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ABSTRACT

This paper presents an unsupervised algorithm for nonlinear unmix-
ing of hyperspectral images. The proposed model assumes that the
pixel reflectances result from a nonlinear function of the abundance
vectors associated with the pure spectral components. We assume
that the spectral signatures of the pure components and the nonlin-
ear function are unknown. The first step of the proposed method
estimates the abundance vectors for all the image pixels using a
Gaussian process latent variable model. The endmembers are sub-
sequently estimated using Gaussian process regression. The perfor-
mance of the unmixing strategy is compared with state-of-the-art un-
mixing strategies on synthetic data. One of the interesting properties
of the proposed strategy is its robustness to the absence of pure pixels
in the image.

Index Terms— Hyperspectral images, nonlinear spectral un-
mixing, unsupervised unmixing, Gaussian process regression,
Bayesian estimation.

1. INTRODUCTION

Spectral unmixing (SU) consists of identifying the macroscopic ma-
terials present in an hyperspectral image and quantifying the pro-
portions of these materials in the image pixels. Many SU strategies
assume that pixel reflectances are linear mixtures of pure component
spectra [1]. The resulting linear mixing model (LMM) has been
widely adopted in the literature and has provided some interesting
results. However, as discussed in [1], the LMM can be inappropri-
ate for some hyperspectral images. Nonlinear mixing models pro-
vide an interesting alternative to overcome the inherent limitations
of the LMM. For instance, the presence of relief can induce multi-
ple scattering effects between the different materials present in the
image. These nonlinear scattering effects typically occur in vegeta-
tion areas [2] and urban scenes. Bilinear models have been studied
in [2–5] for modeling these multiple scattering effects. Conversely,
the bidirectional reflectance-based model of [6] focusses on hyper-
spectral images including intimate mixtures. Other more flexible un-
mixing techniques have been also proposed to handle wider classes
of nonlinearities, including radial basis function networks [7] post-
nonlinear mixing models [8] and kernel-based models [9].

Most existing unmixing strategies can be decomposed into two
steps referred to as endmember extraction and abundance estima-
tion are performed consecutively. In the last decade, many linear
endmember extraction algorithms (EEAs) have been developed to
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identify the pure spectral components contained in a hyperspectral
image. However, these EEAs can be inappropriate when endmem-
bers are nonlinearly mixed. More recently, an EEA was proposed in
[10] to extract endmembers from a set of nonlinearly mixed pixels,
based on the approximation of geodesic distances defined in mani-
folds. Similarly, our approach assumes that the data lie on a (pos-
sibly nonlinear) manifold that is parameterized by a kernel. The
proposed strategy can be divided into two steps: 1) estimating the
abundances using a posterior distribution obtained by marginalizing
the endmembers, 2) recovering the endmembers using the predic-
tion capacity of Gaussian processes (GPs). This approach breaks
from the usual paradigm of spectral unmixing. More precisely, this
paper considers a kernel-based approach for nonlinear SU based on
a nonlinear dimensionality reduction using a Gaussian process la-
tent variable model (GPLVM). A particular form of kernel is used to
ensure the unmixing strategy is accurate for linear and bilinear mix-
ing models. The algorithm proposed herein is “unsupervised” in the
sense that the endmembers contained in the image and the mixing
model are not known. Only the number of endmembers is assumed
to be known. As a consequence, the parameters to be estimated are
the kernel parameters, the endmember spectra and the abundances
for all image pixels.

The paper is organized as follows. Section 2 presents the nonlin-
ear mixing model considered in this paper for hyperspectral image
unmixing. Section 3 introduces the GPLVM used for latent variable
estimation. Section 4 studies the endmember estimation procedure
using GP regression. Some simulation results conducted on syn-
thetic data are shown and discussed in Section 5. Finally, conclu-
sions are drawn in Section 6.

2. NONLINEAR MIXING MODEL
Consider a hyperspectral image of N pixels, composed of R end-
members and observed in L spectral bands. For convenience, the
data are assumed to have been previously centered, i.e., the sample
mean of the N original pixels has been subtracted from each ob-
served pixel. The L-spectrum y(n) = [y1(n), . . . , yL(n)]T of the
nth mixed pixel (n = 1, . . . , N ) is assumed to be a transformation of
its corresponding abundance vector a(n) = [a1(n), . . . , aR(n)]T

as follows
y(n) = g [a(n)] + e(n), n = 1, . . . , N

= W 0ψ [a(n)] + e(n), n = 1, . . . , N (1)

where g (·) = W 0ψ [·] is an unknown nonlinear function, where
W 0 is an L × D matrix and the dimension D is the dimension
of the subspace spanned by the transformed abundance vectors
ψ [a(n)] , n = 1, . . . , N . The noise vector e(n) is an independent,
identically distributed (i.i.d.) white Gaussian noise sequence with
variance σ2, i.e., e(n) ∼ N

(
e(n)|0L, σ2IL

)
, n = 1, . . . , N .



Of course, the performance of the unmixing strategy relies on the
choice of the nonlinear function ψ. In this paper, we will use the
following nonlinearity

ψ : RR → RD

a 7→ ψ (a) = [a1, . . . , aR, a1a2 . . . , aR−1aR]T (2)

with D = R(R + 1)/2. The primary motivation for consider-
ing this particular kind of nonlinearity is the fact that the resulting
mixing model is a bilinear model with respect to each abundance
ar, r = 1, . . . , R (see [11] for details). Due to physical constraints,
the abundance vector a(n) = [a1(n), . . . , aR(n)]T satisfies the fol-
lowing positivity and sum-to-one constraints

R∑
r=1

ar(n) = 1, ar(n) ≥ 0, ∀r ∈ {1, . . . , R} . (3)

Since the nonlinearity ψ is fixed, the problem of unsupervised spec-
tral unmixing is to determine the L × D spectrum matrix W 0, the
N × R abundance matrix A = [a(1), . . . ,a(N)]T satisfying (1)
under the constraints (3) and the noise variance σ2. Unfortunately,
it can be shown that the solution of this constrained problem is not
unique. More precisely, ina similar fashion to the linear case, solving
this unsupervised unmixing problem does not ensure the estimated
abundances occupy the largest volume in the simplex defined by (3).
To tackle this problem, we first relax the positivity constraints for the
elements of the matrix A and to consider only the sum-to-one con-
straint. For ease of understanding, we introduce latent variable vec-
tors x(n) = [x1(n), . . . , xR(n)]T satisfying the sum-to-one con-
straint R∑

r=1

xr(n) = 1, n = 1, . . . , N. (4)

The positivity constraint will be handled subsequently by a scaling
procedure discussed in the next section. The next section presents
the Bayesian model for abundance estimation using GPLVMs.

3. BAYESIAN MODEL
GPLVMs [12] are powerful tools for probabilistic nonlinear dimen-
sionality reduction that rewrite the nonlinear model (1) as a nonlinear
mapping from a latent space to the observation space as follows

y(n) = Wψ [x(n)] + e(n)

= PUTψ [x(n)] + e(n), n = 1, . . . , N (5)

where ψ is defined in (2), P = [p1, . . . ,pL]T is an L ×D matrix
with p` = [p`,1, . . . , p`,D]T , U a D ×D matrix and W = PUT .
This factorization ofW will allow the marginalization of P (as will
be shown in the next section) that is easier than the marginalization
of W (see [11] for details). Note that from (1) and (5) the columns
of P span the same subspace as the columns ofW 0. Note also that
when W 0 is full rank, it can be shown that the latent variables are
necessarily linear combinations of the abundance vectors of interest.
Fig. 1 illustrates the mapping from the abundance vectors to the
observations that will be used in this paper. For brevity, the D × 1
vectors ψ [x(n)] will be denoted as ψx(n) in the sequel.

Assuming independence between the observations, the statisti-
cal properties of the noise lead to the following likelihood of the
N×L observation matrix Y = [y(1), . . . ,y(N)]T = [y1, . . . ,yL]

Y|P ,U ,X, σ2 ∼
L∏
`=1

N
(
y`|Cp`, σ

2IL
)

(6)

where Ψx = [ψx(1), . . . ,ψx(N)]T and C = ΨxU are N × D
matrices.

Fig. 1. Nonlinear mapping from the abundances vectors to the ob-
served mixed pixels.

3.1. Parameter priors

GPLVMs construct a smooth mapping from the latent space to the
observation space that preserves dissimilarities [13]. However, pre-
serving local distances is also interesting: spectrally close pixels are
expected to have similar abundance vectors and thus similar latent
variables. In this paper, we use locally linear embedding (LLE) to
assign an appropriate prior to X . First, the K nearest neighbors
{y(j)}j∈νi of each observation vector y(i) are computed using the
Euclidean distance (νi is the set of integers j such that y(j) is a
neighbor of y(i)). The weight matrix ΛLLE = [λi,j ] of size N ×N
providing the best reconstruction of y(i) from its neighbors is then
estimated as

ΛLLE = arg min
Λ

N∑
i=1

∥∥∥∥∥y(i)−
∑
j∈νi

λi,jy(j)

∥∥∥∥∥
2

. (7)

The locally linear patches obtained by the LLE can then be used to
set the following prior for the latent variable matrix

f(X|ΛLLE, γ) ∝ exp

[
−γ

2

N∑
i=1

∥∥∥∥∥x(i)−
∑
j∈νi

λi,jx(j)

∥∥∥∥∥
2]

×
N∏
n=1

1D [x(n)] (8)

where γ is a fixed hyperparameter to be adjusted and 1D(·) is the
indicator function over the set D defined by the constraints (4). The
main motivation for using an LLE-based prior for X is that spectrally
close pixels are expected to be described by close latent variables.

In this paper, we propose to assign a prior to P using the
standard principal component analysis (PCA) (note again that the
data have been centered). Assuming prior independence between
p1, . . . ,pL, the following prior is considered for the matrix P

f
(
P |P , s2

)
=

(
1

2πs2

)NL
2

L∏
`=1

exp

[
− 1

2s2
‖p` − p̄`‖

2

]
(9)

where P = [p̄1, . . . , p̄L]T is an L × D projection matrix contain-
ing the first D eigenvectors of the sample covariance matrix of the
observations (provided by PCA) and s2 is a dispersion parameter
that controls the informative or non-informative nature of the prior.
The main advantage of using the conjugate prior (9) is the fact that
it allows P to be marginalized, as will be shown in the next sec-
tion. Non-informative priors are assigned to the noise variance σ2,
the matrix U and the hyperparameter s2, i.e,

f(σ2) ∝ 1(0,δ
σ2

)(σ
2)

f(ui,j) ∝ 1(−δU ,δU )(ui,j)
f(s2) ∝ 1(0,δ

s2
)(s

2)
(10)

where the intervals (0, δσ2), (0, δs2) and (−δU , δU ) cover the pos-
sible values of the parameters σ2, s2 and U .



3.2. Marginalized posterior distribution

Assuming prior independence between P , X , U , s2 and σ2, the
marginalized posterior distribution of θ = (X,U , s2, σ2) can be
expressed as

f
(
θ|Y,ΛLLE,P , γ

)
∝ f(Y|θ,P )f(θ|ΛLLE, γ) (11)

where f(θ|ΛLLE, γ) = f(X|ΛLLE, γ)f(U)f(s2)f(σ2) and

f(Y|θ,P ) =

∫
f(Y|P ,θ)f

(
P |P , s2

)
dP

∝ |Σ|−
L
2 exp

[
−1

2
tr(Σ−1ȲȲT )

]
(12)

where Σ = s2CCT + σ2IN , ȳ` = y` −Cp̄` is an N × 1 vector,
Ȳ = [ȳ1, . . . , ȳL] = Y − CP T

is an N × L matrix and tr(·)
denotes the matrix trace. In this paper, we use a scaled conjugate
gradient (SCG) method to maximize the marginalized log-posterior.
The partial derivatives of the log-posterior w.r.t. θ can be found in
[11]. The resulting latent variable estimation procedure is referred to
as locally linear GPLVM (LL-GPLVM). The MAP estimator of P ,
conditioned upon θ̂ = (X̂, Û , ŝ2, σ̂2) (the maximum a posteriori
(MAP) estimator of θ obtained by maximizing (11)), is given by

P̂ =
(
YT Ĉ − P

)
Ŝ (13)

where Ŝ
−1

= σ̂−2Ĉ
T
Ĉ + ŝ−2ID , Ψ̂x = [ψx̂(1), . . . ,ψx̂(N)]T ,

Ĉ = Ψ̂xÛ and X̂ = [x̂(1), . . . , x̂(N)]T (see [11] for details).

3.3. Scaling step

As mentioned above, the maximization of (11) provides a set of la-
tent variables that represent the data but can differ from the abun-
dance vectors of interest. However, due to the linear relation be-
tween the latent variables and the abundances, the abundance matrix
(satisfying (3)) can be retrieved using a scaling procedure. More
precisely, this procedure consists of estimating the R × R matrix
V R and A such that X̂ ≈ AV T

R subject to the constraints (3) for
A. This scaling procedure can be achieved using the Bayesian al-
gorithm presented in [14] for unsupervised SU assuming the LMM
(see [11] for details). Once the final abundance matrix Â and the
matrix V̂ R have been estimated, we propose an endmember extrac-
tion procedure based on GP regression. This method is discussed in
the next section.

4. GAUSSIAN PROCESS REGRESSION
This section studies a new endmember estimation strategy based
on GP regression for nonlinear mixtures. This strategy can be used
even when the scene does not contain pure pixels. It assumes that all
the image abundances have been estimated using the algorithm de-
scribed in Section 3. Consider the set of pixels {y(n)}n=1,...,N and
the corresponding estimated abundance vectors {â(n)}n=1,...,N .
GP regression first allows the nonlinear mapping g(·) in (1) to
be estimated. The estimated mapping is denoted as ĝ(·). Then,
it is possible to use the prediction capacity of GPs to predict the
spectrum z∗ = [z∗1 , . . . , z

∗
L]T = ĝ(a∗) corresponding to any new

abundance vector a∗. In particular, the predicted spectra associated
with pure pixels, i.e., the endmembers, correspond to abundance
vectors that are the vertices of the simplex defined by (3). The
prediction property of GPs leads to

z∗` |y` ∼ N
(
z∗` |µ`, s2l

)
, ` = 1, . . . , L (14)

with

µ` = ψ∗Tx Up̄` + κ(a∗)T (K + σ2IN )−1(y` −ΨxUp̂`)
s2l = σ2

a∗ − κ(a∗)T (K + σ2IN )−1κ(a∗)

K = s2ΨxUU
TΨT

x , σ2
a∗ = s2ψ∗Tx UU

Tψ∗x, ψ∗x = ψ [V Ra
∗]

and κ(a∗) = s2ψ∗Tx UU
TΨx. Since the posterior distribution (14)

is Gaussian, the MAP and MMSE estimators of z∗ are equal to the
posterior mean µ = (µ1, ..., µL)T . In order to estimate the rth
endmember, we propose to compute the vector µ associated with
the abundance vector a∗ = [0Tr−1, 1,0

T
R−r]

T . The next section
presents some simulation results obtained for synthetic data.

5. SIMULATIONS ON SYNTHETIC DATA
The performance of the proposed GPLVM is first evaluated on three
synthetic images of N = 2500 pixels. The R = 3 endmembers
contained in these images have been extracted from the spectral li-
braries provided with the ENVI software [15] (i.e., green grass, olive
green paint and galvanized steel metal). Additional simulations con-
ducted with different endmembers are available in [11]. The first
image I1 has been generated according to the LMM. The second
image I2 is distributed according to the bilinear mixing model in-
troduced in [2], referred to as the “Fan model” (FM). The third
image I3 has been generated according to the generalized bilinear
model (GBM) studied in [5] with the nonlinearity parameters set to
γ1,2 = 0.9, γ1,3 = 0.5, γ2,3 = 0.3 The abundance vectors an, n =
1, . . . , N have been drawn from a uniform distribution in the set{
a
∣∣∑R

r=1 ar = 1, 0.9 ≥ ar(n) ≥ 0,∀r ∈ {1, . . . , R}
}

to reflect
the absence of pure pixels in the images. The noise variance has
been fixed to σ2 = 10−4, which corresponds to a signal-to-noise ra-
tio SNR ≈ 30dB related to the worst case for current spectrometers.
The hyperparameter γ of the latent variable prior (8) has been fixed
to γ = 103 and the number of neighbors for the LLE is K = R for
all the results presented in this paper. This choice for K is mainly
motivated by the fact that only R neighbors are needed to perfectly
reconstruct a pixel under the noise-free LMM with R endmembers.

Table 1. AREs (×10−2): synthetic images.
PCA LL-GPLVM SU FCLL-GPLVM

I1 1.00 1.00 1.14 1.00
I2 1.06 1.00 1.57 1.00
I3 1.03 0.99 1.12 0.99

The quality of dimensionality reduction of the GPLVM can be mea-
sured by the average reconstruction error (ARE) defined as ARE =√∑N

n=1 ‖ŷn − yn‖2 /(NL) where yn is the nth observed pixel
and ŷn its estimate. For the LL-GPLVM, the nth estimated pixel is

given by ŷn = P̂ Û
T
ψ [x̂(n)] where P̂ is estimated using (13). Ta-

ble 1 compares the AREs obtained by the proposed LL-GPLVM and
the projection onto the first (R − 1) principal vectors provided by
the principal component analysis (PCA). The proposed LL-GPLVM
slightly outperforms PCA for nonlinear mixtures in terms of ARE.
More precisely, the AREs of the LL-GPLVM mainly consist of the
noise errors (σ2 = 10−4), whereas model errors are added when
applying PCA to nonlinear mixtures. The quality of unmixing pro-

Table 2. Abundance and endmember estimation: synthetic images.
RNMSE (×10−3) ASAM (×10−2)
I1 I2 I3 I1 I2 I3

SU 49.3 86.6 47.8 2.37 6.53 4.97
FCLL-GPLVM 4.8 7.2 7.5 0.64 0.89 0.80



cedures can also be measured by comparing the estimated and actual
abundances using the root normalized mean square error (RNMSE)

defined by RNMSE =
√∑N

n=1 ‖ân − an‖
2/(NR) where an is

the nth actual abundance vector and ân its estimate. Table 2 com-
pares the RNMSEs obtained with different unmixing strategies. The
endmembers have been estimated by the VCA algorithm for I1 and
the Heylen’s method [10] for I2 and I3. The algorithms used for
abundance estimation are the FCLS algorithm proposed in [16] for
I1, the LS method proposed in [2] for I2 and the gradient-based
method proposed in [5] for I3. These procedures are referred to as
“SU” in the table. These strategies are compared with the proposed
FCLL-GPLVM. As mentioned above, the Bayesian algorithm [14]
for the joint estimation of A and V R is used in this paper for the
scaling step. It can be seen that the proposed FCLL-GPLVM is gen-
eral enough to accurately approximate the mixing models considered
since it provides the best results in terms of abundance estimation.

The quality of reconstruction of the unmixing procedure is
also evaluated by the ARE. For the FCLL-GPLVM, the nth re-
constructed pixel ŷn is given by ŷn = P̂ Û

T
ψ
[
x̂(c)(n)

]
. Ta-

ble 1 shows the AREs corresponding to the different unmix-
ing strategies. The proposed FCLL-GPLVM outperforms the
other strategies in terms of ARE for these images. Finally, the
performance of the FCLL-GPLVM for endmember estimation
is evaluated by comparing the estimated endmembers with the
actual ones using the spectral angle mapper (SAM) defined as
SAM = arccos (〈m̂r,mr〉 /(‖m̂r‖ ‖mr‖)) where mr is the rth
actual endmember and m̂r its estimate. Table 2 compares the
average SAMs (ASAMs) obtained by the SU procedures and the
FCLL-GPLVM for the three images I1 to I3. Fig. 2 shows the
actual (red lines ) and estimated (blue lines) boundaries of the
constrained set defined by the three mixing models and the three
endmembers. These results show that the FCLL-GPLVM provides
accurate endmember and abundance estimates for both linear and
nonlinear mixtures.

(a) I1 (LMM)

(b) I2 (FM) (c) I3 (GBM)

Fig. 2. Visualization of the N = 2500 pixels (black dots) of I1, I2
and I3 using the 3 axis provided by the PCA procedure. The actual
(resp. estimated) endmembers correspond with the vertices of the
red (resp. blue) lines.

6. CONCLUSIONS
We proposed a new algorithm for nonlinear spectral unmixing based
on a Gaussian process latent variable model. The unmixing proce-
dure assumed a nonlinear mapping from the constrained abundance
space to the observed pixels. The abundance estimation was decom-
posed into two steps. Dimensionality reduction was first achieved
using latent variables. A scaling procedure was then proposed to es-
timate the abundances. After estimating the abundance vectors of the
image, a new endmember estimator based on Gaussian process re-
gression was investigated. Simulations conducted on synthetic data
illustrated the flexibility of the proposed model for linear and nonlin-
ear spectral unmixing and provided promising results for abundance
and endmember estimations even when there are few pure pixels in
the image.
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