
4 Cosmological Perturbation Theory

So far, we have treated the universe as perfectly homogeneous. To understand the formation

and evolution of large-scale structures, we have to introduce inhomogeneities. As long as these

perturbations remain relatively small, we can treat them in perturbation theory. In particular,

we can expand the Einstein equations order-by-order in perturbations to the metric and the

stress tensor. This makes the complicated system of coupled PDEs manageable.

4.1 Newtonian Perturbation Theory

Newtonian gravity is an adequate description of general relativity on scales well inside the Hubble

radius and for non-relativistic matter (e.g. cold dark matter and baryons after decoupling). We

will start with Newtonian perturbation theory because it is more intuitive than the full treatment

in GR.

4.1.1 Perturbed Fluid Equations

Consider a non-relativistic fluid with mass density ⇢, pressure P ⌧ ⇢ and velocity u. Denote

the position vector of a fluid element by r and time by t. The equations of motion are given by

basic fluid dynamics.1 Mass conservation implies the continuity equation

@t⇢ = �r
r

·(⇢u) , (4.1.1)

while momentum conservation leads to the Euler equation

(@t + u ·r
r

)u = �r
r

P

⇢
�r

r

� . (4.1.2)

The last equation is simply “F = ma” for a fluid element. The gravitational potential � is

determined by the Poisson equation

r2
r

� = 4⇡G⇢ . (4.1.3)

Convective derivative.⇤—Notice that the acceleration in (4.1.2) is not given by @tu (which mea-
sures how the velocity changes at a given position), but by the “convective time derivative”
Dtu ⌘ (@t + u ·r)u which follows the fluid element as it moves. Let me remind you how this
comes about.

Consider a fixed volume in space. The total mass in the volume can only change if there is a
flux of momentum through the surface. Locally, this is what the continuity equation describes:
@t⇢ + rj(⇢uj) = 0. Similarly, in the absence of any forces, the total momentum in the volume

1See Landau and Lifshitz, Fluid Mechanics.
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78 4. Cosmological Perturbation Theory

can only change if there is a flux through the surface: @t(⇢ui) + rj(⇢uiuj) = 0. Expanding the
derivatives, we get

@t(⇢ui) +rj(⇢uiuj) = ⇢ [@t + ujrj ]ui + ui [@t⇢+rj(⇢uj)]| {z }
=0

= ⇢ [@t + ujrj ]u
i .

In the absence of forces it is therefore the convective derivative of the velocity, Dtu, that vanishes,

not @tu. Adding forces gives the Euler equation.

We wish to see what these equation imply for the evolution of small perturbations around

a homogeneous background. We therefore decompose all quantities into background values

(denoted by an overbar) and perturbations—e.g. ⇢(t, r) = ⇢̄(t) + �⇢(t, r), and similarly for the

pressure, the velocity and the gravitational potential. Assuming that the fluctuations are small,

we can linearise eqs. (4.1.1) and (4.1.2), i.e. we can drop products of fluctuations.

Static space without gravity

Let us first consider static space and ignore gravity (� ⌘ 0). It is easy to see that a solution for

the background is ⇢̄ = const., P̄ = const. and ū = 0. The linearised evolution equations for the

fluctuations are

@t�⇢ = �r
r

·(⇢̄u) , (4.1.4)

⇢̄ @tu = �r
r

�P . (4.1.5)

Combining @t (4.1.4) and r
r

·(4.1.5), one finds

@2
t �⇢�r2

r

�P = 0 . (4.1.6)

For adiabatic fluctuations (see below), the pressure fluctuations are proportional to the density

fluctuations, �P = c2s �⇢, where cs is called the speed of sound. Eq. (4.1.6) then takes the form

of a wave equation �
@2
t � c2sr2

�
�⇢ = 0 . (4.1.7)

This is solved by a plane wave, �⇢ = A exp[i(!t � k · r)], where ! = csk, with k ⌘ |k|. We see

that in a static spacetime fluctuations oscillate with constant amplitude if we ignore gravity.

Fourier space.—The more formal way to solve PDEs like (4.1.7) is to expand �⇢ in terms of its Fourier
components

�⇢(t, r) =

Z
d3k

(2⇡)3
e�ik·r�⇢k(t) . (4.1.8)

The PDE (4.1.7) turns into an ODE for each Fourier mode

�
@2
t + c2sk

2
�
�⇢k = 0 , (4.1.9)

which has the solution
�⇢k = Ake

i!kt +Bke
�i!kt , !k ⌘ csk . (4.1.10)
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Static space with gravity

Now we turn on gravity. Eq. (4.1.7) then gets a source term

�
@2
t � c2sr2

r

�
�⇢ = 4⇡G⇢̄�⇢ , (4.1.11)

where we have used the perturbed Poisson equation, r2�� = 4⇡G�⇢. This is still solved by

�⇢ = A exp[i(!t� k · r)], but now with

!2 = c2sk
2 � 4⇡G⇢̄ . (4.1.12)

We see that there is a critical wavenumber for which the frequency of oscillations is zero:

kJ ⌘
p
4⇡G⇢̄

cs
. (4.1.13)

For small scales (i.e. large wavenumber), k > kJ, the pressure dominates and we find the same

oscillations as before. However, on large scales, k < kJ, gravity dominates, the frequency !

becomes imaginary and the fluctuations grow exponentially. The crossover happens at the Jeans’

length

�J =
2⇡

kJ
= cs

r
⇡

G⇢̄
. (4.1.14)

Expanding space

In an expanding space, we have the usual relationship between physical coordinates r and

comoving coordinates x,

r(t) = a(t)x . (4.1.15)

The velocity field is then given by

u(t) = ṙ = Hr + v , (4.1.16)

where Hr is the Hubble flow and v = aẋ is the proper velocity. In a static spacetime, the time

and space derivates defined from t and r were independent. In an expanding spacetime this is

not the case anymore. It is then convenient to use space derivatives defined with respect to the

comoving coordinates x, which we denote by r
x

. Using (4.1.15), we have

r
r

= a�1r
x

. (4.1.17)

The relationship between time derivatives at fixed r and at fixed x is

✓
@

@t

◆

r

=

✓
@

@t

◆

x

+

✓
@x

@t

◆

r

·r
x

=

✓
@

@t

◆

x

+

✓
@a�1(t)r

@t

◆

r

·r
x

=

✓
@

@t

◆

x

�Hx ·r
x

. (4.1.18)

From now on, we will drop the subscripts x.
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With this in mind, let us look at the fluid equations in an expanding universe:

• Continuity equation

Substituting (4.1.17) and (4.1.18) for r
r

and @t in the continuity equation (4.1.1), we get

@

@t
�Hx ·r

� ⇥
⇢̄(1 + �)

⇤
+

1

a
r ·

⇥
⇢̄(1 + �)(Hax+ v)

⇤
= 0 , (4.1.19)

Here, I have introduced the fractional density perturbation

� ⌘ �⇢

⇢̄
. (4.1.20)

Sometimes � is called the density contrast.

Let us analyse this order-by-order in perturbation theory:

– At zeroth order in fluctuations (i.e. dropping the perturbations � and v), we have

@⇢̄

@t
+ 3H ⇢̄ = 0 , (4.1.21)

where I have used r
x

·x = 3. We recognise this as the continuity equation for the

homogeneous mass density, ⇢̄ / a�3.

– At first order in fluctuations (i.e. dropping products of � and v), we get

@

@t
�Hx ·r

� ⇥
⇢̄�
⇤
+

1

a
r ·

⇥
⇢̄Hax� + ⇢̄v

⇤
= 0 , (4.1.22)

which we can write as

@⇢̄

@t
+ 3H ⇢̄

�
� + ⇢̄

@�

@t
+

⇢̄

a
r · v = 0 . (4.1.23)

The first term vanishes by (4.1.21), so we find

�̇ = �1

a
r · v , (4.1.24)

where we have used an overdot to denote the derivative with respect to time.

• Euler equation

Similar manipulations of the Euler equation (4.1.2) lead to

v̇ +Hv = � 1

a⇢̄
r�P � 1

a
r�� . (4.1.25)

In the absence of pressure and gravitational perturbations, this equation simply says that

v / a�1, which is something we already discovered in Chapter 1.

• Poisson equation

It takes hardly any work to show that the Poisson equation (4.1.3) becomes

r2�� = 4⇡Ga2⇢̄� . (4.1.26)
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Exercise.—Derive eq. (4.1.25).

4.1.2 Jeans’ Instability

Combining @t (4.1.24) with r·(4.1.25) and (4.1.26), we find

�̈ + 2H �̇ � c2s
a2

r2� = 4⇡G⇢̄� . (4.1.27)

This implies the same Jeans’ length as in (4.1.14), but unlike the case of a static spacetime, it

now depends on time via ⇢̄(t) and cs(t). Compared to (4.1.11), the equation of motion in the

expanding spacetime includes a friction term, 2H �̇. This has two e↵ects: Below the Jeans’ length,

the fluctuations oscillate with decreasing amplitude. Above the Jeans’ length, the fluctuations

experience power-law growth, rather than the exponential growth we found for static space.

4.1.3 Dark Matter inside Hubble

The Newtonian framework describes the evolution of matter fluctuations. We can apply it to

the evolution dark matter on sub-Hubble scales. (We will ignore small e↵ects due to baryons.)

• During the matter-dominated era, eq. (4.1.27) reads

�̈m + 2H �̇m � 4⇡G⇢̄m�m = 0 , (4.1.28)

where we have dropped the pressure term, since cs = 0 for linearised CDM fluctuations.

(Non-linear e↵ect produce a finite, but small, sound speed.) Since a / t2/3, we have

H = 2/3t and hence

�̈m +
4

3t
�̇m � 2

3t2
�m = 0 , (4.1.29)

where we have used 4⇡G⇢̄m = 3
2H

2. Trying �m / tp gives the following two solutions:

�m /

8
<

:
t�1 / a�3/2

t2/3 / a
. (4.1.30)

Hence, the growing mode of dark matter fluctuations grows like the scale factor during the

MD era. This is a famous result that is worth remembering.

• During the radiation-dominated era, eq. (4.1.27) gets modified to

�̈m + 2H �̇m � 4⇡G
X

I

⇢̄I �I = 0 , (4.1.31)

where the sum is over matter and radiation. (It is the total density fluctuation �⇢ = �⇢m+

�⇢r which sources ��!) Radiation fluctuations on scales smaller than the Hubble radius

oscillate as sound waves (supported by large radiation pressure) and their time-averaged

density contrast vanishes. To prove this rigorously requires relativistic perturbation theory

(see below). It follows that the CDM is essentially the only clustered component during

the acoustic oscillations of the radiation, and so

�̈m +
1

t
�̇m � 4⇡G⇢̄m�m ⇡ 0 . (4.1.32)
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Since �m evolves only on cosmological timescales (it has no pressure support for it to do

otherwise), we have

�̈m ⇠ H2�m ⇠ 8⇡G

3
⇢̄r�m � 4⇡G⇢̄m�m , (4.1.33)

where we have used that ⇢̄r � ⇢̄m. We can therefore ignore the last term in (4.1.32)

compared to the others. We then find

�m /

8
<

:
const.

ln t / ln a
. (4.1.34)

We see that the rapid expansion due to the e↵ectively unclustered radiation reduces the

growth of �m to only logarithmic. This is another fact worth remembering: we need to

wait until the universe becomes matter dominated in order for the dark matter density

fluctuations to grow significantly.

• During the ⇤-dominated era, eq. (4.1.27) reads

�̈m + 2H �̇m � 4⇡G
X

i

⇢̄I �I = 0 , (4.1.35)

where I = m,⇤. As far as we can tell, dark energy doesn’t cluster (almost by definition),

so we can write

�̈m + 2H �̇m � 4⇡G⇢̄m �m = 0 , (4.1.36)

Notice that this is not the same as (4.1.28), because H is di↵erent. Indeed, in the ⇤-

dominated regime H2 ⇡ const. � 4⇡G⇢̄m. Dropping the last term in (4.1.36), we get

�̈m + 2H �̇m ⇡ 0 , (4.1.37)

which has the following solutions

�m /

8
<

:
const.

e�2Ht / a�2
. (4.1.38)

We see that the matter fluctuations stop growing once dark energy comes to dominate.

4.2 Relativistic Perturbation Theory

The Newtonian treatment of cosmological perturbations is inadequate on scales larger than the

Hubble radius, and for relativistic fluids (like photons and neutrinos). The correct description

requires a full general-relativistic treatment which we will now develop.

4.2.1 Perturbed Spacetime

The basic idea is to consider small perturbations �gµ⌫ around the FRW metric ḡµ⌫ ,

gµ⌫ = ḡµ⌫ + �gµ⌫ . (4.2.39)

Through the Einstein equations, the metric perturbations will be coupled to perturbations in

the matter distribution.
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Perturbations of the Metric

To avoid unnecessary technical distractions, we will only present the case of a flat FRW back-

ground spacetime,

ds2 = a2(⌧)
h
d⌧2 � �ijdx

idxj
i
. (4.2.40)

The perturbed metric can then be written as

ds2 = a2(⌧)
h
(1 + 2A)d⌧2 � 2Bidx

id⌧ � (�ij + hij)dx
idxj

i
, (4.2.41)

where A, Bi and hij are functions of space and time. We shall adopt the useful convention that

Latin indices on spatial vectors and tensors are raised and lowered with �ij , e.g. hii = �ijhij .

Scalar, Vectors and Tensors

It will be extremely useful to perform a scalar-vector-tensor (SVT) decomposition of the pertur-

bations. For 3-vectors, this should be familiar. It simply means that we can split any 3-vector

into the gradient of a scalar and a divergenceless vector

Bi = @iB|{z}
scalar

+ B̂i|{z}
vector

, (4.2.42)

with @iB̂i = 0. Similarly, any rank-2 symmetric tensor can be written

hij = 2C�ij + 2@hi@jiE| {z }
scalar

+ 2@(iÊj)| {z }
vector

+ 2Êij|{z}
tensor

, (4.2.43)

where

@hi@jiE ⌘
⇣
@i@j �

1

3
�ijr2

⌘
E , (4.2.44)

@(iÊj) ⌘ 1

2

⇣
@iÊj + @jÊi

⌘
. (4.2.45)

As before, the hatted quantities are divergenceless, i.e. @iÊi = 0 and @iÊij = 0. The tensor

perturbation is traceless, Êi
i = 0. The 10 degrees of freedom of the metric have thus been

decomposed into 4 + 4 + 2 SVT degrees of freedom:

• scalars: A, B, C, E

• vectors: B̂i, Êi

• tensors: Êij

What makes the SVT-decomposition so powerful is the fact that the Einstein equations for

scalars, vectors and tensors don’t mix at linear order and can therefore be treated separately.

In these lectures, we will mostly be interested in scalar fluctuations and the associated density

perturbations. Vector perturbations aren’t produced by inflation and even if they were, they

would decay quickly with the expansion of the universe. Tensor perturbations are an important

prediction of inflation and we will discuss them briefly in Chapter 6.
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The Gauge Problem

Before we continue, we have to address an important subtlety. The metric perturbations

in (4.2.41) aren’t uniquely defined, but depend on our choice of coordinates or the gauge choice.

In particular, when we wrote down the perturbed metric, we implicitly chose a specific time

slicing of the spacetime and defined specfic spatial coordinates on these time slices. Making a

di↵erent choice of coordinates, can change the values of the perturbation variables. It may even

introduce fictitious perturbations. These are fake perturbations that can arise by an inconvenient

choice of coordinates even if the background is perfectly homogeneous.

For example, consider the homogeneous FRW spacetime (4.2.40) and make the following

change of the spatial coordinates, xi 7! x̃i = xi+ ⇠i(⌧,x). We assume that ⇠i is small, so that it

can also be treated as a perturbation. Using dxi = dx̃i�@⌧⇠
id⌧ �@k⇠

idx̃k, eq. (4.2.40) becomes

ds2 = a2(⌧)
⇥
d⌧2 � 2⇠ 0

i dx̃
id⌧ �

�
�ij + 2@(i⇠j)

�
dx̃idx̃j

⇤
, (4.2.46)

where we have dropped terms that are quadratic in ⇠i and defined ⇠ 0
i ⌘ @⌧⇠i. We apparently

have introduced the metric perturbations Bi = ⇠0i and Êi = ⇠i. But these are just fictitious

gauge modes that can be removed by going back to the old coordinates.

Similar, we can change our time slicing, ⌧ 7! ⌧ + ⇠0(⌧,x). The homogeneous density of the

universe then gets perturbed, ⇢(⌧) 7! ⇢(⌧ + ⇠0(⌧,x)) = ⇢̄(⌧) + ⇢̄ 0⇠0. So even in an unperturbed

universe, a change of the time coordinate can introduce a fictitious density perturbation

�⇢ = ⇢̄ 0⇠0 . (4.2.47)

Similarly, we can remove a real perturbation in the energy density by choosing the hypersurface

of constant time to coincide with the hypersurface of constant energy density. Then �⇢ = 0

although there are real inhomogeneities.

These examples illustrate that we need a more physical way to identify true perturbations.

One way to do this is to define perturbations in such a way that they don’t change under a

change of coordinates.

Gauge Transformations

Consider the coordinate transformation

Xµ 7! X̃µ ⌘ Xµ + ⇠µ(⌧,x) , where ⇠0 ⌘ T , ⇠i ⌘ Li = @iL+ L̂i . (4.2.48)

We have split the spatial shift Li into a scalar, L, and a divergenceless vector, L̂i. We wish to

know how the metric transforms under this change of coordinates. The trick is to exploit the

invariance of the spacetime interval,

ds2 = gµ⌫(X)dXµdX⌫ = g̃↵�(X̃)dX̃↵dX̃� , (4.2.49)

where I have used a di↵erent set of dummy indices on both sides to make the next few lines

clearer. Writing dX̃↵ = (@X̃↵/@Xµ)dXµ (and similarly for dX�), we find

gµ⌫(X) =
@X̃↵

@Xµ

@X̃�

@X⌫
g̃↵�(X̃) . (4.2.50)

This relates the metric in the old coordinates, gµ⌫ , to the metric in the new coordinates, g̃↵� .
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Let us see what (4.2.50) implies for the transformation of the metric perturbations in (4.2.41).

I will work out the 00-component as an example and leave the rest as an exercise. Consider

µ = ⌫ = 0 in (4.2.50):

g00(X) =
@X̃↵

@⌧

@X̃�

@⌧
g̃↵�(X̃) . (4.2.51)

The only term that contributes to the l.h.s. is the one with ↵ = � = 0. Consider for example

↵ = 0 and � = i. The o↵-diagonal component of the metric g̃0i is proportional to B̃i, so it

is a first-order perturbation. But @X̃i/@⌧ is proportional to the first-order variable ⇠i, so the

product is second order and can be neglected. A similar argument holds for ↵ = i and � = j.

Eq. (4.2.51) therefore reduces to

g00(X) =

✓
@⌧̃

@⌧

◆2

g̃00(X̃) . (4.2.52)

Substituting (4.2.48) and (4.2.41), we get

a2(⌧)
�
1 + 2A

�
=
�
1 + T 0�2a2(⌧ + T )

�
1 + 2Ã

�

=
�
1 + 2T 0 + · · ·

��
a(⌧) + a0T + · · ·

�2�
1 + 2Ã

�

= a2(⌧)
�
1 + 2HT + 2T 0 + 2Ã+ · · ·

�
, (4.2.53)

where H ⌘ a0/a is the Hubble parameter in conformal time. Hence, we find that at first order,

the metric perturbation A transforms as

A 7! Ã = A� T 0 �HT . (4.2.54)

I leave it to you to repeat the argument for the other metric components and show that

Bi 7! B̃i = Bi + @iT � L0
i , (4.2.55)

hij 7! h̃ij = hij � 2@(iLj) � 2HT �ij . (4.2.56)

Exercise.—Derive eqs. (4.2.55) and (4.2.56).

In terms of the SVT-decomposition, we get

A 7! A� T 0 �HT , (4.2.57)

B 7! B + T � L0 , B̂i 7! B̂i � L̂0
i , (4.2.58)

C 7! C �HT � 1

3
r2L , (4.2.59)

E 7! E � L , Êi 7! Êi � L̂i , Êij 7! Êij . (4.2.60)

Gauge-Invariant Perturbations

One way to avoid the gauge problems is to define special combinations of metric perturbations

that do not transform under a change of coordinates. These are the Bardeen variables:

 ⌘ A+H(B � E0) + (B � E0)0 , �̂i ⌘ Ê0
i � B̂i , Êij , (4.2.61)

� ⌘ �C �H(B � E0) +
1

3
r2E . (4.2.62)
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Exercise.—Show that  , � and �̂i don’t change under a coordinate transformation.

These gauge-invariant variables can be considered as the ‘real’ spacetime perturbations since

they cannot be removed by a gauge transformation.

Gauge Fixing

An alternative (but related) solution to the gauge problem is to fix the gauge and keep track

of all perturbations (metric and matter). For example, we can use the freedom in the gauge

functions T and L in (4.2.48) to set two of the four scalar metric perturbations to zero:

• Newtonian gauge.—The choice

B = E = 0 , (4.2.63)

gives the metric

ds2 = a2(⌧)
⇥
(1 + 2 )d⌧2 � (1� 2�)�ijdx

idxj
⇤
. (4.2.64)

Here, we have renamed the remaining two metric perturbations, A ⌘  and C ⌘ ��, in
order to make contact with the Bardeen potentials in (4.2.61) and (4.2.62). For perturba-

tions that decay at spatial infinity, the Newtonian gauge is unique (i.e. the gauge is fixed

completely).2 In this gauge, the physics appears rather simple since the hypersurfaces of

constant time are orthogonal to the worldlines of observers at rest in the coordinates (since

B = 0) and the induced geometry of the constant-time hypersurfaces is isotropic (since

E = 0). In the absence of anisotropic stress,  = �. Note the similarity of the metric to

the usual weak-field limit of GR about Minkowski space; we shall see that  plays the role

of the gravitational potential. Newtonian gauge will be our preferred gauge for studying

the formation of large-scale structures (Chapter 5) and CMB anisotropies (Chapter ??).

• Spatially-flat qauge.—A convenient gauge for computing inflationary perturbations is

C = E = 0 . (4.2.65)

In this gauge, we will be able to focus most directly on the fluctuations in the inflaton

field �� (see Chapter 6) .

4.2.2 Perturbed Matter

In Chapter 1, we showed that the matter in a homogeneous and isotropic universe has to take

the form of a perfect fluid

T̄µ
⌫ = (⇢̄+ P̄ )ŪµŪ⌫ � P̄ �µ⌫ , (4.2.66)

where Ūµ = a�0µ, Ū
µ = a�1�µ0 for a comoving observer. Now, we consider small perturbations of

the stress-energy tensor

Tµ
⌫ = T̄µ

⌫ + �Tµ
⌫ . (4.2.67)

2More generally, a gauge transformation that corresponds to a small, time-dependent but spatially constant

boost – i.e. Li(⌧) and a compensating time translation with @iT = Li(⌧) to keep the constant-time hypersurfaces

orthogonal – will preserve Eij = 0 and Bi = 0 and hence the form of the metric in eq. (4.4.168). However, such

a transformation would not preserve the decay of the perturbations at infinity.
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Perturbations of the Stress-Energy Tensor

In a perturbed universe, the energy density ⇢, the pressure P and the four-velocity Uµ can

be functions of position. Moreover, the stress-energy tensor can now have a contribution from

anisotropic stress, ⇧µ
⌫ . The perturbation of the stress-energy tensor is

�Tµ
⌫ = (�⇢+ �P )ŪµŪ⌫ + (⇢̄+ P̄ )(�UµŪ⌫ + Ūµ�U⌫)� �P �µ⌫ �⇧µ

⌫ . (4.2.68)

The spatial part of the anisotropic stress tensor can be chosen to be traceless, ⇧i
i = 0, since its

trace can always be absorbed into a redefinition of the isotropic pressure, P . The anisotropic

stress tensor can also be chosen to be orthogonal to Uµ, i.e. Uµ⇧µ⌫ = 0. Without loss of

generality, we can then set ⇧0
0 = ⇧0

i = 0. In practice, the anisotropic stress will always be

negligible in these lectures. We will keep it for now, but at some point we will drop it.

Perturbations in the four-velocity can induce non-vanishing energy flux, T 0
j , and momen-

tum density, T i
0. To find these, let us compute the perturbed four-velocity in the perturbed

metric (4.2.41). Since gµ⌫U
µU⌫ = 1 and ḡµ⌫Ū

µŪ⌫ = 1, we have, at linear order,

�gµ⌫Ū
µŪ⌫ + 2Ūµ�U

µ = 0 . (4.2.69)

Using Ūµ = a�1�0µ and �g00 = 2a2A, we find �U0 = �Aa�1. We then write �U i ⌘ vi/a, where

vi ⌘ dxi/d⌧ is the coordinate velocity, so that

Uµ = a�1[1�A, vi] . (4.2.70)

From this, we derive

U0 = g00U
0 +

O(2)
z }| {
g0iU

i = a2(1 + 2A)a�1(1�A) = a(1 +A) , (4.2.71)

Ui = gi0U
0 + gijU

j = �a2Bia
�1 � a2�ija

�1vj = �a(Bi + vi) , (4.2.72)

i.e.

Uµ = a[1 +A,�(vi +Bi)] . (4.2.73)

Using (4.2.70) and (4.2.73) in (4.2.68), we find

�T 0
0 = �⇢ , (4.2.74)

�T i
0 = (⇢̄+ P̄ )vi , (4.2.75)

�T 0
j = �(⇢̄+ P̄ )(vj +Bj) , (4.2.76)

�T i
j = ��P �ij �⇧i

j . (4.2.77)

We will use qi for the momentum density (⇢̄ + P̄ )vi. If there are several contributions to the

stress-energy tensor (e.g. photons, baryons, dark matter, etc.), they are added: Tµ⌫ =
P

I T
I
µ⌫ .

This implies

�⇢ =
X

I

�⇢I , �P =
X

I

�PI , qi =
X

I

qiI , ⇧ij =
X

I

⇧ij
I . (4.2.78)

We see that the perturbations in the density, pressure and anisotropic stress simply add. The

velocities do not add, but the momentum densities do.
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Finally, we note that the SVT decomposition can also be applied to the perturbations of the

stress-energy tensor: �⇢ and �P have scalar parts only, qi has scalar and vector parts,

qi = @iq + q̂i , (4.2.79)

and ⇧ij has scalar, vector and tensor parts,

⇧ij = @hi@ji⇧+ @(i⇧̂j) + ⇧̂ij . (4.2.80)

Gauge Transformations

Under the coordinate transformation (4.2.48), the stress-energy tensor transform as

Tµ
⌫(X) =

@Xµ

@X̃↵

@X̃�

@X⌫
T̃↵

�(X̃) . (4.2.81)

Evaluating this for the di↵erent components, we find

�⇢ 7! �⇢� T ⇢̄ 0 , (4.2.82)

�P 7! �P � T P̄ 0 , (4.2.83)

qi 7! qi + (⇢̄+ P̄ )L0
i , (4.2.84)

vi 7! vi + L0
i , (4.2.85)

⇧ij 7! ⇧ij . (4.2.86)

Exercise.—Confirm eqs. (4.2.82)–(4.2.86).

Gauge-Invariant Perturbations

There are various gauge-invariant quantities that can be formed from metric and matter vari-

ables. One useful combination is

⇢̄� ⌘ �⇢+ ⇢̄ 0(v +B) , (4.2.87)

where vi = @iv. The quantity � is called the comoving-gauge density perturbation.

Exercise.—Show that � is gauge-invariant.

Gauge Fixing

Above we used our gauge freedom to set two of the metric perturbations to zero. Alternatively,

we can define the gauge in the matter sector:

• Uniform density gauge.—We can use the freedom in the time-slicing to set the total density

perturbation to zero

�⇢ = 0 . (4.2.88)
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• Comoving gauge.—Similarly, we can ask for the scalar momentum density to vanish,

q = 0 . (4.2.89)

Fluctuations in comoving gauge are most naturally connected to the inflationary initial

conditions. This will be explained in §4.3.1 and Chapter 6.

There are di↵erent versions of uniform density and comoving gauge depending on which of the

metric fluctuations is set to zero. In these lectures, we will choose B = 0.

Adiabatic Fluctuations

Simple inflation models predict initial fluctuations that are adiabatic (see Chapter 6). Adiabatic

perturbations have the property that the local state of matter (determined, for example, by the

energy density ⇢ and the pressure P ) at some spacetime point (⌧,x) of the perturbed universe

is the same as in the background universe at some slightly di↵erent time ⌧ + �⌧(x). (Notice that

the time shift varies with location x!) We can thus view adiabatic perturbations as some parts

of the universe being “ahead” and others “behind” in the evolution. If the universe is filled with

multiple fluids, adiabatic perturbations correspond to perturbations induced by a common, local

shift in time of all background quantities; e.g. adiabatic density perturbations are defined as

�⇢I(⌧,x) ⌘ ⇢̄I(⌧ + �⌧(x))� ⇢̄I(⌧) = ⇢̄ 0
I �⌧(x) , (4.2.90)

where �⌧ is the same for all species I. This implies

�⌧ =
�⇢I
⇢̄ 0
I

=
�⇢J
⇢̄ 0
J

for all species I and J . (4.2.91)

Using3 ⇢̄ 0
I = �3H(1 + wI)⇢̄I , we can write this as

�I
1 + wI

=
�J

1 + wJ
for all species I and J , (4.2.92)

where we have defined the fractional density contrast

�I ⌘ �⇢I
⇢̄I

. (4.2.93)

Thus, for adiabatic perturbations, all matter components (wm ⇡ 0) have the same fractional

perturbation, while all radiation perturbations (wr =
1
3) obey

�r =
4

3
�m . (4.2.94)

It follows that for adiabatic fluctuations, the total density perturbation,

�⇢tot = ⇢̄tot�tot =
X

I

⇢̄I�I , (4.2.95)

is dominated by the species that is dominant in the background since all the �I are comparable.

We will have more to say about adiabatic initial conditions in §4.3.
3If there is no energy transfer between the fluid components at the background level, the energy continuity

equation is satisfied by them separately.
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Isocurvature Fluctuations

The complement of adiabatic perturbations are isocurvature perturbations. While adiabatic

perturbations correspond to a change in the total energy density, isocurvature perturbations

only correspond to perturbations between the di↵erent components. Eq. (4.2.92) suggests the

following definition of isocurvature fluctuations

SIJ ⌘ �I
1 + wI

� �J
1 + wJ

. (4.2.96)

Single-field inflation predicts that the primordial perturbations are purely adiabatic, i.e. SIJ =

0, for all species I and J . Moreover, all present observational data is consistent with this

expectation. We therefore won’t consider isocurvature fluctuations further in these lectures.

4.2.3 Linearised Evolution Equations

Our next task is to derive the perturbed Einstein equations, �Gµ⌫ = 8⇡G�Tµ⌫ , from the per-

turbed metric and the perturbed stress-energy tensor. We will work in Newtonian gauge with

gµ⌫ = a2

 
1 + 2 0

0 �(1� 2�)�ij

!
. (4.2.97)

In these lectures, we will never encounter situations where anisotropic stress plays a significant

role. From now on, we will therefore set anisotropic stress to zero, ⇧ij = 0. As we will see, this

enforces � =  .

Perturbed Connection Coe�cients

To derive the field equations, we first require the perturbed connection coe�cients. Recall that

�µ⌫⇢ =
1

2
gµ� (@⌫g�⇢ + @⇢g�⌫ � @�g⌫⇢) . (4.2.98)

Since the metric (4.2.97) is diagonal, it is simple to invert

gµ⌫ =
1

a2

 
1� 2 0

0 �(1 + 2�)�ij

!
. (4.2.99)

Substituting (4.2.97) and (4.2.99) into (4.2.98), gives

�000 = H+ 0 , (4.2.100)

�00i = @i , (4.2.101)

�i00 = �ij@j , (4.2.102)

�0ij = H�ij �
⇥
�0 + 2H(�+ )

⇤
�ij , (4.2.103)

�ij0 = H�ij � �0�ij , (4.2.104)

�ijk = �2�i(j@k)�+ �jk�
il@l� . (4.2.105)

I will work out �000 as an example and leave the remaining terms as an exercise.
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Example.—From the definition of the Christo↵el symbol we have

�000 =
1

2
g00(2@0g00 � @0g00)

=
1

2
g00@0g00 . (4.2.106)

Substituting the metric components, we find

�000 =
1

2a2
(1� 2 )@0[a

2(1 + 2 )]

= H+ 0 , (4.2.107)

at linear order in  .

Exercise.—Derive eqs. (4.2.101)–(4.2.105).

Perturbed Stress-Energy Conservation

Equipped with the perturbed connection, we can immediately derive the perturbed conservation

equations from

rµT
µ
⌫ = 0

= @µT
µ
⌫ + �

µ
µ↵T

↵
⌫ � �↵µ⌫Tµ

↵ . (4.2.108)

Continuity Equation

Consider first the ⌫ = 0 component

@0T
0
0 + @iT

i
0 + �

µ
µ0T

0
0 + �

µ
µiT

i
0| {z }

O(2)

��000T 0
0 � �0i0T i

0| {z }
O(2)

��i00T 0
i| {z }

O(2)

��ij0T j
i = 0 . (4.2.109)

Substituting the perturbed stress-energy tensor and the connection coe�cients gives

@0(⇢̄+ �⇢) + @iq
i + (H+ 0 + 3H� 3�0)(⇢̄+ �⇢)

� (H+ 0)(⇢̄+ �⇢)� (H� �0)�ij
⇥
� (P̄ + �P )�ji

⇤
= 0 , (4.2.110)

and hence

⇢̄ 0 + �⇢0 + @iq
i + 3H(⇢̄+ �⇢)� 3⇢̄�0 + 3H(P̄ + �P )� 3P̄ �0 = 0 . (4.2.111)

Writing the zeroth-order and first-order parts separately, we get

⇢̄ 0 = �3H(⇢̄+ P̄ ) , (4.2.112)

�⇢0 = �3H(�⇢+ �P ) + 3�0(⇢̄+ P̄ )�r · q . (4.2.113)

The zeroth-order part (4.2.112) simply is the conservation of energy in the homogeneous back-

ground. Eq. (4.2.113) describes the evolution of the density perturbation. The first term on

the right-hand side is just the dilution due to the background expansion (as in the background
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equation), the r · q term accounts for the local fluid flow due to peculiar velocity, and the �0

term is a purely relativistic e↵ect corresponding to the density changes caused by perturbations

to the local expansion rate [(1��)a is the “local scale factor” in the spatial part of the metric

in Newtonian gauge].

It is convenient to write the equation in terms of the fractional overdensity and the 3-velocity,

� ⌘ �⇢

⇢̄
and v =

q

⇢̄+ P̄
. (4.2.114)

Eq. (4.2.113) then becomes

�0 +
✓
1 +

P̄

⇢̄

◆�
r · v � 3�0�+ 3H

✓
�P

�⇢
� P̄

⇢̄

◆
� = 0 . (4.2.115)

This is the relativistic version of the continuity equation. In the limit P ⌧ ⇢, we recover the

Newtonian continuity equation in conformal time, �0 + r · v � 3�0 = 0, but with a general-

relativistic correction due to the perturbation to the rate of exansion of space. This correction

is small on sub-horizon scales (k � H) — we will prove this rigorously in Chapter 5.

Euler Equation

Next, consider the ⌫ = i component of eq. (4.2.108),

@µT
µ
i + �

µ
µ⇢T

⇢
i � �⇢µiTµ

⇢ = 0 , (4.2.116)

and hence

@0T
0
i + @jT

j
i + �

µ
µ0T

0
i + �

µ
µjT

j
i � �00iT 0

0 � �0jiT j
0 � �j0iT 0

j � �jkiT
k
j = 0 . (4.2.117)

Using eqs. (4.2.74)–(4.2.77), with T 0
i = �qi in Newtonian gauge, eq. (4.2.117) becomes

�q0i + @j

h
�(P̄ + �P )�ji

i
� 4Hqi � (@j � 3@j�)P̄ �ji � @i ⇢̄

�H�jiq
j +H�ji qj +

⇣
�2�j(i@k)�+ �ki�

jl@l�
⌘
P̄ �kj

| {z }
�3@i� P̄

= 0 , (4.2.118)

or

�q0i � @i�P � 4Hqi � (⇢̄+ P̄ )@i = 0 . (4.2.119)

Using eqs. (4.2.112) and (4.2.114), we get

v

0 +Hv � 3H P̄ 0

⇢̄ 0 v = � r�P

⇢̄+ P̄
�r . (4.2.120)

This is the relativistic version of the Euler equation for a viscous fluid. Pressure gradients

(r�P ) and gravitational infall (r ) drive v0. The equation captures the redshifting of peculiar

velocities (Hv) and includes a small correction for relativistic fluids (P̄ 0/⇢̄ 0). Adiabatic fluctua-
tions satisfy P̄ 0/⇢̄ 0 = c2s. Non-relativistic matter fluctuations have a very small sound speed, so

the relativistic correction in the Euler equation (4.2.120) is much smaller than the redshifting
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term. The limit P ⌧ ⇢ then reproduces the Euler equation (4.1.25) of the linearised Newtonian

treatment.

Eqs. (4.2.115) and (4.2.120) apply for the total matter and velocity, and also separately for any

non-interacting components so that the individual stress-energy tensors are separately conserved.

Once an equation of state of the matter (and other constitutive relations) are specified, we just

need the gravitational potentials  and � to close the system of equations. Equations for  and

� follow from the perturbed Einstein equations.

Perturbed Einstein Equations

Let us now compute the linearised Einstein equation in Newtonian gauge. We require the

perturbation to the Einstein tensor, Gµ⌫ ⌘ Rµ⌫ � 1
2Rgµ⌫ , so we first need to calculate the

perturbed Ricci tensor Rµ⌫ and scalar R.

Ricci tensor.—We recall that the Ricci tensor can be expressed in terms of the connection as

Rµ⌫ = @��
�
µ⌫ � @⌫�

�
µ� + ���⇢�

⇢
µ⌫ � �

⇢
µ��

�
⌫⇢ . (4.2.121)

Substituting the perturbed connection coe�cients (4.2.100)–(4.2.105), we find

R00 = �3H0 +r2 + 3H(�0 + 0) + 3�00 , (4.2.122)

R0i = 2@i�
0 + 2H@i , (4.2.123)

Rij =
⇥
H0 + 2H2 � �00 +r2�� 2(H0 + 2H2)(�+ )�H 0 � 5H�0⇤ �ij (4.2.124)

+ @i@j(�� ) .

I will derive R00 here and leave the others as an exercise.

Example.—The 00 component of the Ricci tensor is

R00 = @⇢�
⇢
00 � @0�

⇢
0⇢ + �

↵
00�

⇢
↵⇢ � �↵0⇢�⇢0↵ . (4.2.125)

When we sum over ⇢, the terms with ⇢ = 0 cancel so we need only consider summing over ⇢ = 1, 2, 3,
i.e.

R00 = @i�
i
00 � @0�

i
0i + �

↵
00�

i
↵i � �↵0i�i0↵

= @i�
i
00 � @0�

i
0i + �

0
00�

i
0i + �

j
00�

i
ji| {z }

O(2)

��00i�i00| {z }
O(2)

��j0i�i0j

= r2 � 3@0(H� �0) + 3(H+ 0)(H� �0)� (H� �0)2�ji �
i
j

= �3H0 +r2 + 3H(�0 + 0) + 3�00 . (4.2.126)

Exercise.—Derive eqs. (4.2.123) and (4.2.124).

Ricci scalar.—It is now relatively straightforward to compute the Ricci scalar

R = g00R00 + 2 g0iR0i| {z }
0

+gijRij . (4.2.127)
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It follows that

a2R = (1� 2 )R00 � (1 + 2�)�ijRij

= (1� 2 )
⇥
�3H0 +r2 + 3H(�0 + 0) + 3�00⇤

� 3(1 + 2�)
⇥
H0 + 2H2 � �00 +r2�� 2(H0 + 2H2)(�+ )�H 0 � 5H�0⇤

� (1 + 2�)r2(�� ) . (4.2.128)

Dropping non-linear terms, we find

a2R = �6(H0 +H2) + 2r2 � 4r2�+ 12(H0 +H2) + 6�00 + 6H( 0 + 3�0) . (4.2.129)

Einstein tensor.—Computing the Einstein tensor is now just a matter of collecting our previous

results. The 00 component is

G00 = R00 �
1

2
g00R

= �3H0 +r2 + 3H(�0 + 0) + 3�00 + 3(1 + 2 )(H0 +H2)

� 1

2

⇥
2r2 � 4r2�+ 12(H0 +H2) + 6�00 + 6H( 0 + 3�0)

⇤
. (4.2.130)

Most of the terms cancel leaving the simple result

G00 = 3H2 + 2r2�� 6H�0 . (4.2.131)

The 0i component of the Einstein tensor is simply R0i since g0i = 0 in Newtonian gauge:

G0i = 2@i(�
0 +H ) . (4.2.132)

The remaining components are

Gij = Rij �
1

2
gijR

=
⇥
H0 + 2H2 � �00 +r2�� 2(H0 + 2H2)(�+ )�H 0 � 5H�0⇤ �ij + @i@j(�� )
� 3(1� 2�)(H0 +H2)�ij

+
1

2

⇥
2r2 � 4r2�+ 12(H0 +H2) + 6�00 + 6H( 0 + 3�0)

⇤
�ij . (4.2.133)

This neatens up (only a little!) to give

Gij = �(2H0 +H2)�ij +
⇥
r2( � �) + 2�00 + 2(2H0 +H2)(�+ ) + 2H 0 + 4H�0⇤ �ij

+ @i@j(�� ) . (4.2.134)

Einstein Equations

Substituting the perturbed Einstein tensor, metric and stress-energy tensor into the Einstein

equation gives the equations of motion for the metric perturbations and the zeroth-order Fried-

mann equations:

• Let us start with the trace-free part of the ij equation, Gij = 8⇡GTij . Since we have

dropped anisotropic stress there is no source on the right-hand side. From eq. (4.2.134),

we get

@hi@ji(�� ) = 0 . (4.2.135)
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Had we kept anisotropic stress, the right-hand side would be �8⇡Ga2⇧ij . In the absence

of anisotropic stress4 (and assuming appropriate decay at infinity), we get5

� =  . (4.2.136)

There is then only one gauge-invariant degree of freedom in the metric. In the following,

we will write all equations in terms of �.

• Next, we consider the 00 equation, G00 = 8⇡GT00. Using eq. (4.2.131), we get

3H2 + 2r2�� 6H�0 = 8⇡Gg0µT
µ
0

= 8⇡G
�
g00T

0
0 + g0iT

i
0

�

= 8⇡Ga2(1 + 2�)(⇢̄+ �⇢)

= 8⇡Ga2⇢̄(1 + 2�+ �) . (4.2.137)

The zeroth-order part gives

H2 =
8⇡G

3
a2⇢̄ , (4.2.138)

which is just the Friedmann equation. The first-order part of eq. (4.2.137) gives

r2� = 4⇡Ga2⇢̄� + 8⇡Ga2⇢̄�+ 3H�0 . (4.2.139)

which, on using eq. (4.2.138), reduces to

r2� = 4⇡Ga2⇢̄� + 3H(�0 +H�) . (4.2.140)

• Moving on to 0i equation, G0i = 8⇡GT0i, with

T0i = g0µT
µ
i = g00T

0
i = ḡ00T

0
i = �a2qi . (4.2.141)

It follows that

@i(�
0 +H�) = �4⇡Ga2qi . (4.2.142)

If we write qi = (⇢̄+P̄ )@iv and assume the perturbations decay at infinity, we can integrate

eq. (4.2.142) to get

�0 +H� = �4⇡Ga2(⇢̄+ P̄ )v . (4.2.143)

• Substituting eq. (4.2.143) into the 00 Einstein equation (4.2.140) gives

r2� = 4⇡Ga2⇢̄� , where ⇢̄� ⌘ ⇢̄� � 3H(⇢̄+ P̄ )v . (4.2.144)

4In reality, neutrinos develop anisotropic stress after neutrino decoupling (i.e. they do not behave like a perfect

fluid). Therefore, � and  actually di↵er from each other by about 10% in the time between neutrino decoupling

and matter-radiation equality. After the universe becomes matter-dominated, the neutrinos become unimportant,

and � and  rapidly approach each other. The same thing happens to photons after photon decoupling, but the

universe is then already matter-dominated, so they do not cause a significant �� di↵erence.
5In Fourier space, eq. (4.2.135) becomes

�
kikj � 1

3
�ijk

2� (�� ) = 0 .

For finite k, we therefore must have � =  . For k = 0, �� = const. would be a solution. However, the constant

must be zero, since the mean of the perturbations vanishes.
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This is of the form of a Poisson equation, but with source density given by the gauge-

invariant variable � of eq. (4.2.87) since B = 0 in the Newtonian gauge. Let us introduce

comoving hypersurfaces as those that are orthogonal to the worldlines of a set of observers

comoving with the total matter (i.e. they see qi = 0) and are the constant-time hypersur-

faces in the comoving gauge for which qi = 0 and Bi = 0. It follows that � is the fractional

overdensity in the comoving gauge and we see from eq. (4.2.144) that this is the source

term for the gravitational potential �.

• Finally, we consider the trace-part of the ij equation, i.e. Gi
i = 8⇡GT i

i. We compute the

left-hand side from eq. (4.2.134) (with � =  ),

Gi
i = giµGµi

= gikGki

= �a�2(1 + 2�)�ik
⇥
�(2H0 +H2)�ki +

�
2�00 + 6H�0 + 4(2H0 +H2)�

�
�ki
⇤

= �3a�2
⇥
�(2H0 +H2) + 2

�
�00 + 3H�0 + (2H0 +H2)�

�⇤
. (4.2.145)

We combine this with T i
i = �3(P̄ + �P ). At zeroth order, we find

2H0 +H2 = �8⇡Ga2P̄ , (4.2.146)

which is just the second Friedmann equation. At first order, we get

�00 + 3H�0 + (2H0 +H2)� = 4⇡Ga2�P . (4.2.147)

Of course, the Einstein equations and the energy and momentum conservation equations form

a redundant (but consistent!) set of equations because of the Bianchi identity. We can use

whichever subsets are most convenient for the particular problem at hand.

4.3 Conserved Curvature Perturbation

There is an important quantity that is conserved on super-Hubble scales for adiabatic fluctuations

irrespective of the equation of state of the matter: the comoving curvature perturbation. As we

will see below, the comoving curvature perturbation provides the essential link between the

fluctuations that we observe in the late-time universe (Chapter 5) and the primordial seed

fluctuations created by inflation (Chapter 6).

4.3.1 Comoving Curvature Perturbation

In some arbitrary gauge, let us work out the intrinsic curvature of surfaces of constant time.

The induced metric, �ij , on these surfaces is just the spatial part of eq. (4.2.41), i.e.

�ij ⌘ a2 [(1 + 2C)�ij + 2Eij ] . (4.3.148)

where Eij ⌘ @hi@jiE for scalar perturbations. In a tedious, but straightforward computation,

we derive the three-dimensional Ricci scalar associated with �ij ,

a2R(3) = �4r2

✓
C � 1

3
r2E

◆
. (4.3.149)

In the following insert I show all the steps.
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Derivation.—The connection corresponding to �ij is

(3)�ijk =
1

2
�il (@j�kl + @k�jl � @l�jk) , (4.3.150)

where �ij is the inverse of the induced metric,

�ij = a�2
⇥
(1� 2C)�ij � 2Eij

⇤
= a�2�ij +O(1) . (4.3.151)

In order to compute the connection to first order, we actually only need the inverse metric to zeroth
order, since the spatial derivatives of the �ij are all first order in the perturbations. We have

(3)�ijk = �il@j (C�kl + Ekl) + �il@k (C�jl + Ejl)� �il@l (C�jk + Ejk)

= 2�i(j@k)C � �il�jk@lC + 2@(jEk)
i � �il@lEjk . (4.3.152)

The intrinsic curvature is the associated Ricci scalar, given by

R(3) = �ik@l
(3)�lik � �ik@k

(3)�lil + �ik (3)�lik
(3)�mlm � �ik (3)�mil

(3)�lkm . (4.3.153)

To first order, this reduces to

a2 R(3) = �ik@l
(3)�lik � �ik@k

(3)�lil . (4.3.154)

This involves two contractions of the connection. The first is

�ik(3)�lik = �ik
⇣
2�l(i@k)C � �jl�ik@jC

⌘
+ �ik

⇣
2@(iEk)

l � �jl@jEik

⌘

= 2�kl@kC � 3�jl@jC + 2@iE
il � �jl@j (�

ikEik)| {z }
0

= ��kl@kC + 2@kE
kl . (4.3.155)

The second is

(3)�lil = �ll@iC + �li@lC � @iC + @lEi
l + @iEl

l � @lEi
l

= 3@iC . (4.3.156)

Eq. (4.3.154) therefore becomes

a2 R(3) = @l
�
��kl@kC + 2@kE

kl
�
� 3�ik@k@iC

= �r2C + 2@i@jE
ij � 3r2C

= �4r2C + 2@i@jE
ij . (4.3.157)

Note that this vanishes for vector and tensor perturbations (as do all perturbed scalars) since then
C = 0 and @i@jE

ij = 0. For scalar perturbations, Eij = @hi@jiE so

@i@jE
ij = �il�jm@i@j

✓
@l@mE � 1

3
�lmr2E

◆

= r2r2E � 1

3
r2r2E

=
2

3
r4E . (4.3.158)

Finally, we get eq. (4.3.149).

We define the curvature perturbation as C � 1
3r2E. The comoving curvature perturbation R
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is the curvature perturbation evaluated in the comoving gauge (Bi = 0 = qi). It will prove

convenient to have a gauge-invariant expression for R, so that we can evaluate it from the

perturbations in any gauge (for example, in Newtonian gauge). Since B and v vanish in the

comoving gauge, we can always add linear combinations of these to C � 1
3r2E to form a gauge-

invariant combination that equals R. Using eqs. (4.2.58)–(4.2.60) and (4.2.85), we see that the

correct gauge-invariant expression for the comoving curvature perturbation is

R = C � 1

3
r2E +H(B + v) . (4.3.159)

Exercise.—Show that R is gauge-invariant.

4.3.2 A Conservation Law

We now want to prove that the comoving curvature perturbation R is indeed conserved on large

scales and for adiabatic perturbations. We shall do so by working in the Newtonian gauge, in

which case

R = ��+Hv , (4.3.160)

since B = E = 0 and C ⌘ ��. We can use the 0i Einstein equation (4.2.143) to eliminate the

peculiar velocity in favour of the gravitational potential and its time derivative:

R = ��� H(�0 +H�)
4⇡Ga2(⇢̄+ P̄ )

. (4.3.161)

Taking a time derivative of (4.3.161) and using the evolution equations of the previous section,

we find

�4⇡Ga2(⇢̄+ P̄ )R0 = 4⇡Ga2H�Pnad +H P̄ 0

⇢̄ 0 r
2� , (4.3.162)

where we have defined the non-adiabatic pressure perturbation

�Pnad ⌘ �P � P̄ 0

⇢̄ 0 �⇢ . (4.3.163)

Derivation.⇤—We di↵erentiate eq. (4.3.161) to find

�4⇡Ga2(⇢̄+ P̄ )R0 = 4⇡Ga2(⇢̄+ P̄ )�0 +H0(�0 +H�) +H(�00 +H0�+H�0)

+H2(�0 +H�) + 3H2 P̄
0

⇢̄ 0 (�
0 +H�) , (4.3.164)

where we used ⇢̄ 0 = �3H(⇢̄+ P̄ ). This needs to be cleaned up a bit. In the first term on the right,
we use the Friedmann equation to write 4⇡Ga2(⇢̄ + P̄ ) as H2 � H0. In the last term, we use the
Poisson equation (4.2.140) to write 3H(�0 +H�) as (r2�� 4⇡Ga2⇢̄�). We then find

�4⇡Ga2(⇢̄+ P̄ )R0 = (H2 �H0)�0 +H0(�0 +H�) +H(�00 +H0�+H�0)

+H2(�0 +H�) +H P̄ 0

⇢̄ 0
�
r2�� 4⇡Ga2⇢̄�

�
. (4.3.165)



99 4. Cosmological Perturbation Theory

Adding and subtracting 4⇡Ga2H�P on the right-hand side and simplifying gives

�4⇡Ga2(⇢̄+ P̄ )R0 = H
⇥
�00 + 3H�0 + (2H0 +H2)�� 4⇡Ga2�P

⇤

+ 4⇡Ga2H�Pnad +H P̄ 0

⇢̄ 0 r
2� , (4.3.166)

where �Pnad was defined in (4.3.163). The first term on the right-hand side vanishes by eq. (4.2.147),

so we obtain eq. (4.3.162).

Exercise.—Show that �Pnad is gauge-invariant.

The non-adiabatic pressure �Pnad vanishes for a barotropic equation of state, P = P (⇢) (and,

more generally, for adiabatic fluctuations in a mixture of barotropic fluids). In that case, the

right-hand side of eq. (4.3.162) scales as Hk2� ⇠ Hk2R, so that

d lnR
d ln a

⇠
✓
k

H

◆2

. (4.3.167)

Hence, we find that R doesn’t evolve on super-Hubble scales, k ⌧ H. This means that the value

of R that we will compute at horizon crossing during inflation (Chapter 6) survives unaltered

until later times.

4.4 Summary

We have derived the linearised evolution equations for scalar perturbations in Newtonian gauge,

where the metric has the following form

ds2 = a2(⌧)
⇥
(1 + 2 )d⌧2 � (1� 2�)�ijdx

idxj
⇤
. (4.4.168)

In these lectures, we won’t encounter situations where anisotropic stress plays a significant role,

so we will always be able to set  = �.

• The Einstein equations then are

r2�� 3H(�0 +H�) = 4⇡Ga2 �⇢ , (4.4.169)

�0 +H� = �4⇡Ga2(⇢̄+ P̄ )v , (4.4.170)

�00 + 3H�0 + (2H0 +H2)� = 4⇡Ga2 �P . (4.4.171)

The source terms on the right-hand side should be interpreted as the sum over all relevant

matter components (e.g. photons, dark matter, baryons, etc.). The Poisson equation takes

a particularly simple form if we introduce the comoving gauge density contrast

r2� = 4⇡Ga2⇢̄� . (4.4.172)

• From the conservation of the stress-tensor, we derived the relativistic generalisations of

the continuity equation and the Euler equation

�0 + 3H
✓
�P

�⇢
� P̄

⇢̄

◆
� = �

✓
1 +

P̄

⇢̄

◆�
r · v � 3�0� , (4.4.173)

v

0 + 3H
✓
1

3
� P̄ 0

⇢̄ 0

◆
v = � r�P

⇢̄+ P̄
�r� . (4.4.174)
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These equations apply for the total matter and velocity, and also separately for any non-

interacting components so that the individual stress-energy tensors are separately con-

served.

• A very important quantity is the comoving curvature perturbation

R = ��� H(�0 +H�)
4⇡Ga2(⇢̄+ P̄ )

. (4.4.175)

We have shown that R doesn’t evolve on super-Hubble scales, k ⌧ H, unless non-adiabatic

pressure is significant. This fact is crucial for relating late-time observables, such as the

distributions of galaxies (Chapter 5), to the initial conditions from inflation (Chapter 6).
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