Render the Possibilities SIGRAPH2016

THE 43RD INTERNATIONAL **CONFERENCE** AND **EXHIBITION** ON

Computer Graphics Interactive Techniques 24-28 JULY **ANAHEIM, CALIFORNIA**

Render the Possibilities SIGGRAPH2016

Ge Wa THE 43RD INTERNATIONAL CONFERENCE AND EXHIBITION ON

Practical Analytic 2D Signed Distance Field Generation

Wasim Abbas ARM - Staff Engineer

Path

ARM

Path

Path

- What is the problem?
- What is our solution?
- Results and conclusion

Outline

ARM

Canonical Texture Space

C. Loop, J. Blinn Microsoft Research 2005

Y. Kokojima, K. Sugita, T. Saito, T. Takemoto Toshiba 2006

S. Frisken, R. Perry, A. Rockwood, T. Jones Mitsubishi Electric Research Laboratory 2000

B. Esfahbod Google 2014

SDFs generation 8SSEDT

Gustavson 2011 and Danielsson 1980

SDFs generation ARM technique

- Scaling)
- All lines can map to a simple horizontal line section of

ARM Technique

Any Line or Quadratic Bézier curve can be transformed into a fixed, known form with a series of transformations (Translation, Rotation,

y = 0

All Quadratic Bézier curve can map onto a segment of the curve $y = x^2$

Fundamentals - Quadratic Beziers 1

Fundamentals - Quadratic Beziers 2

Fundamentals - Quadratic Beziers 3

Final Transformation Matrix

 $\overline{R} = DTR_{\theta}$

Distance calculation from (u, v)

 $D = \left(\left(x - u \right) \right)$

 $4x^3 + (1 - 2)$

$x^3 + ax + b = 0$

$$x^2 + (x^2 - v)^2)^{1/2}$$

$$2v)2x - 2u = 0$$

where

$$a = \frac{1}{2} - v$$
$$b = -\frac{u}{2}$$

Roots case 1

$b^2/4 + a^3/27 > 0$

 $x_1 = \left(-\frac{b}{2} + \sqrt{\frac{b^2}{4} + \frac{a^3}{27}}\right)^{1/3} + \left(-\frac{b}{2} - \sqrt{\frac{b^2}{4} + \frac{a^3}{27}}\right)^{1/3}$

Roots case 2

$b^2/4 + a^3/27 = 0$

 $x_1 = \left(-\frac{b}{2} + \sqrt{\frac{b^2}{4} + \frac{a^3}{27}}\right)^{1/3} + \left(-\frac{b}{2} - \sqrt{\frac{b^2}{4} + \frac{a^3}{27}}\right)^{1/3}$

 $x_k = 2\sqrt{\frac{-a}{3}}\cos\left(\frac{\phi}{3} + \frac{2k\pi}{3}\right)$

Roots case 3

$b^2/4 + a^3/27 < 0$

k = 0, 1, 2 $\cos \phi = \begin{cases} \sqrt{\frac{-a^3}{27}} \\ \sqrt{\frac{b^2}{4}} \\ \sqrt{\frac{-a^3}{27}} \end{cases}$

Live Demo: Lines

https://www.desmos.com/calculator/lvwv689bx0

Live Demo: Curves

https://www.desmos.com/calculator/l9ssbp9xqh

Implementation Theory

- For any given segment
 - We can take an arbitrary point in space around it
 - Using the transformed point, calculate distance to canonical form
 - Scale back to give real distance
 - We can tell if the point is inside or outside the segment
 - Lines: sign of y
 - Quadratic Bézier's side of tangent from nearest point on curve
- Sample around a segment in a pixel grid and we have signed distance values!

Live Demo! complete

https://www.desmos.com/calculator/wxqfhychxu

Implementation – Signed Distance Fields

// for each segment initialise object and calculate transformation matrices calculate bounding box this becomes the sampling grid around segment // for each sampling point in its bounding box for each segment for each bounds row for each bounds column calculate distance and winding score(); // for each sampling point in its bounding box for each row for each column resolve to distance map();

Winding Number

Zooming in on a Section

Calculate Delta Winding Score

Right to Left +1, Left to Right -1

Winding number

Summary the delta winding score from left to right

Side of quadratic curve

https://www.desmos.com/calculator/wuugaixiwh

Quality

Skia

Quality

ARM

Skia, Reference

Skia

Results in Numbers

3400

ARM Skia

ARM

« no previous file with comments I « src/apu/GrDis	stanceFieldGenFromVector
Toggle Intra	-line Diffs ('i') Expand Cor
OLD	
(Empty)	
	$\frac{1}{2} + \frac{2}{2} + Copyright 201$ $\frac{3}{4} + Use of this s$ $\frac{5}{5} + found in the$ $\frac{6}{5} + \frac{7}{7}$ $\frac{8}{5} + \frac{1}{10} + $

Where is the Code?

https://codereview.chromium.org/1643143002

- Much better quality
- Higher performance. In its current state we are above 75% faster.
- Highly parallel algorithm (currently single threaded but can be easily multithreaded)
- Lots of scope for improvements and optimisations (still in beta)
- Only CPU version at the moment but the whole algorithm is based around GPU architecture so it will be much faster with GPU
- Not limited to Font glyphs but any path can be converted to SDF

Summary

GPU version

https://www.desmos.com/calculator/lqn6g1tpty

Acknowledgements

- Chris Doran chris.doran@arm.com
- Roberto Lopez Mendez roberto.lopezmendez@arm.com
- Rich Evans rcb.evans@outlook.com \bullet
- Joel Liang joel.liang@arm.com

Bonus content

Standard form theory

A general second-degree curve is defined by an equation of the form

$$X^{t}CX = (x, y, 1) \begin{pmatrix} a & h & g \\ h & b & f \\ g & f & c \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = 0$$

This is equivalent to the component equation

$$ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$$

In order to define a parabola (a second-degree Bezier) the coefficients must also satisfy

ab

$$-h^2 = 0$$

Computing the standard form

We assume the input consists of three points in 2D, b0, b1 and b2 where b1 is control point. Find an equation which takes 2D vector and returns a 6D vector

$$F(x, y) = (x^2, xy, y^2, x, 1, y)$$

Now we turn to the Bezier control points (b0, b1, b2) and from these define 3 new points along the curve:

$$c_{1} = \frac{1}{16}(9b_{0} + 6b_{1} + b_{2})$$

$$c_{2} = \frac{1}{4}(b_{0} + 2b_{1} + b_{2})$$

$$c_{3} = \frac{1}{16}(b_{0} + 6b_{1} + 9b_{2})$$

Computing the standard form

We now define the 5×6 matrix A

 $[a, h, b, g, c, f] = [B_0, -1/2B_1, B_2, -1/2B_3, B_4, -1/2B_5]$

 $B[i] = \det A_i$

Standard form Equation Accelerated version

 $a = (y_0 - 2y_1 + y_2)^2$ $b = (x_0 - 2x_1 + x_2)^2$ $c = x_0^2 y_2^2 - 4x_0 x_1 y_1 y_2 - 2x_0 x_2 y_0 y_2$ $h = -(y_0 - 2y_1 + y_2)(x_0 - 2x_1 + x_2)$ $q = x_0 y_0 y_2 - 2x_0 y_1^2 + 2x_0 y_1 y_2 - x_0 y_2^2 + 2x_1 y_0 y_1 - 4x_1 y_0 y_2 + 2x_1 y_1 y_2$ $-x_2y_0^2+2x_2y_0y_1+x_2y_0y_2-2x_2y_1^2$ $+2x_1^2y_2 - 2x_1x_2y_0 - 2x_1x_2y_1 + x_2^2y_0)$

$$+4x_0x_2y_1^2+4x_1^2y_0y_2-4x_1x_2y_0y_1+x_2^2y_0^2$$

- $f = -(x_0^2y_2 2x_0x_1y_1 2x_0x_1y_2 x_0x_2y_0 + 4x_0x_2y_1 x_0x_2y_2 + 2x_1^2y_0)$

Transformation matrices (Rotation)

$$R_{\theta} = \begin{pmatrix} \cos \theta \\ \sin \theta \\ 0 \end{pmatrix}$$

$$\cos \theta = \sqrt{\frac{a}{a+b}}$$
$$\sin \theta = -\text{signum}((a+b)h)\sqrt{\frac{b}{a+b}}$$

 $\begin{array}{ccc}
-\sin\theta & 0\\
\cos\theta & 0\\
0 & 1
\end{array}$

 $\operatorname{signum}(x) = \begin{cases} -1 & \text{if } x < 0 \\ +1 & \text{otherwise} \end{cases}$

Transformation matrices (Translation)

 $T = \begin{pmatrix} 1 & 0 & x_0 \\ 0 & 1 & y_0 \\ 0 & 0 & 1 \end{pmatrix}$

$$\begin{pmatrix} g' \\ f' \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} g \\ f \end{pmatrix}$$

Transformation matrices (Dilation/Scaling)

$D = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & 1 \end{pmatrix}$

 $\lambda = -\frac{a+b}{2f'}$

Test cases		avg.(ms)	Performanc e				
Tiger (ARM)	1591.877103	1570.867658	1585.281014	1592.140317	1574.57006	1582.94723	1.47x
Tiger (Skia)	2323.360443	2324.164629	2330.242872	2332.234621	2301.774502	2322.355413	
Countries(ARM)	1543.180108	1552.965522	1568.936348	1563.890934	1554.955125	1556.785607	1.76x
Countries(Skia)	2783.946037	2717.692852	2723.564148	2740.092278	2770.129919	2747.085047	
Vaasa(ARM)	1940.449476	1916.500211	1915.157199	1922.863245	1907.956362	1920.585299	1.25x
Vaasa(Skia)	2417.225361	2453.290224	2302.508593	2434.435368	2424.861908	2406.464291	
Iceland(ARM)	1641.598582	1633.31306	1623.172998	1633.633852	1586.660147	1623.675728	1.98x
Iceland(Skia)	3170.907497	3288.432121	3247.562647	3211.12895	3196.832895	3222.972822	

More numbers

questions?

