
Quantification and Traceability of
Requirements

Petter L. H. Eide

TDT4735 Software Engineering Depth Study
Fall 2005

Teaching supervisor:
Tor Stålhane

Faculty of Information Technology, Mathematics
and Electrical Engineering

Department of Computer and Information Science

Abstract

Today, software has become a critical competitive factor for many organizations. The
ability to produce software of high quality, for less cost, in shorter timescales is a
matter of survival. The use of requirement management tools, with support for quan-
tification and traceability, is recognized as a significant capability in the software de-
velopment and maintenance process, and as an important factor for the quality of the
final software product.

This project explores the domain of requirements engineering from a technical per-
spective, resulting in a design and implementation of a tool for managing requirements,
the ReMaTo tool.

The report presents in a brief manner theoretical concepts central to the technological
aspects of requirements engineering. Quantification in this context is the ability to
identify measurable, mutually properties of similar requirements and the elicitation of
corresponding values for each requirement. Traceability in this context is the ability
to relate artifacts which are created during the development of a software system with
each other, the stakeholders that created them, and/or the rationale underpinning their
exact form.

The report is intended for practitioners, managers, researchers and developers with
interests in requirement management technology and tools.

PREFACE

This project has been carried out by Petter L. H. Eide from August to December 2005.
The studies performed are related to the course TDT4735 Software Engineering Depth
Study, being a part of the fifth year of the Master of Technology degree in Computer
Sciences at the Norwegian University of Science and Technology.

The project is assigned by the WesternGeco and has been carried out at the Department
of Computer and Information Science and WesternGeco Oslo Technology Center. The
project is a part of the ModelWare IST research project, which is co-funded by the Eu-
ropean Commission under the “Information Society Technologies” Sixth Framework
Programme (2002-2006). Related to the ModelWare project, a prototype of the tool
developed in this project was demonstrated at the “European Conference on Model
Driven Architecture - Foundations and Applications”, November 7-10th 2005, Nurem-
berg, Germany.

ACKNOWLEDGMENTS

The author would like to thank the supervisors Tor Stålhane form IDI and Bjørn Nord-
moen from WesternGeco for their guidance and sharing of expertise during the writing
of this report. Their feedback and council during this fall have been invaluable.

The author would also like to thank Ole-André Ranvik at Objectware and Tor Neple at
Sintef for support, valuable advices and interesting viewpoints.

Trondheim, December 22, 2005

Petter L. H. Eide

i

CONTENTS

Introduction 1
Background . 1
Motivation . 2
Problem Definition . 3
Project Context . 4
Limitation of Scope . 5
Report Outline . 5

Project Process and Method 7
Project Progress . 7
Tools . 8

I Prestudy 11

1 Requirements Engineering 13
1.1 Definition . 13
1.2 Context . 13
1.3 Approaches . 17

2 Software Requirements 19
2.1 Definition . 19
2.2 Functional Requirements . 19
2.3 Non Functional Requirements . 20
2.4 Software Requirement Specification 20

3 Quantification 23
3.1 Definition . 23
3.2 NF Taxonomies . 24
3.3 Requirement Properties . 27
3.4 Business Application . 27

4 Traceability 29

iii

CONTENTS

4.1 Definition . 29
4.2 Artifacts . 30
4.3 Techniques . 30

4.3.1 Manual Techniques . 30
4.3.2 Automation Techniques . 31

4.4 Business Application . 32

5 Existing Tools 33
5.1 Caliber RM . 33
5.2 Rational RequisitePro . 33
5.3 DOORS . 33
5.4 Other Tools . 34
5.5 Possible Evaluation . 34

II Contribution 37

6 Scenarios 39
6.1 Collaboration Opportunities and Accessibility 39
6.2 Quantification . 40

7 Requirements 41
7.1 Quantification . 41
7.2 Simple Traceability . 42
7.3 Accessibility . 42
7.4 Collaboration . 42

8 System Design 43
8.1 High-Level Architecture . 43
8.2 Domain Model . 45

9 Implementation 47
9.1 The remato.common package . 47

9.1.1 Metrics . 51
9.2 The remato.client package . 52

9.2.1 Metrics . 57
9.3 The remato.server package . 58

9.3.1 Metrics . 62

10 ReMaTo Editions 63
10.1 Eclipse Plug-in . 63

10.1.1 Installation . 63
10.1.2 Login . 65
10.1.3 ReMaTo Explorer . 66

iv

CONTENTS

10.1.4 Properties Template Editor 67
10.1.5 Category . 68
10.1.6 Requirement . 69
10.1.7 Table View . 70
10.1.8 Stakeholder . 71

10.2 Standalone Client . 72
10.3 Java Web Start Client . 74

III Evaluation and Discussion 75

11 Discussion 77
11.1 ReMaTo Prototypes Evolution . 77
11.2 Domain Model . 78
11.3 Client-Server Communication . 78
11.4 Save Handling and Transactions . 80

12 Evaluation 81
12.1 ReMaTo Development . 81
12.2 Project Process and Progress . 82

IV Conclusion and Further Work 83

13 Conclusion 85

14 The ReMaTo Tool 87

15 Domain of Traceability 89

Appendices 92

A Project Plan 93
A.1 Milestones . 93

A.1.1 The Requirement Tool . 93
A.1.2 The Report . 94

B RMT SRS 95

C Class diagrams 105
C.1 The remato.common.session package 105

v

CONTENTS

Bibliography 111

Glossary 113

Index 116

vi

LIST OF FIGURES

1 The core development process . 8
2 The overall project process . 9

1.1 Various contexts for RE . 16

8.1 High-Level Architecture . 44
8.2 Domain Model as UML . 45

9.1 The remato.common package . 48
9.2 Selected interfaces from the remato.common.domain package . 49
9.3 The remato.client package . 52
9.4 The remato.server package . 58

10.1 ReMaTo Eclipse plug-in installation 64
10.2 ReMaTo Eclipse plug-in login . 65
10.3 ReMaTo Explorer . 66
10.4 ReMaTo Properties Template Editor 67
10.5 ReMaTo Category Editor . 68
10.6 ReMaTo Requirements Editor . 69
10.7 ReMaTo requirements table view . 70
10.8 ReMaTo Stakeholder Editor . 71
10.9 ReMaTo Standalone Client edition file structure 72
10.10ReMaTo Standalone Client example 73
10.11ReMaTo “Java Web Start” standalone client edition deployment . . . 74

C.1 The remato.common.session package 106

vii

LIST OF TABLES

1.1 Common activities related to RE . 14
1.2 Types of projects . 14
1.3 Context issues from developers point of view 15
1.4 Context issues from customers point of view 15
1.5 Contract types . 16
1.6 Requirement levels (goal-design-scale) 16
1.7 Three requirements approaches . 17

2.1 NF types . 20

3.1 NF taxonomies . 24
3.2 VOLERE taxonomy . 24
3.3 Firesmith developer-oriented taxonomy 25
3.4 Firesmith usage-oriented taxonomy 26
3.5 Gibs attribute specification . 27

4.1 Artifact types . 30
4.2 Artifact level of granularity . 30
4.3 Common manual trace techniques 31
4.4 Automated traceability link types . 31

5.1 Existing tools list . 34

9.1 Metrics of remato.common . 51
9.2 Metrics of remato.client . 58
9.3 Metrics of remato.server . 62

viii

LISTINGS

9.1 Interface remato.common.smartservice.SmartService.java 50
9.2 Class remato.client.model.PropertyDefinitionSetWrapper.java 53
9.3 Class remato.server2.domain.ejb.RequirementEjb.java 58

ix

INTRODUCTION

This chapter presents the background and foundation for the project. It starts out with
a section about motivation before it focuses on the problem definition, the project
context and the readers guide to the next chapters.

BACKGROUND

In the wake of the establishment of software engineering (SE) as term for the software
development process, requirements engineering (RE) has gradually been formed as a
research area of its own over the recent years. For the early systems, the focus of
requirements was centered around the technical issues of machines being expensive
resources [19]. Today, this is often characterized as constraints. Later on the attention
changed towards code, design, and further on to issues connected to the elicitation of
such requirements.

Issues related to eliciting requirements are still important today, but it has become more
accepted that eliciting the perfect requirements is difficult and sometimes impossible
at an early stage of the software development process. As a result of this, requirement
change management has become a central part of the focus of RE [31]. Connected
to this is validation of requirements. A common strategy to meet these challenges is
using tools with support for traceability among software artifacts. This also applies to
long living applications (many years), which with a large certainty will be exposed to
changes.

Further, the focus of requirements engineering has changed towards “quality”, ensur-
ing that the requirements are realized in design and code, and visa versa. An extension
of validation of requirements involves testing; all requirements should be addressed in
one or several tests. Another challenge is the interpretation of software requirements.
Using quantifying templates is a strategy to address this.

To which extent software developing companies or teams are aware of the many chal-
lenges and how they try to cope with them, aware or not, is fluctuating. This also
includes the extent of use of supporting tools.

1

INTRODUCTION

Research on quantification has been mainly concerned with categorization of require-
ments to be able to define common attributes for similar requirements. Further on
how to make these attributes measurable and unambiguous. There exist today several
well-known taxonomies for requirements.

Research on software traceability on the other hand, has been mainly concerned with
the study and definition of different types of traceability relations; the generation of
these relations; the development of architectures, tools, and environments for manag-
ing traceability information; and the empirical investigation of organisational practices
regarding the establishment and deployment of traceability information in the software
development life cycle.

MOTIVATION

A major characteristic of software engineering compared to other engineering disci-
plines, is our inability to get the product right the first time. One of the most reliable
methods of ensuring problems, or failure, in a large, complex software project is to
have poorly documented requirements specifications. The eliciting process is difficult
by it self, but can be improved. Care should be taken to involve all of a project’s sig-
nificant stakeholders in the RE process. The stakeholders can be in-house or external
personnel, and can include end-users, customer acceptance testers, customer contract
officers, customer management, future software maintenance engineers, salespeople,
etc. Anyone who later can derail the project, if their expectations are not met, should
be included if possible. This work usually takes effort and is time consuming.

Other challenges can be defeated with less effort and even more to gain. First thing is
to assure that the documented requirements are clear and understandable. Definition
of complete, just enough detailed, and quantifiable requirements is a prerequisite to
meet this challenge. Thus, choosing a requirement’s quality-attributes in a precise and
quantifiable way is important. Tool support can help structure and arrange the process,
which can increase the efficiency of the process and raise the quality of the require-
ments. Further on, tool support can improve the accessibility, improve the outline
and thereby clarify and help communicate the requirements. Light analysis to ensure
consistency of the requirements can also be performed.

Change of requirements is an intrinsic and essential part of software development, and
for good reasons. It is difficult to specify what is required without having some form of
model to help formalize the problem. The real-world problem, which the software is
intended to solve, is itself subject to change. And even if what to produce is known, the
design and development of these invisible, intangible, and complex software products
is still inherently difficult. This applies to both short and long-term software engineer-
ing; it is challenging to keep the requirements up to date with the system design and

2

source code and visa versa. In the same way it is challenging to trace and determine if
a requirement is realized in a system. It may take serious effort to determine if an ap-
plication has significant unexpected or hidden functionality which does not correspond
to the requirements, and it can indicate deeper problems in the software development
process. If the functionality is not necessary to the purpose of the application, it should
be removed, as it may have unknown impacts or dependencies that were not taken into
account by the designer or the customer. If not removed, information will be needed to
determine risks and to determine any added testing needs or regression testing needs.

The challenge of validating that the actual functionality is in accordance with the re-
quirements is also a standard aspect of projects that include Commercial Off-The-Shelf
(COTS) software or modified COTS software. The COTS part of a project will typ-
ically have a large amount of functionality which is not included in project require-
ments, or may be simply undetermined.

A requirement management tool (RMT) with possibilities to define dependencies or
relationships between requirements and other software artifacts from the development
process can contribute to, and may provide functionality to, defeat these challenges
mentioned. Relevant software artifacts can be design models, use case descriptions,
source code and test definitions.

Such RMT may be able to perform automated in-depth analysis of software depen-
dencies and reveal requirements and software artefact inconsistency. Ideally it will be
able to reveal obsolete functionality –constituting a security threat, missing function-
ality –contributing to customer dissatisfaction or software failure, or what to change if
requirements changes, which tests to run if anything changes, and so on.

Today, software has become a critical competitive factor for many organizations. The
ability to produce software of high quality, for less cost, in shorter timescales is a
matter of survival. Hence, organizations are forced to continually seek to improve their
processes by which tools with support for quantification and traceability can make the
difference.

PROBLEM DEFINITION

The aim of this project is to design and implement a requirement management tool
with functionality for documenting quantifiable requirements. More specifically this
means that the tool will:

• support organization requirements in categories and projects

• provide a basic,default set of requirements attributes

• support definition of customized requirements attributes

3

INTRODUCTION

• support customised categorization of requirements with further support for at-
taching pre or user-defined requirement attributes as templates

The tool should provide support for simple traceability of requirements. More specifi-
cally simple traceability means that the tool will:

• support relating requirements to requirements

• support relating stakeholder to requirements

• provide an outline of the requirements

• provide functionality to display, compare and sort requirements in table view

Further, more advanced traceability techniques end technology could be explored.

The tool should be implemented as a client-server system, designed to support different
client applications.

To obtain a complete picture of the research domain and to ensure taking the right
design decisions, the most central concepts and methods in RE will be described. The
most relevant and widespread existing tools will be described in brief.

Given the task of implementing a tool, the focus will be technical rather than focusing
on the requirements engineering process in general.

PROJECT CONTEXT

This project is assigned by WesternGeco (WG) / Schlumberger [45] by Bjørn Nord-
moen, Chief System Architect & Technical Advisor at the WG Oslo Technology Cen-
ter. The purpose was originally to explore the possibilities of implementing a lightweight,
easy-utilizing tool for requirement management, with support for quantification and
traceability of requirements and appurtenant artifacts. The objective changed during
the project and is now to deploy such an adequate tool. The tool will possibly be
utilized in future software development projects at WG.

Further, the project is a part of the ModelWare IST research project [29], through WG’s
involvement in ModelWare. This has reached the press’ attention; “Seismic company
WesternGeco Schlumberger contributes to find methodologies and techniques to pre-
vent source code of large IT-solutions obsoleting”1 [9].

The ModelWare project is co-funded by the European Commission under the “Infor-
mation Society Technologies” Sixth Framework Programme (2002-2006). The major
stake of the ModelWare project is to increase European competitiveness in the domain

1Translated from Norwegian. Original text: “Seismikkselskapet WesternGeco Schlumberger bidrar
til å finne metoder som hindrer at programkoden i større it-løsninger forfaller.”

4

of software development. In that context there are two main actions leaded for Mod-
elWare: the capitalization on the level of the technical domains, and the automation
of the code generation. This project fits into the ModelWare project as requirement
management tool contribution.

Related to the ModelWare project, a prototype of the tool of this project was demon-
strated at the “European Conference on Model Driven Architecture - Foundations and
Applications” [6], November 7-10th 2005, Nuremberg, Germany, by Bjørn Nordmoen.

At the current time the project resources is hosted at the author’s private server http:
//remato.eide.biz. Compiled binaries of the ReMaTo client and source-code
is found there. The server hosts an Eclipse update-site, ’http://remato.eide.
biz/eclipse’, for automatically installing and updating the client as an Eclipse
plug-in. The server is also running the ReMaTo server-service for test and demonstra-
tion purposes. This service is available at ’http://remato.eide.biz:8080/
smartservice’. A Java Web Start [18] edition of the tool is also available at the
server at ’https://remato.eide.biz/jnlp/remato.jnlp’.

In near future the source-code will be published as a part of the Model Driven De-
velopment integration project (MDDi) [28], at the SourceForge.net [41] or equivalent
Open Source software development web site.

LIMITATION OF SCOPE

As mentioned in the Problem Definition, p. 3, the main goal of this project is to design
and implement a requirement management tool. This implies a technical focus.

Due to the degree of technicality of the project, the studies of the requirement manage-
ment process domain will be limited to a minimum, covering only those aspects and
concepts necessary to explain the design and implementation choices. This limitation
concerns particularly the eliciting-process of requirements.

The technical sides of the challenges will on the other hand be elaborated.

REPORT OUTLINE

This section presents a brief overview of the entire document, giving a short description
of each part.

Introduction This chapter contains background information about the project, such
as motivation, problem definition, project context, limitations of scope and this
readers guide.

5

http://remato.eide.biz
http://remato.eide.biz
http://remato.eide.biz/eclipse
http://remato.eide.biz/eclipse
http://remato.eide.biz:8080/smartservice
http://remato.eide.biz:8080/smartservice
https://remato.eide.biz/jnlp/remato.jnlp

INTRODUCTION

Project Process and Method This chapter describes the work process and method-
ologies used during the project. The most important tools used during this
project is also described in brief.

Part I - Prestudy This part presents concepts related to RMTs.

Requirements Engineering This chapter describes the process in which a RMT-
tool can be utilized.

Requirements This chapter describes the cornerstones of a RMT-tool.

Quantification This chapter describes the concept quantification and strategies
of achieving it.

Traceability This chapter describes the concept traceability and techniques for
achieving it.

Existing Tools This chapter presents in brief existing tools on the market.

Part II - Contribution This part presents the main contributions of the project, which
is the ReMaTo RMT.

Scenarios This chapter describes in brief chosen scenarios.

Requirements This chapter describes in brief requirements within the project’s
scope.

System Design This chapter presents the system’s overall architecture.

Implementation This chapter presents details and examples of the actual im-
plementation of latest release.

ReMaTo Editions This chapter presents in brief the functionality implemented
in latest release with screen prints.

Evaluation and Discussion This chapter elaborates on the choices made and evalu-
ates the current state and project overall progress.

Conclusion and Further Work This part presents the report’s conclusion and de-
scribes improvement and extension areas for the tool, as well as relevant topics
for further research within the traceability domain.

6

PROJECT PROCESS AND METHOD

The chapter present an overview of the project’s process, and tools used to design and
implement the requirement management tool.

PROJECT PROGRESS

The methodology used in this project, was never formally discussed or chosen at the
projects start. Given the requirements and the environments, it has more or less been
formed during the projects course. The details are described in the following sections.

The initial overall work plan for the development of the tool and the writing of the
report can be found in Appendix A.

Methodology

The nature of the project is explorative. Thus, a waterfall-based development process
is inadequate as a life cycle model. For the core development process an agile, iter-
ative approach has been used. The core development method can be categorized as
a combination of modified Extreme Programming (XP) method and Agile Modeling
(AM) [33].

The core development subprocess is illustrated as in figure 1. The rounded rectangles
illustrate subprocesses and the arrows illustrate work flow, as in activity diagrams.

Due to scope of the projects resources, it can be categorized as an in-house-project,
however with a COTS-perspective. Concerning the stakeholder roles, the assigner at
WG represents customer, owner and end-user. The author has also been represent-
ing the end-user among others. The story cards of XP have been oral discussed and
agreed upon among WG and the author. The prototypes has been developed, tested
and evaluated rapidly.

7

PROJECT PROCESS AND METHOD

Implementation

Testing

Evaluation

Requirements
engineering

Figure 1: The core development process

Process

Figure 2 shows the overall layout of the project process. The skies illustrate superior
subprocesses or phases and the rounded rectangles subprocesses. The arrows illustrate
dependencies among phases and subprocesses, or work flow as in activity diagrams.

The project’s process illustrated in figure 2 reflects the informal and agile approach to
the development. After a brief initial exploration of the RE domain and exploration
of existing RMTs, these activities have been performed in parallel with the proto-
type development iterations. In the projects course, there have been developed three
main prototypes with large and clear distinctions. The differences have mainly been
concerning architectural choices and strategies, while the supported functionality has
been quite similar. Finally the report is written.

TOOLS

In order to perform the design and development iterations faster, this project has uti-
lized software packages to support the work as much as possible.

8

Implementation

Deploy

Testing

Evaluation

Requirements
engineering

Report writing

Domain
exploration

Existing
tools and

technology
exploration

Figure 2: The overall project process

Eclipse

The Eclipse project [5] develops an open source, free Integrated Developer Environ-
ment (IDE), which is plug-in based and thus support several programming languages
and compilers. Eclipse is a plug-in based IDE written in Java giving the benefit of
using the same software independently of the workstation platform. Eclipse has built
in support for Concurrent Versions System (CVS).

9

PROJECT PROCESS AND METHOD

Borland Together Architect 2006

Borland Together Architect 2006 [2] (BTA) is part of Borland’s Together software
suite, providing developers with an efficient tool for modeling software using Unified
Modeling Language (UML) diagrams and source code audits and metrics. BTA keeps
the source code and UML diagrams consistent at all times and therefore gives an ad-
vantage when using an iterative design and implementation cycle. If decided to test
aspects of the framework by writing code, the model is automatically updated to fit
this and can be used to view the changes done during implementation.

TeXnicCenter

TeXnicCenter [43] is a feature rich integrated development environment (IDE) for de-
veloping LATEX-documents in Microsoft Windows environment freely available under
GPL.

Debian Linux Development Server

The project use a development server to run the server-service, make program avail-
able, host CVS repository, database services etc. Host: http://remato.eide.
biz. The server possesses a OpenSSL-based, self-signed Root Certificate Authority
(CA) used for encrypted communication and signing of Java ARchives (jar).

TPTP

The Eclipse Test and Performance Tools’ Platform (TPTP) [44] is utilized to tune
performance and verify quality of the system developed.

TestNG and JUnit

TestNG [42] and JUnit [20] is utilized to automatically test the server and the client-
server communication.

10

http://remato.eide.biz
http://remato.eide.biz

Part I

Prestudy

Chapters

1 Requirements Engineering 13

2 Software Requirements 19

3 Quantification 23

4 Traceability 29

5 Existing Tools 33

This part describes the main concepts of the project, quantification and trace-
ability, with appurtenant topics. The appurtenant topics addressed are require-
ments and requirements engineering. In the end a selection of existing RMT
tools are presented in brief. The purpose of this part is to get an overview of
quantification and traceability of requirements’ domain.

CHAPTER 1
REQUIREMENTS ENGINEERING

This chapter presents a brief overview of requirements engineering. The purpose is
to describe the basics in order to later elaborate on quantification and traceability of
requirements.

1.1 DEFINITION

Requirements engineering (RE) is an activity, which aim is to discover, document and
maintain a set of requirements [26] [47]. The use of the term engineering implies that
systematic and repeatable techniques should be used to ensure that system require-
ments are complete, consistent and relevant [40].

RE can be denoted either as a process or as an activity. In general, a process uses
one or several methods, which consists of one or several activities. In other words,
RE process refers to the complete set of activities, while RE-activity refers to a single
activity or requirement.

Common activities related to RE are listed in table 1.1.

1.2 CONTEXT

There exists a broad spectrum of strategies or approaches for discovering or eliciting
requirements in software engineering. The approach or RE process is described as a
sequence of actions, during which the list of requirements for a new software system
is elicited, analysed, validated and documented into a formal, complete and agreed re-
quirements specification [39]. The best choice of methodology depends on the context
in which the process takes place. The term context refers to the limited domain over

13

1 REQUIREMENTS ENGINEERING

Table 1.1: Common activities related to RE
• Preliminary Risk Analysis
• Traceability Analysis

– Software Requirements to System Require-
ments (and vice versa)

– Software Requirements to Risk Analysis
• Description of User Characteristics
• Listing of Characteristics and Limitations of Primary

and Secondary Memory
• Software Requirements Evaluation
• Software User Interface Requirements Analysis
• System Test Plan Generation
• Acceptance Test Plan Generation
• Ambiguity Review or Analysis

which a model or prediction applies [25][36]. This means that different contexts re-
quire different kind of attention and concerns. Further, the context influences the type
of project desirable and how requirements are elicited and documented.

The contexts taxonomy has many dimensions. One dimension can be the type of
projects [22][37] summarized in the table 1.2.

Table 1.2: Types of projects

• In-house development
• Product development (of COTS) / Vertical market sit-

uation
• Time-and-materials based development
• COTS purchase (no further assistance)
• COTS-based acquisition (w/ adaptation assistance)
• Tender (May be custom-built or COTS-based acqui-

sition)
• Subcontracting
• Situation unknown (E.g., customer uncertain whether

to buy COTS or have something custom-built)

The variety of situations in which software products and systems are developed, as
listed in Table 1.2, reflects the variety of requirements documentation styles which is
an advantage to master.

The different types of project contexts, from a developers point of view, are illustrated
in Table 1.3. In a product development context, the specific users and customers are

14

1.2 CONTEXT

unknown to the developer, while in a custom-built system project, they are usually
both known to the developer.

Table 1.3: Context issues from developers point of view

customer

unknown ??
product

development

known
custom-
build

client-
product

known unknown

user

The different types of project contexts from a customer’s point of view are illustrated
in Table 1.4. In a tender-based project the developer is usually unknown, while the user
can be known or unknown. If both the developer and user are known to the customer
there is also the distinction that customer and developer may be the same (persons,
organization) or not.

Table 1.4: Context issues from customers point of view

developer

unknown tender tender

known
custom-
build

client-
product

known unknown

user

Another dimension to the RE context is illustrated in Figure 1.1. The spectrum of how
different solutions are developed will also have an impact on the RE approach.

A fourth dimension contributing to determine the context is contract types and struc-
tures of projects [22]. Variants are illustrated in Table 1.5.

The initial analysis contract type includes requirements only, which is used in later
tender or negotiation. Consultancies used in initial analysis may or may not compete
in bid for later phases. Design and development projects with fixed price may be risky
for the developers. Recovering loss in maintenance phase is a frequent tactic. Design
and development projects with variable price are fairly seldom used, except for long-
term customer relationships. All-in-one contracts are often preferred by customers
with little IT expertise.

15

1 REQUIREMENTS ENGINEERING

2
2

5

TDT4175 - Information Systems, Spring 2005

Different contexts for RE (2)

n Spectrum for how the solution is developed:

n The different contexts has impact on

l The type of project

l The way you find requirements

l The way you write your requirements specification

Coding
From
scratch

Small
Scale
Reuse
(e.g.,
Class
Libraries)

Large
Scale
Reuse
/
Component
Based
Development

Transfer-
able
Asses

Configurable
Packages
(e.g., ERP)

Install-
And-Run
Packages

6

TDT4175 - Information Systems, Spring 2005

Types of projects (Lauesen, 2002)

n In-house development

n Product development (of COTS)

n Time-and-materials based development

n COTS purchase (no further assistance)

n COTS-based acquisition (w/ adaptation assistance)

n Tender

l May be custom-built or COTS-based acquisition

n Subcontracting

n Situation unknown

l E.g., customer uncertain whether to buy COTS or have
something custom-built

7

TDT4175 - Information Systems, Spring 2005

Contracts and price structure (Lauesen, 2002)

n Types of contract

l Initial analysis contract

u Requirements only, for later tender or negotiation

u Consultancy used in initial analysis may or may not
compete in bid for later phases

l Design and development, fixed price

u Risky for developer

u Frequent tactic: recover loss in maintenance phase

l Design and development, variable price

u Fairly seldom used

l All-in-one contract

u Often preferred by customers with little IT expertise

l Development contract, fixed price

8

TDT4175 - Information Systems, Spring 2005

The goal-design scale (Lauesen, 2002)

n Goals vs requirements:

l Requirements are verifiable, goals not necessarily so

n Requirements on different levels:

l Goal level requirements

u State business objectives

u Cannot be satisfied by software product alone

l Domain level requirements

u Tasks involved, required support

l Product level requirements

u Specifying input and output

l Design level requirements

u Showing detailed interfaces / screen pictures

Figure 1.1: Various contexts for RE

Table 1.5: Contract types

• Initial analysis contract
• Design and development, fixed price
• Design and development, variable price
• All-in-one contract
• Development contract, fixed price

The last dimension presented here that influence RE context is the target level of re-
quirements, often referred to as goal-design-scale [22]. Requirements differ from goals
by being verifiable, while goals are not necessarily so. Organizations vary consider-
ably in their target level and handling of requirements specifications. Different levels
are listed in Table 1.6.

Table 1.6: Requirement levels (goal-design-scale)

• Goal level requirements
• Domain level requirements
• Design and development, variable price
• All-in-one contract

The goal level requirements state business objectives and are difficult to satisfy by
software products alone. The next level, domain requirements, involves tasks of which
software products can provide required support. The product level requirements are
more detailed, specifying input and output. Finally, design level requirements are even
more detailed, showing detailed interfaces and designed screen pictures. In some orga-
nizations requirements may end up in high level project plans, functional specification
documents, design documents, or other documents at various levels of detail. No mat-
ter what they are called, some type of documentation with detailed requirements will
be needed by the testers in order to properly plan and execute tests. Without such
documentation, there will be no clear-cut way to determine if a software application is

16

1.3 APPROACHES

performing correctly.

1.3 APPROACHES

The previous section describes the large variety in projects’ context. This implies that a
standard prescriptive approach will fail to identify the necessary and sufficient contents
and style of a requirements document, because what is good enough in one situation
may not be desirable or acceptable in another.

The first step of a general consideration is to be aware of the variance. Further, also to
stress the importance of cooperative work when executing RE activities, in particular
developing requirements through analyzing the problem, documenting the observa-
tions in a variety of representation forms, and checking the accuracy of the knowledge
gained [24].

Being more specific, approaches to RE can be categorized in three main approaches
[22] illustrated in Table 1.7.

Table 1.7: Three requirements approaches

• traditional approach (product-level requirements)
• fast approach (domain-level requirements)
• two-step (domain-level + design-level)

The traditional approach involves much elicitation from stakeholders like interviews,
document analysis, workshops, brainstormings etc. The functional requirements are
documented as function lists, feature requirements and textual process descriptions.
This approach is well suited for COTS acquisition of technical products, sub-contracting
and maintenance projects (enhancing a deployed system).

The fast approach implies more limited and focused elicitation from stakeholders with
activities like discussions with expert users and studies of relevant documents. The
functional requirements are documented as tasks to be done by the users and support
required from the system. A weakness of this approach is the challenge to specify all
functional requirements as user tasks, as some requirements may be hard to specify as
this. This approach is well suited for most types of projects except the ones mentioned
for traditional approach.

The two-step approach in Table 1.7 differentiates the level of the requirements doc-
umented. The first step elicits requirements on domain-level (Table 1.6). The next
step documents chosen requirements on design level for the complex interfaces. This
approach also includes user interfaces like screens and prototypes, and technical inter-

17

1 REQUIREMENTS ENGINEERING

faces like communication formats and protocols. The domain level requirements can
be useful for validation of design-level requirements and later maintenance.

18

CHAPTER 2
SOFTWARE REQUIREMENTS

This chapter presents a brief overview of the concept software requirements. The
purpose is to describe the basics in order to later elaborate on quantification and trace-
ability of requirements.

2.1 DEFINITION

The term requirement is defined differently by various authors. The Oxford dictionary
[32] defines requirement as “that which is required’ and further on the term require
as having need, finding something necessary. Adapted to the software engineering
domain, requirements can be refined as “a condition or capability needed by a user
to solve a problem or achieve an objective” [23]. A requirement is categorized as
either functional or non-functional. In this project both aspects of requirements are
supported.

2.2 FUNCTIONAL REQUIREMENTS

Functional requirements specifies a function that a system or system component must
be able to perform [15]. It can be documented in various ways. The most common
ones are written descriptions in documents, and use cases. Use cases can be textual
enumeration lists as well as diagrams, describing user actions.

19

2 SOFTWARE REQUIREMENTS

2.3 NON FUNCTIONAL REQUIREMENTS

Non-functional requirements (NF) are any other requirement than functional require-
ments. They can be categorized as three types as listed in Table 2.1.

Table 2.1: NF types

• Data requirements
• Constraints
• Quality requirements

Data requirements are often grouped together with functional requirements in specifi-
cations and describe how functional requirements should be reflected in the system.

Constraints explicitly and intentionally restrict the system or process. A key property
of a constraint is that a penalty or loss of some kind applies if the constraint is not re-
spected. Constraints include limitations of the engineering process, systems or system
components’ functionality, or its life cycle.

Quality requirements describe wanted qualities of the product that are not directly re-
lated to functionality. Quality of software is important, hence requirements addressing
quality is important, and lack of such is a frequent cause of projects failure. At the
same time quality requirements can be hard to capture or elicit in contrast to func-
tional requirements; Users, in interviews of discussion groups, talk intuitively about
what they do in function, while quality is often implicit to domain knowledge and thus
not talked intuitively about. Observations, and studies of similar systems, also tend to
give more information about functionality than quality.

Different types of NF taxonomies are presented and described in detail in Section 3.2.

2.4 SOFTWARE REQUIREMENT SPECIFICATION

The term requirements specification or software requirements specification (SRS) is
used in two ways in the literature. First, it is defined as the process or RE activity
undertaken to specify requirements [39]. Second, the requirements specification is de-
fined as a document, which contains a complete description of what the system should
do without describing how it should do it [16]. The second meaning is also supported
by the RE definition just presented. This report will use the latter interpretation of
SRS, that is the requirements specification is the output of the RE process, where the
requirements and requirements model are described using a formal language, and it is
agreed upon among all the stakeholders.

20

2.4 SOFTWARE REQUIREMENT SPECIFICATION

The SRS is needed for many purposes; discussing customer needs including validation,
knowing what to design and implement including verification, tracing and requirement
management, estimations (such as cost and effort), contract negotiations and court
cases.

A documented software requirement specification provides a baseline for both valida-
tion and verification. The software validation process cannot be completed without an
established software requirements specification.

21

CHAPTER 3
QUANTIFICATION

Not everything that can be counted counts, and not everything that counts
can be counted.

–Albert Einstein

This chapter presents the concept quantification of requirements and forms the basics
for the choices made for the requirement management tool.

3.1 DEFINITION

The term quantification is most common used in logic theories, where it is defined
as “a construct that specifies the extent of validity of a predicate, that is the extent to
which a predicate holds over a range of things” [46]. The concept does however apply
with highest relevance in RE, but has no common or widespread explicit definition
related to this. To construct such a definition, an interpretation and decomposition of
the term is needed.

A more general definition of quantification can be “determine the quantity of” or “mea-
sure or express as a quantity” [32]. Further, quantity is defined as “that property of
things that is (in principle) measurable” [32]. Related to requirements this will mean
to identify properties or attributes of requirements that are measurable. If this is sup-
posed to give added value for projects, it will not be adequate to identify these proper-
ties for every requirement individually. Individually it will, as an example, not enable
validation and analysis which quantification of requirements is supposed to. To gain
the added values, categorizing a projects requirements in an appropriate amount of
categories, which have the same type of properties, is needed. When the mutual, mea-
surable properties of a category are identified, then the value of each properties of each

23

3 QUANTIFICATION

requirement is needed to be elicited. First then requirements can be properly, and pos-
sibly automatically, validated and analyzed, and the quantification of the requirement
or requirement specification will be obtained.

Based on the previous paragraphs, the adapted definition of quantification to RE con-
text, used further in this report, is declared as “identification of measurable, mutually
properties of similar requirements and the elicitation of corresponding values for each
requirement”.

3.2 NF TAXONOMIES

The term taxonomy is defined as “the branch of science concerned with classification”
or “scheme of classification” [32]. Related to NF requirements this means categories
in which they can be classified.

There exist several taxonomies of NF today; the most common are listed in Table 3.1.

Table 3.1: NF taxonomies
• McCall & Matsumoto quality factors[27]
• ISO9126 [17]
• IEEE Std 830[16]
• VOLERE taxonomy [38]
• Firesmith taxonomy[8]

The taxonomies vary in complexity and detailedness. To give an example, two tax-
onomies will be presented.

The VOLERE taxonomy of NF requirements [38] is listed in Table 3.2.

Table 3.2: VOLERE taxonomy

• Look and feel: The spirit of the product’s appearance
• Usability: Ease of use, accessibility, ease of learning the product
• Performance: How fast, how safe, how many, how accurate
• Operational: What operating environment the product must work

in
• Maintainability and portability: Expected changes, time allowed

to make them
• Security: Security and confidentiality of the product
• Cultural and political
• Legal: what laws and standards apply to the product

24

3.2 NF TAXONOMIES

The Firesmith taxonomy [8] addresses quality requirements and is more detailed than
the VOLERE taxonomy. It distinguishes between developer- and usage-oriented qual-
ity factors. The developer-oriented quality factors are listed in table 3.3.

Table 3.3: Firesmith developer-oriented taxonomy

• Maintainability
– Correct-ability
– Extensibility

• Portability
• Reuse-ability
• Scalability
• Verifiability

– Testability

The usage-oriented quality factors are listed in table 3.4.

Different quality factors of taxonomies may contradict each other; robustness vs. per-
formance, security vs. usability, security vs. interoperability, performance vs. porta-
bility etc.

25

3 QUANTIFICATION

Table 3.4: Firesmith usage-oriented taxonomy

• Audit-ability (enough records for financial audit)
• Branding (how well the brand name is exposed)
• Capacity (# things that can be handled)
• Configure-ability (how easily product can be reconfigured)

– Internationalization (e.g., different countries, languages)
– Personalization (personal user experience)
– Subset-ability (easy to make different functionality subsets)
– Variability (degree to which different variants exist)

• Correctness (product / outputs free from defects)
– Accuracy (e.g., deviation in quantitative data)
– Currency (e.g., data up to date)
– Precision (dispersion of data, regardless of accuracy)

• Dependability (degree to which users can depend on the product), in-
cluding:

– Availability (e.g., minimal downtime)
– Reliability (operates without failure under specified use)
– Robustness (also functions under abnormal conditions)

∗ Environmental tolerance
∗ Error tolerance (wrong user input)
∗ Failure tolerance (defect in system execution)

– Safety (preventing / dealing with accidental harm)
– Security (... malicious harm)
– Survivability (degree to which essential / critical services continue

to be provided in spite of accidental or malicious harm)
• Efficiency (consumption of resources, IT & human)
• Interoperability (properly interfaced with and working together with

something else)
• Operational environment compatibility
• Performance

– Jitter (time-precision of events)
– Response time (time to initial response)
– Latency (time to completion of task)
– Schedule-ability (degree to which events can be scheduled to occur

at planned times)
– Throughput (# jobs that can be completed in a certain time period)

• Utility (degree to which prod can be accessed and used by various types
of users)

– Accessibility (e.g., handicapped users)
– Install-ability (easy to install?)
– Operability (possible to perform tasks in accordance with opera-

tions manual?)
– Transportability (possible to move system physically? Works while

moving? : mobility)
– Usability (ease of use)
– Withdraw-ability (degree to which a problematic version of the sys-

tem can be withdrawn and replaced with a previous, working ver-
sion, without problems for the users)

26

3.3 REQUIREMENT PROPERTIES

3.3 REQUIREMENT PROPERTIES

The different taxonomies described in section 3.2 form natural classification schemes
for quantification as defined in section 3.1. A class within a taxonomy can be identified
and described completely with a mutual set of properties. This is one of the main
purposes of the taxonomy of requirements.

What then remains in order to be able to achieve quantifiable requirements, is to deter-
mine the properties that a requirement of a taxonomy should constitute of. To achieve
quantification, the properties have to be measurable.

Gilbs’ proposal for obtaining quantifiable requirements [11][12] aims at making each
property consist of a set of six coherent attributes, listed in table 3.5

Table 3.5: Gibs attribute specification

• Scale
• Test
• Worst level
• Plan or goal level
• Best cause level
• Now level

The scale attribute defines the units of the target measure and the test how it is going
to be measured along the scale, like volt and voltmeter. The worst limit is the worst
acceptable case under any circumstances. The plan or goal level represents attainment
of formal success. The best level is the best known achieved level anywhere, under
any circumstances. The now level of the attribute is the current level in the system if
any.

The “real” requirements in this property definition lie in worst level and plan level. The
scale and test are meta-data and the rest a reference, setting the requirement property
in perspective.

Further, it is possible to build hierarchies of such properties using the same structure
as in a specific taxonomy, or building a new dimension across this.

3.4 BUSINESS APPLICATION

Using taxonomy templates with quantifiable properties, as described in section 3.3, can
facilitate the elicitation and documentation process, by simply applied as checklists.
Further, it will, as quantifying templates, contribute to achieve requirement quality, by

27

3 QUANTIFICATION

forcing definite documentation. Beyond this, it will by the predefined, mutually prop-
erties, enable validation and analysis, both manual and most important automatically
by tool support.

28

CHAPTER 4
TRACEABILITY

Science has found that nothing can disappear without a trace.

–Dr. Werner von Braun, U.S. space program

This chapter presents the concept traceability of requirements and forms the basics for
the choices made for the requirement management tool.

4.1 DEFINITION

Software traceability is the ability to relate artifacts which are created during the de-
velopment of a software system (e.g., requirements, design and code artifacts) with
each other, the stakeholders that created them, and/or the rationale underpinning their
exact form [48].

Requirement traceability involves software traceability, but implies also specific trace-
ability among requirements. A requirement-specific definition can be as the following;
“the ability to describe and follow the life of a requirement, in both a forward and
backward direction, i.e., from its origins, through its development and specification,
to its subsequent deployment and use, and through periods of ongoing refinement and
iteration in any of these phases” [13]. This involves documenting the changes of a
requirement, and making the history available. Related to this, it is also necessary to
be able to define baselines. A baseline can be as simple as time-stamping all current
requirements versions. This enables to later review the state of all requirements at a
certain point in time.

The ability to search and select views of requirements, based on criteria for one or
more properties of the requirements, is also a part of requirements traceability.

29

4 TRACEABILITY

4.2 ARTIFACTS

The term “software artifacts” is well known from the project process methodology
Rational Unified Process (RUP) [21] and can be any work product involved in the
software life-cycle. In a traceability tool, artifacts are the basic elements. The most
relevant artifact types to requirements traceability is listed in table 4.1.

Table 4.1: Artifact types

• other requirements
• stakeholders
• model elements
• code
• tests
• informal text artifacts

(emails, chat sessions)

A more generic and technical approach to defining the artifacts is listed in table 4.2.

Table 4.2: Artifact level of granularity

1. Container
2. Concept
3. Concept property

The container is here the level that is managed and persisted (e.g. file, database). The
concept is the actual artifact, as described above in table 4.1. The concept property can
be a property of a requirement, property of a model element, font of a paragraph, etc.

4.3 TECHNIQUES

Traceability is achieved by defining and maintaining relationships to other artifacts
created during system development [35] such as stakeholder needs, architectural or
design elements, source code, to name a few.

4.3.1 Manual Techniques

Manual traceability techniques are characterized by occurring as lists or matrices in
documents that are manually written and updated. The most common types of manual

30

4.3 TECHNIQUES

traceability today [34] are listed in table 4.3.

Table 4.3: Common manual trace techniques

• Cross reference and in-
dexing schemes

• Traceability matrix

Traceability matrices are used to relate requirements to other software development
artifacts. Usually requirements are listed along rows and the other artifacts along
columns or visa versa. At each crossing of a column and a row a mark is made if
the respective requirement and artifact are related. Different types of relationships can
be indicated by using different marks.

Cross references and indexing schemes are references made across several artifacts to
indicate links between them, or lists of indices containing the related artifacts for each
one.

4.3.2 Automation Techniques

It is possible to automate traceability using the techniques described in section 4.3.1.
However, using a traceability link concept is a more common strategy to achieve this.

A traceability link is a relationship that describes a traceability connection between
specific artifacts. Such link-types are listed in table 4.4.

Table 4.4: Automated traceability link types

• Automatic Link
– Derived link
– Implied link

• Manual Link

An automatic link is characterized by being automatically created by a program. This
can happen in at least two ways; Derived link can be computed from information about
artifacts given a set of inference rules. Relationships in code are an example of derived
traceability. Implied link can be computed from information about other links given
a set of inference rules. Transitive closure is an example of implied traceability. A
manual link is a kind of link that is created manually by a stakeholder. Relating a
requirement to a source code package is an example of such link.

31

4 TRACEABILITY

The real challenge for automation traceability is not to define the links and describe
the links, but how to maintain them when the artifacts are changing. If different tools
are used for developing the different artifacts, the complexity grows. More on these
challenges is found in chapter 15.

4.4 BUSINESS APPLICATION

Traceability information can be used to support:

• The analysis of the implications and integration of changes requested in the sys-
tem development process

• The maintenance and evolution of software systems and documentation

• The reuse of software systems and their components

• And the inspection and testing of software systems (verification).

Of these reasons, traceability of requirements has been recognised as a significant
capability in the software development and maintenance process, and as an important
factor for the quality of the final product.

A software requirements traceability analysis can also be conducted to trace software
requirements to (and from) system requirements and to risk analysis results.

32

CHAPTER 5
EXISTING TOOLS

This chapter presents in brief the most common existing requirement management
tools and mention others. Thoughts concerning a possible formal evaluation RMT
tools is presented in the end of the chapter.

5.1 CALIBER RM

Borland CaliberRM 2005 is an enterprise requirements management system designed
to facilitate collaboration, impact analysis, and communication in the definition and
management of changing requirements. CaliberRM aims at all organizations - large,
small, or distributed.

5.2 RATIONAL REQUISITEPRO

The IBM Rational RequisitePro solution is a requirements and use case management
tool for project teams, designed to improve the communication of project goals, en-
hance collaborative development, reduce project risk and increase the quality of appli-
cations before deployment.

5.3 DOORS

DOORS (Dynamic Object Oriented Requirements System) is an Information Manage-
ment and Traceability (IMT) tool to support RE process.

33

5 EXISTING TOOLS

5.4 OTHER TOOLS

An extended list of existing tools is found in table 5.1.

Table 5.1: Existing tools list

• Caliber RM from Borland
• RequisitePro from Rational
• Doors from Telelogic
• IRqA from TCP Sistemas e Ingeniería
• OPHELIA an EC research project
• RDT from IGATECH Systems
• Reqtify from TNI Europe
• Themis/Papeete from Thales
• XTie-RT from Teledyne Technologies Incorpo-

rated
• Common word-processor

5.5 POSSIBLE EVALUATION

As described in previous sections, there exist various tools in the market. In is not in
the project’s scope to do a formal evaluation of the existing tools. However, if such
an evaluation should be performed this section presents a suggestion for evaluation
criteria.

The evaluation can cover six main areas:

• Quantification functionality

– CRUD-functionality for requirements and stakeholders

– Decomposition of requirement information

– Defining userdefined properties

– Define use case

• Traceability functionality

– Requirement history

– Relate requirements

– Relate stakeholders to requirement

34

5.5 POSSIBLE EVALUATION

– Relate various artifacts to requirement

• Userability

– Easy getting started

– Easy to adapt to different process methodologies

– Easy and effective to use

• Interoperability or integration opportunities

– Use of standardization

– Integration with other tools

• Collaboration opportunities and accessibility

– Client availability

– Platform support

• Cost

– Purchase cost (licence)

– Maintenance cost

The quantification criteria are intended to reveal the opportunities for create, retrieve,
update and delete (CRUD) requirements. Further, define and adjust the properties of a
requirement to achieve quantifiable requirements. The traceability criteria are intended
to reveal basic and advanced types of traceability support.

35

Part II

Contribution

Chapters

6 Scenarios 39

7 Requirements 41

8 System Design 43

9 Implementation 47

10 ReMaTo Editions 63

This part presents the requirement management tool ReMaTo, which is de-
veloped during this project. The scope of the presentations is in line with the
projects scope. The purpose of this part is to enlighten the contributions of
the project.

CHAPTER 6
SCENARIOS

This chapter presents in brief two example scenarios in line with projects scope, de-
scribed in section “Problem Definition” (p. 3) and section “Limitation of Scope” (p.
5), and the development method described in chapter “Project Process and Method”
(p. 7).

6.1 COLLABORATION OPPORTUNITIES AND ACCES-
SIBILITY

This scenario lets two stakeholders work on the same SRS by a RMT tool, each at
different locations and different platforms.

At a software company’s headquarter, a project leader is preparing a quarterly presen-
tations for his current project’s customers. In this work he is reviewing the status of
the product’s requirements in his requirement management tool on his Microsoft Win-
dows platform. From the clear and detailed information available, he quickly gets the
impression that the project is behind schedule, which surprises him. Hi picks up his
phone to call John, a key developer of the project. On the phone, John, busy coding
at the customers site, switches from Java Perspective to the RMT plug-in in his IDE.
He can then inform that the latest updates have not been registered in the system. Five
minutes after the phone call, John has updated the requirements, and can get back to
coding again by switching view. At the headquarter the project manager exports the
updated requirements as PDF-document and includes it in the customer’s presentation.
The customer is impressed over the control the manager tends to give.

39

6 SCENARIOS

6.2 QUANTIFICATION

This scenario lets the user build automatic tests from SRS defined in a RMT.

John, a developer, is about to begin verify the software maintaining after some com-
prehensive changes in the software’s requirements. He switches to the RMT plug-in in
his IDE to get an overview. He believes such changes are likely to occur frequently in
the time to come, so he decides to write automatic tests based on the requirements. The
tool support quantification by templates of properties. Thus, he is able write generic
tests with little effort. Further, he is able to get information of expected software be-
haviour directly from the tool and into his tests. He runs the test, and is able to give a
realistic estimate of resources needed to adjust the software to be up to date with the
requirements.

A month later, the requirements are revised again. This time, John only selects a menu-
button to execute his tests and is again able to give a realistic estimate of resources
needed to adjust the software.

40

CHAPTER 7
REQUIREMENTS

This chapter presents in brief chosen requirements in line with the projects scope,
described in “Problem Definition” (p. 3) and section “Limitation of Scope” (p. 5), and
the development method described in chapter “Project Process and Method” (p. 7). A
complete SRS for the system, written by Bjørn Nordmoen, is attached in appendix B,
p. 104.

7.1 QUANTIFICATION

F-Q1 The system must provide CRUD functionality for requirements. This is the core
functionality of the tool.

F-Q2 The system must provide functionality to support a hierarchical project and cat-
egorization schema. Multiple root-projects with sub-projects must be supported.
A project must be able to contain one or more categories. A category must be
able to contain one or more subcategories or one or more requirements.

This will provide support for defining customized, hierarchical NF taxonomies
as described in section 3.2.

F-Q3 A requirement must contain a default set of relevant properties, as specified in
the detailed requirements, p. 104.

F-Q4 The system must support CRUD for properties templates as described in section
3.3.

F-Q5 Further the system must support to relate the templates of F-Q4 to categories.

Together with the customizable category hierarchy, this will provide complete
quantification functionality for requirements. Simultaneously it arranges for
reuse of the templates, within a project, or among several projects.

41

7 REQUIREMENTS

7.2 SIMPLE TRACEABILITY

F-T1 The system must provide functionality to relate requirements to each other.

F-T2 The system must provide CRUD functionality for stakeholders.

F-T3 The system must provide functionality for relating stakeholders to requirements,
denoted as a role.

7.3 ACCESSIBILITY

NF-A1 The system must be accessible from most common platforms, which means
Microsoft, *nix and Apple OS-X.

NF-A2 The system must be accessible to developers in their environment as plug-in
to the most common IDEs.

NF-A3 The system must be accessible to non-technical stakeholders.

7.4 COLLABORATION

NF-C1 The must be available from any location connected to the internet.

NF-C2 The system should handle simultaneously users.

42

CHAPTER 8
SYSTEM DESIGN

This chapter present an overview of the system design.

8.1 HIGH-LEVEL ARCHITECTURE

Too meet NF-C1, the system-design has adapted a client-server pattern. This arrange
for users to use the system wherever connected to the internet. The high-level archi-
tecture is illustrated in figure 8.1.

The client is implemented as an Eclipse plug-in [5] reusing the GUI-components pro-
vided by Eclipse. Further, the client communicates with the server using Hessian
[14], which implements RPC over the HTTP protocol. The server is implemented as
a Servlet extending the HessianServlet. The server will handle the persis-
tent data through the object relational mapping-layer (ORM) Hibernate. Hibernate can
utilize most known SQL-based physical databases. Hibernate facilitates the database
schema generation and data mapping between relational tables and the object-oriented
domain model.

43

8 SYSTEM DESIGN

Figure 8.1: High-Level Architecture

44

8.2 DOMAIN MODEL

8.2 DOMAIN MODEL

Evans’ principles of domain-driven design [7] form the foundation for the system’s
domain model. The domain-model is presented in figure 8.2 using UML [10].

Figure 8.2: Domain Model as UML

The domain model arrange for a solution that meets the requirements described in
chapter 7. As illustrated, both project and category support hierarchical nesting. The
user-defined property templates are supported through the PropertySet type, which
contains property definitions (PropertyDef). PropertySet can be connected to
Category, which will imply that requirement of the respective category will acquire
corresponding values (PropertyValue) as the property templates’ property defini-
tions. Thus, PropertyValue is the instantiation of a PropertyDef for a specific
requirement, containing a specific value.

45

CHAPTER 9
IMPLEMENTATION

This chapter presents the actual implementation of the system.

The overall package structure is as the following:

• remato.client

• remato.common

• remato.server

9.1 THE remato.common PACKAGE

The common package consists of the source code shared by client and server. It is
compiled as a separated jar-file before deployed with client and server. Figure 9.1
gives an overview of the package.

47

9 IMPLEMENTATION

exception

db

IllegalParentChildRelationshipException
NotAccessToServiceException
RematoException
DomanSessionAlreadyPersistedException
DomainSessionException

session

ConceptCache
DomainSessionStateOperations
ConceptRegistry
ClientEnabledOperations
DomainSessionState
DirtyConcepts
DomainConceptFactory

smartservice

transport

SmartServiceFactory
DomainConceptInvocationHandler
UniqueValueFactory
SmartServiceFactoryImpl
SmartService
ReflectionHelper
DomainSession

domain

CategoryParentable
Persistent
Stakeholder
ProjectParentable
Nameable
Project
Requirement
Category

servicefacade

EnumSerializerFactory
JavaEnumSerializer
JavaEnumDeSerializer

Figure 9.1: The remato.common package

48

9.1 THE REMATO.COMMON PACKAGE

As figure 9.1 illustrates, the domain model is located in remato.common. The do-
main model package contains “plain old java objects” (POJO). The implementation is
illustrated in figure 9.2.

interface
CategoryParentable

getCategoryChildren
addCategoryChild
removeCategoryChild

interface
Persistent

getDbId

interface
Stakeholder

getFirstName
setFirstName
getLastName
setLastName
getProject
getAuthorToRequirements
getStakeholderToRequirements

interface
ProjectParentable

getProjectChildren
addProjectChild
removeProjectChildinterface

Nameable

getName
setName
getDescription
setDescription

interface
Project

getProjectParent
getStakeholders
addStakeholder
removeStakeholder

interface
Requirement

getAuthor
setAuthor
getCategory
getStakeholders
addStakeholder
removeStakeholder
getPropertyValues
getBusinessId
getPriority
setPriority
getStatus
setStatus
getVersion
getSubmittedDate
getLastUpdatedDate
getReporterOrOwner
setReporterOrOwner
setPropertyValue
getPropertyValue
getPropertyValue
getVersionedRequirements
getLinkedToRequirements
addLinkToRequirement
removeLinkToRequirement

interface
Category

getRequirements
addRequirement
getCategoryParent
addCategoryChild
removeRequirement
getPropertySets
addPropertySet
removePropertySet

Figure 9.2: Selected interfaces from the remato.common.domain package

49

9 IMPLEMENTATION

The package remato.common.smartservice contains the facade to the server.
The main interface to the server is presented in listing 9.1.

Listing 9.1: Interface remato.common.smartservice.SmartService.java� �
1 package r emato . common . s m a r t s e r v i c e ;
2
3 import j a v a . u t i l . C o l l e c t i o n ;
4
5 import r emato . common . domain . P e r s i s t e n t ;
6 import r emato . common . e x c e p t i o n . RematoExcep t ion ;
7 import r emato . common . e x c e p t i o n . db . D a t a b a s e E x c e p t i o n ;
8 import r emato . common . e x c e p t i o n . db . I n v a l i d D a t a b a s e E n t r y E x c e p t i o n ;
9 import r emato . common . e x c e p t i o n . db . M i s s i n g R e s o u r c e E x c e p t i o n ;

10 import r emato . common . s m a r t s e r v i c e . t r a n s p o r t . R e t r i e v e R e q u e s t ;
11 import r emato . common . s m a r t s e r v i c e . t r a n s p o r t . SaveReques t ;
12 import r emato . common . s m a r t s e r v i c e . t r a n s p o r t . SaveResponse ;
13
14
15 p u b l i c i n t e r f a c e S m a r t S e r v i c e ex tends U n i q u e V a l u e F a c t o r y {
16
17 p u b l i c vo id crea teDbSchema ()
18 throws RematoExcept ion , D a t a b a s e E x c e p t i o n ;
19
20 p u b l i c SaveResponse save (SaveReques t s a v e R e q u e s t)
21 throws RematoExcept ion , D a t a b a s e E x c e p t i o n ,

I n v a l i d D a t a b a s e E n t r y E x c e p t i o n ;
22
23 p u b l i c C o l l e c t i o n < P e r s i s t e n t > r e t r i e v e C o l l e c t i o n (R e t r i e v e R e q u e s t

r e t r i e v e R e q u e s t)
24 throws RematoExcept ion , D a t a b a s e E x c e p t i o n ,

M i s s i n g R e s o u r c e E x c e p t i o n ;
25
26 p u b l i c P e r s i s t e n t r e t r i e v e P e r s i s t e n t (R e t r i e v e R e q u e s t

r e t r i e v e R e q u e s t)
27 throws RematoExcept ion , D a t a b a s e E x c e p t i o n ,

M i s s i n g R e s o u r c e E x c e p t i o n ;
28
29 }� �

The package remato.common.session, illustrated in appendix C, figure C.1,
consists of a proxy which provides seamless connectivity with the server. The proxy
loads objects lazy form server when needed, decreasing the probability for conflicts
if simultaneously users connected to the server. This addresses NF-C2 in section 7.4.
The package remato.common.session is not needed by the server. Still it is
placed in remato.common to be available to other potential client implementations.

The clients can however access the interface presented in listings 9.1 directly, if wanted
or needed.

50

9.1 THE REMATO.COMMON PACKAGE

9.1.1 The remato.common metrics

To give a brief overview of the remato.common package without including to many
class diagrams, some metrics are listed in table 9.1. Explanation to the columns is
documented in the glossary, chapter C.1, page 113. The metrics are computed by
Borland Together Architect.

Table 9.1: Metrics of remato.common

Resource LOC NOC NOIS NOM NOO PIS PS
common 3101 64 41 50 36
remato.common.domain 105 10 4 24 24 10 10
remato.common.domain.impl 681 11 10 48 35 8 11
remato.common.domain.impl.base 29 2 1 6 4 2 2
remato.common.domain.property 23 4 3 5 5 4 4
remato.common.exception 130 5 1 1 1 2 5
remato.common.exception.db 181 9 1 0 0 0 9
remato.common.servicefacade 85 3 6 4 2 1 3
remato.common.session 799 7 18 31 25 1 7
remato.common.smartservice 798 7 41 50 36 5 7
remato.common.smartservice.transport 270 6 6 15 10 6 6

In brief; LOC means “lines of code” and NOC means “number of classes”.

51

9 IMPLEMENTATION

9.2 THE remato.client PACKAGE

The remato.client consists of the client specific source code. The Eclipse plug-
in skeleton classes is implemented and located here. Further, necessary parts of the
Eclipse specific API is employed to obtain seamlessly integration with the IDE. The
Model View Controller (MVC) is applied.

Figure 9.3 gives an overview of the package.

model

StakeholderWrapper
AbstractPropertySpesification
IRequirementTableProvider
PropertyType
IPropertiesContainer
CategoryWrapper
RequirementContentProvider
ITreeItem
IPropertyDefinitionTemplateContainer
NodeParent
PropertyDefinitionWrapper
ILabelProviderItem
PropertyValue
RequirementsCellEditor
ClientPropertyValue
NodeChild
RequirementWrapper
RequirementStatusSelectionValidator
INodeParent
IPropertyDefinitionContainer
StakeholderCellEditor
ClientPropertyDefinition
DropTargetListenerImpl
Configuration
IMenuItemsProvider
RequirementSelectionFilter
PropertySpecification
PropertySpesificationComparator
StakeholderContentProvider
NameableWrapper
ProjectRootSystemWrapper
ClientModelItem
ProjectWrapper
EnumPropertySpecification
PropertyDefinitionSetWrapper
IModelPersistable
PropertyValueWrapper

view

facade
requirementstable
util
properties
editor
session
projecttree
usertypes

controller

Packages
exceptions

Classes
LogoutActionDelegate
RequirementPlugin
ClientSession
ModelItemFactory
ModelStatus
IRequirementPluginImages
Registry
PerspectiveFactoryImpl
LoginActionDelegate
PropertyAccessor
Assert

Figure 9.3: The remato.client package

In order to optimize the GUI implementation, the client needs more functionality in
the model than the domain model objects provide. However, it is not desirable put
such client specific code in the domain model, which is shared with the server and
possibly other clients. To avoid the dilemma, the author has made a wrapper model to

52

9.2 THE REMATO.CLIENT PACKAGE

the domain. It is adjusted to client needs while, wrapping around the domain model
objects.

An example of such wrapper is illustrated in listing 9.2.

Listing 9.2: Class remato.client.model.PropertyDefinitionSetWrapper.java� �
1 package r emato . c l i e n t . model ;
2
3 import j a v a . u t i l . A r r a y L i s t ;
4 import j a v a . u t i l . C o l l e c t i o n ;
5 import j a v a . u t i l . C o l l e c t i o n s ;
6 import j a v a . u t i l . H a s h t a b l e ;
7 import j a v a . u t i l . L i n k e d L i s t ;
8 import j a v a . u t i l . L i s t ;
9 import j a v a . u t i l . Map ;

10
11 import org . e c l i p s e . swt . g r a p h i c s . Image ;
12 import org . e c l i p s e . swt . l a y o u t . F i l l L a y o u t ;
13 import org . e c l i p s e . swt . w i d g e t s . Composi te ;
14 import org . e c l i p s e . u i . fo rms . IManagedForm ;
15 import org . e c l i p s e . u i . v iews . p r o p e r t i e s . I P r o p e r t y S o u r c e ;
16
17 import r emato . c l i e n t . c o n t r o l l e r . I R e q u i r e m e n t P l u g i n I m a g e s ;
18 import r emato . c l i e n t . c o n t r o l l e r . R e q u i r e m e n t P l u g i n ;
19 import r emato . c l i e n t . view . e d i t o r . IModelFormPar t ;
20 import r emato . c l i e n t . view . e d i t o r . p r o p e r t i e s . P r o p e r t i e s F o r m P a g e ;
21 import r emato . c l i e n t . view . e d i t o r . u s e r t y p e s . U s e r t y p e s S e c t i o n P a r t ;
22 import r emato . c l i e n t . view . u t i l . M o d e l I t e m P r o p e r t y S o u r c e ;
23 import r emato . common . domain . Nameable ;
24 import r emato . common . domain . P e r s i s t e n t ;
25 import r emato . common . domain . Requ i rementSys tem ;
26 import r emato . common . domain . p r o p e r t y . P r o p e r t y D e f ;
27 import r emato . common . domain . p r o p e r t y . P r o p e r t y S e t ;
28 import r emato . common . s m a r t s e r v i c e . D o m a i n C o n c e p t I n v o c a t i o n H a n d l e r ;
29
30 /∗ ∗
31 ∗ @author p e t t e r e i
32 ∗
33 ∗ @version $Id : P r o p e r t y D e f i n i t i o n S e t W r a p p e r . java , v 1 . 1 1 2005−12−19

1 3 : 3 4 : 0 1 p e t t e r e i Exp $
34 ∗ /
35 p u b l i c c l a s s P r o p e r t y D e f i n i t i o n S e t W r a p p e r ex tends NodeChild <

Pro jec tRoo tSys t emWrappe r > implements I P r o p e r t y D e f i n i t i o n C o n t a i n e r
{

36 p r i v a t e P r o p e r t y S e t p r o p e r t y S e t ;
37 p r i v a t e Map< P r o p e r t y D e f , P r o p e r t y D e f i n i t i o n W r a p p e r >

p r o p e r t y D e f i n i t i o n s ;
38 p r i v a t e L i s t < P r o p e r t y D e f i n i t i o n W r a p p e r > s o r t e d P r o p e r t y D e f i n i t i o n s ;
39 p r i v a t e s t a t i c P r o p e r t y S p e c i f i c a t i o n < P e r s i s t e n t > l a s t U p d a t e d D a t e ;
40
41 s t a t i c {

53

9 IMPLEMENTATION

42 l a s t U p d a t e d D a t e = new P r o p e r t y S p e c i f i c a t i o n < P e r s i s t e n t >(100 , "
L a s t u p d a t e " , P r o p e r t y T y p e .DATE) {

43 @Override
44 p r o t e c t e d O b j e c t g e t V a l u e (P e r s i s t e n t p e r s i s t e n t) {
45 re turn ((P r o p e r t y S e t) p e r s i s t e n t) . g e t U p d a t e d D a t e () ;
46 }
47 @Override
48 p r o t e c t e d void s e t V a l u e (P e r s i s t e n t i tem , O b j e c t v a l u e) {}
49 } ;
50 l a s t U p d a t e d D a t e . s e t D e s c r i p t i o n (" Date and t ime of l a s t u p d a t e o f

t h e p r o p e r t y S e t . ") ;
51 l a s t U p d a t e d D a t e . s e t P o s i t i o n (1 0 0) ;
52 l a s t U p d a t e d D a t e . s e t D e f a u l t V a l u e (" 0 0 0 0 . 0 0 . 0 0 00 :00 ") ;
53 l a s t U p d a t e d D a t e . se tReadOnly (t rue) ;
54 }
55
56 /∗ ∗
57 ∗ Use when c r e a t e d from gui , t h e n s e t p a r e n t .
58 ∗ /
59 p u b l i c P r o p e r t y D e f i n i t i o n S e t W r a p p e r (P r o p e r t y S e t p r o p e r t y S e t) {
60 super (p r o p e r t y S e t) ;
61 i n i t (p r o p e r t y S e t) ;
62 }
63
64 /∗ ∗
65 ∗ Use when c r e a t e d from s e r v e r .
66 ∗ /
67 p r o t e c t e d P r o p e r t y D e f i n i t i o n S e t W r a p p e r (P r o p e r t y S e t p r o p e r t y S e t ,

P r o j e c t R o o t S y s t e m W r a p p e r wrapper) {
68 super (p r o p e r t y S e t , wrapper) ;
69 wrapper . a d d D e f i n i t i o n S e t (t h i s) ;
70 }
71
72 p r o t e c t e d void i n i t (Nameable nameable) {
73 t h i s . p r o p e r t y S e t = (P r o p e r t y S e t) nameable ;
74 p r o p e r t y D e f i n i t i o n s = new H a s h t a b l e < P r o p e r t y D e f ,

P r o p e r t y D e f i n i t i o n W r a p p e r > () ;
75 s o r t e d P r o p e r t y D e f i n i t i o n s = C o l l e c t i o n s . s y n c h r o n i z e d L i s t (new

L i n k e d L i s t < P r o p e r t y D e f i n i t i o n W r a p p e r > ()) ;
76 i n i t P r o p e r t y F r o m D o m a i n O b j e c t (l a s t U p d a t e d D a t e) ;
77 }
78
79 /∗ ∗
80 ∗ @see remato . c l i e n t . model . C l i e n t M o d e l I t e m # g e t S o r t i n g O r d e r ()
81 ∗ /
82 @Override
83 p u b l i c i n t g e t S o r t i n g O r d e r () {
84 re turn 1 0 ;
85 }
86
87 /∗ ∗

54

9.2 THE REMATO.CLIENT PACKAGE

88 ∗ @see remato . c l i e n t . model . I P r o p e r t y D e f i n i t i o n C o n t a i n e r #
g e t P o p e r t y D e f i n i t i o n s ()

89 ∗ /
90 p u b l i c synchronized C o l l e c t i o n < P r o p e r t y D e f i n i t i o n W r a p p e r >

g e t P o p e r t y D e f i n i t i o n s () {
91 f o r (P r o p e r t y D e f d e f : p r o p e r t y S e t . g e t P r o p e r t y D e f s ()) {
92 i f (! p r o p e r t y D e f i n i t i o n s . c o n t a i n s K e y (d e f)) {
93 P r o p e r t y D e f i n i t i o n W r a p p e r spec = new

P r o p e r t y D e f i n i t i o n W r a p p e r (d e f) ;
94 p r o p e r t y D e f i n i t i o n s . p u t (def , spec) ;
95 i n t i n d e x = ((L i s t) p r o p e r t y S e t . g e t P r o p e r t y D e f s ()) . indexOf (

d e f) ;
96 s o r t e d P r o p e r t y D e f i n i t i o n s . add (index , spec) ;
97 }
98 }
99 re turn s o r t e d P r o p e r t y D e f i n i t i o n s ;

100 }
101
102 p u b l i c C o l l e c t i o n < A b s t r a c t P r o p e r t y S p e s i f i c a t i o n >

g e t A b s t r a c t P o p e r t y D e f i n i t i o n s () {
103 A r r a y L i s t < A b s t r a c t P r o p e r t y S p e s i f i c a t i o n > r e t u r n L i s t = new

A r r a y L i s t < A b s t r a c t P r o p e r t y S p e s i f i c a t i o n > () ;
104 r e t u r n L i s t . a dd Al l (g e t P o p e r t y D e f i n i t i o n s ()) ;
105 re turn r e t u r n L i s t ;
106 }
107
108 p u b l i c synchronized void a d d P r o p e r t y D e f i n i t i o n (

P r o p e r t y D e f i n i t i o n W r a p p e r d e f i n i t i o n) {
109 p r o p e r t y S e t . a d d P r o p e r t y D e f (d e f i n i t i o n . g e t D o m a i n M o d e l D e f i n i t i o n ()

) ;
110 p r o p e r t y D e f i n i t i o n s . p u t (d e f i n i t i o n . g e t D o m a i n M o d e l D e f i n i t i o n () ,

d e f i n i t i o n) ;
111 s o r t e d P r o p e r t y D e f i n i t i o n s . add (d e f i n i t i o n) ;
112 }
113
114 p u b l i c synchronized void r e m o v e P r o p e r t y D e f i n i t i o n (

P r o p e r t y D e f i n i t i o n W r a p p e r d e f i n i t i o n) {
115 p r o p e r t y S e t . r emo ve Pr ope r t yD ef (d e f i n i t i o n .

g e t D o m a i n M o d e l D e f i n i t i o n ()) ;
116 p r o p e r t y D e f i n i t i o n s . remove (d e f i n i t i o n . g e t D o m a i n M o d e l D e f i n i t i o n ()

) ;
117 s o r t e d P r o p e r t y D e f i n i t i o n s . remove (d e f i n i t i o n) ;
118 }
119
120 p u b l i c synchronized void u p d a t e P r o p e r t y D e f i n i t i o n (

P r o p e r t y D e f i n i t i o n W r a p p e r e l e m e n t) {
121 i n t p o s i t i o n = s o r t e d P r o p e r t y D e f i n i t i o n s . indexOf (e l e m e n t) ;
122 s o r t e d P r o p e r t y D e f i n i t i o n s . remove (e l e m e n t) ;
123 s o r t e d P r o p e r t y D e f i n i t i o n s . add (p o s i t i o n , e l e m e n t) ;
124 }
125

55

9 IMPLEMENTATION

126 p u b l i c synchronized boolean i n s e r t A f t e r (P r o p e r t y D e f i n i t i o n W r a p p e r
i n s e r t , P r o p e r t y D e f i n i t i o n W r a p p e r a f t e r) {

127 i f (i n s e r t . e q u a l s (a f t e r)) {
128 re turn f a l s e ;
129 }
130 s o r t e d P r o p e r t y D e f i n i t i o n s . remove (i n s e r t) ;
131 i n t newIndex = s o r t e d P r o p e r t y D e f i n i t i o n s . indexOf (a f t e r) + 1 ;
132 s o r t e d P r o p e r t y D e f i n i t i o n s . add (newIndex , i n s e r t) ;
133 i n t p o s i t i o n = s o r t e d P r o p e r t y D e f i n i t i o n s . g e t (newIndex −1) .

g e t P o s i t i o n () + 1 ;
134 f o r (P r o p e r t y D e f i n i t i o n W r a p p e r spec : s o r t e d P r o p e r t y D e f i n i t i o n s .

s u b L i s t (newIndex , s o r t e d P r o p e r t y D e f i n i t i o n s . s i z e ())) {
135 spec . s e t P o s i t i o n (p o s i t i o n) ;
136 p o s i t i o n ++;
137 }
138 re turn true ;
139 }
140
141 @Override
142 p u b l i c synchronized void s e t P a r e n t (P r o j e c t R o o t S y s t e m W r a p p e r

newParen t) {
143 i f (newParen t != n u l l) {
144 i f (D o m a i n C o n c e p t I n v o c a t i o n H a n d l e r . g e t A c t u a l C o n c e p t (newParen t .

ge tDomainModelObjec t ()) i n s t a n c e o f Requi rementSys tem) {
145 ((Requ i rementSys tem) newParen t . ge tDomainModelObjec t ()) .

a d d P r o p e r t y S e t (p r o p e r t y S e t) ;
146 super . s e t P a r e n t (newParen t) ;
147 i f (n u l l != g e t P a r e n t () && g e t P a r e n t () i n s t a n c e o f

P r o j e c t R o o t S y s t e m W r a p p e r && ! g e t P a r e n t () . e q u a l s (
newParen t)) {

148 g e t P a r e n t () . r e m o v e D e f i n i t i o n S e t (t h i s) ;
149 }
150 newParen t . a d d D e f i n i t i o n S e t (t h i s) ;
151 }
152 } e l s e i f (n u l l == newParen t) {
153 g e t P a r e n t () . r e m o v e D e f i n i t i o n S e t (t h i s) ;
154 ((Requ i rementSys tem) g e t P a r e n t () . ge tDomainModelObjec t ()) .

r e m o v e P r o p e r t y S e t (p r o p e r t y S e t) ;
155 super . s e t P a r e n t (newParen t) ;
156 }
157 }
158
159 /∗ ∗
160 ∗ @see remato . c l i e n t . model . C l i e n t M o d e l I t e m # g e t P r o p e r t i e s F o r m P a r t s

(remato . c l i e n t . v iew . e d i t o r . p r o p e r t i e s . Proper t i esFormPage , org .
e c l i p s e . u i . f o rms . IManagedForm)

161 ∗ /
162 @Override
163 p u b l i c L i s t < IModelFormPar t > g e t P r o p e r t i e s F o r m P a r t s (

P r o p e r t i e s F o r m P a g e page , IManagedForm managedForm) {
164 L i s t < IModelFormPar t > f o r m P a r t s = super . g e t P r o p e r t i e s F o r m P a r t s (

56

9.2 THE REMATO.CLIENT PACKAGE

page , managedForm) ;
165 Composi te body = managedForm . getForm () . getBody () ;
166 Composi te s e c t i o n = managedForm . g e t T o o l k i t () . c r e a t e C o m p o s i t e (

body) ;
167 s e c t i o n . s e t L a y o u t (new F i l l L a y o u t ()) ;
168 f o r m P a r t s . add (new U s e r t y p e s S e c t i o n P a r t (page , s e c t i o n)) ;
169 re turn f o r m P a r t s ;
170 }
171
172 @Override
173 p u b l i c O b j e c t g e t A d a p t e r (C l a s s a d a p t e r) {
174 i f (a d a p t e r == I P r o p e r t y S o u r c e . c l a s s) {
175 M o d e l I t e m P r o p e r t y S o u r c e p r o p e r t y S o u r c e = new

M o d e l I t e m P r o p e r t y S o u r c e (t h i s) ;
176 p r o p e r t y S o u r c e . a d d A b s t r a c t P r o p e r t y S p e s i f i c a t i o n (

l a s t U p d a t e d D a t e) ;
177 re turn p r o p e r t y S o u r c e ;
178 }
179 re turn super . g e t A d a p t e r (a d a p t e r) ;
180 }
181
182 @Override
183 p u b l i c Image ge t Image () {
184 re turn R e q u i r e m e n t P l u g i n . g e t I m a g e D e s c r i p t o r (

I R e q u i r e m e n t P l u g i n I m a g e s . IMG_PROPERTY_SET) . c r e a t e I m a g e () ;
185 }
186
187 }� �

As the listing illustrates, the domain-model-object is set in the wrapper constructor and
all appurtenant methods forwards to the domain model instance. Another feature of
the client model is that no wrappers have hard-coded attributes in the same way as the
domain model. The GUI model is more generic and utilizes only ’PropertyDefinition-
Wrapper’ and corresponding ’PropertyValue’ which wraps to most of the plain getter
and setter methods in the domain model objects. The reason of this is to be able to
treat the objects more uniformly in the GUI tier. These attribute wrappers are defined
static for each class they are needed for.

9.2.1 The remato.client metrics

Due to complex Eclipse class libraries used in the client, or possible bug in Borland
Together Architect, BTA was not able to compute metrics for the client package. An-
other, less advanced, Eclipse plug-in, VisCount, produced the results of table 9.2.

57

9 IMPLEMENTATION

Table 9.2: Metrics of remato.client
File Local Line

Benchmark count class count count
client 99 46 16,985

9.3 THE remato.server PACKAGE

As illustrated in figure 8.1, the server provides a servlet container and a database inter-
face. The diagram of the main packages is illustrated in figure 9.4.

domaintranslator

ConversionMapFactory
AttributeCopier
DomainTransformer

util

HibernateUtil
CreatePdf
PropertyAccessor

launch

StartServer

service

UniqueValueFactoryImpl
UniqueValueEjb
SmartServiceImpl

domain

hibernate
ejb

DomainTestFactory

web

PdfServlet
SmartServiceServlet

Figure 9.4: The remato.server package

To utilize Hibernate in the most maintainable way, modification of the domain objects
is also needed at the server. Unfortunately, the wrapper-pattern applied at the client, is
not compatible with Hibernate. Hibernate uses a CGLib-enhanced objects [3] which
causes this lack of interoperability; it does not operate with “real” instances. Hiber-
nate does however support to send the “CGLib-proxies” to the client, but that is not
desirable for the same reasons as why the domain model was not modified at the client.
A transformation is therefore needed. By implementing the model-interfaces and ex-
tending the objects in the domain model, consistency in the source code is preserved
to some degree. An example of how this is done is presented in listing 9.3.

58

9.3 THE REMATO.SERVER PACKAGE

Listing 9.3: Class remato.server2.domain.ejb.RequirementEjb.java� �
1 package r emato . s e r v e r 2 . domain . e j b ;
2
3 import j a v a . u t i l . Date ;
4 import j a v a . u t i l . S e t ;
5
6 import j a v a x . p e r s i s t e n c e . B a s i c ;
7 import j a v a x . p e r s i s t e n c e . CascadeType ;
8 import j a v a x . p e r s i s t e n c e . E n t i t y ;
9 import j a v a x . p e r s i s t e n c e . Gene ra to rType ;

10 import j a v a x . p e r s i s t e n c e . Id ;
11 import j a v a x . p e r s i s t e n c e . I n h e r i t a n c e ;
12 import j a v a x . p e r s i s t e n c e . I n h e r i t a n c e T y p e ;
13 import j a v a x . p e r s i s t e n c e . JoinColumn ;
14 import j a v a x . p e r s i s t e n c e . J o i n T a b l e ;
15 import j a v a x . p e r s i s t e n c e . ManyToMany ;
16 import j a v a x . p e r s i s t e n c e . ManyToOne ;
17 import j a v a x . p e r s i s t e n c e . OneToMany ;
18 import j a v a x . p e r s i s t e n c e . Tab le ;
19 import j a v a x . p e r s i s t e n c e . TemporalType ;
20
21 import r emato . common . domain . C a t e g o r y ;
22 import r emato . common . domain . Requ i remen t ;
23 import r emato . common . domain . S t a k e h o l d e r ;
24 import r emato . common . domain . V e r s i o n e d R e q u i r e m e n t ;
25 import r emato . common . domain . impl . Requ i r emen t Impl ;
26 import r emato . common . domain . p r o p e r t y . P r o p e r t y V a l u e ;
27
28 @Enti ty
29 @ I n h e r i t a n c e (s t r a t e g y = I n h e r i t a n c e T y p e . TABLE_PER_CLASS)
30 p u b l i c c l a s s Requ i r emen tE jb ex tends Requ i remen t Imp l {
31
32
33 @Override
34 @Id (g e n e r a t e = Gene ra to rType .AUTO)
35 p u b l i c long ge tDbId () {
36 re turn super . ge tDbId () ;
37 }
38
39 @Override
40 p u b l i c S t r i n g g e t D e s c r i p t i o n () {
41 re turn super . g e t D e s c r i p t i o n () ;
42 }
43
44 @Override
45 p u b l i c S t r i n g getName () {
46 re turn super . getName () ;
47 }
48
49 @Override
50 @ManyToOne (t a r g e t E n t i t y = C a t e g o r y E j b . c l a s s)

59

9 IMPLEMENTATION

51 p u b l i c C a t e g o r y g e t C a t e g o r y () {
52 re turn super . g e t C a t e g o r y () ;
53 }
54
55 @Override
56 @ManyToOne (t a r g e t E n t i t y = S t a k e h o l d e r E j b . c l a s s)
57 p u b l i c S t a k e h o l d e r g e t P e r s i s t a b l e A s s i g n e d T o () {
58 re turn super . g e t P e r s i s t a b l e A s s i g n e d T o () ;
59 }
60 @Override
61 @ManyToOne (t a r g e t E n t i t y = S t a k e h o l d e r E j b . c l a s s)
62 p u b l i c S t a k e h o l d e r g e t P e r s i s t a b l e R e p o r t e r O r O w n e r () {
63 re turn super . g e t P e r s i s t a b l e R e p o r t e r O r O w n e r () ;
64 }
65
66 @Override
67 @ManyToMany(t a r g e t E n t i t y = S t a k e h o l d e r E j b . c l a s s , c a s c a d e = {

CascadeType . ALL })
68 @JoinTable (t a b l e = @Table (name = " r e q u i r e m e n t S t a k e h o l d e r ") ,

j o inColumns = { @JoinColumn (name = " r e q u i r e m e n t D b I d ") } ,
i n v e r s e J o i n C o l u m n s = { @JoinColumn (name = " s t a k e h o l d e r D b I d ") })

69 p u b l i c Set < S t a k e h o l d e r > g e t S t a k e h o l d e r s () {
70 re turn super . g e t S t a k e h o l d e r s () ;
71 }
72
73 @Override
74 @OneToMany (t a r g e t E n t i t y = P r o p e r t y V a l u e E j b . c l a s s , c a s c a d e = {

CascadeType . ALL })
75 @JoinColumn (name=" r e q u i r e m e n t ")
76 p u b l i c Set < P r o p e r t y V a l u e > g e t P r o p e r t y V a l u e s () {
77 re turn super . g e t P r o p e r t y V a l u e s () ;
78 }
79
80 @Override
81 @OneToMany (mappedBy = " c u r r e n t R e q u i r e m e n t " , t a r g e t E n t i t y =

V e r s i o n e d R e q u i r e m e n t E j b . c l a s s , c a s c a d e = {
82 CascadeType . PERSIST , CascadeType .MERGE, CascadeType . REFRESH })
83 p u b l i c Set < Ver s ionedRequ i r emen t > g e t V e r s i o n e d R e q u i r e m e n t s () {
84 re turn super . g e t V e r s i o n e d R e q u i r e m e n t s () ;
85 }
86
87 @Override
88 @ManyToMany(t a r g e t E n t i t y = Requ i r emen tE jb . c l a s s , c a s c a d e = {

CascadeType . PERSIST , CascadeType .MERGE })
89 @JoinTable (t a b l e = @Table (name = "LINKED_REQUIREMENT") ,

jo inColumns = { @JoinColumn (name = "LINK_FROM_ID") } ,
i n v e r s e J o i n C o l u m n s = { @JoinColumn (name = "LINK_TO_ID") })

90 p u b l i c Set < Requi rement > g e t L i n k e d T o R e q u i r e m e n t s () {
91 re turn super . g e t L i n k e d T o R e q u i r e m e n t s () ;
92 }
93

60

9.3 THE REMATO.SERVER PACKAGE

94 p u b l i c V e r s i o n e d R e q u i r e m e n t E j b a d d V e r s i o n e d R e q u i r e m e n t () {
95 V e r s i o n e d R e q u i r e m e n t E j b v e r s i o n e d R e q u i r e m e n t = new

V e r s i o n e d R e q u i r e m e n t E j b () ;
96 super . a d d V e r s i o n e d R e q u i r e m e n t (v e r s i o n e d R e q u i r e m e n t) ;
97 re turn v e r s i o n e d R e q u i r e m e n t ;
98 }
99

100 @Override
101 p u b l i c Long g e t B u s i n e s s I d () {
102 re turn super . g e t B u s i n e s s I d () ;
103 }
104
105 @Override
106 @Basic (t empora lType =TemporalType . TIMESTAMP)
107 p u b l i c Date g e t L a s t U p d a t e d D a t e () {
108 re turn super . g e t L a s t U p d a t e d D a t e () ;
109 }
110
111 @Override
112 p u b l i c I n t e g e r g e t P r i o r i t y () {
113 re turn super . g e t P r i o r i t y () ;
114 }
115
116 @Override
117 p u b l i c I n t e g e r g e t S t a t u s () {
118 re turn super . g e t S t a t u s () ;
119 }
120
121 @Override
122 @Basic (t empora lType =TemporalType . TIMESTAMP)
123 p u b l i c Date g e t S u b m i t t e d D a t e () {
124 re turn super . g e t S u b m i t t e d D a t e () ;
125 }
126
127 @Override
128 p u b l i c S t r i n g g e t V e r s i o n () {
129 re turn super . g e t V e r s i o n () ;
130 }
131
132
133 }� �

As the listing illustrates, the constraints of the fields’ relationships are expressed as
annotations at the getter methods. In addition to facilitate retrieval and saving to per-
sistent store, Hibernate initialized the database by SQL-schema export.

61

9 IMPLEMENTATION

9.3.1 The remato.server metrics

To give an brief overview of the remato.server without showing to many class
diagrams, chosen metrics are included in table 9.3. Explanation to the columns is
documented in the glossary, chapter C.1, page 113. The metrics are computed by
Borland Together Architect.

Table 9.3: Metrics of remato.server

Resource LOC NOC NOIS NOM NOO PIS PS
server2 2397 21 27 22 16
remato.server2.domain.ejb 536 9 24 16 16 0 9
remato.server2.domaintranslator 377 3 13 18 14 2 3
remato.server2.launch 149 1 16 15 7 0 1
remato.server2.service 340 3 27 16 15 0 3
remato.server2.util 449 3 22 22 16 2 3
remato.server2.web 546 2 24 21 15 0 2

In brief; LOC means “lines of code” and NOC means “number of classes”.

62

CHAPTER 10
REMATO EDITIONS

This chapter presents the results of the ReMaTo tool in screen shots and brief de-
scriptions of the pertaining functionality. The tool is deployed by the author in tree
different editions which are presented separately. The editions are compatible with
various platforms and environments, to raise the degree of accessibility. The func-
tionality supported by the tool is similar and available in all editions, however only
presented once.

10.1 ECLIPSE PLUG-IN

This edition of the client is intended for the developers of software systems, of which
requirements are managed by the tool. The requirements are then available in the de-
velopers IDE, which eliminates most probable technical and psychological obstacles.

10.1.1 Installation

The ReMaTo tool can be installed as any other Eclipse plug-in using the update man-
ager1 with ’http://remato.eide.biz/eclipse’ as the update site.

The selection of the plug-in features to be installed is illustrated in figure 10.1.

1Detailed Eclipse installation manual using the update manager is found at ’http:
//help.eclipse.org/help31/index.jsp?topic=/org.eclipse.platform.
doc.user/tasks/tasks-34.htm’

63

http://remato.eide.biz/eclipse
http://help.eclipse.org/help31/index.jsp?topic=/org.eclipse.platform.doc.user/tasks/tasks-34.htm
http://help.eclipse.org/help31/index.jsp?topic=/org.eclipse.platform.doc.user/tasks/tasks-34.htm
http://help.eclipse.org/help31/index.jsp?topic=/org.eclipse.platform.doc.user/tasks/tasks-34.htm

10 REMATO EDITIONS

Figure 10.1: ReMaTo Eclipse plug-in installation

64

10.1 ECLIPSE PLUG-IN

10.1.2 Login

To be able to restrict access, differentiate between different stakeholder roles and con-
nect to multiple servers, a user session concept is introduced in the tool. The session
is initiated by login, illustrated in figure 10.2, and terminated by logout.

Figure 10.2: ReMaTo Eclipse plug-in login

65

10 REMATO EDITIONS

10.1.3 ReMaTo Explorer

The tool’s main view is the ReMaTo Explorer, which is illustrated to the left in fig-
ure 10.3. This view provides an outline of the domain concepts; projects, categories,
requirement, stakeholders and requirement property templates (PropertySet).

Figure 10.3: ReMaTo Explorer

Creation of domain concepts is triggered from the ReMaTo Explorer view by clicking
buttons or selecting menu options. Creating of PDF reports is also available in this
view. To view or edit a domain concept, a double click action on a concept will open
the respective editor view. Such a view is illustrated to the right in figure 10.3.

66

10.1 ECLIPSE PLUG-IN

10.1.4 Properties Template Editor

The Properties Template Editor provides functionality to define and update require-
ment property templates (PropertySets). The view is illustrated in figure 10.4.

Figure 10.4: ReMaTo Properties Template Editor

As illustrated in the figure (10.4), defining and updating attached property definitions
is supported. This adapts for utilizing various requirement taxonomies. The current
properties in figure 10.4, reflects Gilbs quantification of requirements, as described in
section 3.3. The property definitions’ types can be string, integer, date etc. with ap-
propriate validation of corresponding values. The underlying architecture is prepared
for types as enumeration, stakeholder, requirements or other relations.

67

10 REMATO EDITIONS

10.1.5 Category

The Category editor view is illustrated in figure 10.5. This view provides functionality
to relate property templates to categories.

Figure 10.5: ReMaTo Category Editor

If a property template is related to a category, then requirements of this category will
acquire the corresponding properties as defined in the property template.

68

10.1 ECLIPSE PLUG-IN

10.1.6 Requirement

The requirement editor view is illustrated in figure 10.6. The different properties of
the requirement are organized as a tree in the table.

Figure 10.6: ReMaTo Requirements Editor

The predefined default properties of requirements, reflecting the domain model de-
scribed in section 8.2, are found under the Requirement details-node. Relational at-
tributes, such as Stakeholders or Linked requirements, can be expanded. Properties
of property templates, which are attached to the parent category of the requirement,
are displayed at the bottom of the table. The requirement in figure 8.2 belongs to the
category “Availability”, which has the property template “Quality” attached. Hence,
the Quality-node with corresponding properties is displayed in the table editor.

In the current release of the plug-in, dependencies between requirements and to stake-
holders can be reviewed. In future releases it will be possible to define and maintain

69

10 REMATO EDITIONS

relations and dependencies to even more developer-related types of software artifacts.

10.1.7 Table View

The ReMaTo tool provides a table view to support displaying, in a compact and lucid
manner, more than one requirement at the time. This view is illustrated in figure 10.7.

Figure 10.7: ReMaTo requirements table view

The view provides functionality to compare and sort all requirements of a category,
and its subcategories.

70

10.1 ECLIPSE PLUG-IN

10.1.8 Stakeholder

The stakeholder editor is illustrated in figure 10.8.

Figure 10.8: ReMaTo Stakeholder Editor

This view gives an overview of associated requirements and the corresponding specific
role if any.

71

10 REMATO EDITIONS

10.2 STANDALONE CLIENT

The standalone client edition provides the same functionality as the Eclipse plug-in
edition does. The difference is that it can be installed without the Eclipse application,
which current size is more than 100 MB. The standalone client edition’s size is about
7 MB. The file structure of the standalone client is illustrated in figure 10.9.

Figure 10.9: ReMaTo Standalone Client edition file structure

The target users of this edition are typically nontechnical stakeholders which do not
have the Eclipse IDE installed. The standalone client edition is found on the enclosed
CD or can be downloaded from ’https://remato.eide.biz’.

72

10.2 STANDALONE CLIENT

A sample screen shot from the standalone client edition is illustrated in figure 10.10.

Figure 10.10: ReMaTo Standalone Client example

As the figure 10.10 illustrates, the Eclipse IDE specific menus and buttons are not
available, while the ReMaTo functionality still is.

73

10 REMATO EDITIONS

10.3 JAVA WEB START CLIENT

The “Java Web Start” (JWS) [18] standalone client edition of the ReMaTo tool is
much like the ordinary standalone client described in previous section 10.2. The main
difference is that is even more lightweight and is deployable with a single click over
the network. Further it ensures the most current version of the application always
will be deployed. Hence, if a binary is updated at the server, it will automatically
be downloaded at next launch of the client. The JWS client edition is available from
’https://remato.eide.biz/jnlp/remato.jnlp’.

The JWS deployment interface is illustrated in figure 10.11.

Figure 10.11: ReMaTo “Java Web Start” standalone client edition deployment

74

https://remato.eide.biz/jnlp/remato.jnlp

Part III

Evaluation and Discussion

Chapters

11 Discussion 77

12 Evaluation 81

This part presents discussions about and evaluation of the project’s contribu-
tion, the ReMaTo tool, and the project’s progress and process. Issues and
choices made in the project are covered. The purpose is to enlighten the re-
sults of the project.

CHAPTER 11
DISCUSSION

This chapter presents issues and decisions related to the ReMaTo software architecture.

11.1 REMATO PROTOTYPES EVOLUTION

The development of the tool, ReMaTo, has gone through several iterations and most of
the source code has been rewritten / refactored at least twice. In total there have been
developed three “prototype-series” of the tool, differentiated by major differences in
the tool’s underlying architecture.

The first prototype provided much of the same functionality as the latest version, ex-
cept the framework providing PDF-exports. Another difference in functionality is that
the property definitions were related directly to the categories. Hence, the concept
property templates did not exist.

The first prototype’s main architectural distinction, in comparison to later prototypes,
is a more generic domain model and a “Domain Transfer Object” (DTO) pattern ap-
plied for exchanging information between server and client.

The second major prototype-series had a new and more concrete domain model. This
model is shared between, and at the same time “extended” in various ways, at the
server, as described in 9.3, and at the client, as described in section 9.2. The strategy
for relating property definitions to the requirements is changed from directly attaching
them to parent categories, to attach them to the new domain concept PropertySet
(the requirement property/attribute template), which further is attached to the parent
categories.

The last and current prototype or release introduces the optional proxy-layer at the
client, providing seamless communication with the server.

77

11 DISCUSSION

11.2 DOMAIN MODEL

As described in previous section 11.1 the first prototype is based on a slightly different
domain model than the later prototypes. This model is smaller and more generic, using
the same pattern for defining attributes of the domain concepts as the client still does
in the latest release; That is, use of property definitions and property values to define
the attributes of requirements, categories and projects. Hence, no attributes are hard
coded as fields, getters and setters.

These qualities make changes in the model less frequent or most unlikely to appear
at all. In addition, the concepts can be handled more seamlessly all over the com-
munication stack. Default templates of properties can be configured in files at server,
or at client through a special user interface where special access would be needed.
This yields the same behaviour as the today’s more definite model, but with a major
difference, core requirement properties could easily be overridden or customized by
software developing organizations or teams.

This default requirements attribute template, provided by default configuration with a
generic based domain model, or provided by reflection from a definite domain model,
is an important quality of the tool, contributing it to become more easy-utilizing.

On the contrary to the more generic model, one can argue that a domain model should
always be concrete, reflecting the concepts used in conversations and other work that
a system is utilized in. This is also the main message of the book “Domain-driven
design” [7] which this projects has used. The author agree to this, but personally still
believe that different software developing companies and teams differ in what they
consider as “concepts” of the requirements. If this tool is going to be flexible, then the
author believe that it should not be leading in defining a requirements core properties
or concepts, but allow the users to override this definition. Hence, a more generic
model, still reflecting the main concepts of a requirement (however at another level of
granularity), is appropriate.

All in all, the author personally votes for the more generic model, mainly due to the
independence and flexibility it provides. The current release is based on the more
definite model, due to constraints from the assigner of the project.

11.3 CLIENT-SERVER COMMUNICATION

As described in section 11.1 the first prototype based the exchanging of information
between client and server on a DTO pattern. This pattern is realized by three differ-
ent models of the domain; one for the server, one for exchanging (DTO) and one for
the client. In addition there are four corresponding transformation algorithms. The
transformation is performed once during each server-call, utilized only to exchange

78

11.3 CLIENT-SERVER COMMUNICATION

information. The client and server make use of and maintain only their own represen-
tation of the model.

A positive consequence of this was the high degree of separation of concern. Once the
DTO-model is designed, the client will be completely independent of the server and
visa versa. This makes updates of the client applications in most cases optional and
related to client issues only.

A drawback with the DTO-model is that if the model first is changed, this can result
in corresponding need for changes in all three models and the coherent transformation
algorithms, at worst in seven different source code areas. In return the model is smaller
and more generic, as described in subsection 11.2, and the need for change will be less
frequent or not needed at all.

The second major prototype introduces the definite domain model as described in sec-
tion 11.1. This model is defined in the remato.common package, which both the
client and server depends on. To the client, a wrapper-pattern is used and no trans-
formation is needed. To the server, this is not possible, as explained in section 9.3,
and a semi-automatic transformation is needed, which means that the transformation
algorithm needs to be maintained if new domain concepts are introduced or dismissed.

At the client the wrapper-patterns results in some extra complexity, for instance the re-
lations to other domain concepts. Memory leaks, in form of dual wrapper-instances for
the same domain-model-object, are not wanted and will cause inconsistent behaviour
of GUI-components. A parallel set of relations and hierarchies need therefore to be
maintained with precision.

One can say that the DTO patterns are in a way still applied at the client-server-
communication in the current release, but with a much stronger dependence to the
common exchange model. This dependence does not give the advantages the DTO-
pattern is supposed to. In contrast to the pure realization of the pattern in the first
prototype, this realization is much more dependent on the common model, in that the
client’s and server’s own model is directly dependent on this model. On the server, the
transformation is as before. On the client, the transformation is now completely lazy,
carried out just and only when a property value or relation is accessed.

In perspective and in contrast to the pure DTO-model, a change in today’s model is
more likely to occur. For instance if a new theory of defining properties of require-
ments is released, which probably will require different requirement properties in the
domain model. If a change is needed in today’s model, it will implicate comprehen-
sive consequences. All deployed clients need to be updated in order to communicate
with the server, and previously exported files will become outdated and most likely be
imported incorrectly if needed.

79

11 DISCUSSION

11.4 SAVE HANDLING AND TRANSACTIONS

In the early prototypes, the principle “last save wins” is used. Thus, if a user retrieves
a requirement from the server, modifies and saves it, other modifications on the same
requirement in that time span could be overwritten.

In latest release, the principle still applies, but local transaction-handling is performed
at the server in order to detect and avoid possible conflicts. Further, the session-proxy
utilized at the client minimizes the age of information at the client, which minimizes
the possibility of a conflict to occur.

The design of the session-proxy and the current client is also prepared for handling
update-notifications from the server. Such notifications can, if implemented, avoid
save-conflicts at the server completely by give users the opportunity to decide about
conflicts in the same way as for instance modern CVS-repository-clients [4] does.

80

CHAPTER 12
EVALUATION

This chapter presents a brief evaluation of the ReMaTo tool, and some reflections and
lessons learned during the projects course.

12.1 REMATO DEVELOPMENT

In accordance to the development methodology, described on page 7, testing has been
performed continuously during the development of the tool. The tests of the server
interface with and without the proxy-session have been performed automatically with
TestNG [42] and JUnit [20]. The user interface and connected functionality have been
tested by Bjørn Nordmoen and the author. The Eclipse Test and Performance Tools’
Platform (TPTP) [44] has also been utilized by the author.

The stability of the tool has been fluctuating due to the extensive changes in archi-
tecture from iteration to iteration. The main functionality covered by the scope of
this project is now in place (again) in the latest prototype released, with only minor
adjustments outstanding.

In light of the purpose of this project, as described on page 3, the main goals con-
cerning quantification and traceability are obtained. To implement functionality for
advanced requirement traceability, such as history and baseline, is not in the primary
scope of this project. The domain model is however prepared for such functionality to
be added. The server can therefore with little effort be enabled to mark and save such
information. How this information is to be retrieved and displayed at the client is not
yet determined, however this is discussed more thoroughly in chapter 14.

81

12 EVALUATION

12.2 PROJECT PROCESS AND PROGRESS

For future projects with similar context the author suggests two initiatives to improve
the process.

The first initiative concerns efficiency. As mentioned, the changes from prototype to
prototype are quite extensive in this project. The client and server have been rewritten
at least twice. Some time and effort could have been saved or spent on extending the
functionality provided, if these changes had been explored at another level. Extended
use of architectural exploration and testing, like ATAM, CBAM [1] or others, could
have given indications of the results before the complete prototypes were developed,
and thus, possibly made the development of the discarded prototypes unnecessary.

The second initiative concerns interaction over geographical distances. It is impor-
tant to identify and keep in mind the special challenges related to the development of
a system at a remote site. For the developer, this means cultivate clear communica-
tion, and identify expectations and what is required, which the author believes is more
challenging when mainly working geographically separated.

82

Part IV

Conclusion and Further Work

Chapters

13 Conclusion 85

14 The ReMaTo Tool 87

15 Domain of Traceability 89

This part presents the conclusion of the report and further work. The further
work chapters encompass improvement and extension of the functionality of
the RMT tool, ReMaTo, and topics of current and future interest concerning
research in the traceability tool domain.

CHAPTER 13
CONCLUSION

Today, the use of requirement management tools, with support for quantification and
traceability, is recognized as a significant capability in the software development and
maintenance process, and as an important factor for the quality of the final software
product.

The project has aimed to explore the technical aspects of such a tool. This has been
done by implementing an adequate requirement management tool, ReMaTo. The tool
it self, and this report concludes that it is feasible and doable to develop a lightweight,
easy-utilizing RMT for general purpose use. The ReMaTo-tool can be held as a proof
of this.

Making such a tool adaptive for most software developing companies and teams is
however challenging. A way of meeting this is to provide customization functionalities
which the ReMaTo tool does.

Making it available to all types of stakeholders in a software developing context is
another challenge. This can be provided for by applying a client-server architecture,
which this tool has.

The basic technical aspects are in other words clear. What remains is to look into
ways of integrating such a tool into the business processes related to software develop-
ment, and explore the implementation issues of advanced traceability to other software
artifacts.

The integration with other business processes is not a part of this project. Implemen-
tation issues and further potential extensions are discussed in chapters 14 and 15.

85

CHAPTER 14
FURTHER WORK CONCERNING THE

REMATO TOOL

For the specific tool, ReMaTo, developed in this project there exist several areas where
the functionality can be extended.

The first area is enabling the history functionality of requirements, enabling business
possibilities as described in section 4.1. A requirements history could for instance be
available as a separate view, or as a spilt or tabbed view in the existing requirement
editor view, which is illustrated in figure 10.6.

Next area target for extension is the implementation of functionality to support speci-
fication of relations from requirements to other software artifacts. The first step of this
functionality is to enable it within the developers’ IDE. This can be done by defining
links as described in section 4.3.1. The challenging part here is to clarify how to iden-
tify unique, unambiguous path’s to source code classes and packages. An easy, but not
so flexible, solution would be to force project names to be equal to the root class-path,
which is common for version-based repository projects. Another solution could be to
create XML-based files in project folders which are enabled for tracing.

If the challenges connected to defining such relations are solved, a connected challenge
is to maintain the relations. For IDE’s with automatic refactoring functionalities, such
as Eclipse, this can be done by adding rules to the refactoring algorithms that already
exists. By doing so, a relation link between a requirement and a class, is automatically
updated if the class is moved to another package. In multi-developer projects, this can
be complex, and several issues must be clarified. Such as, when the link information
should be updated in the requirements tool database, if even stored there; - on the
instant moment the refactoring takes place, or when the developer commits the changes
to the code-repository.

A third extension is to implement functionality to support specification of relations

87

14 THE REMATO TOOL

to artifacts outside an IDE’s environment. Such artifacts can be use cases, written
in another tool, various documents etc. The challenge here lies in defining uniform
access when the users need to access the links from different locations and different
environments. A strategy to address this challenge could be to define a URL-syntax
with support for validation.

At present time, the only IDE supported by ReMaTo is Eclipse. If the tool shall reach
the general purpose market for requirement management, plug-ins for other IDEs, such
as NetBeans [30], needs to be written. The componentization of the client source code
will ease this work.

88

CHAPTER 15
FURTHER WORK RELATED TO THE

DOMAIN OF TRACEABILITY

Several areas, concerning topics related to traceability between requirements and other
software artifacts, remains to be fully explored. Related to tool support, the following
paragraphs present the most relevant issues.

Storage

Traceability information needs a place to be stored, either in the RMT, an external
database, a file, a model, or other. The key challenges lies in defining the traces and
providing automatic maintenances. The storage of the traces is central in finding a
solution to these challenges. The existing theories differentiate between intra-model
and extra-model traceability storage.

The intra-model approach populates the artifacts itself with traceability information,
e.g. by using tags, properties. In UML, it could be done with stereotypes and tagged
values. In Java it can be done with tags in java-doc areas. Such population of trace-
ability information in the artifact itself could lead to a pollution of the artifact, and is
further not applicable to all types of relations such as relations to external document
with unknown or unmodifiable format.

The extra-model approach leaves the original artifact or model untouched and store
the trace information in an external model. The theory looks into possible mecha-
nisms to reference into the target artifact or model by using unique identifiers which is
not affected by changes concerning the targeted artifact. If such references and mod-
els is possible, the issue may be reduced to a tool implementation issue only. Then
each tool vendor may implement this differently, whilst ideally supporting a “standard
traceability scheme”. Else a shared additional artifact or model is needed to maintain

89

15 DOMAIN OF TRACEABILITY

the references, which further can be used as a proxy for traces into the real artifact or
model.

Ownership

The ownership of traceability links or other traceability information is an issue related
to the traceability storage challenges. If several tools are using the traces, it may be-
come uncertain who the owner is. Theories describe this auditability of traceability
links as an aspect of tracking meta-information of traceability. Further, it can be used
to assessing information like: when was a traceability link induced, how (by transfor-
mation, manually), why etc.

Metrics

If using traceability by tool support to analyze or verify software, then the tools it
selves need to be validated as well. The tools are dependent of the traceability informa-
tion. Hence, metrics-definition and identification for traceability should be explored.

Business Applications

As the described in the motivation section, on page 2, and further in section 4.4, trace-
ability can give an intangible added value to software developing companies. For in-
stance resources used on maintenance, which can be reduced by traceability provided
by tools, e.g. through impact analysis, improving the time spent on locating change
locations, bugs and errors etc. Traceability may be used for consistency checking in
such work. Even if the technology is available, it is still a big challenge to adopt it and
integrate it to existing business processes.

Terminology Issues

To encourage interoperability among the variety of tools developed and the research in
progress, a need for establishing terminology in the traceability area is arising, i.e. to
have more precise definitions of the terms.

90

91

APPENDIX A
PROJECT PLAN

A.1 MILESTONES

A.1.1 The Requirement Tool

M1: 05.10.09 v0.1

1. Eclipse based client with new domain model

2. Flexible Project and Category hierarchy with Drag-n-Drop functionality

3. Eclipse plug-in update-site

M2: 05.10.16 v0.2

1. Requirements with flexible user-defined properties templates

2. Flexible means date, string, integer

3. Domain-model functionality for advanced versioning

4. Domain-model support baseline versions.

M3: 05.10.23 v0.3

1. XML based import/export

2. PDF report generation

3. CRUD functionality for stakeholders.

M4: 05.10.30 v1.0

93

A PROJECT PLAN

1. Standalone RCP-client

2. Web-based client

M5: 05.11.06 v1.1

1. Simple traceability functionality.

2. Visualization of requirements dependencies/links?

M6: 05.11.13 v2.0

1. Advanced traceability functionality.

M7: 05.12.20 Deploy latest releases

1. Eclipse plug-in client

2. Standalone RCP client

3. Web-based client

M6 will be the last milestone to add new functionality.

A.1.2 The Report

M1: 05.10.09 Introduction

• Detailed outline for this chapter and most of the content

• Rough outline for prestudy chapter

M2: 05.10.16 Prestudy

• Get necessary papers and readings

M3: 05.10.23 Prestudy

• Halfway prestudy

M4: 05.10.30 Prestudy

• Finished prestudy

• Rough outline for contribution and rest of the report

M5: 05.12.20 Report delivery

94

APPENDIX B
RMT SRS

The complete SRS of the Requirement Management tool, written by Bjørn Nordmoen,
is included in the following pages.

95

Appendix: Requirements for a Requirements Tool
This appendix lists the requirements defined for the requirements tool. The requirements have been handled
using the modified version of Mantis.

1. Business Requirements

1.1. Cost

1.1.1. Capital Investment
21: Cost of a new version

Priority normal Status new Version 0.1

Category B_Cost_Capital Investment Type Business Requirement

Date Submitted 01-24-05 15:20 Last Update 09-07-05 10:39

Reporter Bnordmoen Assigned To

Stakeholders ALL

Description
The cost of a new version
 Server installation: < 100 USD
 Each client license: < 19 USD

Workpackages

Links

1.1.2. Support and Maintenance Cost
22: Upgrade cost

Priority normal Status new Version 0.1

Category B_Cost_Support and Maintenance Cost Type Business Requirement

Date Submitted 01-24-05 15:21 Last Update 09-07-05 10:40

Reporter bnordmoen Assigned To

Stakeholders ALL

Description The cost to upgrade to a newer version < 19USD

Workpackages

Links

2. Functional Requirements

2.1. CRUD
5: Create, Update and Delete Requirements

Priority high Status new Version 0.1

Category F_CRUD Type Functional Requirement

Date Submitted 01-18-05 11:35 Last Update 01-18-05 11:45

Reporter tneple Assigned To

Stakeholders Reporter

Description
Users having the Reporter role should be able to create a new requirement. They should also be able
to update and delete a requirement.

Links related to 0000028 new Create requirement

related to 0000025 new Login and view summary

8: Links to other requirements

Priority high Status new Version 0.1

Category F_CRUD Type Functional Requirement

Date Submitted 01-18-05 11:45 Last Update 01-18-05 11:45

Reporter tneple Assigned To

Stakeholders

Description It should be possible for a Reporter to create links from a requirement to one or more requirements.

Links

7: Sorting

Priority high Status new Version 0.1

Category F_CRUD Type Functional Requirement

Date Submitted 01-18-05 11:43 Last Update 01-18-05 11:43

Reporter tneple Assigned To

Stakeholders

Description
It should be possible to produce a sorted view of the requirements. It should be possible to sort by
any one (or a combination) of the defined fields.

Links related to 0000026 new View requirements list sorted

6: Standard requirement fields

Priority high Status new Version 0.1

Category F_CRUD Type Functional Requirement

Date Submitted 01-18-05 11:41 Last Update 01-18-05 11:41

Reporter tneple Assigned To

Stakeholders All

Description

The following information has to be stored for each requirement
- Unique ID
- Date created
- Created by
- Responsible
- Priority
- Category (Hierarchical)
- Status
- Scale
- Meter (optional)
- Goal (date and scale qualifiers)
- Past (date and scale qualifiers)
- MODELWARE specific fields (can be created by custom fields functionality)
- MODELWARE partner (can use created by?)
- Needed for scenario
- Link to work packages
- Technical area

Links

2.2. Customisation
15: Custom fields

Priority high Status new Version 0.1

Category F_Customisation Type Functional Requirement

Date Submitted 01-18-05 12:05 Last Update 01-18-05 12:05

Reporter tneple Assigned To

Stakeholders Administrator

Description

It should be possible for the administrator to add custom fields to the definition of requirements for a
project.
Each custom field should have a name and a type. The following types of fields should be supported:
- Text
- Enum
- Boolean

Links related to 0000030 new Easy to add use defined properties to the requirements template

2.3. Data Exchange
16: Export/import requirements data from external formats

Priority high Status new Version 0.1

Category F_Data exchange Type Functional Requirement

Date Submitted 01-18-05 14:21 Last Update 01-18-05 14:21

Reporter bnordmoen Assigned To

Stakeholders Reporter, administrator

Description

Should support the following formats:
- CSV
- XML (needs to be defined)

Should also import directly from email attachments

Links

2.4. Manage Users and Roles
13: Create, update, and delete users

Priority high Status new Version 0.1

Category F_Manage users and roles Type Functional Requirement

Date Submitted 01-18-05 12:02 Last Update 01-18-05 12:18

Reporter tneple Assigned To

Stakeholders Administrator

Description
It should be possible for the administrator to manage users in the system, This includes creating,
updating, and deleting user accounts and assigning the users to defined roles.

Links related to 0000012 new Define roles and rights

14: Create, update, and delete projects

Priority normal Status new Version 0.1

Category F_Manage users and roles Type Functional Requirement

Date Submitted 01-18-05 12:03 Last Update 01-18-05 12:03

Reporter tneple Assigned To

Stakeholders Administrator

Description It should be possible for the administrator to manage a set of projects within the requirements tool.

Links

12: Define roles and rights

Priority high Status new Version 0.1

Category F_Manage users and roles Type Functional Requirement

Date Submitted 01-18-05 12:00 Last Update 01-18-05 12:00

Reporter tneple Assigned To

Stakeholders Administrator

Description

It should be possible to define a set of roles with assigned rights
Rights
- Create
- Update
- Delete
- Read only
- Administrator (all rights)

Links related to 0000013 new Â Create, update, and delete users

2.5. Report
11: Create report based on version

Priority normal Status new Version 0.1

Category F_Report Type Functional Requirement

Date Submitted 01-18-05 11:56 Last Update 01-18-05 11:56

Reporter tneple Assigned To

Stakeholders Reporter, Viewer, Administrator

Description
It should be possible for a user to create a report from the requirements based on:
- a date snapshot (the set of requirements at a specific date)
- a release name

Links

10: Report output format

Priority high Status new Version 0.1

Category F_Report Type Functional Requirement

Date Submitted 01-18-05 11:53 Last Update 01-18-05 11:53

Reporter tneple Assigned To

Stakeholders Reporter, Viewer, Administrator

Description It should as a minimum be possible to create reports in HTML format.

Links

2.6. Version Handling
4: Release version

Priority normal Status new Version 0.1

Category F_Version Handling Type Functional Requirement

Date Submitted 01-18-05 11:18 Last Update 01-18-05 11:20

Reporter tneple Assigned To

Stakeholders Reporter, Viewer, Administrator

Description
It should be possible to tag a set or snapshot of requirements as a release version. A release should
be given a name.

Links

3: Changelog

Priority high Status new Version 0.1

Category F_Version Handling Type Functional Requirement

Date Submitted 01-18-05 11:16 Last Update 01-18-05 11:16

Reporter tneple Assigned To

Stakeholders Reporter, Viewer

Description
Each requirement should be "date stamped" when created and updated. This information should be
viewable as a requirement change log.

Links

2: Unique ID

Priority high Status new Version 0.1

Category F_Version Handling Type Functional Requirement

Date Submitted 01-18-05 11:12 Last Update 01-18-05 11:13

Reporter tneple Assigned To

Stakeholders Reporter

Description
Each requirement should have a unique identifier that never changes. The identifier should be
assigned to the requirement automatically

Links

3. Quality Requirements

3.1. Adaptability and Flexibility
30: Easy to add use defined properties to the requirements template

Priority normal Status new Version 0.1

Category Q_Adaptability_Flexibility Type Quality Requirement

Date Submitted 02-11-05 10:33 Last Update 09-07-05 10:22

Reporter MODELWARE Assigned To

Stakeholders

Description Easy to add use defined properties to the requirements template

Scale Time in sec. to add a user-defined property to a requirement

Meter Stopwatch

Goal 30 sec

Past ?

Links related to 0000015 new Custom fields

3.2. Availability
19:Â Uptime

Priority normal Status new Version 0.1

Category Q_Availability Type Quality Requirement

Date Submitted 01-24-05 15:13 Last Update 09-07-05 10:23

Reporter bnordmoen Assigned To

Stakeholders

Description Allow for two hours backup or maintenance a week

Scale Number of hours per week the system is available for requirements work

Meter Stopwatch

Goal > 166 hours

Past ?

Links

3.2.1. Recoverability
20: Recover for database crash

Priority normal Status new Version 0.1

Category Q_Availability_Recoverability Type Quality Requirement

Date
Submitted

01-24-05 15:17 Last Update 09-07-05 10:25

Reporter bnordmoen Assigned To

Stakeholders

Description Ideally, there should be an email sent to the administrator when the database crashes.

Scale Time in hours from problem discovered to system up running from a backup

Meter system log (stopwatch)

Goal < 1 hour

Past

Links

3.3. Capacity
29: Number of users, projects and requirements

Priority normal Status new Version 0.1

Category Q_Capacity Type Quality Requirement

Date Submitted 01-24-05 16:23 Last Update 09-05-05 13:44

Reporter bnordmoen Assigned To

Stakeholders ALL

Description
The minimum capacity of the system when it comes to number of users, projects, and
requirements per project

Scale All availability and usability req. still to be valid with 100 users, 100 project with 100 req. each

Meter

Goal minimum 100 users, 100 projects with 100 requirements each

Past

Links

3.4. Usability

3.4.1. Learnability
24: Time to learn

Priority normal Status new Version 0.1

Category Q_Usability_Learnability Type Quality Requirement

Date
Submitted

01-24-05 15:26 Last Update 09-07-05 10:28

Reporter bnordmoen Assigned To

Stakeholders Reporter, Viewer, Administrator

Description
Time to learn the features of the tool.

Scale Time in hours self study on a test project using the tool itself

Meter Stopwatch

Goal < 1/2 hour for a viewer, < 1 hour for a reporter, < 2 hours for an administrator

Past

Links

3.4.2. User Productivity
25: Login and view summary

Priority normal Status new Version 0.1

Category Q_Usability_User productivity Type Quality Requirement

Date Submitted 01-24-05 15:37 Last Update 09-07-05 10:46

Reporter bnordmoen Assigned To

Stakeholders ALL

Description Login in to system and get the initial requirements summary page displayed

Scale Time in sec from executing the login form to initial summary page is displayed

Meter Stopwatch

Goal < 20 sec.

Past

Links related to 0000005 new Â Create, Update and Delete Requirements

26: View requirementslist sorted

Priority normal Status new Version 0.1

Category Q_Usability_User productivity Type Quality Requirement

Date
Submitted

01-24-05 15:39 Last Update 09-07-05 10:34

Reporter bnordmoen Assigned To

Stakeholders

Description View requirements list sorted on the main fields

Scale Time in sec after logged in to sorted list is displayed

Meter Stopwatch

Goal < 20 sec

Past

Links related to 0000007 new Sorting

28: Create requirement

Priority normal Status new Version 0.1

Category Q_Usability_User productivity Type Quality Requirement

Date Submitted 01-24-05 15:42 Last Update 09-07-05 10:33

Reporter bnordmoen Assigned To

Stakeholders Reporter

Description Time to open the requirements form for a new requirement or an update

Scale Time in sec. to open the requirements form after logged in.

Meter Stopwatch

Goal < 10 sec

Past

Links related to 0000005 new Create, Update and Delete Requirements

APPENDIX C
CLASS DIAGRAMS

Additional class diagrams.

C.1 THE remato.common.session PACKAGE

The figure C.1 illustrates the remato.common.session package.

105

C CLASS DIAGRAMS

ConceptCache

CACHE_TIMEOUT
cachedAttributes
cachedConcepts

isCached
setCachedElement

interface

DomainSessionStateOperations

setCreated
setUpdated
setDeleted
createDbSchema
getAttribute
getCollectionRelationship
setAttribute
addCollectionRelationship
removeCollectionRelationship
createRootConcept
isStale
getConceptRegistry

ConceptRegistry

log
INITIAL_DOMAIN_CONCEPT_VALUE
session
nextDomainConceptId
proxyToConceptId
actualToConceptId
proxyToActual
actualToProxy
conceptIdToProxy

ConceptRegistry
getProxy
getActual
getConceptId
getProxyFromConceptId
createNewProxyConcept
registerPersistedActualConcept
createAndRegister
createRootConcept
getActualBasedOnDbId

rootConcept

interface

ClientEnabledOperations

flush
clearChanges
save
createConcept
getNextBusinessId
getConceptId
getRootConcept
getServiceFactory
isAnyPersistentDirty
isDirty

DomainSessionState

service
registry
cache
dirtyConcepts
reservedUniqueIds

DomainSessionState
createConcept
getRootConcept
createRootConcept
createDbSchema
save
flush
clearChanges
getNextBusinessId
getConceptId
setCreated
setUpdated
setDeleted
getAttribute
getCollectionRelationship
createProxyCollection
createProxyCollectionFromDatabase
setAttribute
addCollectionRelationship
removeCollectionRelationship
createRelationship
isStale
isAnyPersistentDirty
isDirty
getConceptRegistry

serviceFactory

DirtyConcepts

registry
createdAttributeRelationships

DirtyConcepts
addCreatedConcept
addUpdatedConcept
addDeletedConcept
addCreatedCollectionRelationship
addCreatedAttributeRelationship
addDeletedCollectionRelationship
createSaveRequest
save
clearChanges
updateDatabaseIds
updateRequirementUpdatedDates
updateRequirementSubmittedDates
isCreated
isUpdated
isDeleted
isDirty
isRelationshipDirty
containsProxyAndAttribute

createdCollectionRelationships
deletedCollectionRelationships
deletedConcepts
createdConcepts
updatedConcepts

DomainConceptFactory

session

DomainConceptFactory
getRequirementSystem
createProject
createCategory
createRequirement
setRequirementBusinessId
createStakeholder
createPropertyDef
createPropertySet
createPropertyValue
createConcept

Figure C.1: The remato.common.session package

106

107

BIBLIOGRAPHY

[1] Len Bass, Paul Clements, and Rick Kazman. Software architecture in practice.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1998.

[2] Borland. http://www.borland.com/. Software Optimization Tools
Provider.

[3] cglib. http://cglib.sourceforge.net/. Code Generation Library.

[4] CVS. http://www.nongnu.org/cvs/. Concurrent Versions System.

[5] Eclipse. http://www.eclipse.org/. Eclipse is an open source commu-
nity whose projects are focused on providing an extensible development platform
and application frameworks for building software.

[6] European Conference on Model Driven Architecture - Foundations and Appli-
cations. http://www.ecmda-fa.org/2005/. November 7-10th 2005,
Nuremberg, Germany.

[7] Eric Evans. Domain-Driven Design. Addison-Wesley, 2004.

[8] Donald G. Firesmith. Common concepts underlying safety, security, and surviv-
ability engineering. Technical Note CMU/SEI-2003-TN-033, Carnegie Mellon
Software Engineering Institute, 2003.

[9] Sintef sentral i europeisk forskningsprosjekt. http://www.cw.no/index.
cfm/ill_liste/artikkel/id/51643. Seismikkselskapet WesternGeco
Schlumberger bidrar til å finne metoder som hindrer at programkoden i større
it-løsninger forfaller.

[10] Martin Fowler and Kendall Scott. UML distilled (2nd ed.): a brief guide to the
standard object modeling language. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, July 2001.

[11] Tom Gilb. Principles of Software Engineering Management. Addison-Wesley,
1988.

[12] Tom Gilb. Competitive Engineering. Elsevier Butterworth-Heinemann, 2005.

108

http://www.borland.com/
http://cglib.sourceforge.net/
http://www.nongnu.org/cvs/
http://www.eclipse.org/
http://www.ecmda-fa.org/2005/
http://www.cw.no/index.cfm/ill_liste/artikkel/id/51643
http://www.cw.no/index.cfm/ill_liste/artikkel/id/51643

BIBLIOGRAPHY

[13] O. C. Z. Gotel and A. C. W. Finkelstein. An analysis of the requirements trace-
ability problem. In First International Conference on Requirements Engineering
(ICRE), pages 94–101. IEEE Computer Society Press, april 1994.

[14] Hessian. http://www.caucho.com/hessian/. Binary Web Service Pro-
tocol.

[15] Ieee standard glossary of software engineering terminology, 1990. IEEE Std
610.12-1990.

[16] Ieee recommended practice for software requirements specification, ieee std,
1998. Revision of IEEE Std 830-1998.

[17] 2000. ISO 9126: Software Software engineering.

[18] Java Web Start Technology. http://java.sun.com/products/
javawebstart/. Support standalone Java software applications to be de-
ployed with a single click over the network.

[19] C.G. Mikael Johansson. Social and organizational aspects of requirements engi-
neering methods. PhD thesis, 1999. Avhandling (fil. dr.) - Linköpings universitet,
1999.

[20] JUnit. http://www.junit.org/. A regression testing framework.

[21] Philippe Kruchten. The Rational Unified Process: An Introduction, Second Edi-
tion. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2000.

[22] Søren Lauesen. Software Requirements: Styles and Techniques. Addison-Wesley,
2002.

[23] Dean Leffingwell and Don Widrig. Managing Software Requirements. Addison-
Westley, 2000.

[24] P. Loucopoulos and V. Karakostas. System Requirements Engineering. McGraw-
Hill, 1995.

[25] Richard J. Malak and Christiaan J. J. Paredis. Foundations of validating reusable
behavioral models in engineering design problems. In Winter Simulation Confer-
ence, pages 420–428, 2004.

[26] Raimundas Matulevicius. Process Support for Requirements Engineering A Re-
quirements Engineering Tool Evaluation Approach. PhD thesis, NTNU, 2005.
Doctoral theses at NTNU, 2005:142.

[27] J. A. McCall and M.T. M. T. Matsumoto. Quality factors. In Software Quality
Measurement Manual, Vol. II. Rome Air Development Center, 1980.

109

http://www.caucho.com/hessian/
http://java.sun.com/products/javawebstart/
http://java.sun.com/products/javawebstart/
http://www.junit.org/

BIBLIOGRAPHY

[28] Model Driven Development integration (MDDi). http://www.eclipse.
org/mddi/. The MDDi project produces an extensible framework and exem-
plary tools dedicated to integration of modeling tools in Eclipse.

[29] ModelWare. http://www.modelware-ist.org/. Large-scale deploy-
ment of Model Driven Development.

[30] NetBeans. http://www.netbeans.org/.

[31] Bashar Nuseibeh and Steve Easterbrook. Requirements engineering: A roadmap.
In ICSE ’00: Proceedings of the Conference on The Future of Software Engineer-
ing, pages 35–46, New York, NY, USA, 2000. ACM Press.

[32] Oxford Dictionary. The Concise Dictionary Eleventh Edition.

[33] Frauke Paetsch, Armin Eberlein, and Frank Maurer. Requirements engineering
and agile software development. In WETICE ’03: Proceedings of the Twelfth
International Workshop on Enabling Technologies, page 308, Washington, DC,
USA, 2003. IEEE Computer Society.

[34] Francisco A. C. Pinheiro. Formal and informal aspects of requirements tracing.

[35] Francisco A. C. Pinheiro and Joseph A. Goguen. An object-oriented tool for
tracing requirements. IEEE Softw., 13(2):52–64, 1996.

[36] Klaus Pohl. Requirements Engineering: An Overview. Technical Report AIB-
05-1996, RWTH Aachen, 1996.

[37] Norah Power and Tony Moynihan. A theory of requirements documentation sit-
uated in practice. In SIGDOC ’03: Proceedings of the 21st annual international
conference on Documentation, pages 86–92, New York, NY, USA, 2003. ACM
Press.

[38] Suzanne Robertson and James Robertson. Mastering the requirements process.
ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 1999.

[39] I. Sommerville and G. Kotonya. Requirements Engineering. Processes and Tech-
niques. John Wiley and Sons., 1998.

[40] I. Sommerville and P. Sawyer. Requirements Engineering. A Good Practice. John
Wiley and Sons., 1997.

[41] SourceForge.net. http://SourceForge.net. The world’s largest Open
Source software development web site.

[42] TestNG. http://testng.org/doc/. A testing framework.

[43] TeXnicCenter. http://www.toolscenter.org/. IDE for developing
LaTeX-documents.

110

http://www.eclipse.org/mddi/
http://www.eclipse.org/mddi/
http://www.modelware-ist.org/
http://www.netbeans.org/
http://SourceForge.net
http://testng.org/doc/
http://www.toolscenter.org/

BIBLIOGRAPHY

[44] TPTP. http://www.eclipse.org/tptp/. Test and Performance Tools
Platform.

[45] WesternGeco. http://www.westerngeco.com/. A Schlumberger com-
pany.

[46] Wikipedia. www.wikipedia.org. The Free Encyclopedia.

[47] Pamela Zave. Classification of research efforts in requirements engineering.
ACM Comput. Surv., 29(4):315–321, 1997.

[48] Andrea Zisman, George Spanoudakis, Elena Pérez-Miñana, and Paul Krause.
Tracing software requirements artifacts. In Software Engineering Research and
Practice, pages 448–455, 2003.

111

http://www.eclipse.org/tptp/
http://www.westerngeco.com/
www.wikipedia.org

112

GLOSSARY

Notation Description
ATAM Architecture Tradeoff Analysis Method, 82

BTA Borland Together Architect 2006, 10

CA Certificate Authority, 10
CBAM Cost Benefit Analysis Method, 82
COTS Commercial Off-The-Shelf, 3
CRUD Create, Retrieve, Update and Delete functionality,

34

elicit in requirement context; find or draw out the require-
ments from stakeholders and target environment, 1

IDE Integrated Developer Environment, 9

jar Java ARchives, 10

LOC Lines Of Code is the number of lines of code in
a namespace, classifier or method, including com-
ments and white-lines., 57

NF Non Functional (Requirement), 20
NOC Number Of Classes counts the number of classes. ,

57
NOIS Number Of Import Statements counts the number of

imported packages /classes. , 57
NOM Number Of Members counts the number of mem-

bers, i.e. attributes and operations. Inherited mem-
bers can optionally be included in the total., 57

113

BIBLIOGRAPHY

Notation Description
NOO Number Of Operations counts the number of oper-

ations. Inherited operations may be counted option-
ally., 57

PIS Package Interface Size is the number of classes in a
package that are used from outside the package. A
class uses a namespace if it calls methods, accesses
attributes or extends a class declared in that names-
pace. , 57

PS Package Size is the number of classes which are de-
fined in the measured package . Inner classes are
not counted. , 57

quantification identification of measurable, mutually properties of
similar requirements and the elicitation of corre-
sponding values for each requirement, 24

RE requirements engineering, 1
refactor in software development, the term is used for chang-

ing or rewriting existing source code or design, 87
requirement attributes meta-data (definition) and data (value) that de-

scribes a requirement, 3
requirements engineering an activity which aims at discovering, documenting

and maintaining a set of requirements, 13
RMT requirement management tool, 3

SE software engineering, 1
SRS software requirements specification, 20

traceability the ability to relate artifacts which are created dur-
ing the development of a software system (e.g., re-
quirements, design and code artifacts) with each
other, the stakeholders that created them, and/or the
rationale underpinning their exact form, 29

114

115

INDEX

Borland Together Architect, 10

Commercial Off-The-Shelf, 3

Eclipse, 9
eliciting, 2

quantification, 2, 23

RE, see requirements engineering
requirement management tool, 3
requirements engineering, 1, 13

software engineering, 1
software requirements specification, 20
SRS, see software requirements specifica-

tion

TeXnicCenter, 10
traceability, 2, 29

116

	Introduction
	Background
	Motivation
	Problem Definition
	Project Context
	Limitation of Scope
	Report Outline

	Project Process and Method
	Project Progress
	Tools

	I Prestudy
	1 Requirements Engineering
	1.1 Definition
	1.2 Context
	1.3 Approaches

	2 Software Requirements
	2.1 Definition
	2.2 Functional Requirements
	2.3 Non Functional Requirements
	2.4 Software Requirement Specification

	3 Quantification
	3.1 Definition
	3.2 NF Taxonomies
	3.3 Requirement Properties
	3.4 Business Application

	4 Traceability
	4.1 Definition
	4.2 Artifacts
	4.3 Techniques
	4.3.1 Manual Techniques
	4.3.2 Automation Techniques

	4.4 Business Application

	5 Existing Tools
	5.1 Caliber RM
	5.2 Rational RequisitePro
	5.3 DOORS
	5.4 Other Tools
	5.5 Possible Evaluation

	II Contribution
	6 Scenarios
	6.1 Collaboration Opportunities and Accessibility
	6.2 Quantification

	7 Requirements
	7.1 Quantification
	7.2 Simple Traceability
	7.3 Accessibility
	7.4 Collaboration

	8 System Design
	8.1 High-Level Architecture
	8.2 Domain Model

	9 Implementation
	9.1 The remato.common package
	9.1.1 Metrics

	9.2 The remato.client package
	9.2.1 Metrics

	9.3 The remato.server package
	9.3.1 Metrics

	10 ReMaTo Editions
	10.1 Eclipse Plug-in
	10.1.1 Installation
	10.1.2 Login
	10.1.3 ReMaTo Explorer
	10.1.4 Properties Template Editor
	10.1.5 Category
	10.1.6 Requirement
	10.1.7 Table View
	10.1.8 Stakeholder

	10.2 Standalone Client
	10.3 Java Web Start Client

	III Evaluation and Discussion
	11 Discussion
	11.1 ReMaTo Prototypes Evolution
	11.2 Domain Model
	11.3 Client-Server Communication
	11.4 Save Handling and Transactions

	12 Evaluation
	12.1 ReMaTo Development
	12.2 Project Process and Progress

	IV Conclusion and Further Work
	13 Conclusion
	14 The ReMaTo Tool
	15 Domain of Traceability

	Appendices
	A Project Plan
	A.1 Milestones
	A.1.1 The Requirement Tool
	A.1.2 The Report

	B RMT SRS
	C Class diagrams
	C.1 The remato.common.session package

	Bibliography
	Glossary
	Index

