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1. INTRODUCTION

Human activities have transformed our planet. Forests have
been cleared for agriculture, human settlements have become
vast urban sprawls that can be seen from space. Patterns of
intelligence are everywhere. Even places that had been aban-
doned and were once forgotten have been rediscovered by
archaeologists trained to recognize the subtle patterns of prior
human habitation in aerial imagery.

Originally, the goal in the search for extraterrestrial intelli-
gence (SETI) was to detect the existence of extraterrestrial life
by their radio frequency (microwave) emissions [1]. More
recently its scope has expanded to include the search for extra-
terrestrial intelligence at optical frequencies [2], and the search
for extraterrestrial artifacts (SETA) in our solar system [3, 4].
This paper is concerned with the problem of detecting artificial
patterns in satellite imagery produced by a technological intel-
ligence, and its application to the search for non-natural objects
and features of possible extraterrestrial origin on planetary
surfaces (pSETI), which is a subset of SETA.

Human observers have an innate ability to differentiate be-
tween natural and artificial objects and patterns – whether they
are a group of military vehicles deployed in a complex battle-
field scene or a modulated signal in radio noise, but may be
predisposed to see patterns of intelligence where there are none
(e.g., faces in clouds). There are many examples of this in the
history of science from Gruithuisen’s walled city on the moon
to the canals on Mars. Although machine algorithms are free
from such bias, attempts at developing algorithms that operate
at levels comparable to human performance have not been
entirely successful.
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Carl Sagan [5] argued that deviations from thermodynamic
equilibrium are a necessary (but not sufficient) condition of
intelligent activity. He cited significant deviations from the
blackbody radiation curve of Earth in the radio frequency
portion of the electromagnetic spectrum as evidence of terres-
trial intelligence, and went on to show that passive (electro-
optical) imaging of Earth at resolutions (spatial scales) smaller
than about 1 km reveals evidence of mechanical disequilibrium
(e.g., rectilinear patterns of agriculture, road networks, etc.).

Landscapes can be thought of as thermodynamic systems
(where elevation is equivalent to temperature and mass to heat)
that seek close-to-equilibrium states where the rate of entropy
production is minimized [6]. Emergent properties of land-
scapes have been shown to have fractal (or multifractal) char-
acteristics [7, 8]. Analogous to the way intelligent activity on a
planetary scale reveals itself as deviations from blackbody
radiation in the radio frequency spectrum on Earth, Stein [9]
developed a method for finding manmade features in images by
detecting deviations from a fractal model of the background.
Carlotto and Stein [10] applied the same technique to assess the
artificiality of certain Martian landforms. Arkhipov [11] com-
bined fractal analysis with other techniques to detect lunar
anomalies.

Directionally-correlated structures are common in images of
artificial features – from the rectangularity and symmetry of
isolated objects like vehicles and buildings, to straight lines
and rectilinear patterns in extended features like today’s cities.
Even in archaeological ruins where fine structure is obscured
by deposition and erosion, evidence of extended linear and
rectilinear structures are often visible [12]. On the other hand,
correlated spatial structures appear quite frequently in nature.
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Examples include geological faults, certain patterns of erosion,
as well as long cast shadows from tall objects such as trees.
Thus while directionally-correlated structure is often present in
images containing artificial features (a necessary condition), it
is not sufficient in itself in determining artificiality.

This paper proposes a comparative statistical pattern recog-
nition approach to the problem of detecting patterns of a tech-
nical intelligence in remotely sensed imagery. Section 2 de-
scribes methods for distinguishing between images of natural
and artificial features in terms of the fractal dimension (the
roughness of the image intensity surface), fractal model fit
(how well an image is modeled as a fractal), anisotropy (the
directional correlation structure), and rectilinearity (presence
of correlated structures at right angles). These methods are
applied to a small database (Section 3) containing images of
natural terrestrial backgrounds, manmade objects and features
(including images of archaeological sites in various stages of
decay), and images of interesting planetary features. Using the
terrestrial data, a maximum likelihood classifier is developed
and applied to the planetary data set. Analysis of results (Sec-
tion 4) reveals that certain features on our moon and on Mars
appear to be artificial by comparison with terrestrial features.
Limitations of the pattern recognition technique resulting from
the confusion of manmade objects that look natural (highly
eroded archaeology), and natural objects that look artificial
(geological features like the San Andreas fault) are discussed.
Future directions are outlined in Section 5.

2. MEASURING ARTIFICIALITY

Fractals [13] are objects that are self-similar over a range of
scales. Examples of fractals include clouds, snow flakes, moun-
tains, and drainage patterns. Fractal object detection assumes
the natural background in an image can be modeled as a fractal,
whose measurements follow power laws of the form

0
bY Y X= (1)

where Y is the value of a measurement, X is the scale of the
measurement, b is related to the fractal dimension, Y0 and is a
constant. Measurement techniques include variograms, which
measure the variance as a function of distance, morphological
filters, which estimate the surface area of the image intensity
surface as a function of scale (resolution), and the power spec-
tral density, which measures power vs. frequency.

Stein [10] used a set of morphological filters to measure the
surface area of the image intensity over a range of scales, from
which he estimated the fractal dimension and fractal model-fit
error that were used as features for detecting manmade objects.
Here we use the power spectral density (PSD) as it leads to
other useful measures for assessing artificiality. For a 1-D
signal with PSD S(k) the power law is

( ) 1/S k kβ∝ (2)

For 1<β<3 the fractal dimension D = 2 + (3 – β)/2 is 3>D>2.
Now consider a 2-D image with PSD S(m,n), and radial distri-
bution
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For spatially isotropic 2-D PSDs the 1-D radial distribution

(3) is the same as the 1-D PSD along a line in any direction in
the image. Voss [14] shows that the 2-D power law is
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Linear regression of measurements of log S(k) vs. log k can
be used to estimate the spectral exponent, b from which the
fractal dimension is obtained. The model fit (normalized corre-
lation) tests the validity of the fractal assumption
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Fractals have model fit values close to one.

Carlotto [12] compared geospatial anisotropies (directions
of greater correlation) in variograms of images over the Cydo-
nia region of Mars to that of terrestrial archaeological sites. The
2-D PSD is the inverse discrete Fourier transform of the
autocorrelation function, which is related to the variogram.
Large values of the variogram in a given direction indicates the
presence of correlated structure in the image in the same direc-
tion. Correlated structures also manifest themselves in the 2-D
PSD, which is easier to compute than the variogram. To this
end we define the angular distribution
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Let µA and σA be the mean and standard deviation of F(θ)
over the angular range 0 to 2π; i.e.,
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We define the anisotropy of the 2-D PSD to be
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Images that have directional structure have larger values of
A than those that do not.

Another useful property is the rectilinearity, which measures
the presence of directional structures 90° apart. If the direction
with the most power is

2
arg max ( )A F

π
θ θ= (8)

define
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:
2 2A A
π πθ δ θ θ δΩ + − ≤ ≤ + + (9)

to be the angular range to search for rectilinear features. For
perfectly rectangular features δ = 0. Providing a tolerance (δ >
0) is useful in cases when the images are oblique and rectangu-
lar features appear as parallelograms (due to foreshortening)
with right angles in range becoming obtuse and right angles in
cross-range acute.

Let ( )R Fµ θ Ω=  and

2 2( )R RFσ θ µ
Ω

= −

be the mean and variance within the interval (9), and

arg max ( )R Fθ θ
Ω

=

be the angle of the peak. We define the rectilinearity to be the
ratio
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whose maximum value is one when the second peak is as large
as the first.

3. TEST DATA

A small but diverse set of images have been compiled for
analysis. They are divided into three classes: terrestrial images
of natural backgrounds (Fig. 1), terrestrial images of artificial
objects and patterns (Fig. 2), and extraterrestrial (planetary)
images of some “interesting” features (Fig. 3). The images in
Fig. 1 are as follows:

a) Badlands in western South Dakota (US). The Badlands
contain a variety of formations resulting from severe
erosion of the clay-rich soil by wind and rain.

b) Mountains near the Caspian Sea. The image is a computer
graphics rendering (shaded rendition) of the elevation
map in h).

c) Forested area in winter on Cape Ann Massachusetts
(US), in a region known as Dogtown. Cast shadows from
pine trees produce a strong directional component in the
image.

d) Image of a drainage pattern in Yemen. (Similar drainage
patterns can be found on Mars.)

e) Aerial image containing trees and bushes. Some vehicle
tracks are also evident on the ground.

f) Computer graphics rendering of the synthetic fractal
surface in i).

g) Section of the San Andreas fault in California (US).

h) Elevation map of mountains near the Caspian Sea.

i) Synthetic fractal surface (D=2.5).

Although these images are far from being either complete or
statistically representative of all of the different kinds of natural
terrestrial backgrounds, they do provide a sampling of the
range of background types one may encounter.

The images in Fig. 2 are of artificial objects and structures
on the Earth’s surface. The majority are of archaeological sites
having different (subjective) degrees of erosion. The images
are as follow:

a) La Centinela (Peru). These structures were built several
hundred years before the Inca occupation in 1450.

b) Chotuna (Peru). Adobe pyramid and surrounding
irrigation canals were built around 600 AD.

c) Urban area in the US.

d) Abandoned road on Cape Ann Massachusetts. The road,
which was built by colonial settlers, has not been used
since the early 1800’s.

e) Nasca lines, Peru. The origin and purpose of this vast
network of lines and geoglyphs is unknown.

f) Structure within unexplored ruins in Viru Valley (Peru).

g) Less distinct section of ruins in Viru Valley.

h) Sipan (Peru). Eroded pyramids dated to around 300 AD.

i) Pentagon building (US).

j) Military tank.

k) Military truck.

Figure 3 is a sampling of some interesting planetary features
that have been encountered over the last 40 years since Lunar
Orbiter:

a) Ice flows on Jupiter’s moon Europa (Galileo).

b) “Face on Mars” (Mars Global Surveyor).

c) Rim around Saturn’s moon Iapetus. Image from a section
of an image map constructed from a number of images
taken by the Cassini spacecraft.

d) Portion of Arabia Terra on Mars containing a number of
tracks lefts by dust devils (MGS).

e) Section of Mars Digital Image Map over Cydonia region
of Mars. Derived from Viking Orbiter imagery.

f) Mesas on the Elysium Plains of Mars (MGS).

g) Lunar Orbiter image of rectangular depressions near the
crater Ariadaeus B on the moon.

h) Lunar Orbiter image of a rectilinear formation next to
the crater Ukert.

i) Clementine image of rectilinear “scrapings” on the far
side of the moon.

j) Unusual formations (“spiders”) around Chasma Australe
at the south pole of Mars [16].

k) THEMIS image of rectilinear texture in Cydonia, Mars.

l) Rectangular arrangements of mesas in Cydonia (Viking
Orbiter).

Table 1 lists the computed values of the fractal dimension,
fractal model fit, anisotropy, and rectilinearity for all 32 images
in Figs. 1-3. Image sizes ranged from 32 x 32 to 512 x 512
pixels, with resolutions from less than a meter to more than a
kilometer per pixel. Note the shaded rendering (fr) of the
fractal surface (zfr) has a higher fractal dimension, lower model
fit, and higher anisotropy than the original surface. The in-
crease in anisotropy is caused by the presence of correlated
structures in the image perpendicular to the illuminant direc-
tion. Interestingly the situation is reversed in the shaded render-
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ing (cas) of the mountain range (zcas), where the illuminant
direction is roughly perpendicular to the tectonics and has the
effect of reducing the anisotropy.

4. CLASSIFICATION RESULTS

First we examined how individual measures correlate with
image class (top row in Table 2). The fractal dimension has
the lowest degree of correlation, providing practically no
separation between the natural and artificial images. Next

a) bad - badlands in US b) cas - Mountains near Caspian Sea c) dogf - Dogtown (trees) in US

d) drainyem - Drainage in Yemen e) bush - Bushes and tracks f) fr - Synthetic fractal image

Fig. 1  Aerial images of natural terrestrial (and synthetic fractal) backgrounds.

g) san - San Andreas fault h) zcas - Elevation image for b) i) zfr - Elevation image for f)

comes the anisotropy which has a low value due to the
presence of highly correlated structures in natural back-
grounds (e.g., San Andreas fault), and less correlated struc-
tures in the older archaeological sites. The fractal model fit
was slightly higher but is positively correlated with class;
i.e., large values of model fit correspond to artificial fea-
tures. This is a surprise as the model fit was originally
designed to detect non-fractal (non-natural) features (and
thus should be negatively correlated). In Stein’s original
approach he measured the fractal dimension and model fit
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a) cent - La Centinela, Peru b) ch - Chotuna, Peru c) City  (US)

d) dogr - Dogtown (road) in US e) nasca - Nasca lines, Peru f) vira - Ruins in Viru Valley, Peru

g) virb - More ruins in Viru Valley

j) tank

i) penta - Pentagon in US

Fig. 2 Aerial images of manmade objects and features.
(Images of Peru courtesy Marilyn Bridges [15].)

h) sip - Pyramid in Sipan, Peru

k) truck
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Fig. 3  Satellite images of “interesting” features from Europa, Mars, Iapetus, and the Moon (NASA).

a) eur - Lines on Europa

d) arab - Arabia Terra, Mars

g) aria - Near Ariadaeus, Moon

j) spid - "Spiders" on Mars

b) fom - "Face" on Mars c) iap - Rim around Iapetus

e) mdim - Cydonia, Mars f) mgs - Elysium Plains, Mars

h) ukert - Crater Ukert, Moon i) far - Lunar farside

l) vik - Viking image, Marsk) themis - THEMIS image, Mars
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TABLE 1:  Image Descriptions and Measurements. Image Sizes in Pixels. Classes are Natural (-1), Artificial (1), and
Unknown (0).

Image Size Description Class Fractal Fractal Model Anisotropy Rectilinearity
Dimension Fit

city 256 Section of urban area (US) 1 2.894106 0.984046 2.982445 0.941044

nasca 256 Nasca lines (Peru) 1 2.887811 0.977394 6.013621 0.303069

apc 32 APC (truck) 1 1.807446 0.991947 2.853991 0.633921

penta 512 Pentagon (US) 1 2.77867 0.988861 3.979506 0.877651

tank 64 Military tank 1 2.235304 0.991981 2.568841 0.311998

dogr 512 Abandoned road in Dogtown, 1 2.780654 0.973971 3.571972 0.359881
MA (US)

cent 512 Ruins in La Centinela, (Peru) 1 2.721839 0.990773 1.997346 0.471783

ch 512 Eroded pyramid in Chotuna 1 2.850466 0.997328 2.260062 0.621099
(Peru)

vira 256 More distinct ruins in Viru Valley 1 2.514642 0.991413 2.488078 -0.027554
(Peru)

virb 256 Less distinct ruins in Viru Valley 1 2.474378 0.98537 1.890924 0.861864
(Peru)

sip 512 Highly eroded pyramid in Sipan 1 2.735487 0.982141 1.837547 0.753127
(Peru)

san 256 San Andreas fault (US) -1 2.910171 0.944952 4.003116 0.23552

zcas 512 Mountain DEM (Europe) -1 2.157554 0.994076 2.294654 0.197835

bad 512 Badlands (US) -1 2.337011 0.98841 1.99849 0.160731

bush 256 Bushes -1 2.68692 0.986457 2.257377 0.187683

fr 512 Shaded rendition of synthetic -1 2.883349 0.986841 2.101432 -0.810003
fractal DEM

drainyem 256 Drainage pattern (Yemen) -1 2.720381 0.976804 2.201048 0.049151

cas 512 Shaded rendition of mountain -1 2.829427 0.984636 1.877927 -0.978623
DEM (Europe)

dogf 512 Forested area in Dogtown, -1 2.64402 0.959653 2.625042 0.427277
MA (US)

zfr 512 Synthetic fractal DEM -1 2.296282 0.990175 1.783851 0.497391

iap 256 Rim around Iapetus 0 2.862102 0.943964 3.003908 0.707153

ukert 256 Rectangular feature near Ukert 0 2.48217 0.9949 2.731123 0.702401
crater (Moon)

vik 512 Rectilinear arrangement of 0 2.550116 0.989696 3.374994 0.077931
mesas in Cydonia (Mars)

arab 512 Portion of Arabia Terra (Mars) 0 2.663123 0.982713 2.892422 0.554262

aria 256 Rectangular depressions near 0 2.377679 0.981655 1.908456 0.47908
Ariadaeus B (Moon)

eur 512 Ice patterns (Europa) 0 3.181974 0.926466 3.43557 0.611663

spid 256 Spider patterns near Chasma 0 2.864983 0.963355 1.852838 0.560556
Australe (Mars)

mgs 512 Mesas on Elysium plains (Mars) 0 2.359254 0.975722 1.392996 -1.280682

fom 256 “Face” in Cydonia region (Mars) 0 2.798049 0.989013 2.067401 0.153125

far 256 Patterned ground on far side 0 2.76403 0.958454 2.258627 -0.46086
(Moon)

mdim 512 Overview image map of 0 2.76403 0.958454 2.258627 -0.46086
Cydonia region (Mars)

themis 256 Rectilinear texture in Cydonia 0 2.517063 0.939568 1.773875 0.718761
(Mars)
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using morphological techniques over a limited range of scales
within a sliding window in the image. The range of scales
were those over which manmade objects (vehicles) are dif-
ferent from trees, bushes, and other types of natural back-
ground clutter. Here we use a different technique (spectral
estimation) that is applied to the entire image. Over larger
areas image backgrounds can be multifractal or periodic
which produce higher model fit errors than manmade ob-
jects and features. The rectilinearity had the highest correla-
tion due to the lack of rectilinear features in the natural
backgrounds we studied. The high degree of correlation is
also consistent with earlier findings [12] which indicate that
edges and other extended features persist even in highly
eroded archaeological sites.

Let us define z to be the measurement vector consisting of
the fractal dimension, fractal model fit, anisotropy, and
rectilinearity. Assume the measurements are jointly Gaussian
random variables, i.e.,

11
21/ 2/ 2
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is the covariance matrix, C  is the determinant of C, and E is
the expectation operator. Here N = 4. If ω0 is the set of images
of natural backgrounds in Fig. 1, and ω1 is the set of images of
artificial objects and features in Fig. 2, the class-conditional
means and variances are:
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The conditional densities are thus 0 0 0( | ) ( , )p Nω =z m C
and 1 1 1( | ) ( , )p Nω =z m C .

The likelihood ratio 1 0( | ) / ( | )p pω ωz z  is greater than one
for images that are more likely to contain artificial features.
Although some of the measurements do have a certain degree
of correlation (e.g., fractal dimension and fractal model fit), we
assume the measurements are uncorrelated. This allows us to
express the logarithm of the likelihood ratio as a sum of indi-
vidual log likelihoods:
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Table 3 lists the individual and summed log likelihoods
based on the statistics in Table 4. Figure 4 plots the summed log
likelihoods of all of the images. Over the “training set”; i.e., the
set of terrestrial images, 17 out of 20 images are correctly
classified (i.e., η > 0 if the images are artificial) using all four
measurements. Other combinations were 16/20 using only
rectilinearity, 11/20 using only anisotropy, 15/20 using
anisotropy and rectilinearity, and 12/20 using only fractal model
fit.

Figure 5 sorts and plots the results by class. Five of the 12
extraterrestrial images – ukert, arab, far, aria, and vik – had
positive log likelihood values, which indicates that they appear
more artificial than natural based on the training set. In order to
better understand the results we measure the similarity between
the terrestrial images in Figs. 1 and 2, and the planetary images
in Fig. 3. The Mahalanobis distance between measurement
vectors

1( , ) ( ) ( )T
i j i j i jd −= − −z z z z C z z (14)

is used to rank-order and sort the terrestrial images most like
each planetary image (Table 5). Each column contains a
rank-ordering of terrestrial images in terms of their similar-
ity to the planetary image listed at the top. This provides a
set of terrestrial analogs for comparative analysis. For ex-
ample, the rim around Iapetus (iap) is similar to the forested
background over Dogtown (dogf), the San Andreas fault
(san), and the abandoned road (dogr). It is least similar to a
truck (apc). The feature near Ukert is similar to the ruins in
Viru (vira), the tank, and the ruins in La Centinela (cent). It
is least similar to the Nasca lines. In fact, the Nasca lines are
least similar to all of the extraterrestrial features overall.
The natural background containing trees, bushes, and vehi-
cle tracks (bush) is the most frequent terrestrial analog. The
“Face” on Mars (fom) is similar to the bush image followed
by the ruins in La Centinela (cent), and the drainage pattern
in Yemen (drainyem). Perhaps the latter is due to the pres-
ence of erosional features on the “Face”. The overall simi-
larity of terrestrial features to the set of planetary features is
listed in Table 6. This table was obtained by computing the
average rank across all of the planetary features. Interest-
ingly archaeological sites (cent, sip, vira, and virb) are among
the top 8. This result is consistent with Arkhipov’s [11], who

TABLE 2:  Normalized Correlations for Terrestrial Images. Rectilinearity Measurement is Most Correlated with
Natural/Artificial Class, While Fractal Dimension is Least Correlated.

Class Fractal Dimension Fractal Model Fit Anisotropy Rectilinearity

Class - 0.000187665 0.318513685 0.296424467 0.576546231

Fractal Dimension 0.000187665 - -0.402182284 0.295043422 -0.171770136

Fractal Model Fit 0.318513685 -0.402182284 - - 0.412377799 0.038764788

Anisotropy 0.296424467 0.295043422 -0.412377799 - 0.180198714

Rectilinearity 0.576546231 -0.171770136 0.038764788 0.180198714 -
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TABLE 3:  Log Likelihoods Based on Terrestrial Data. Columns are Individual log Likelihood Scores.
Total is the Sum (Assuming Measurements are Uncorrelated). Negative Scores Indicate Natural;
Positive Scores Artificial.

Log Likelihoods
Image Class Fractal Fractal Anisotropy Rectilinearity Total

Dimension Model Fit

city 1 -0.01892015 0.81211409 -0.1553787 1.35493244 1.99274765

nasca 1 -0.02631655 -0.0589842 11.2955733 0.37581094 11.5860835

apc 1 1.133116703 0.88928955 -0.3218097 1.26096928 2.96156586

penta 1 -0.12848822 0.98287998 2.01802089 1.39292189 4.26533454

tank 1 0.096359077 0.88737507 -0.5986149 0.41037524 0.79549451

dogr 1 -0.12707075 -0.794412 0.94094316 0.58562774 0.60508818

cent 1 -0.16217594 0.9435858 -0.7687999 0.9287833 0.94139326

ch 1 -0.06682392 0.34670495 -0.7542915 1.24181034 0.76739986

vira 1 -0.17181728 0.91683237 -0.6537993 -1.320984 -1.2297683

virb 1 -0.15307717 0.89755907 -0.7438168 1.39773999 1.39840512

sip 1 -0.15530512 0.63795165 -0.7245857 1.3806368 1.13869761

san -1 0.00069883 -14.868579 2.08841657 0.09514112 -12.684322

zcas -1 0.228441478 0.73226831 -0.7443021 -0.0761709 0.14023676

bad -1 -0.03866072 0.98327428 -0.7689718 -0.2551481 -0.0795063

bush -1 -0.17624662 0.9458857 -0.7549882 -0.1241245 -0.1094737

fr -1 -0.03145995 0.95825414 -0.7760223 -8.5712132 -8.4204413

drainyem -1 -0.16286438 -0.1718265 -0.766994 -0.8549883 -1.9566731

cas -1 -0.08710323 0.85379618 -0.7395464 -10.729271 -10.702124

dogf -1 -0.18662649 -5.985845 -0.5541665 0.80344271 -5.9231953

zfr -1 0.010270358 0.96241875 -0.7007232 0.99423374 1.26619961

iap 0 -0.05482149 -15.594631 -0.1250426 1.34698901 -14.427506

ukert 0 -0.15722727 0.65123319 -0.4567455 1.34261582 1.37987625

vik 0 -0.1827695 0.97320817 0.51388807 -0.6914202 0.61290657

arab 0 -0.18294492 0.69659534 -0.2747345 1.12216684 1.36108279

aria 0 -0.08067004 0.58384329 -0.7491567 0.94792966 0.70194617

eur 0 0.494506347 -31.146974 0.63872808 1.22693079 -28.786809

spid 0 -0.05176324 -4.3163099 -0.7305524 1.13484884 -3.9637767

mgs 0 -0.06248522 -0.3938324 -0.3905325 -15.123159 -15.970009

fom 0 -0.11394547 0.98198385 -0.7755337 -0.2930999 -0.2005952

far 0 0.353347324 0.09631752 -0.4542954 1.24294927 1.23831871

mdim 0 -0.13844426 -6.5755052 -0.7546653 -4.7741523 -12.242767

themis 0 -0.17273029 -19.022212 -0.6957909 1.35696635 -18.533767

TABLE 4: Statistics of Natural and Artificial Features. Natural and Artificial Features Have Somewhat
Different Fractal Model Fit, Anisotropy, and Rectilinearity Statistics but Similar Fractal Dimensions.

Fractal Dimension Fractal Model Fit Anisotropy Rectilinearity

Natural Mean 2.607235 0.979111556 2.34921522 -0.00367089
Variance 0.076226135 0.000265981 0.44637336 0.275216693

Artificial Mean 2.607345727 0.986838636 2.94948482 0.555262091
Variance 0.111344537 0.000048986 1.49441847 0.090403516

Combined Variance 0.08552524 0.00032128 0.86491989 0.27964493
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developed an artificiality index and showed that a number of
sites on the moon had values between that of the lunar
background and terrestrial archaeological sites.

5. DISCUSSION

Object detection techniques seek some intrinsic property for
separating objects of interest (e.g., tanks and trucks) from the
background [9]. Most operate as anomaly detectors that model
the natural background (noise) and detect possible objects
(signals) as deviations from noise. Deviations from noise are
necessary, but not sufficient, to decide that a signal is present.
False alarms (neither the signals we seek nor the noise that has
been modeled) occur and must be mitigated using other infor-
mation. We have described an alternative approach that formu-
lates detection as a two-class problem of deciding between
signal or noise. It uses statistical models computed over a
training set to characterize natural and artificial patterns em-

Fig. 4  Summed log likelihoods for terrestrial and planetary images. From left to right are terrestrial images of artificial features,
natural backgrounds, and images of interesting extraterrestrial features.

Fig. 5  Summed log likelihoods sorted and plotted by class. Extraterrestrial features that fall
above the line (positive log likelihood) are considered possibly artificial.

pirically in terms of a set of measurements (fractal dimension,
fractal model fit, anisotropy, and rectilinearity). A classification
accuracy of 85% was achieved over the training set, which
consisted of a variety of natural terrestrial backgrounds (fractal
textures, drainage patterns, tectonic features, etc.) and artificial
features (e.g., roads, cities, vehicles, archaeological ruins). The
classifier was then extended and used to evaluate a collection
of enigmatic lunar and planetary features. Although the data are
too limited in size and scope to draw any definite conclusions,
the results suggest that certain areas on our moon and on Mars
appear to be artificial by comparison with terrestrial features.

Areas of future work include increasing the size and
diversity of the training set, expanding and refining image
measurement techniques (e.g., measuring fractal dimension
over multiple scale ranges to better describe multifractal
features), and exploring alternative (non-Gaussian) classifi-
cation approaches.
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TABLE 5:  Similarity Between Terrestrial and Planetary Features. Columns Correspond to Images of Planetary Features.
Most Similar Features are Near the top of the Columns; Least Similar Features are at the Bottom.

iap ukert vik arab aria eur spid mgs fom far mdim themis

dogf virb vira bush zfr san dogf cas bush zfr drainyem dogf
san tank dogr dogr bad dogf sip fr cent bad fr sip

dogr cent bush city virb dogr drainyem vira drainyem virb dogf drainyem
city zfr tank cent tank city cent bad ch zcas cas virb

drainyem ch drainyem sip zcas drainyem bush drainyem vira tank bush bush
sip bush bad ch bush penta city bush sip apc vira san

penta vira cent drainyem cent sip virb zcas bad sip dogr dogr
bush bad zcas dogf sip bush ch tank virb vira san zfr
cent sip penta vira vira nasca dogr zfr city cent bad cent
virb zcas ch virb drainyem cent vira cent fr bush cent bad
ch city dogf penta dogf ch bad dogf zfr dogf sip city

vira penta zfr tank ch virb zfr sip dogr drainyem ch tank
bad drainyem city bad city vira san virb dogf ch tank vira
zfr dogr virb zfr apc fr penta dogr tank city zfr ch

tank dogf sip zcas dogr bad tank ch cas dogr virb zcas
nasca apc fr san penta cas fr apc zcas penta zcas penta

fr fr cas fr fr zfr zcas san penta fr city apc
zcas san apc apc cas tank cas city san cas penta fr
cas cas san cas san zcas apc penta apc san apc cas
apc nasca nasca nasca nasca apc nasca nasca nasca nasca nasca nasca

TABLE 6: Overall Similarity Between Ter-
restrial and Planetary Features. Half of the
More Frequent Terrestrial Analogs are Ar-
chaeological Sites (cent, sip, vira, virb,
dogr).

More Frequent (top 50%) bush
drainyem

cent
dogf
sip
vira
virb
bad
dogr
zfr

Less Frequent (bottom 50%) ch
tank
city
zcas
san

penta
fr

cas
apc

nasca
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