
An Outline of the Stroke Theory as a
Possible Method of Encipherment of the

Voynich Manuscript

Elmar Vogt, Fürth∗

September 22, 2010

The Stroke Theory – herafter referred to as »ST« – is my personal cur-
rently favoured idea how the Voynich Manuscript (»VM«) may have been
enciphered. The ST has grown and evolved over time, thus I thought it
about time to briefly summarize my current ideas on the issue.

This document is divided in two sections: The first will describe the
suggested enciphering algorithm, while the second will answer questions
regarding the document.

Please note that I don’t claim to have actually deciphered any part of the
manuscript.

Contents

0.1 A Note on Typographical Conventions . . . . . . . . . . . . . 2

1 The Algorithm 2

1.1 Basic Tenet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Why camelcase? . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1 VM »grammar« and ST »syllables« . . . . . . . . . . . 5

1.4.2 Information content . . . . . . . . . . . . . . . . . . . . 6

1.4.3 Speed of writing, enciphering effort . . . . . . . . . . . 6

1.4.4 Stringency . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.5 Repetitivity . . . . . . . . . . . . . . . . . . . . . . . . . 6

∗http://voynichthoughts.wordpress.com

1

http://voynichthoughts.wordpress.com


1.5 Arguments against the Stroke Theory . . . . . . . . . . . . . . 7

1.5.1 The line as an encipherment unit . . . . . . . . . . . . . 7

1.6 Sample text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 FAQs 7

2.1 When did you come up with the idea? . . . . . . . . . . . . . . 7

2.2 What assumptions do you make about the plaintext language
and character set? . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 What assumptions do you make about the origin of the VM? 8

2.4 Do you have a precedence for the use of this enciphering
scheme? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 There should be only 52 constituting fragments of the VM
according to your theory. But there are some 100 odd different
ciphertext characters already. . . . . . . . . . . . . . . . . . . . . 8

2.6 How do you reconcile the observation of »Currier A« and
»Currier B« with your theory? . . . . . . . . . . . . . . . . . . . 8

2.7 The decipherer has no chance to see where in the ciphertext
word the plaintext letter boundary is. Isn’t this much too lossy? 9

2.8 What’s the greatest obstacle to actually test the ST, ie to
cracking the VM with it? . . . . . . . . . . . . . . . . . . . . . . 9

2.9 Then how do you plan to crack it – or determine that the ST
is bogus? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

0.1 A Note on Typographical Conventions

• Letters in EVA, representing ciphertext characters as found in the VM,
are written in boldface,
• Strokes (in the sense of »graphical elements«) of the plaintext, after

decomposition of the characters, are represented by »sans serif« char-
acters enclosed in french quotation marks.
• Plaintext fragments are in general italicized.

1 The Algorithm

1.1 Basic Tenet

The basic assumption underlying the Stroke Theory is that in the process
of enciphering the letters of the plaintext were decomposed into their
constituent components – the »stroke« of the pen required to write them
down –, and that each ciphertext character represents one of those plaintext
strokes. A »syllable« is a group of ciphertext characters which represents
one plaintext letter.

Consequently, each ciphertext word is composed of one or more »sylla-
bles«.

2



1.2 Idea

For the sake of simplicity we’ll assume that the plaintext was
written in the latin alphabet, though the same method could be
used on the cyrillic or greek alphabet.

In our alphabet, letters are composed of a limited number of different
graphical elements or pen strokes. This holds also true if one looks at
printed letters, which are, more or less, also built from a limited »repertoire«
of strokes.

For example, the capital letter A can be decomposed into three strokes –
namely, a slash »/«, a horizontal dash »−«, and a backslash »\«. Thus, we
could write A as »/− \«.

Likewise, the letter l consists – in its simplest form – of only a vertical
stroke »|«. To write b, the very same stroke is used, with a subsequent
ring-shaped »◦«, thus b is rendered »| ◦«. The letter d decomposes fairly
similarly, but with »◦« preceding »|«: »◦ |«. The letter o finally is simply the
ring, and nothing more: »◦«.

The letter n shall consist – to keep matters simple – of only a single
»c«-shaped crescent with the opening pointing downwards: »∩«. m on the
other hand is the sequence of two such crescent strokes: »∩∩«.

We can go on and disassemble all letters which occur in our plaintext
in this way. Depending on the exact alphabet we use (and on our taste),
there is a lot of leeway in this decomposition, which also introduces some
ambiguities: For example A might be rendered »/ − \« just as well as
»/\−«. Likewise, in our simple example »∩∩« might come to mean nn as
much as m.

Now, let’s get down to business, assuming we want to encipher the word
Abdomen. We start by decomposing the word letter for letter into its strokes:

A b d o m e n
»/− \« »| ◦« »◦ |« »◦« »∩∩« »◦−« »∩«

Now we simply drop the plaintext letter boundaries and write everything
as one string of strokes:

Abdomen
»/− \ | ◦◦ | ◦ ∩ ∩ ◦ −∩«

In the next step, to get to the actual encipherment, we simply set up
a table where each of the strokes is substituted with one letter from our
ciphertext alphabet. (Which turns out to be the character set of the VM.) As
an example, we’ll use the letters in EVA transcription.

This is what a key table might look like:1

1Mind you that this is just an example, and by now means claims to be the real McCoy.

3



Stroke EVA
»/« q
»\« o
»−« c
»|« h
»◦« e
»∩« y
. . . . . .

Thus, to encipher the word Abdomen again, we arrive at the following:

Plaintext: A b d o m e n
Strokes: /− \ | ◦ ◦ | ◦ ∩∩ ◦− ∩
Ciphertext: qoc he eh e yy ec y

Or simply qocheeheyyecy.

1.3 Algorithm

1. Prepare a pattern to decompose your plaintext letters (both upper and
lower case) into the set of constituent graphical elements (»strokes«).

2. Set up a substitution table to replace each plaintext stroke with one
ciphertext character.

3. Remove all spaces between plaintext words as insignificant.

4. Convert your plaintext to »Camelcase«, ie alternate between upper and
lower case letters. This will turn Abdomen into AbDoMeN.

5. Letter by letter, decompose the plaintext letters and encipher them
according to the substitution table.

6. Introduce word breaks in the ciphertext every two or so plaintext
characters.

And that’s already it.

1.3.1 Why camelcase?

Step 4 probably requires a little more explanation.
If all plaintext letters were reduced to lower case before encipherment,

then the complete ciphertext would consist only of 26 different syllables –
26 different words indeed. Clearly, this is not the case, so I hypothesized
that the VM author introduced another step to »spice up« his encipherment.
I think it’s not implausible to assume that he experimented with his system

4



and found that the vanilla version (without camelcasing) left him with
something which was way too easy to discern.

Yet when introducing the camelcase and some subtle wordlength rule,2

he made the system much more difficult to crack while leaving the enci-
pherment/decipherment effort moderately low.

1.4 Features of the VM v/s Features of the ST

1.4.1 VM »grammar« and ST »syllables«

It has long been known that there is a set of rules, a »grammar«,
governing the composition of VM ciphertext words, which are far
from randomly assembled. Most »notorious« is the word-initial
qo-group and the word-terminal dy. Yet, to date nobody has been
able to formulate a concise set of rules which would explain the
existance of all VM words as they are.

Such a behaviour would be the direct result of the ST.
Assuming in its simplest form that only latin letters were enciphered

and that a ciphertext word always contains two plaintext letters, then there
should be only some 50 different »chunks« or »syllables« (each correspond-
ing to one upper or lower case letter) which would account for all of the
VM words. Each VM word in this case would consist of one »prefix« and
one »suffix« syllable, corresponding to one upper case and one lower case
plaintext letter.

This would not be immediately obvious, because certain strokes (ie cipher-
text letters) would be used both in the prefixes and the suffixes, hence
blurring the distinction and the syllable boundaries. This gets aggravated
under the assumption that special symbols are also enciphered, and that
some words may contain only one or more than two plaintext letters.

Note that some strokes are used exclusively or predominantely for capital
letters, like the vertical stroke »|«. This stroke occurs in BDEFGHIKLNMPRT
among the upper case letters, but only in fhkl among the lower case letters.
Thus, it would not be surprising to see the symbol for »|« ciphertext word-
initial. At the same time, the vertical stroke extending below the baseline is
only ever used in lower case letters like pqyß. Thus, we would expect this
stroke to show up word-terminal (and more rarely).

2This feature would require an extra section in its own right. Clearly, something is going on with the
word length – the words aren’t strictly one or two plaintext characters long (ie consisting of one or two
»syllables«), but seem to be composed of a fairly arbitrary number of syllables, while yet making sure
that the »word-terminal« ciphertext syllables always fall on a word end. I’m not sure what’s happening
here and am hoping that the VM author simply introduced word breaks whenever he felt like it, ie –
they don’t really matter.

5



1.4.2 Information content

From a statistical point of view, the average VM ciphertext word
seems to contain an information content of 10 bit. This is roughly
equivalent to two plaintext letters.3

This corresponds to the idea of the ST that a ciphertext word on average
holds two plaintext letters.

1.4.3 Speed of writing, enciphering effort

The enciphering effort is fairly low. I’d expect the average person to be able
to fluently encipher a text after a day or so. After all, you only need to learn
the symbol set which enciphers the individual strokes (which could well
correspond to the set of ca. 17 frequent VM characters).

This means that it’s not an undue effort to encipher a work like the VM,
and the »fluent apparency« with the absence of corrections (for what it’s
worth . . . ) could be achieved.

1.4.4 Stringency

There are only very few rules with the VM which are consinstently
observed. For virtually every feature, there also appears to be an
exception.

While this is not inherent to the ST, this effect can readily be achieved.
For example, above we have demonstrated that the letter A could be

enciphered in different ways – as »/− \«, or as »/\−«. Both methods are
equally valid and require no change of a key on the decipherer’s part. Thus,
the encipherer can change these details on a whim without causing the
decipherer undue trouble.

This might actually encourage a behaviour which results in a deviation
from strict rules for the encipherment.

1.4.5 Repetitivity

The high degree of repetition of identical or near-identical words oberserved
in the VM appears naturally as a consequence of the ST and need not be
introduced ad hoc. (For an example of this, see 1.6.)

The simple fact is, that not only are our latin letters composed of a similar
number of strokes, but their arrangement is also very similar. Letters »B«,
»P«, and »R« for example only differ in a single stroke each, as do »E«, »F«,
and »L«.

3
10 bit are just enough to encode two symbols out of a set of 32 different symbols.

6



This means that the ciphertext syllables will resemble each other more
than if they were just random letter sequences. Furthermore, the word
structure governed by the camelcase procedure will ensure that lower case
syllables and upper case syllables always appear in their same respective
spots, increasing the amount of perceived repetivity even more.

1.5 Arguments against the Stroke Theory

1.5.1 The line as an encipherment unit

Several studies have shown that the line might be a relevant
encipherment unit one way or another, in as far as features like
wordlength etc. seem to be dependent on the word’s position in
the line. (Eg, line-initial words are longer on average.)

In the ST, the line plays no role, and hence those effects should not be
observed.

It should be noted though that the line-positional effects mentioned aren’t
very pronounced.

1.6 Sample text

This is a sample of text enciphered with the ST algorithm. Plaintext language
is 15th century German. Varying ciphertext word lengths have been allowed.

alba hdanl habl hd hlab hada habda cbe hdacldace aea hada
hdaeab ldace fdl hdacd qpanl ldaceqo lppa qoaceabab hiae
aeaceqoac mihada hdala habl hdalafg haace qdlpace qdablhlab
adacd hdala haa hd aiace ldanl qace hkace qoac ag hdala haaceqd
qala lbhdanl miab hada ldbda qo haaceqoo hkace mialba hlfdl
hlaemifg ag hlcbemiqace a qo hkace aiace qoacae hlf qdaldcbeqace
qo cbe qphd hdalafg haaceqdqo ace fg haaceqd hlae ldace qo
anlace miacefghaaceqd hkace mibdaaeac cbeace qo mian qmi
hd aghlanl qobdahada ada hlac ag hdanlabab qala hd hdaqo
mi ace qo hkace mialba hlfanlace

Please note that the letters chosen bear no relationship to the EVA charac-
ters.

2 FAQs

2.1 When did you come up with the idea?

In April 2005. There was much discussion on the Voynich mailing list
about the proper transcription system for the VM, and I tried my hand

7



at developing one as well. The basic idea of this system was to remove
amibuguities by breaking down the ciphertext characters into the strokes
which were drawn in writing them.

Halfway through it dawned upon me that this is actually what might
have been done to encipher the VM.

2.2 What assumptions do you make about the plaintext language
and character set?

Virtually none. The plaintext alphabet should be letter-based rather than
syllable- or word-based. Trying to encipher Chinese, for example, would
probably be a mess with that system.

But every language using latin, cyrillic or greek or hebrew letters should
be possible.

2.3 What assumptions do you make about the origin of the VM?

Virtually none. There is nothing to contradict the mainstream assumption
that the VM was written in the early 15th century somewhere in central
Europe.

2.4 Do you have a precedence for the use of this enciphering
scheme?

No, and I’m surprised by that, because to me it seems to be a fairly smple,
fast, and moderately safe method of encipherment.

2.5 There should be only 52 constituting fragments of the VM
according to your theory. But there are some 100 odd different
ciphertext characters already.

There would not be only letters to be enciphered, but probably also all kinds
of mathematical, alchemical and astrological symbols. These would require
extra strokes to describe them which are not part of the »standard set«.

Actually, the ciphertext letter distribution seems to show some 17 frequent
characters and a larger group of fairly to very rare characters. This would
fit with the assumption that the »set of 17« is required to compose the latin
letter set, while the rare characters are used in the construction of special
symbols.

2.6 How do you reconcile the observation of »Currier A« and
»Currier B« with your theory?

It’s not unreaonable to assume that somewhen in the middle of the writing
process, the author changed the basic stroke set or the plaintext alphabet

8



he had used. He could do so abruptly or in small steps, like with replacing
different letter shapes etc.

2.7 The decipherer has no chance to see where in the ciphertext
word the plaintext letter boundary is. Isn’t this much too lossy?

This is partly true. On the other hand, the decipherer knows whether he
sets out with an upper or lower case letter in a word, and, since there are
only some 26 letters which he can be about to compose, it is not beyond his
capabilities to discern the end of the current letter and the beginning of the
next.

Likewise, since he is doing the decipherment »on the fly« and can see the
context, something like Aloolonnen will quickly catch his eye and allow him
to correct it to Abdomen.

2.8 What’s the greatest obstacle to actually test the ST, ie to cracking
the VM with it?

The problem is that there is a large number of degrees of freedom in the
encipherment with this procedure, namely:

• Which alphabet (aka »font«) to use? For example, the letter »a« could
be written with a »hook« over the top (like this: »a«), or without (like
this: »a«).

• Which strokes are used? For one and the same alphabet, there are
different possibilities which strokes are »elemental« and would be used
in the breaking down.

• Which sequence? The letters can be broken down top-to-bottom, left-
to-right or in an arbitrary sequence. This would generate different
ciphertext letter sequences.

• What’s the plaintext language? This will of course influence the letter
frequencies and hence the distribution of the ciphertext characters.

Add to this the general problem with the unreliability of our transcription,
where we can’t be sure what constitutes two different or the same ciphertext
characters, or which is one, two or actually three characters.

2.9 Then how do you plan to crack it – or determine that the ST is
bogus?

The trick is to find the »syllable set« which represents the individual plain-
text letters. Once the syllable set is known, the cracking of the VM is reduced
to a simple substitution cipher.

9



But the problem is to arrive there, since we don’t know where the syllable
boundaries run in ciphertext words (where do the strokes of one plaintext
letter end, and where do the strokes for the next letter begin?), and, judging
from the length of VM ciphertext words, we can’t even be sure how many
plaintext letters are enciphered in one ciphertext word.

A naive computer analysis seeking to minimize the syllable set required
to synthesize the ciphertext will obviously always arrive at individual
ciphertext letters (because no more than 17 letters are required to synthesize
the bulk of the VM . . . go figure!)

I’m currently (Sept 2010) working on a slightly more sophisticated soft-
ware tool to break down a text enciphered with the ST into its constituent syl-
lables. I’m testing the tool against a known plaintext which was enciphered
with the ST method, and can synthesize close to 90% of the ciphertext.

Elmar Vogt
Ludwigstr. 57

90763 Fürth
elvogt@gmx.net

Tel.: (++49) 173/591 29 93

10


	A Note on Typographical Conventions
	The Algorithm
	Basic Tenet
	Idea
	Algorithm
	Why camelcase? 

	Properties
	VM >>grammar<< and ST >>syllables<<
	Information content
	Speed of writing, enciphering effort
	Stringency
	Repetitivity

	Arguments against the Stroke Theory
	The line as an encipherment unit

	Sample text 

	FAQs
	When did you come up with the idea?
	What assumptions do you make about the plaintext language and character set?
	What assumptions do you make about the origin of the VM?
	Do you have a precedence for the use of this enciphering scheme?
	There should be only 52 constituting fragments of the VM according to your theory. But there are some 100 odd different ciphertext characters already.
	How do you reconcile the observation of >>Currier A<< and >>Currier B<< with your theory?
	The decipherer has no chance to see where in the ciphertext word the plaintext letter boundary is. Isn't this much too lossy?
	What's the greatest obstacle to actually test the ST, ie to cracking the VM with it?
	Then how do you plan to crack it – or determine that the ST is bogus?


