Render the Possibilities SIGGRAPH2016

nesm nimion
courrances mexumemone

\& Computer Graphics Interactive Techniques $24-28$ JULUY

Practical Analytic 2D Signed Distance Field Generation

Wasim Abbas
ARM - Staff Engineer

Path

Path

Path

Outline

-What is the problem?
-What is our solution?

- Results and conclusion

Rendering a Path

Rendering a Path

C. Loop, J. Blinn

Microsoft Research 2005

Rendering a Path

Y. Kokojima, K. Sugita, T. Saito, T. Takemoto Toshiba 2006

Rendering a Path

S. Frisken, R. Perry, A. Rockwood, T. Jones

Mitsubishi Electric Research Laboratory 2000

Rendering a Path

B. Esfahbod

 Google 2014
Rendering a Path

TuルNWDM/VN
 Computer Graphies Computer Graphics

Rendering a Path

Rendering a Path

SDFs generation 8SSEDT

Gustavson 2011 and Danielsson 1980

SDFs generation ARM technique

ARM Technique

- Any Line or Quadratic Bézier curve can be transformed into a fixed, known form with a series of transformations (Translation, Rotation, Scaling)
- All lines can map to a simple horizontal line section of

$$
y=0
$$

- All Quadratic Bézier curve can map onto a segment of the curve

$$
y=x^{2}
$$

Fundamentals - Quadratic Beziers 1

User space

Fundamentals - Quadratic Beziers 2

Fundamentals - Quadratic Beziers 3

Final Transformation Matrix

$R=D T R_{\theta}$

Distance calculation from (u, v)

$$
\begin{gathered}
D=\left((x-u)^{2}+\left(x^{2}-v\right)^{2}\right)^{1 / 2} \\
4 x^{3}+(1-2 v) 2 x-2 u=0 \\
x^{3}+a x+b=0 \quad \text { where } \quad \begin{aligned}
a & =\frac{1}{2}-v \\
b & =-\frac{u}{2}
\end{aligned}
\end{gathered}
$$

Roots case 1

$$
b^{2} / 4+a^{3} / 27>0
$$

$$
x_{1}=\left(-\frac{b}{2}+\sqrt{\frac{b^{2}}{4}+\frac{a^{3}}{27}}\right)^{1 / 3}+\left(-\frac{b}{2}-\sqrt{\frac{b^{2}}{4}+\frac{a^{3}}{27}}\right)^{1 / 3}
$$

Roots case 2

$$
\begin{gathered}
b^{2} / 4+a^{3} / 27=0 \\
x_{1}=\left(-\frac{b}{2}+\sqrt{\frac{b^{2}}{4}+\frac{a^{3}}{27}}\right)^{1 / 3}+\left(-\frac{b}{2}-\sqrt{\frac{b^{2}}{4}+\frac{a^{3}}{27}}\right)^{1 / 3}
\end{gathered}
$$

Roots case 3

$b^{2} / 4+a^{3} / 27<0$

$$
x_{k}=2 \sqrt{\frac{-a}{3}} \cos \left(\frac{\phi}{3}+\frac{2 k \pi}{3}\right) \quad k=0,1,2 \quad \cos \phi= \begin{cases}-\sqrt{\frac{b^{2} / 4}{\frac{-b^{3} / 27}{2}}} & \text { if } b>0 \\ \sqrt{\frac{b^{2} / 4}{-a^{3} / 27}} & \text { if } b<0\end{cases}
$$

Live Demo: Lines

https://www.desmos.com/calculator/lvwv689bx0

Live Demo: Curves

https://www.desmos.com/calculator/|9ssbp9xgh

Implementation Theory

- For any given segment
- We can take an arbitrary point in space around it
- Using the transformed point, calculate distance to canonical form
- Scale back to give real distance
- We can tell if the point is inside or outside the segment
- Lines: sign of y
- Quadratic Bézier's side of tangent from nearest point on curve
- Sample around a segment in a pixel grid and we have signed distance values!

Live Demo! complete

https://www.desmos.com/calculator/wxgfhychxu

Implementation - Signed Distance Fields

```
// for each segment initialise object and calculate transformation matrices
// calculate bounding box this becomes the sampling grid around segment
// for each sampling point in its bounding box
for each segment
    for each bounds_row
            for each bounds_column
            calculate_distance_and_winding_score();
// for each sampling point in its bounding box
for each row
    for each column
        resolve_to_distance_map();
```


Winding Number

Zooming in on a Section

Calculate Delta Winding Score

Right to Left +1, Left to Right -1

Winding number

Summary the delta winding score from left to right

Side of quadratic curve

Quality

Skia
ARM

Quality

ARM
ARM

Skia

ARM

$$
\sqrt{N}
$$

$$
\lambda
$$

Results in Numbers

Where is the Code?

https://codereview.chromium.org/1643143002

Summary

- Much better quality
- Higher performance. In its current state we are above 75\% faster.
- Highly parallel algorithm (currently single threaded but can be easily multithreaded)
- Lots of scope for improvements and optimisations (still in beta)
- Only CPU version at the moment but the whole algorithm is based around GPU architecture so it will be much faster with GPU
- Not limited to Font glyphs but any path can be converted to SDF

GPU version

Acknowledgements

- Chris Doran chris.doran@arm.com
- Roberto Lopez Mendez roberto.lopezmendez@arm.com
- Rich Evans rcb.evans@outlook.com
- Joel Liang joel.liang@arm.com

Bonus content

Standard form theory

A general second-degree curve is defined by an equation of the form

$$
X^{t} C X=(x, y, 1)\left(\begin{array}{lll}
a & h & g \\
h & b & f \\
g & f & c
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)=0
$$

This is equivalent to the component equation

$$
a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0
$$

In order to define a parabola (a second-degree Bezier) the coefficients must also satisfy

$$
a b-h^{2}=0
$$

Computing the standard form

We assume the input consists of three points in 2D, bO, bl and b 2 where bl is control point. Find an equation which takes 2D vector and returns a 6D vector

$$
F(x, y)=\left(x^{2}, x y, y^{2}, x, 1, y\right)
$$

Now we turn to the Bezier control points ($\mathrm{b} 0, \mathrm{bl}, \mathrm{b} 2$) and from these define 3 new points along the curve:

$$
\begin{aligned}
c_{1} & =\frac{1}{16}\left(9 b_{0}+6 b_{1}+b_{2}\right) \\
c_{2} & =\frac{1}{4}\left(b_{0}+2 b_{1}+b_{2}\right) \\
c_{3} & =\frac{1}{16}\left(b_{0}+6 b_{1}+9 b_{2}\right)
\end{aligned}
$$

Computing the standard form

We now define the 5×6 matrix A

$$
A=\left(\begin{array}{l}
F\left(b_{0}\right) \\
F\left(c_{1}\right) \\
F\left(c_{2}\right) \\
F\left(c_{3}\right) \\
F\left(b_{2}\right)
\end{array}\right)
$$

$$
B[i]=\operatorname{det} A_{i}
$$

$$
[a, h, b, g, c, f]=\left[B_{0},-1 / 2 B_{1}, B_{2},-1 / 2 B_{3}, B_{4},-1 / 2 B_{5}\right]
$$

Standard form Equation Accelerated version

$$
\begin{aligned}
a= & \left(y_{0}-2 y_{1}+y_{2}\right)^{2} \\
b= & \left(x_{0}-2 x_{1}+x_{2}\right)^{2} \\
c= & x_{0}^{2} y_{2}^{2}-4 x_{0} x_{1} y_{1} y_{2}-2 x_{0} x_{2} y_{0} y_{2}+4 x_{0} x_{2} y_{1}^{2}+4 x_{1}^{2} y_{0} y_{2}-4 x_{1} x_{2} y_{0} y_{1}+x_{2}^{2} y_{0}^{2} \\
h= & -\left(y_{0}-2 y_{1}+y_{2}\right)\left(x_{0}-2 x_{1}+x_{2}\right) \\
g= & x_{0} y_{0} y_{2}-2 x_{0} y_{1}^{2}+2 x_{0} y_{1} y_{2}-x_{0} y_{2}^{2}+2 x_{1} y_{0} y_{1}-4 x_{1} y_{0} y_{2}+2 x_{1} y_{1} y_{2} \\
& -x_{2} y_{0}^{2}+2 x_{2} y_{0} y_{1}+x_{2} y_{0} y_{2}-2 x_{2} y_{1}^{2} \\
f= & -\left(x_{0}^{2} y_{2}-2 x_{0} x_{1} y_{1}-2 x_{0} x_{1} y_{2}-x_{0} x_{2} y_{0}+4 x_{0} x_{2} y_{1}-x_{0} x_{2} y_{2}+2 x_{1}^{2} y_{0}\right. \\
& \left.+2 x_{1}^{2} y_{2}-2 x_{1} x_{2} y_{0}-2 x_{1} x_{2} y_{1}+x_{2}^{2} y_{0}\right)
\end{aligned}
$$

Transformation matrices (Rotation)

$$
R_{\theta}=\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$$
\begin{aligned}
\cos \theta & =\sqrt{\frac{a}{a+b}} \\
\sin \theta & =-\operatorname{signum}((a+b) h) \sqrt{\frac{b}{a+b}}
\end{aligned}
$$

$$
\operatorname{signum}(x)= \begin{cases}-1 & \text { if } \quad x<0 \\ +1 & \text { otherwise }\end{cases}
$$

Transformation matrices (Translation)

$$
\begin{gathered}
T=\left(\begin{array}{ccc}
1 & 0 & x_{0} \\
0 & 1 & y_{0} \\
0 & 0 & 1
\end{array}\right) \\
x_{0}=\frac{g^{\prime}}{a+b} \\
y_{0}=\frac{1}{2 f^{\prime}}\left(c-\frac{g^{\prime 2}}{a+b}\right) \quad\binom{g^{\prime}}{f^{\prime}}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{g}{f}
\end{gathered}
$$

Transformation matrices (Dilation/Scaling)

$$
D=\left(\begin{array}{lll}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$$
\lambda=-\frac{a+b}{2 f^{\prime}}
$$

More numbers

Test cases	SDF Generation time(ms)				avg.(ms)	Performanc e	
Tiger (ARM)	1591.877103	1570.867658	1585.281014	1592.140317	1574.57006	1582.94723	$1.47 x$
Tiger (Skia)	2323.360443	2324.164629	2330.242872	2332.234621	2301.774502	2322.355413	
Countries(ARM l	1543.180108	1552.965522	1568.936348	1563.890934	1554.955125	1556.785607	
Countries(Skia)	2783.946037	2717.692852	2723.564148	2740.092278	2770.129919	2747.085047	
Vaasa(ARM)	1940.449476	1916.500211	1915.157199	1922.863245	1907.956362	1920.585299	
Vaasa(Skia)	2417.225361	2453.290224	2302.508593	2434.435368	2424.861908	2406.464291	$1.25 x$
Iceland(ARM)	1641.598582	1633.31306	1623.172998	1633.633852	1586.660147	1623.675728	
Iceland(Skia)	3170.907497	3288.432121	3247.562647	3211.12895	3196.832895	3222.972822	

questions?

