Scientific Visualization

Lecture 7: Other Visualization software

Patrik Malm

Centre for Image Analysis
Swedish University of Agricultural Sciences
Uppsala University

Today's lecture

- Ways to create visualizations using
 - Matlab
 - Blender

Opposite ends of the scale

- Matlab
 - Scientific tool
 - Good for visualizing distributions of data
 - Expensive
- Blender
 - Open source 3D-modeling software
 - Free
 - Harder (but NOT impossible) to do "exact" scientific visualizations

Matlab

- Developed by The MathWorks
- First appeared in the late 1970s
- Short for "Matrix Laboratory"
- All variables are matrices
- Several modules, e.g., "Image processing toolbox"
- Cross-platform
- Can be slow or fast depending on application type

Matlab - Visualizations

• Plot options

And many, many more...

Matlab - Visualizations

- Available plot-types depend on which toolboxes are installed.
- Huge amount of user written functions at Mathwork file exchange
- Easy to modify and/or create own visualization functions

Matlab - Import and Export

- Import and export of 'special' data very much dependent on user scripts
- Example: writeVTK.m

Matlab - Import and Export

```
% dimensions
volinfo = whos('vol'):
sz = volinfo.size:
X = sz(1); Y = sz(2); Z = 1;
if(length(sz) == 3)
 Z = sz(3):
end
% open file
fid = fopen(vtkfile.'w'):
% write header
fprintf(fid, '%s\n', '# vtk DataFile Version 3.0');
fprintf(fid, '%s\n', 'created by writeVTK (Matlab implementation by Erik Vidholm)');
fprintf(fid, '%s\n', 'BINARY');
fprintf(fid, '%s\n', 'DATASET STRUCTURED_POINTS');
fprintf(fid, '%s%d%c%d%c%d\n', 'DIMENSIONS ', X, ' ', Y, ' ', Z);
fprintf(fid, '%s%f%c%f%c%f\n', 'ORIGIN', 0.0, '', 0.0, '', 0.0);
fprintf(fid, '%s%f%c%f%c%f\n', 'SPACING', 1.0, '', 1.0, '', 1.0);
fprintf(fid, '%s%d\n', 'POINT_DATA ', X*Y*Z);
tp = volinfo.class:
if( strcmp(tp, 'uint8') > 0 )
 fprintf(fid, '%s\n', 'SCALARS image_data unsigned_char');
elseif( strcmp(tp, 'uint16') > 0 )
 fprintf(fid, '%s\n', 'SCALARS image_data unsigned_short');
elseif( strcmp(tp, 'uint32') > 0 )
  fprintf(fid, '%s\n', 'SCALARS image_data unsigned_int');
elseif( strcmp(tp, 'single') > 0 )
  fprintf(fid, '%s\n', 'SCALARS image_data float');
elseif( strcmp(tp, 'double') > 0 )
  fprintf(fid, '%s\n', 'SCALARS image_data double'):
fprintf(fid, '%s\n', 'LOOKUP_TABLE default');
% write data as binary
fwrite(fid,vol,tp);
% close file
fclose(fid):
```


Matlab - Links

- www.mathworks.com
- www.mathworks.com/matlabcentral/fileexchange

Blender

- Free 3D modeling and animation software
- Features include
 - Physics and Particles
 - Liquid and softbody simulations
 - Game creation
 - Python support for scripting
 - Video sequencer
- Available for all common OS (installation file sized around 10-20 Mb)

Blender - History

- Initially developed as an in-house application by the Dutch animation studio NeoGeo and Not a Number Technologies (NaN) during the late 90's
- NaN bankrupt 2002 (Blender v 2.25)
- Released under the GNU GPL for a one time payment of 100,000 Euros
- Blender is now managed by the Blender Foundation
- Version 2.5 is soon to be released

Blender

- Strengths:
 - **-** Free (!!!)
 - Powerful
 - Interface for python scripting
 - Large user community -> tons of online material
- Weaknesses:
 - Confusing user interface (Under major reconstruction)
 - Sometimes hard to find good documentation

Blender – User interface

Blender - Getting around

- 'Middle mouse button' (MMB) Rotate view
- 'Shift' + 'MMB' Pan view
- 'Scroll wheel' Zoom
- 'Ctrl' + 'MMB' Zoom
- 'Numpad 1, 3, 7' Front, right and top view
- 'Left mouse button' (LMB) Move 3D cursor

Blender - Object selection

- Right mouse button (RMB) Selects objects
- 'Shift' + RMB Select multiple objects, deselect objects
- 'A' Select all, clear selection
- 'B' Box select
- 'B' + 'B' Brush select (edit mode only)

Blender - Edit mode vs. Object mode

- 'TAB' key used to switch between modes for selected object
- In 'Object mode' the user can perform actions that affect the entire object (translation, scale, rotation,...)
- In 'Edit mode' local changes can be made by manipulating the vertices that the object consists of

Blender - Object manipulation

- 'G' Grab (Move objects)
- 'R' Rotate
- 'S' Scale
- 'X' Delete
- 'E' Extrude (Edit mode)
- 'Z' Shaded/Unshaded view
- 'Shift' + 'D' Duplicate
- 'Ctrl' + 'Z' Undo

Blender - Rendering

- Numpad 'o' Shows the camera view
- 'F12' renders using current settings and camera, light positions
- Internal renderer supports ray-tracing
- Several external rendering engines supported (Yafray, Indigo)
- It is possible to make image composition (effects) in Blender based on the render layers

Blender - Loading and saving

- Save & Load .blend files
 - 'Ctrl' + 'w' Open save file dialog
 - 'Ctrl' + 'o' Open recent
 - 'F1' Open load file dialog
- Save render result
 - 'F3' Open save image dialog

Blender – Object structure

Blender – Object structure

Structure of a file can be seen using the OOPS-

schematic view

00PS-schematic for a small scene

Blender - Node composition

Built-in post-processing of your render

Blender - Node composition

Effect of the 'Glare'-node

Blender - Node composition

 Possible to separate and manipulate different layers of the render result

Blender - Sequence editor

- A very powerful tool for editing movies
- Can combine multiple video clips, sound and add effects to create a final result
- Can be used together with node editor to add more control

Blender - Sequence editor

Blender - Import and Export

- Import/Export scripts exist for several common 3Dformats
- "Open source quality"
- Writing custom scripts possible

Blender - Python scripting

- Blender has its own Python API
- Possible to control most of the functionality through Python scripts
- Learning threshold determined by ability to pick up Python

Blender - Python scripting

Blender – Import example

```
# Import Demo
import Blender
from Blender import *
import bpy
import math
from math import *
f=open("/home/patrik/pythondata.dat")
coords=[]
edges=[]
counter = 0
for 1 in f:
       l=1.split(',')
       d=[float(1[0]),float(1[1]),float(1[2])]
       coords.append(d)
       counter = counter + 1
       print(counter)
       if counter > 1:
             edges.append([counter-2,counter-1])
       me = Mesh.Primitives.UVsphere(6,6,0.2) # create a primitive
       sc = Scene.GetCurrent()
                                        # get current scene
       ob2 = sc.objects.new(me)
                                        # add a new mesh-type object to the scene
       ob2.setLocation(d)
me = bpy.data.meshes.new()
                                        # create empty mesh
me.verts.extend(coords)
                                        # populate with vertices
me.edges.extend(edges)
                                        # create edges
scn = bpy.data.scenes.active
                                        # link object to current scene
ob = scn.objects.new(me)
Blender.Redraw()
```


Blender – Import example

Blender - SCIENTIFIC visualizations

- Blender is used at scientific groups over the world
- Free and open source but still powerful the main selling points
- Uses include
 - Electron microscope data visualizations
 (http://www.sciencemag.org/content/vol320/issue5872/cover.dtl)
 - Population behavior simulation using the Blender game engine (http://vimeo.com/2158835)
 - Molecular visualization and simulation (http://www.scivis.ifc.cnr.it/)

Blender - Some links

- A few links that could be interesting
 - www.blender.org
 - www.blendernation.com
 - www.blendercookie.com
 - www.blenderartists.org
 - www.elephantsdream.org
 - www.bigbuckbunny.org
 - www.open3dcourse.se (Gävle högskola summer course)

