СВЕТОСИЛЬНЫЙ ШИРОКОУГОЛЬНЫЙ ТЕЛЕСКОП АЗТ-33ВМ

© 2009 г. С. А. Денисенко*; С. Ф. Камус*; Ю. Д. Пименов*, канд. техн. наук; В. И. Тергоев**; П. Г. Папушев**, канд. физ.-мат. наук.

* ОАО "ЛОМО", Санкт-Петербург

** Институт Солнечной и Земной физики СО РАН, г. Иркутск

Изложены особенности построения оптических систем широкоугольных двухзеркальных телескопов. Рассматривается оптическая система большой апертуры, основанная на модифицированной схеме Ричи–Кретьена с предфокальным корректором.

Ключевые слова: цифровые микроскопы, анализ изображения, цветопередача.

Коды OCIS: 220.4830, 350.1260.

Поступила в редакцию 28.04.2009.

Введение

В течение последних 10 лет в области оптического телескопостроения достигнуты значительные успехи, позволившие осуществить разработку и практическое использование сверхширокоугольных телескопов умеренного размера [1-4]. Новые результаты в различных разделах астрофизики, включая планетологию, звездную астрофизику, звездную динамику в различных галактических структурах, внегалактическую астрономию, полученные с помощью первого из ряда таких телескопов -2,5-метрового телескопа SDSS [5], убедительно свидетельствуют о появлении нового класса инструментов в современной наблюдательной астрономии. Большую роль широкоугольные телескопы диаметром 1,5-2 м будут играть в области прикладной астрономии - при измерении и каталогизации ИСЗ и космического мусора, поиске и обнаружении сближающихся с Землей космических объектов естественного происхождения. Применение широкоугольного телескопа двухметрового диаметра для решения общей задачи контроля космоса обеспечит обзор неба со скоростью не менее 10 000 кв. градусов в ночь с проницающей силой не хуже 23-24 звездной величины (зв. вел.) по неподвижным объектам и не ниже 20 зв. вел. по движущимся объектам. В методическом плане решаемые задачи аналогичны проводившимся в середине XX века работам по картографированию небесной сферы с помощью телескопов Шмидта и наблюдению ИСЗ с помощью камер

ВАУ и Бейкера-Нана [6]. Эти телескопы и камеры обладали широкими полями. Однако принципиальные ограничения, связанные с использованием линзовых элементов, не позволяют увеличивать диаметр оптических систем и, следовательно, увеличивать проницающую способность и оперативность получения информации.

Новые возможности картографирования небесной сферы, обнаружения подвижных и транзиентных объектов определились на рубеже XXI века и связаны с современными достижениями в области оптического приборостроения, микроэлектроники и вычислительной техники. При этом в качестве базовой технологии во всех известных работах используется процесс изготовления крупногабаритных светосильных асферических зеркал. Оптические системы новых телескопов являются развитием известной оптической системы Ричи-Кретьена, используемой в 80–90 годах XX века при создании телескопов с диаметром от 1 до 4 метров. Они широко применяются в современной астрономии, обеспечивая высокое качество изображения при полях от 5′ до 40′.

Основными технологиями при решении задачи построения широкоугольной оптической системы большого диаметра являются

 технология производства крупногабаритных светосильных асферических зеркал,

– технология сборки большеформатных ПЗСматриц в мозаики с площадью до 500 см².

На "ЛОМО" эти технологии были применены и доведены до практического использования при изготовлении специализированного инфракрасного (ИК) телескопа АЗТ-ЗЗИК [7]. В настоящей работе рассмотрены особенности построения системы нового широкоугольного телескопа диаметром 1,6 м – АЗТ-ЗЗВМ.

Оптическая схема

Оптическая схема телескопа основана на модифицированной схеме Ричи-Кретьена с предфокальным корректором. Требуемые параметры системы – диаметр углового поля до 3° при небольшом центральном экранировании. Размеры аберрационного кружка точечного изображения должны соответствовать размеру пиксела современных ПЗС-приемников. Для описываемой оптической системы линейные размеры фокальной плоскости были ограничены диаметром 300 мм.

Оптическая схема телескопа показана на рис. 1. Она состоит из двухзеркальной системы 1, 2 и двухкомпонентного предфокального корректора 3. Фокальная плоскость f_1 видимого диапазона находится внутри трубы телескопа перед главным зеркалом 1 на расстоянии 0,6 м от него. Благодаря этому удалось заметно снизить диаметр и массу вторичного зеркала и повысить светопропускание системы.

Внутреннее расположение фокальной плоскости не является традиционным в крупных отечественных телескопах из-за наличия громоздкой сменной научной аппаратуры, но широко используется в широкоугольных системах типа камер Шмидта. Большое центральное отверстие в главном зеркале обеспечивает удобное расположение фотоприемной аппаратуры, облегчает проблемы

Рис. 1. Оптическая схема телескопа АЗТ-ЗЗВМ. 1 – главное зеркало, 2 – вторичное зеркало, 3 – предфокальный корректор, 4 – защитное стекло, f_1, f_2 – фокальные плоскости видимого и инфракрасного диапазона соответственно.

балансировки и позволяет существенно уменьшить клиренс вилки телескопа.

Основные характеристики оптической схемы приведены в таблице. Проведенные оценки допустимых разъюстировок рассматриваемой оптической системы показывают, что для сохранения значения функции концентрации энергии на принятом размере пиксела при уменьшении ее значения от расчетного в центре поля зрения в пределах 10% допуски на смещения вторичного зеркала не должны превышать следующих значений:

- наклон не более $\pm 10^{\prime\prime}$,
- поперечное смещение $-\pm 0,1$ мм,
- глубина резкости 0,01 мм.

Столь жесткие требования к расположению основных оптических элементов телескопа создают дополнительные трудности при конструировании трубы телескопа. Поэтому, как и в других современных разработках, достижение требуемых значений соосности и параллельности главных оптических элементов должно быть обеспечено за счет применения активной оптики.

Характеристика	Значение
Диаметр входного зрачка, мм	1600
Фокусное расстояние, мм	5600
Коэффициент центрального экра- нирования по диаметру	0,41
Относительное отверстие	1:3,5
Угловое поле в пространстве предметов	до 3°
Линейное поле в пространстве изображений, мм	до 300
Спектральный диапазон, мкм	0,4–1,1 (0,25–3,5) _{max}
Интегральный коэффициент про- пускания	0,63
Максимальная дисторсия, %	1,2
Концентрация энергии (полихроматическая) в кружке рассеяния, %	
– в центре поля (диаметр кружка 0,4'')	81
– на краю поля (диаметр кружка 0,8′′)	66
Общая длина, мм	2500
Проницающая способность, зв. вел.	22 в области "V"

Основные характеристики оптической схемы

Для исправления динамических ошибок волнового фронта предназначается активная оптика. Ошибки возникают из-за изменения расположения зеркал в процессе эксплуатации вследствие перепадов температуры, нарушения соосности и параллельности элементов оптической системы телескопа при гнутии трубы телескопа. Этот тип ошибок имеет низкочастотный спектр - от 0,01 Гц и ниже. Задачей активной оптики, представленной системой контроля и обеспечения качества изображения в телескопе, является измерение смещений вторичного зеркала относительно главного по пяти степеням свободы и отработка измеренных смещений с помощью пяти приводов по командам системы управления. Датчики совместно с приводами перемещения и системой управления образуют единую систему, которую можно назвать системой контроля и обеспечения качества изображения. Система должна включать следующие подсистемы управления вторичным зеркалом:

– систему контроля смещений (СКС), которая
оценивает его смещения по двум осям;

 – систему контроля наклонов (СКН) для оценки углов разворотов зеркала относительно двух осей,

 – систему контроля фокусировки для определения смещения вдоль продольной оси.

Кроме систем компенсации собственных ошибок, предусматривается возможность использования ярких звезд поля для определения качества изображений и снижения динамических ошибок с частотой до 10 Гц, вызванных оптической нестабильностью земной атмосферы. Адаптивная оптическая система будет построена на базе датчика Шака–Гартмана и биморфного плоского зеркала.

Конструкция

Общим требованием к разрабатываемому телескопу является обеспечение высокой скорости обзора неба при предельной проницающей способности. Это достигается изготовлением светосильной оптической системы и сборкой большеформатных мозаик ПЗС-матриц в фотоприемнике.

В разрабатываемом телескопе A3T-33BM используется сплошное облегченное зеркало с диаметром заготовки около 1,7 м и массой 530 кг. Конструкция зеркала и его система разгрузки отработаны в процессе изготовления телескопа A3T-33ИК. С оправой главного зеркала жестко связаны узел двухлинзового предфокального корректора и блок фотоприемной аппаратуры. Все эти узлы являются жесткой конструкцией, а функции компенсации ошибок коллимации и параллельности могут быть осуществлены путем наклонов и перемещений вторичного зеркала по пяти степеням свободы.

Вторичное зеркало закрепляется в оправе в виде отдельной сборки и устанавливается на автоматизированном приводе, обеспечивающем линейные перемещения вторичного зеркала вдоль трех взаимно перпендикулярных осей и разворот его вокруг двух из них. В настоящее время рассматривается возможность применить в качестве автоматизированного привода гексапод. С вторичным зеркалом жестко связаны контрольные отражатели систем СКС и СКН: плоское автоколлимационное зеркало и триппель-призма. При поперечных смещениях вторичного зеркала триппель-призма также смещается и при этом

Рис. 2. Конструкция телескопа АЗТ-33ВМ. 1 – прецизионный червячный привод часовой оси, 2 – прецизионный червячный привод оси склонения, 3 – вилка, 4 – средник, 5 – цапфы монтировки, 6 – главное зеркало в оправе, 7 – линзовый корректор, 8 – металлоконструкция трубы, 9 – ось склонения.

смещает на удвоенную величину сфокусированное на ней изображение точечного тест-объекта, которое формируется специальным автоколлиматором системы контроля смещений. Смещение изображения измеряется фотоприемным устройством, встроенным в автоколлиматор.

При наклонах вторичного зеркала наклоняется также закрепленное на нем плоское автоколлимационное зеркало. Величина наклонов регистрируется фотоприемным устройством, связанным с отдельным автоколлиматором. Благодаря большому полю имеется возможность использования ярких звезд для определения дрожания и расфокусировки изображений. Обработанные значения передаются на систему управления вторичным зеркалом.

В конструкции телескопа АЗТ-33ВМ (рис. 2) используется экваториальная вилочная монтировка, состоящая из корпуса часовой оси 2, вилки 3 и прецизионных червячных приводов по часовой оси 1 и оси склонения 9, использующих высокоточный цифровой привод на базе высокомоментных шаговых приводов с микропроцессорным управлением и цифровых датчиков угловых перемещений телескопа. Металлоконструкция трубы открытого типа выполнена как половина схемы Серрюрьера. Средник 4 является одним из главных узлов телескопа. С одной стороны, это базовый узел для сборки и центрировки металлоконструкции трубы 8, а с другой – средник вместе с цапфами монтировки 5 образует в телескопе ось склонений. Средник в составе металлоконструкции трубы предназначен для установки главного зеркала в оправе 6, линзового корректора 7 и фотоприемной аппаратуры.

Предложенная конструкция трубы обеспечивает жесткое крепление всех базовых элементов оптической системы и оправдывает выбор вторичного зеркала в качестве активного элемента. Предлагаемый выбор обоснован модельными расчетами при эскизном конструировании, а выбор монтировки, приводов и системы управления подтвержден в процессе проведения заводских испытаний предшествующей конструкции.

Заключение

Широкоугольные светосильные оптические системы на основе модифицированных систем Ричи-Кретьена умеренного диаметра (до 1,5 м) являются новыми, перспективными средствами для решения широкого круга фундаментальных и прикладных задач современной астрономии. Основными областями применения разрабатываемого широкоугольного телескопа являются

 проведение высокоскоростных обзоров экваториальной области неба для обнаружения и каталогизации высокоапогейных космических объектов,

 поиск, обнаружение и измерение характеристик опасных космических объектов (астероидов и комет), сближающихся с Землей на предельных дальностях;

 проведение цифровых обзоров неба и создание каталогов слабых фотометрических стандартов.

Разработанный ОАО "ЛОМО" телескоп АЗТ-ЗЗВМ полностью удовлетворяет требованиям, предъявляемым к современным широкоугольным телескопам, и может служить базовым инструментом для исследований по широкому кругу проблем современной фундаментальной и прикладной астрономии.

ЛИТЕРАТУРА

- Борисов Г., Теребиж В. Модифицированная система Рихтера-Слефогта // Известия КРАО. 2001. Т. 97. С. 101–113.
- Viotti R., Badiai M., Boattini A. Wide-field observation at Dome Concordia // Mem. S.A. It. Supplement. 2003. V. 2. P. 177.
- Денисенко С.А., Камус С.Ф., Папушев П.Г., Пименов Ю.Д., Тергоев В.И., Чупраков С.А. Широкоугольные светосильные астрономические телескопы умеренных размеров // Труды 2-го съезда астрономического общества России. Санкт-Петербург. 2002. С. 104.
- 4. *Kaizer N.J.* Pan-STARRS: a wide-field optical survey telescope array // Proc. SPIE. 2004. V. 5489. P. 11–22.
- Waddel P., Mannery E., Gunn et al. The Sloan Digital Sky Survey 2/5 meter telescope // Optics. 1999. Sloan Digital Sky Survey Telescope Technical Note 19980416. P. 56–58.
- 6. *Михельсон Н.Н.* Оптические телескопы. М.: Наука, 1976. 512 с.
- Камус С.Ф., Тергоев В.И., Папушев П.Г., Дружинин С.А., Караваев Ю.С., Палачев Ю.Н., Денисенко С.А., Липин Н.А Широкодиапазонный астрономический телескоп // Оптический журнал. 2002. Т. 69. № 9. С. 84–87.