

Cadmium replacement options

Rowan Technology Group
JSF ESOH Working Group

klegg@rowantechnology.com

10/2003 JSF European Trip

Definition

- Cd used on almost all exposed steel, usually chromated, primed, painted
- Specs
 - > QQ-P-416
 - Class 1 0.0005"; Type I as-deposited
 - Class 2 0.0003"; Type II chromated
 - Class 3 0.0002"; Type III phosphated
 - > BAC 5701
 - > AMS 2400

Usage

Steel Components

- The "cure-all" corrosion coating
- Good salt spray and scribed corrosion protection
- No hydrogen embrittlement or stress corrosion cracking
- ODs and IDs
- Plate steel to protect Al

Fasteners

- Correct lubricity (avoid changes to torquetension specs)
- No hydrogen embrittlement
- Retain thread profile

Connectors

- For electrical equipment
- Low contact resistance
- Non-insulating corrosion products
- Solderable a plus

Cd – a life-cycle issue

- Deposition Cd and CN solution
- Scuff-sanding for repaint
 - Personnel exposure
- Wash-down of engines
 - Environmental contamination
- Strict new European Cd rules
 - End-of-life vehicles

Requirements

- Cd is a sacrificial material
 - Meets B117 and SO₂ salt fog tests
 - If scratched it still protects
 - Compatible with AI so a Cd-plated bolt or rivet does not corrode an AI aircraft skin
 - Ni and other barrier coatings are not replacements
- For threaded fasteners need right lubricity
 - Consistent break-away torque and torque-tension
 - Otherwise have to redo all the manuals
- Need to be able to repair during manufacture
- Need to be able to prime and paint

Galvanic series

Summary of Cd alternative options

Al is the only "global" replacement Almost everything needs chromate conversion

In use

In test

In development

JSF Cd Alternatives Report

- Requirements
- Alternatives
 - Zn-Ni, Sn-Zn electroplates
 - Alumiplate
 - Al-Mn molten salt bath
 - IVD and CVD AI
 - Sputtered Al
 - Thermal spray
 - SermeTels
 - Filled polymers
 - High strength stainless steel

Joint Test Report

- Cd alternatives report for low strength steels (<220 ksi)
 - Boeing, JGPP
 - Sn-Zn
 - Acid Zn-Ni (Boeing)
 - Alkaline Zn-Ni
 - > IVD AI

Engineering and Technical Services for Joint Group on Pollution Prevention (JG-PP) Projects

> Joint Test Report BD-R-1-1

for Validation of
Alternatives to Electrodeposited
Cadmium for Corrosion Protection and Threaded
Part Lubricity Applications

October 1, 2002

Distribution Statement "A" applies. Approved for public release; distribution is unlimited.

> Contract No. DAAE30-98-C-1050 Task No. N.272 CDRL A006

Prepared by: National Defense Center for Environmental Excellence (NDCEE)

> Submitted by: Concurrent Technologies Corporation (CTC) 100 CTC Drive Johnstown, PA 15904

http://www.jgpp.com/projects/cadmium/jtr.html
http://www.materialoptions.com/w2g/cgi/kmcgi.exe?O=DI
R000000016D&V=0

IVD AI

Vacuum PVD process

Fully qualified and quite widely used by OEMs and depots

Spec MIL-C-83488 for Al coating does not define deposition method

IVD Aluminum (Ivadizing)

Vacuum evaporation of Al Bead blasting to densify Chromate conversion

Abar Ipsen Depots

Pros:

Long history of successful use Clean process (except chromating) High volume chamber (up to 5'x1.5'x15' load)

Cons:

Vacuum process - expensive
Requires shot blasting and
chromate conversion
Poor throwing power (especially in
holes)

Solid lubricant for torque-tension Limited data on fasteners, electrical connectors

Stage of development:

Commercial Available at many depots

Description

Deposition

- Al evaporated from bottom of chamber
- Substrates hang on frame, biased for weak plasma
- Gives coating poorly adhered and porous

Consolidation

Glass bead peen

Convert

- Chromate convert
 - ◆ Iridite 14-2
- Dry lube (threads)
 - MoS₂ in resin binder

Applications

Military

- > F-4
- > F-14
- > F-15
- > F-16
- > F-18
- > AV-8B
- > A-12
- > V-22
- Apache

Commercial

- Boeing 737, 747, 757, 767
- McDonnell-Douglas DC9, 10, MD-80, 90, 11
- Bombardier Dash 7, 8
- > Airbus A300, A310

Specification – MIL C-83488

		B117 Salt Fog (hours)	
Class	Thickness (min)	Type I	Type II
1	0.001"	504	672
2	0.0005"	336	504
3	0.0003"	168	336

Type I – Deposit + glass bead peened

Type II – Deposit + peen + chromate convert

Advantages and limitations

Advantages

- Qualified commercial process
 - Commercial coating shops
 - IVD-coated fasteners available commercially
- Clean and safe
- Good performance
- No H embrittlement

Limitations

- Vacuum process
 - Expensive
 - Awkward
- Poor quality coating asdeposited
 - Peen and chromate
- Poor throwing power
- Soft and easily damaged
 - Cannot easily be repaired
- Dissolves in alkaline cleaners
 - MRO users may have to change cleaning process

Data available

Boeing/JGPP low strength steel report

- Boeing/JGPP report on Cd alternatives for low strength steels
 - http://www.jgpp.com/projects/cadmium/jtr.html
 - Also on HCAT site for convenience
 - Covers 4 alternatives:
 - Sn-Zn
 - Neutral Zn-Ni (Boeing process)
 - Alkaline Zn-Ni
 - IVD AI
- IVD and neutral Zn-Ni best
 - Scribed B117 inconsistent
 - Lubricity on fasteners acceptable with

Corrosion

- Data from B117 testing at 3 locations
 - Unscribed excellent
 - Scribed variable corrosion from scribe

Fluid compatibility

- Weight loss after immersion, scrubbing
- In most cases IVD gains weight
 - Ascribed to adherent oxide
 - Could be absorption in porosity

Fatigue

- No difference between uncoated and soft Cd alternatives
- Fatigue debit with harder alkaline Zn-Ni

Breakaway torque and torque-tension

PVD AI for IDs – sputtered AI

- Marshall Labs Plug and Coat
 - Works inside IVD chamber
- Makes it possible to coat OD and ID simultaneously Plug & Coat
 - Add-on to existing IVD chamber
- Status
 - Being installed at Hill AFB
 - Commercially available
 - Meets MIL Spec.
- Note: All Al coatings require use of proper aqueous cleaners (avoid alkaline cleaners)

ID sputtering data

- Report # BOEING-STL-01P0041
 - Meets MIL-83488
 - Better coating quality than IVD
 - Higher plasma density
 - Lower porosity
 - no need for glass bead peening
 - may be able to get away without chromating
 - Only uncertainty is environmental embrittlement
 - testing issues
 - not part of MIL spec
 - Avoid alkaline cleaners

Developments needed

- Some additional environmental embrittlement data needed
- Plug and Coat miniaturization needed for smaller IDs
 - Under way at Marshall Labs
- Porosity and need for peening always an issue
 - Various approaches for better coating quality
 - Higher plasma density
 - Sputtering instead of IVD
 - Pulse biasing

Electroplated AI (Alumiplate™)

Alumiplate, Minneapolis
Deposited from organic solution

Alumiplate

Electroplating using organic Al salt in a toluene bath

Alumiplate, Inc Minneapolis

Pros:

- •Excellent corrosion resistance
- •No H embrittlement
- •Looks good for components, fasteners, connectors

Cons:

- Potentially hazardous bath toluene-based
- •Requires enclosed tank
- •Sole production source, but willing to license

Stage of development:

- •Under extensive DoD evaluation
- •No aerospace qualification yet
- •Probable part numbers shortly for Alumiplated composite connectors
- •Being evaluated for landing gear

klegg@rowantechnology.com

Alumiplate description

Organic electroplate

- Requires enclosed tank and plating line in inert environment
 - Similar to vacuum processing but less
- Al salts in toluene solution
- Reasonable throwing power
 - Needs conformal or secondary electrodes for complex shapes, IDs
- Frequently uses Ni strike for adhesion
- Recent development uses grit blasting and activation with no Ni strike
 - Equivalent adhesion
- Metallic strike needed for insulators such as composites
- Coating thickness 0.0001 0.001"
 - Usually 0.0003 0.0005"
- Conversion coat (traditionally chromate) for best corrosion performance (as with all other Cd alternative)

Applications and specifications

Applications

- Hydraulic hose fittings
- Various others in production
- No current aerospace
 - Has successfully passed all testing for electrical connectors
 - Alumiplated connectors from Amphenol will probably be assigned part numbers shortly
 - Under testing for landing gear (Goodrich)

Specifications

- Meets MIL-C-83488
- No AMS or other specs at this point

Advantages and limitations

Advantages

- "Drop-in" replacement
- Able to coat complex shapes
- Higher quality coating than asdeposited IVD AL
- Suitable for components, connectors, fasteners (with dry lube)
- Directly compatible with Al skins
- Can be anodized for better wear and abrasion

Limitations

- Size limited
 - Landing gear about 3' long
 - Limited by current bath size
 - Appears scalable
- Requires dry lube for threads to prevent galling
- Sole source is Alumiplate, Minneapolis
 - Willing to license, but no current licensees
 - Not yet available in Europe
- High capital cost
- Toluene bath not suitable for DoD depot use
- Cannot brush plate Al repair
 - Can brush plate Sn-Zn to repair Al

Data available

A great deal of data becoming available as a result of ongoing JSF and Army testing. Rowan is currently putting together a report on the technology – available by year's end

General corrosion data

- With chromate conversion passes 5,000 hr B117 salt fog and >336 hr SO₂ salt fog
- 0.0007" Al lasts for 1,000hr to red rust with no Ni strike or chromate conversion
 - Ni strike helps a bit
 - Chromate conversion is major contributor (as with most Cd and alternative coatings)
- Tests on connector shells show excellent corrosion resistance with Ni strike and chromate conversion
 - Better than Cd

Hydrogen embrittlement

- Does not appear to cause hydrogen embrittlement
 - Passed F-519 and RSL tests conducted by NAVAIR
 - > Embrittlement seen in CTC tests, but tests not reliable
 - specimens stripped and replated several times
 - standard plating process not used
- Note: Cd causes major embrittlement
 - Hence need for LE Cd

Fatigue

Small fatigue debit with and without Ni strike

Electrical connectors

- Meets all tests for qualification on connector shells (MIL-DTL-38999K testing)
 - Al and C-fiber/PEEK composite
 - Corrosion, conductivity stability in salt fog
 - Mate/unmate testing (wear, torque, conductivity)
 - No insulating corrosion products
- Amphenol expected shortly to offer process with part numbers

Threads and lubricity

- Requires thread lubricant (as with IVD)
- MoS₂ in thin polymer binder looks good
 - Acceptable torque-tension and breakaway torque
 - Long term stability looks good (many cycles)
 - No change during salt fog testing
- Passes tests for connectors
- Will probably work for threaded fasteners

Other issues

Repairability

- Al can be repaired by brush plating Sn-Zn after suitable activation (Boeing)
- Can also be repaired with brush-on SermaTel

Anodizing

- Can be anodized, leaving Al layer beneath anodize layer
- Will improve wear and abrasion, but hard coating on soft underlay not a good high load wear surface
- Any form of Al avoids Cd embrittlement
 - Very bad form of embrittlement
 - Can occur when aborted takeoff heats brake discs and nearby landing gear components

Developments needed

- Non-toluene solution needed for depot use
 - Present chemistry cannot be used in depots
- Additional sources for plating service
- Additional embrittlement testing
- Well-defined brush plate or other repair
 - Both for OEM and MRO use

Other ways to deposit Al

- Arc or flame spray
 - Used on some Bombardier aircraft
 - \rightarrow Thick coating (0.001 0.003")
 - Rough
 - Al-Zn arc spray used on support equipment, radar towers, bombs
- CVD
 - Generally high temperature
 - Used for cooling passages in hot section blades
- Slurry Al developed by Liburdi Engineering
 - High temperature heat treat
 - For hot section turbine blades (oxidation resistance)

SermeTel®

Metal-filled ceramics from SermaTech

SermeTel

- Al flakes in ceramic matrix
- Brush or spray on
- Older formulations contain
 Cr⁶⁺
- Heat treat 375-700°F
 - Hard, glassy coating
- Grit blast to uncover Al

Figure 17. SermeTel aluminum-ceramic coating cross sections 500x. Left chromate-containing coating; right chromium-free coating.

Applications

- Used in turbine engines
 - Cases and discs
- Landing gear in some older aircraft (commercial)
- □ F-22
 - Extensive use of SermeTel coatings on landing gear and other systems
 - See Baltimore meeting on Materials Substitution for P2 in Advanced Aircraft (2002)

Specifications

Specs from SermaTech

Advantages and limitations

Advantages

- Simple spray or paint
 - Can be used for repair
- Hard coating
 - Abrasion resistant

Note: There are now some other similar coatings on the market

Limitations

- Sole source
 - Licensing to major users only (e.g. Goodrich)
 - Others (inc. depots) must send to SermaTech
 - Very high cost
- Requires heat treat
 - Can be low enough T for HSS
- Embrittlement from acids in formulation
 - When using 984/985 HE on A100 for F-22
 - New formulation, not yet tested or approved
- Contains chromates
 - New non-chromate formulations now available

Data available

Little publicly available data

Data

- Little publicly available data
 - Boeing test data showed poor B117 performance
 - Successful performance in commercial aircraft

Zn-Ni electroplate

Zn-Ni

- Aqueous electroplate
- Acid zinc-nickel developed and used
 - Boeing patented process
 - BAC 5637 Class 2 Type II (SAE AMS2417E)
 - E-Chrome 864 chromate conversion coating
- Alkaline zinc-nickel under development
 - AMS 2417 Dipsol Gumm Ventures DGV Zinic IZ-260
 - DGV Zinic IZ-268S chromate conversion coating

Description

- Alloy electroplate
 - > 5-15% Ni
 - Aqueous solution mixture of chlorides
 - > No CN
 - Coating chemistry depends on bath chemistry, current density, process parameters
- Can also be brush plated for repair

Applications

- Boeing uses acid Zn-Ni
 - Restricted to UTS<220 ksi because of embrittlement issues</p>
- Oklahoma City ALC
 - Replaced Cd and TiCd with brush Cd, Zn-Ni and IVD in 1991

Specifications

- Acid Zn-Ni
 - **BAC 5637**
- Alkaline zinc-nickel
 - > AMS 2417

Advantages and limitations

Advantages

- Aqueous electroplate
 - Easier application in open tanks
- Qualified process
- Tank and brush plate

Limitations

- Alloy chemistry
 - Difficult to ensure reproducibility and uniformity, especially on complex shapes
- Embrittlement

Data available

Data available from Boeing, JGPP report

http://www.jgpp.com/projects/cadmium/jtr.html

http://www.materialoptions.com/w2g/cgi/kmcgi.exe?O=

DIR000000016D&V=0

Corrosion

Galvanic corrosion

Generally acceptable against common materials

Torque-tension

- Alkaline Zn-Ni quite different from Cd
 - Difficult to run onto bolts
 - Note, however, test done with no lubricant, so may be fine with dry lube

Embrittlement

- Zn-Ni embrittles on deposition
 - Zn-Ni (acid and alkaline) can be H baked with the normal 375°F for 23 hour bake

Fatigue

- Alkaline Zn-Ni has significant debit
 - Endurance limit 11%
 - Some substrate issues
 - Retesting recommended

Developments needed

- Extension to high strength steels
 - New JTP for HSS under way Boeing, JGPP
- Brush plating
 - Is Zn-Ni a good repair for IVD or electroplated Al?

High strength stainless steel

S-53 – new steel developed by QuesTek Innovations LLC

High strength stainless steel

- Developed using Materials by Design
 - Design using a variety of models and databases
- Normal development time for a steel
 - 10 years and hundreds of heats
- S-53 developed in half a dozen heats
 - Aim meet the mechanical specs of 300M, but with the corrosion resistance of 15-5PH stainless
 - Developed under SERDP funding
 - Now in ESTCP program to validate at Ogden

Advantages and limitations

Advantages

- No coating to come off
- Eliminates corrosion
 - Primary cause of landing gear overhaul and parts condemnation
- Avoids SCC
 - Primary mechanism for major landing gear failure

Limitations

Cannot be used uncoated against Al

Developments needed

- Full validation of properties and performance
- Development of materials database
- Licensing to steel producers so commercially available
 - QuesTek's intent is licensing to several steel companies (QuesTek is a steel developer, not a producer)

Data available

Extensive data will become available over next 2 years from ESTCP program

Summary of S-53 heats

- Note: Edisonian method takes several hundred heats!
- Meets 300M properties
 - Corrosionresistance = 15-5PH stainless
 - Much better K_{IC} (88 $\sqrt{"}$)
 - > K_{ISCC} (50-60 $\sqrt{"}$)

HSSS properties

Current status

- Appears to be mechanically equivalent to 300M but much better fracture strength and SCC
- Being tested and validated at Hill AFB
- Work to be complete in 3005
- Will obtain data needed for qualification
 - Not MIL Handbook 5 (requires 10 heats at \$300,000/heat)
 - Will do three heats to 20,000 lb
 - Then use AIM method (Accelerated Insertion of Materials) to interpolate between and extend lab data using modeling data

Conclusion

- Al is the best overall option, but deposition methods are not straight "drop-in"
- High strength stainless exciting new development
 - Will be 2 or 3 years before it is fully qualified at Ogden
 - Even then, no MIL Handbook 5 numbers
 - Modeling will tell us more about this steel than we know about most others
- There are niche products for other Cd alternative applications