database

P,·ogramming and Design, Feb. 1988.

Reeves, S. 1987, 'Semantic Tableaux as a framework for Automated Theorem

Proving', AISB87, Edinburgh.

Reiter, R. 1984, 'Towards a Logical Reconstruction of Relational Database

Theory', On Conceptual Modelling, eds M.L. Brodie, J. Mylopoulas & J.W.

Schmidt, Springer-Verlag, New York, pp. 191-233.

Rennie, M.K. & Girle, R.A. 1973, Logic: Theory and Practice, University of

Queensland Press, Brisbane ..

Bibliography B-6

Robinson, P. & Staples, J. 1988, 'A Logic Architecture for Computer Aided

Reasoning', Austral. Comp. Sci.Comrnunications, vol. 10, pp. 215-224.

Rybinsh.i., H. 1987, 'On First-Order Logic Databases.~,-.ACM..Imnsactions on

Database Systems, vol. 12, no. 3, pp. 325-49 .

. Sadri, F. 1987, 'Multi-relation Dependencies', Inform. Systems, vol. 12, no.

2, Pergamon, pp. 145-9.

Shoval, P. 1985, 'Essential Information Structure Diagrams and Database Schema

Design', Infonn. Systems, vol. 10, no. 4, Pergamon, pp. 417-413.

Sowa, J.F. 1988, 'Knowledge Representation in Database, Expert Systems, and

Natural Language', Proc. IFIP WG2.6!WG2.8 Working Conf. on th~ Role of AI

in Database and Inf. Systems, eds C.H. Kung & R.A .. Meersman, North

Holland, Amsterdam.

Tarski. A. 1949, 'Arithmetical classes and types of Boolean algebras'

(Preliminary report), Bull. Am. Math. Soc., vol. 55, no. 64.

-Teorey, T.J., Yang, D. & Fry, J.P. 1986, 'A Logical Design Methodology for

Relational Databases Using the Extended Entity-Relationship Model', ACM

Computing Surveys, vol18, no. 2, pp. 197-222.

Verheijen, G.M.A. & Van Bekkum, l 1982, 'N1AM: An Information Analysis

Method', Jnfonnarion Systems Design Methodologies: a comparative review,

ecis T.W. Olle, H.G. Sol & A.A. Verrijn-Stu:rrt, IFTI', North Holland,

Amsterdam~

Vermeir, D. _ 1983, 'Semantic Hierarchies and Abstractions in Conceptual

Schemata', Inform. Systems, vol. 8, no. 2, Pergamon Press, pp. 117-24 .

. Vem1eir, D. & Nijssen, G.M. 1982, 'A Procedure to Define the Object Type

Structure of a Conceptual Schema', Inform. Systems, vol. 7, no. 4, pp.

329-336.

Zaniolo, C. & Melkanoff, M.A. 1982, 'A Formal· Approach· to the Definition and

the Design of Conceptual Sch,emata for Database Systems', ACM Transactions

on Database Systems, vol. 7, no. 1, pp. 24-59.

l·.-.. -

1
1
j

l .I
~
l r
.l

l:.
I.
j
j.
-i',
j

.I

t·
·;·
J

L r
" r
l'

-,i .. :·(. . .. :'
,.

~··
j)

'><'r"">'"• ~,-~ ~-·'

1•·

v
'l'.
:.•:;'.

1-l

Index of main acronymns and theorems

main ·acronyms and abbreviations:
-· ---·~·-····--·----~-

terfT) pages explanation

CIP 3-7 Conceptual Information Processor
cs 3-5 Conceptual Schema
CSDP 2-1 Conceptual Schema Design Procedure
CWA 6-32 Closed World Assumption
ER Ap.lll Entity-Relationship modelling
FC 4-10 Frequency Constraint
FD 6-23 Functional Dependency
FTP 7-24 Fewer Tables Procedure
iff if and only if
K 3-17 Axioms of KS (3-1 7 /24; 5-i 1/1 8)
KB 3-4 Knowledge Base
KL 3-13 Knowledge Language
KS 3-8 Knowledge System
LET 5-15 Lazy Entity Type
MR 4-8 Mandatory Role
NH89 Text by Nijssen and Halpin (1 989)
NIAM 2-1 Nijssen's Information Analysis Method

. NRE 5-17 Numerically Reference Entity
OJ-. 7-12 Overlap Algorithm
ONF 7-2 . Optimal Normal Form
OP 7-3 Optional column in relational table
QL= 3-10 Quantification Language with identity
RFA 5-28 Read Fact Algorithm
SOL T-4 Structured Que:-y Language
TWG 7-21 Table Width Guideline
uc 4-5 Uniqueness Constraint
UoD 3 1 Universe of Discourse

constraint implication theorems:

name page category

IA1 6c12 Implied Asymmetry
lEi 6-14 Implied Exhaustion
IF1 6-25 Implied Frequency

IFD1,2 6-23,24 ,. Implied Functional Dependency
lli,2 6-12 Implied lrreflexivity
IM1,2 6-10,11 Implied Mandatory role
IMH1,2 S-14 Implied global Mandatory Role
IS1,2,3 6~9,10,25 Implied Subset
IU1,2,3,4 6-22,23,24,26 Implied Uniqueness
IX1,2,3 6-10,13,14 Implied eXclusion
1#1, .. ,8 B-17 .. L1 Implied cardinality

Index of main acronyms and theorems 1-2

Conceptual schema equivalence and implication theorems

L name page category
"---·--··-

EBT1 .. 3 6-36 binary-ternary conversion

EET"1 .. 5 6-38 .. 42 enumerated type

EFCi .. 3 6-47,8 frequency cc:-:st~aint

ENF1 .. 3 6-48,9 nest/flatten

EOA1,2 6-49 object type addition/deletion

ERP 6-39 role permutatiL;l

ESCi .. 8 6-43 .. 5 split/combine

ESS1 6-51 subset constraint

EUB1 6-35 unary-binary conversion

6-32 unclassified equivalence (see Fig. 6.20)

lmFC1 .. 3 6-46 iroplied schema based on FC

lmOAi G-50 implied schema based en object type deletion

