
CS 161 Lecture 16 Min Cut and Karger’s Algorithm
Scribes: Peng Hui How (2015), Virginia Date: May 24, 2016

1 Minimum Cut Problem

Today, we introduce the minimum cut problem. This problem has many motivations, one of which comes
from image segmentation. Imagine that we have an image made up of pixels – we want to segregate the
image into two dissimilar portions. If we think of the pixels as nodes in the graph and add in edges between
similar pixels, the min cut will correspond to a partition of the pixels where the two parts are most dissimilar.

Let us start with the definition of a cut. A cut S of a graph G = (V,E) is a proper subset of V (S ⊂ V ,
S 6= ∅, S 6= V). The size of a cut w.r.t. S is the number of edges between S and the rest of the graph
(V \ S). In the example below, where S is the set of black nodes and V \ S is the set of white nodes, the
size of the cut is 2.

Figure 1: Cut size = 2 (Image Source: Wikipedia)

The minimum cut problem (abbreviated as “min cut”), is defined as followed:
Input: Undirected graph G = (V,E)
Output: A minimum cut S– that is a partition of the nodes in G into S and V \ S that minimizes the
number of edges running across the partition.
Intuitively, we want to “destroy” the smallest number of edges possible.

To find the min-cut, a trivial solution is to enumerate over all O(2n) subsets. However, this is way too
time consuming. Thus we present a more efficient algorithm, as follows.

2 Karger’s Algorithm

A note on randomized algorithms:
Karger’s Algorithm is a randomized algorithm. It is different from the randomized algorithms that we have
seen before. The randomized algorithms we’ve seen so far (such as Quicksort and the HW question to find
colinear points) have good runtimes in expectation, but may occasionally run significantly longer than this
(and may not even be guaranteed to terminate!). Nevertheless, these algorithms provide a guarantee that
the solution produced upon termination is always correct. Algorithms with the properties above are known
as “Las Vegas” algorithms.

This is not the case for Karger’s Algorithm. Karger’s Algorithm is a randomized algorithm whose runtime
is deterministic; that is, on every run, the time to execute will be bounded by a fixed time function in the
size of the input (i.e. a worst-case runtime bound), but the algorithm may return a wrong answer with a
small probability. Such an algorithm is called a “Monte Carlo” algorithm.

1

2.1 Finding a Min-Cut

Like some of the other graph algorithms we’ve seen before, Karger’s Algorithm will use the notions of
“supernodes” and “superedges”. A supernode is a group of nodes. A superedge connecting two supernodes
X and Y consists of all edges between a pair of nodes, one from X and one from Y . Initially, all nodes will
start as their own supernode and every superedge just contains a single edge. The intuition behind Karger’s
Algorithm is to pick any edge at random (among all edges contained in superedges), merge its endpoints,
and repeat the process until there are only two supernodes left. These supernodes define the cut.

Algorithm 1: IntuitiveKarger(G)

while there are more than 2 supernodes: do
Pick an edge (u, v) ∈ E(G) uniformly at random;
Merge u and v;

Output edges between remaining two supernodes

The goal of this lecture will be to show that this simple algorithm can be made to work with good
probability. In what follows, we will use the following notation: We will refer to the nodes within a supernode
u as V (u), and the set of edges running between two supernodes u, v as Euv (this is the superedge between
u and v).

Here is how we initialize the algorithm:

Algorithm 2: Initialize(G)

Γ← ∅; // the set of supernodes
F ← ∅; // the set of sets of edges
foreach v ∈ V do

v̄ ← new supernode;
V (v̄)← {v};
Γ← Γ ∪ {v̄};

foreach (u, v) ∈ E do
Euv ← {(u, v)};
F ← F ∪ {(u, v)};

and here is how we merge two supernodes:

Algorithm 3: Merge(a, b,Γ) //Γ is the set of supernodes with a, b ∈ P

x← new supernode ;
V (x)← V (a) ∪ V (b); //merge the vertices of a and b
foreach d ∈ Γ\{a, b} // O(n) iterations do

Exd ← Ead ∪ Ebd; //O(1) operation using linked lists

Γ← (Γ\{a, b}) ∪ {x};

Now, we can present the Karger’s algorithm in full detail.

Algorithm 4: Karger(G)

Initialize(G); //Γ is the set of supernodes, F is the set of superedges
while |Γ| > 2 do

(u, v)← uniform random edge from F ;
Merge(ū, v̄,Γ); //u ∈ ū, v ∈ v̄
F ← F\Eūv̄;

Return one of the supernodes in Γ and |Exy|; //Γ = {x, y}

2

The following example illustrates one possible execution of Karger’s Algorithm.

a

b

c

d

e a b

c

d

e

a b c d ee
a

b

c

d

The example above happens to give the correct minimum cut, but only because we carefully picked the
edges to contract. There are many other choices of edges to contract, so it’s possible we could have ended
with a cut with > 2 edges.

The runtime of the algorithm is O(n2) since each merge operation takes O(n) time (going through at
most O(n) edges and vertices), and there are n− 2 merges until there are 2 supernodes left.

3 Analysis

We prove that we obtain the correct answer with sufficiently high probability under uniformly random
selection of edges.

Claim 1. The probability that Karger’s algorithm returns a min-cut is at least 1

(n
2)

.

Proof. Fix a particular min-cut S∗. If Karger’s algorithm picks any edge across this cut to do a merge on,
then S∗ will not be output. However, if all edges that the algorithm selects are not across the cut, then S∗

will be output.

P (Karger outputs S∗)

=P (1st edge not across S∗) · P (2nd edge not across S∗ | 1st edge not across S∗)

· · · · · P ((n− 2)thedge not across S∗ | 1st, 2nd, . . . , (n− 3)th edges all not across S∗)

We say that an edge is good (w.r.t. S∗) if it is not across the cut S ∗ −(V \S∗).
Note that

P (1st edge is good) = 1− K

m
≥ 1− K

n·K
2

≤ n− 2

n

where K is the number of edges across the min-cut S∗, and m is the total number of edges in the graph.
Note that if the min-cut size is K, then m ≥ n·K

2 . This is because any node v in the graph is a cut of size
deg(v), and so for all v, deg(v) ≥ K. Thus, m =

∑
v deg(v)/2 ≥ nK/2.

We now show that in the multigraph, after the first j − 1 edges are merged, if none of these edges are
across S∗, then the min-cut size is still K: Call the multigraph after the first j − 1 edges are merged, Gj .
Every cut in Gj is a valid cut in G, so the min cut of Gj has value at least that of S∗. If the first j− 1 edges
are not across S∗, then for any supernode x in Gj , the edges in V (x) must be on the same side of the min
cut S∗ (either all in S∗ or all in V \S∗). Because of this, S∗ is a valid cut in Gj as well, and the size of the
min cut of Gj is the same as the min cut size of G.

Consider j ≥ 1, then define Pj as the probability that the jth edge is good, given that the first j − 1

3

edges are also good:

Pj = P (jth edge good | 1st, 2nd, . . . , (j − 1)th edges all good)

= 1− K

number of edges in multigraph

≥ 1− K
K
2 · number of supernodes

The first equality is a definition. The second equality comes from the fact that the first j − 1 edges are
good, so that the min cut is still a valid cut in Gj , so that the probability that the jth edge is good is the
probability that none of the K min cut edges are picked. The third equality holds because (just as in our
earlier argument) every supernode represents a cut, so that every supernode must have degree ≥ K, and
hence the number of edges in the multigraph is at least the number of supernodes ·K/2.

Every call to the Merge procedure decreases the number of supernodes by 1, thus the number of super
nodes after j − 1 merges is n− j + 1.
Then, for all j ≥ 1,

Pj ≥ 1− K
K
2 · (n− j + 1)

=
n− j + 1− 2

n− j + 1

=
n− j − 1

n− j + 1

Thus, we’ve proved that Pj ≥ n−j−1
n−j+1 . But what we really care about is P1 · P2 · · · · · Pn−2.

Using the expression of Pj calculated, we have

P (Karger outputs S∗) = P1 · P2 · · · · · Pn−2 ≥
n− 2

n
· n− 3

n− 1
· n− 4

n− 2
· · · · · 3

5
· 2

4
· 1

3
=

2

n(n− 1)
=

1(
n
2

) .

We obtained the quantity above since all numerators except for 2 cancel and all denominators except for
n(n− 1) cancel. �

A success probability of 1/Θ(n2) might seem very small. However, we’ll see that we can boost this prob-
ability to an arbitrarily large probability, by performing repeated independent trials of Karger’s algorithm.

Let C > 0 be an arbitrarily large constant.

Algorithm 5: AmplifiedKarger(G) //C is a constant

Run C ·
(
n
2

)
· lnn independent Karger procedures, keep track of min cut so far, output the best one.

The runtime of AmplifiedKarger is clearly O(n4 log n) since we run O(n2 log n) trials of an O(n2) time
algorithm.

Claim 2.

P (AmplifiedKarger is correct) ≥ 1− 1

nC

where C is the constant used in the amplification algorithm.

Remark 1 (Useful fact). For x > 0,
(
1− 1

x

)x ≤ 1
e .

4

Proof.

P (AmplifiedKarger is incorrect) = P (Karger is incorrect for all the C ·
(
n
2

)
· lnn independent runs)

= (P (Karger is incorrect))
C·

n
2

·lnn

≤

1− 1(
n
2

)


C·

n
2

·lnn

=


1− 1(

n
2

)


n
2



C lnn

≤
(

1

e

)C lnn

=
1

nC
.

�

Remark 2 (General Way Of Boosting The Success Rate of Monte Carlo Algorithms). If an algorithm is
correct with probability (w.p.) P , we can run it c · (1/P) lnn times and output the best result found, so that
the amplified algorithm is correct w.p. 1− 1

nc .

4 Karger-Stein Algorithm

While we may be happy with our polynomial time algorithm for finding the min cut as compared to the
trivial exponential algorithm, Ω(n4) is slower than we’d like. In particular, this algortihm would not be
practical on large networks encountered in many of today’s applications. Can we do better?

In fact, there is a better way to run Karger’s Algorithm than running n2 independent trials. This
algorithm is known as the Karger-Stein algorithm, and detailed in this paper.

Here is the pseudocode of the Karger-Stein Algorithm:

Algorithm 6: KargerStein(G)

n← |G| ;

if n < 2
√

2 then
Karger(G) ;

else
Run Karger’s procedure twice, each time until n√

2
supernodes remain; get two multigraphs G1, G2 ;

(S1, e1)← KargerStein(G1) ;
(S2, e2)← KargerStein(G2) ;
Output min{(S1, e1), (S2, e2)}

While we don’t include the fairly technical proof, the following bound can be shown for the probability

5

http://www.columbia.edu/~cs2035/courses/ieor6614.S09/Contraction.pdf

of success of Karger-Stein.

P (Karger-Stein is correct) ≥ 1

Θ(log n)
.

So, by our remark above, if we run O(log2 n) trials, the new amplified algorithm will be correct w.p.

1− 1

poly(n)

Now we are experts in divide-and-conquer. We thus perform the runtime analysis:

T (n) = O(n2) + 2T

(
n√
2

)
,

by the Master’s Theorem,
T (n) = Θ(n2 log n).

Thus the final runtime of the AmplifiedKargerStein algorithm is

Θ(n2 log n) ·O(log2 n) = O(n2 log3 n).

6

	Minimum Cut Problem
	Karger's Algorithm
	Finding a Min-Cut

	Analysis
	Karger-Stein Algorithm

