
Type Inference for

Record Concatenation and Subtyping

Jens Palsberg
Purdue University∗

Tian Zhao
Purdue University†

September 22, 2003

Abstract

Record concatenation, multiple inheritance, and multiple-object
cloning are closely related and part of various language designs. For
example, in Cardelli’s untyped Obliq language, a new object can be
constructed from several existing objects by cloning followed by con-
catenation; an error is given in case of field name conflicts. Type
systems for record concatenation have been studied by Wand, Harper
and Pierce, Remy, and others; and type inference for the combination
of record concatenation and subtyping has been studied by Sulzmann
and by Pottier.

In this paper we present a type inference algorithm for record con-
catenation, subtyping, and recursive types. Our example language is
the Abadi-Cardelli object calculus extended with a concatenation op-
erator. Our algorithm enables type checking of Obliq programs with-
out changing the programs at all. We prove that the type inference
problem is NP-complete.

∗Purdue University, Dept. of Computer Science, W Lafayette, IN 47907, pals-
berg@cs.purdue.edu.

†Purdue University, Dept. of Computer Science, W Lafayette, IN 47907,
tzhao@cs.purdue.edu.

1

1 Introduction

1.1 Background

In Cardelli’s untyped Obliq language [4], the operation

clone(a1, . . . , an)

creates a new object that contains the fields and methods of all the argument
objects a1, . . . , an. This is done by first cloning each of a1, . . . , an, and then
concatenating the clones. An error is given in case of field name conflicts,
that is, in case at least two of a1, . . . , an have a common field. Cardelli notes
that useful idioms are:

clone(a, {l : v})

to inherit the fields of a and add a new field l with initial value v, and:

clone(a1, a2)

to multiply inherit from a1 and a2.
Obliq’s multiple-object cloning is an instance of the idea of concatenating

two records of data. In a similar fashion, languages such as C++ [22] and
Borning and Ingalls’ [3] version of Smalltalk allow multiple inheritance of
classes.

In this paper we focus on languages such as Obliq where concatenation is
a run-time operation and where a field name conflict is considered an error;
such concatenation is known as symmetric concatenation. There are several
ways of handling field name conflicts. One idea is to do run-time checking,
and thereby add some overhead to the execution time. Another idea, which
we pursue here, is to statically detect field name errors by a type system.
The main challenge for such a type system is to find out which objects will
eventually be concatenated and give them types that support concatenation.

Type systems for record concatenation have been studied by Wand [25],
Harper and Pierce [8], Remy [20], Shields and Meijer [21], Tsuiki [24], Zwa-
nenburg [27, 28] and others. These type systems use ideas such as row vari-
ables, present-fields and absent-fields, type-indexed rows, second-order types,
and intersection types. More recently, Sulzmann [23] and Pottier [19] have
studied type inference with the combination of record concatenation and sub-
typing. None of these algorithms are, as far as we are aware, known to run
in polynomial time.

2

In this paper we investigate the idea of using variance annotations [17, 1]
together with subtyping and recursive types as the basis for typing record
concatenation. Following Glew [7], we will use two forms of record types.
The variance annotation 0, as in

[`i : B i∈1..n
i]0,

denotes that records of that type can be concatenated, and that subtyping
cannot be used. The variance annotation →, as in

[`i : B i∈1..n
i]→,

denotes that records of that type cannot be concatenated, and that subtyping
can be used. For example, if we have

[l : 5, m : true] : [l : int,m : boolean]0

[n : 7] : [n : int]0

then for the concatenation (denoted by +) of the two records we would get

[l : 5, m : true] + [n : 7] : [l : int,m : boolean]0 ⊕ [n : int]0

= [l : int,m : boolean, n : int]0.

where ⊕ is the symmetric concatenation operation on record types which is
only defined when the labels sets are disjoint and the two types both have the
variance annotation 0. The idea is that if an object has type [li : ti]

0, then
we know exactly which fields are in the object, and hence we know which
other fields we can safely add without introducing a field name conflict. The
more flexible types [`i : B i∈1..n

i]→ can be used to type objects that will not
be concatenated with other objects.

We restrict our attention to width-subtyping for types with variance an-
notation→, and we allow subtyping from variance annotation 0 to→. Going
from 0 to → is in effect to forget that a record of that type can be concate-
nated with other records. Our type system is simpler and less expressive
than some previous type systems for record concatenation. Our goal is to
analyze the computational complexity of type inference. That complexity
may well be less than the complexity of type inference for some of the more
expressive type systems.

3

1.2 Our Result

We present the design of a type inference algorithm for the Abadi-Cardelli
object calculus extended with a concatenation operator. The type system
supports subtyping and recursive types. Our algorithm enables type check-
ing of Obliq programs without changing the programs at all; extending our
results to Obliq is left for future work. We prove that the type inference
problem is NP-complete.

Our NP algorithm works by reducing type inference to the problem of
solving a set of constraints. A constraint is a pair (A,B), where A and B

are types that may contain type variables and the concatenation operator ⊕;
and the goal is to find a substitution S such that for each constraint (A,B),
we have S(A) ≤ S(B) where ≤ is the subtype order. We will use R to range
over sets of constraints; we will often refer to R as a relation on types. A key
theorem states:

Theorem A set of constraints is solvable if and only there exists
a closed superset which is consistent.

Here, “closure” means that certain syntactic consequences of the con-
straints have been added to the constraint set, and “consistent” means that
there are no obviously unsatisfiable constraints (e.g., ([m : V]0, [l : U]0)).
The algorithm constructs a solution from a closed, consistent constraint set.
To solve a constraint set R generated from a program a, we first guess a
superset R′ of R. Next we check that R′ is closed and consistent; this can be
done in polynomial time. This framework has been used for solving subtype
constraints for a variety of types [12, 9, 15, 13, 14, 16]. A key difference
from these papers is that our constraint problem does not admit a smallest
closed superset which is consistent. As a reflection of that, the algorithms
in [12, 9, 15, 13, 14, 16] all run in polynomial time, while the type inference
problem considered here is NP-complete. This is because in the referenced
papers, the smallest closed superset of a given constraint set can be computed
in polynomial time, while our algorithm has to guess a closed superset.

All type-inference algorithms based on this framework, including the one
in this paper, can be viewed as whole-program analyses because they use a
constraint set generated from the whole program. A whole-program analysis
can be made modular in several ways [6]. For example, we can generalize
to type inference with respect to a fixed (non-empty) typing environment.
One would start the algorithm with an initial set of constraints for program

4

variables, derived from that fixed environment. Thus, one could collect (or
constrain) the substitution provided by a run of the algorithm as an interface
to a further program fragment that uses the first one as a library.

Our algorithm uses a new notion of closure and a traditional notion of
consistency. Our seven closure rules capture various aspects of the subtyping
order. For example, one closure rule ensures that if

(V ⊕ V ′, [l : U]→)

is a constraint, then either V or V ′ must be forced to have an l-field, as
illustrated in the example below. That closure rule highlights why the type
inference problem is NP-complete: there is a choice which possibly later has
to be undone.

In our proof of the main theorem we use the technique of Palsberg, Zhao,
and Jim [16] that employs a convenient characterization of the subtyping
order (Lemma 2.6). The characterization uses notions of subtype-closure and
subtype-consistency that are different, yet closely related, to the already-
mentioned notions of what we for clarity will call satisfaction-closure and
satisfaction-consistency. The paper [16] concerns type inference with both
covariant and invariant fields, and for types that all allow width-subtyping.
In the present paper, all fields are invariant, but some types (those with the
variance-annotation 0) do not admit non-trivial subtyping. While the type
inference algorithms reported in the two papers are entirely different, their
correctness proofs have the same basic structure.

1.3 Example

We now present an example that gives a taste of the definitions and tech-
niques that are used later in the paper. Our example program a has two
methods l and m:

a = [l = ς(x)(x.l + x.m).k, m = ς(y)y.m].

When running our type inference algorithm by hand on this program, the
result is that a is typable with type

a : [l : µα.[k : α]0, m : []0]0.

The goal of this section is to illustrate how the algorithm arrives at that
conclusion.

5

We can use the rules in Section 4 to generate the following set of con-
straints, called R. In the left column are all occurrences of subterms in the
program; in the right column are the constraints generated for each occur-
rence. We use A ≡ B to denote the pair of constraints (A,B) and (B,A).

Occurrence Constraints
x (Ux, Vx)
y (Uy, Vy)
a ([l : V(x.l+x.m).k, m : Vy.m]0, Va)

Ux ≡ [l : V(x.l+x.m).k, m : Vy.m]0

Uy ≡ [l : V(x.l+x.m).k, m : Vy.m]0

(x.l + x.m).k (Vx.l+x.m, [k : U(x.l+x.m).k]
→)

(U(x.l+x.m).k, V(x.l+x.m).k)
x.l + x.m (Vx.l ⊕ Vx.m, Vx.l+x.m)

x.l (Vx, [l : Ux.l]
→)

(Ux.l, Vx.l)
x.m (Vx, [m : Ux.m]→)

(Ux.m, Vx.m)
y.m (Vy, [m : Uy.m]→)

(Uy.m, Vy.m)

Notice that, for each bound variable x, we have a type variable Ux. More-
over, for each occurrence of x, we have a type variable Vx. Intuitively, Ux
stands for the type of x in the type environment, while Vx stands for the type
of an occurrence of x after subtyping. Similarly, Ux.l stands for the type of
x.l before subtyping, while Vx.l stands for the type of x.l after subtyping.

Next, our type inference algorithm will guess a so-called satisfaction-
closed superset R′ of R. We will here display and motivate some of the
interesting constraints in a particular R′. First, from the constraints

(Ux, Vx)

(Vx, [l : Ux.l]
→)

and transitivity, we have
(Ux, [l : Ux.l]

→)

in R′. Second, from that constraint and

Ux ≡ [l : V(x.l+x.m).k, m : Vy.m]0

6

and the observation that fields have invariant subtyping, we have

(V(x.l+x.m).k, Ux.l)

in R′. Third, from the constraints

(Vx.l ⊕ Vx.m, Vx.l+x.m)

(Vx.l+x.m, [k : U(x.l+x.m).k]
→)

and transitivity, we have

(Vx.l ⊕ Vx.m, [k : U(x.l+x.m).k]
→)

in R′. At this point there is a choice. We can force either Vx.l or Vx.m to
be mapped to a type with a k-field. Since there are no other significant
constraints on either Vx.l or Vx.m, both choices will be fine. Our algorithm
chooses the first one, and so we have the constraint

(Vx.l, [k : U(x.l+x.m).k]
→)

in R′. After this constraint has been added, we can apply transitivity three
times to:

(U(x.l+x.m).k, V(x.l+x.m).k)

(V(x.l+x.m).k, Ux.l)

(Ux.l, Vx.l)

(Vx.l, [k : U(x.l+x.m).k]
→)

so we have
(U(x.l+x.m).k, [k : U(x.l+x.m).k]

→)

in R′. The last constraint makes it apparent that recursive types are needed
to solve the constraint system and therefore to type the example program.

Note that the choice we made in applying closure rules to (Vx.l⊕Vx.m, [k :
U(x.l+x.m).k]

→) implies that sometimes there is no unique solution to our type-
inference problem.

Thus, if we want to do type inference for a program fragment without an
initial type environment, the best we can do is to generate the constraints,
perhaps simplify them [18], and delay solving them until the constraints for
the other program fragments become available.

7

Once our type inference algorithm has guessed a sat-closed R′, it checks
whether R′ is sat-consistent, that is, whether there is at least one constraint
which obviously is unsolvable, e.g., ([m : V]0, [l : U]0). If R′ is not sat-
consistent, then R has no solution. In the case of the example program, R′

is sat-consistent, and our type inference algorithm then derives the following
solution from R′. Define

P ≡ µα.[k : α]0

Q ≡ [l : P,m : []0]0

E ≡ ∅[x : Q]

F ≡ ∅[y : Q],

where P,Q are types, and E, F are type environments. Note that we use
so-called equi-recursive types that satisfy a certain equation, rather than the
kind of recursive types that have to be explicitly folded and unfolded.

We can derive ∅ ` a : Q as follows.

E ` (x.l + x.m) : [k : P]0

E ` (x.l + x.m) : [k : P]→

E ` (x.l + x.m).k : P

F ` y : Q

F ` y : [m : []0]→

F ` y.m : []0

∅ ` a : Q

Notice the two uses of subsumption:

[k : P]0 ≤ [k : P]→

Q ≤ [m : []0]→.

We can derive E ` (x.l + x.m) : [k : P]0 as follows. Notice that [k : P]0 =
[k : P]0 ⊕ []0.

E ` x : Q

E ` x : [l : [k : P]0]→

E ` x.l : [k : P]0

E ` x : Q

E ` x : [m : []0]→

E ` x.m : []0

E ` (x.l + x.m) : [k : P]0

Notice the two uses of subsumption:

Q ≤ [l : [k : P]0]→

Q ≤ [m : []0]→.

8

We derive the first of these inequalities using the unfolding rule for recursive
types to get

P = µα.[k : α]0 = [k : µα.[k : α]0]0 = [k : P]0,

and therefore

Q = [l : P,m : []0]0 = [l : [k : P]0, m : []0]0.

Here is an alternative typing, which arises from forcing Vx.m to be mapped
to a type with a k-field:

∅ ` a : [l : []0, m : [k : []0]0]0.

9

2 Types and Subtyping

We will work with recursive types, and we choose to represent them by
possibly infinite trees.

2.1 Defining types as infinite trees

We use U , V to range over the set T V of type variables; we use k, `, m
to range over labels drawn from some possibly infinite set Labels of method
names; and we use v to range over the set Variances = {0,→} of variance
annotations. Variance annotations are ordered by the smallest partial order
v such that 0 v→.

The alphabet Σ of our trees is defined

Σ = T V ∪ (P(Labels)× Variances).

A path is a finite sequence α ∈ Labels∗ of labels, with juxtaposition for
concatenation of paths, and ε for the empty sequence. A type or tree A is
a partial function from paths into Σ, whose domain is nonempty and prefix
closed, and such that A(α) = ({`i | i ∈ I}, v) if and only if ∀i, A(α`i) is
defined. We use A, B, C to range over the set T (Σ) of trees.

Note that trees need not be finitely branching or regular. A regular tree
has finitely many distinct subtrees [5]. Of course, we will be particularly
interested in two subsets of T (Σ), the finite trees Tfin(Σ) and the finitely
branching and regular trees Treg(Σ). Some definitions, results, and proofs are
given in terms of T (Σ), in such a way that they immediately apply to Tfin(Σ)
and Treg(Σ).

An example tree is given below.

({`1, `}, 0)
`1

vvvvv `
OOOOOO

U1 ({`2, `}, 0)
`2

oooooooo `
OOOOOO

U2 ({`3, `}, 0)
`3

oooooooo `
GG

GG
GG

U3
. . .

We now introduce some convenient notation. We write A(α) = ↑ if A
is undefined on α. If for all i ∈ I, Bi is a tree, `i is a distinct label, and

10

v ∈ Variances, then [`i : B i∈I
i]v is the tree A such that

A(α) =

({`i | i ∈ I}, v) if α = ε

Bi(α
′) if α = `iα

′ for some i ∈ I
↑ otherwise.

We abuse notation and write U for the tree A such that A(ε) is the type
variable U and A(α) = ↑ for all α 6= ε.

Recursive types are regular trees, and they can be presented by µ-expressions [5,
2] generated by the following grammar:

A,B ::= U, V type variable
| [`i : B i∈1..n

i]φ object type (`i’s distinct, φ ::= 0 |→)
| µU.A recursive type

We can now define the concatenation operator ⊕. If

A = [`i : B i∈I
i]0

A′ = [`i : B i∈I′

i]0

and I ∩ I ′ = ∅, then

A⊕ A′ = [`i : B i∈I∪I′

i]0,

and otherwise A⊕ A′ is undefined.

2.2 Defining Subtyping via Simulations

Our subtyping order supports width subtyping but not depth subtyping.

Definition 2.1 A relation R over T (Σ) is called a simulation if for all
(A,A′) ∈ R, we have the following conditions.

• For all U , A = U if and only if A′ = U .

• For all `i, i ∈ I ′, B′
i, if A′ = [`i : B′ i∈I′

i]φ
′

, then there exist Bi such
that

A = [`i : B i∈I
i]φ, I ′ ⊆ I, φ′ w φ

(Bi, B
′
i), (B

′
i, Bi) ∈ R, φ′ = 0⇒ I ′ = I.

11

2

Notice that a simulation can contain pairs such as ([. . .]0, [. . .]→), but not
([. . .]→, [. . .]0). Notice also that the last line of Definition 2.1 enforces no
depth subtyping.

For example, the empty relation on T (Σ) and the identity relation on
T (Σ) are both simulations. Simulations are closed under unions and inter-
sections, and there is a largest simulation, which we call ≤ and use as our
subtyping order:

≤ =
⋃

{R | R is a simulation}. (1)

Alternately, ≤ can be seen as the maximal fixed point of a monotone function
on P(T (Σ)× T (Σ)). Then we immediately have the following result.

Lemma 2.2 A ≤ A′ if and only if

• For all U , A = U if and only if A′ = U .

• For all `i, B
′
i, i ∈ I

′, and φ′, if A′ = [`i : B′ i∈I′

i]φ
′

, then there exist Bi,
such that

A = [`i : B i∈I
i]φ, I ′ ⊆ I, φ′ w φ, and

∀i ∈ I, Bi = B′
i, φ′ = 0⇒ I ′ = I.

All of these results are standard in concurrency theory, and have easy
proofs, c.f. [10]. Similarly, it is easy to show that ≤ is a preorder. Our
simulations differ from the simulations typically found in concurrency in that
they are all anti-symmetric (again, the proof is easy).

Lemma 2.3 ≤ is a partial order.

Proof. See Appendix A. 2

We may apply the principle of co-induction to prove that one type is a
subtype of another:

Co-induction: To show A ≤ B, it is sufficient to find a simula-
tion R such that (A,B) ∈ R.

12

2.3 A characterization of subtyping

We now give a characterization of subtyping (Lemma 2.6) which will be used
in the proof of the main theorem (Theorem 5.15). Suppose R is a relation
on types, and we want to know whether A ≤ B for every (A,B) ∈ R. By
co-induction this is equivalent to the existence of a simulation containing R.
And since simulations are closed under intersection, this is equivalent to the
existence of a smallest simulation containing R. We can characterize this
smallest simulation as follows.

Definition 2.4 We say a relationR on types is subtype-closed if ([` : B, . . .]φ, [` :
B′, . . .]φ

′

) ∈ R implies (B,B′), (B′, B) ∈ R. 2

Note that the subtype-closed relations on types are closed under intersec-
tion; therefore for any relation R on types, we may define its subtype-closure
to be the smallest subtype-closed relation containing R. Every simulation is
subtype-closed, and subtype-closure is a monotone operation.

Definition 2.5 We say a relation R on types is subtype-consistent if [`i :
B i∈I
i]φ, [`i : B′ i∈I′

i]φ
′

) ∈ R, implies

• if φ′ = 0, then φ = 0 and I = I ′,

• if φ′ =→, then I ⊇ I ′.

2

Note that every simulation is subtype-consistent, and moreover, any sub-
set of an subtype-consistent set is subtype-consistent.

Lemma 2.6 Let R be a relation on types. The following statements are
equivalent.

1. A ≤ B for every (A,B) ∈ R.

2. The subtype-closure of R is a simulation.

3. The subtype-closure of R is subtype-consistent.

Proof.

• (2)⇒ (1): Immediate by co-induction.

13

• (1) ⇒ (3): R is a subset of ≤, so by monotonicity and the fact that
≤ is subtype-closed, the subtype-closure of R is a subset of ≤. Then
since ≤ is subtype-consistent, its subset, the subtype-closure of R, is
subtype-consistent.

• (3) ⇒ (2): Let R′ be the subtype-closure of R, and suppose (A,A′) ∈
R′.

If A = U , by subtype-consistency A′ = U ; and similarly, if A′ = U ,
then A = U .

If A′ = [`i : B′
i

i∈I′]φ
′

, by subtype-consistency A must be of the form
[`i : B i∈I

i]φ, where φ v φ′. And since R′ is subtype-closed, (Bi, B
′
i), (B

′
i, Bi) ∈

R′ and I ′ ⊆ I, and φ′ = 0⇒ I ′ = I, as desired.

2

3 The Abadi-Cardelli Object Calculus

We now present an extension of the Abadi-Cardelli object calculus [1] and a
type system. The types are recursive types as defined in the previous section.

We use x, y to range over term variables. Expressions are defined by the
following grammar.

a, b, c ::= x variable
| [`i = ς(xi)b

i∈1..n
i] object (`i distinct)

| a.` field selection / method invocation
| (a.`⇐ ς(x)b) field update / method update
| a1 + a2 object concatenation

An object [`i = ς(xi)b
i∈1..n

i] has method names `i and methods ς(xi)bi. The
order of the methods does not matter. Each method binds a name x which
denotes the smallest enclosing object, much like “this” in Java. Those names
can be chosen to be different, so within a nesting of objects, one can refer to
any enclosing object. A value is of the form [`i = ς(xi)b

i∈1..n
i]. A program

is a closed expression.
A small-step operational semantics is defined by the following rules:

• If a ≡ [`i = ς(xi)b
i∈1..n

i], then, for j ∈ 1..n,

– a.`j ; bj[xj := a],

14

– (a.`j ⇐ ς(y)b) ; a[`j ← ς(y)b].

• If a1 ≡ [`i = ς(xi)b
i∈I1

i], a2 ≡ [`i = ς(xi)b
i∈I2

i], and I1 ∩ I2 = ∅, then

a1 + a2 ; [`i = ς(xi)b
i∈I1∪I2

i].

• If b ; b′ then a[b] ; a[b′].

Here, bj[xj := a] denotes the ς-term bj with a substituted for free occurrences
of xj (renaming bound variables to avoid capture); and a[`j ← ς(y)b] denotes
the expression a with the `j field replaced by ς(y)b. A context is an expression
with one hole, and a[b] denotes the term formed by replacing the hole of the
context a[·] by the term b (possibly capturing free variables in b).

An expression b is stuck if it is not a value and there is no expression b′

such that b ; b′. An expression b goes wrong if ∃b′ : b ;
∗ b′ and b′ is stuck.

A type environment is a partial function with finite domain which maps
term variables to types in Treg(Σ). We use E to range over type environments.
We use E[x : A] to denote a partial function which maps x to A, and maps
y, where y 6= x, to E(y).

The typing rules below allow us to derive judgments of the form E ` a : A,
where E is a type environment, a is an expression, and A is a type in Treg(Σ).

E ` x : A (provided E(x) = A) (2)

E[xi : A] ` bi : Bi ∀i ∈ 1..n

E ` [`i = ς(xi)b
i∈1..n

i] : A
(where A = [`i : B i∈1..n

i]0) (3)

E ` a : A

E ` a.` : B
(where A ≤ [` : B]→) (4)

E ` a : A E[x : A] ` b : B

E ` a.`⇐ ς(x)b : A
(where A ≤ [` : B]→) (5)

E ` a1 : A1 E ` a2 : A2

E ` a1 + a2 : A1 ⊕ A2
(6)

E ` a : A

E ` a : B
(where A ≤ B) (7)

The first five rules express the typing of each of the four constructs in the
object calculus and the last rule is the rule of subsumption. We say that a
term a is well-typed if E ` a : A is derivable for some E and A. The following
result can be proved by a well-known technique [11, 26].

15

Theorem 3.1 (Type Soundness) Well-typed programs cannot go wrong.

The type inference problem for our extension of the Abadi-Cardelli cal-
culus is: given a term a, find a type environment E and a type A such that
E ` a : A, or decide that this is impossible.

4 From Type Inference to Constraint Solving

A substitution S is a finite partial function from type variables to types in
Treg(Σ), written {U1 := A1, . . . , Un := An}. The set {U1, . . . , Un} is called the
domain of the substitution. We identify substitutions with their graphs, and
write (S1 ∪ S2) for the union of two substitutions S1 and S2; by convention,
we assume that S1 and S2 agree on variables in their common domain, so
(S1∪S2) is a substitution. Substitutions are extended to total functions from
types to types in the usual way.

Definition 4.1 A relation R is solvable if and only if there is a substitution
S such that for all (A,B) ∈ R, we have S(A) ≤ S(B). 2

Definition 4.2 We will here focus on so-called C-relations (which we also
refer to as constraint sets) which contain only pairs (A,B), where A,B are
of the forms

• [` : V, . . .]φ,

• V , or

• V1 ⊕ V2,

where V, V1, V2 are type variables, and φ ∈ {0.→}. 2

While V1 ⊕ V2 is not a type, it will become a type once we apply a
substitution and get S(V1) ⊕ S(V2), provided the concatenation is defined.
Note that if V1⊕V2 is in R, and R is solvable, then the solution, say S, must
make S(V1) ⊕ S(V2) well-defined. To avoid introducing special terminology
for the left-hand sides and right-hand sides of constraints, we will abuse the
word type and call V1 ⊕ V2 a type in the remainder of the paper.

We now prove that the type inference problem is equivalent to solving
constraints in the form of C-relations.

16

We write E ′ ≤ E if, whenever E(x) = A, there is an A′ ≤ A such that
E ′(x) = A′. The following standard result can be proved by induction on
typings.

Lemma 4.3 (Weakening) If E ` c : C and E ′ ≤ E, then E ′ ` c : C.

By a simple induction on typing derivations, we obtain the following
syntax-directed characterization of typings. The proof uses only the reflex-
ivity and transitivity of ≤ which can be derived from Lemma 2.2.

Lemma 4.4 (Characterization of Typings) E ` c : C if and only if one
of the following cases holds:

• c = x and E(x) ≤ C;

• c = a.`, and for some A and B, E ` a : A, A ≤ [` : B]→, and B ≤ C;

• c = [`i = ς(xi)b
i∈1..n

i], and for some A, and some Bi for i ∈ 1..n,
E[xi : A] ` bi : Bi, and A = [`i : B i∈1..n

i]0 ≤ C; or

• c = (a.`⇐ ς(x)b), and for some A and B, E ` a : A, E[x : A] ` b : B,
A ≤ [` : B]→, and A ≤ C.

• c = a1 + a2, and for some A1, A2, E ` a1 : A1, E ` a2 : A2, and
A1 ⊕ A2 ≤ C.

We now show how to generate a C-relation from a given program.

Definition 4.5 Let c be a ς-term in which all free and bound variables are
pairwise distinct. We define Xc, Yc, Ec, and C(c) as follows.

• Xc is a set of fresh type variables. It consists of a type variable Ux for
every term variable x appearing in c.

• Yc is a set of fresh type variables. It consists of a type variable Vc′ for
each occurrence of a subterm c′ of c, and a type variable Uc′ for each
occurrence of a select subterm c′ = a.` of c. (If c′ occurs more than
once in c, then Uc′ and Vc′ are ambiguous. However, it will always be
clear from context which occurrence is meant.)

17

• Ec is a type environment, defined by

Ec = {x : Ux | x is free in c}.

• C(c) is the set of the following constraints over Xc and Yc:

– For each occurrence in c of a variable x, the constraint

(Ux, Vx). (8)

– For each occurrence in c of a subterm of the form a.`, the two
constraints

(Va, [` : Ua.`]
→) (9)

(Ua.`, Va.`). (10)

– For each occurrence in c of a subterm of the form [`i = ς(xi)b
i∈1..n

i],
the constraint

([`i : Vbi
i∈1..n]0, V[`i=ς(xi)b

i∈1..n
i

]) (11)

and for each j ∈ 1..n, the constraints

Uxj
≡ [`i : Vbi

i∈1..n]0. (12)

– For each occurrence in c of a subterm of the form (a.` ⇐ ς(x)b),
the constraints

(Va, V(a.`⇐ς(x)b)) (13)

Va ≡ Ux (14)

(Va, [` : Vb]
→). (15)

– For each occurrence in c of a subterm of the form (a1 + a2), the
constraint

(Va1 ⊕ Va2 , V(a1+a2)), (16)

2

In the definition of C(c), each equality A ≡ B denotes the two inequalities
(A,B) and (B,A).

18

Theorem 4.6 E ` c : C if and only if there is a solution S of C(c) such
that S(Vc) = C and S(Ec) ⊆ E.

Each direction of the theorem can be proved separately. However, the proofs
share a common structure, so for brevity we will prove them together. The
two directions follow immediately from the two parts of the next lemma.

Lemma 4.7 Let c0 be a ς-term. For every subterm c of c0,

1. if E ` c : C, then there is a solution Sc of C(c) such that Sc(Vc) = C

and Sc(Ec) ⊆ E; and

2. if S is a solution of C(c0), then S(Ec) ` c : S(Vc).

Proof. The proof is by induction on the structure of c. In (2), we will
often use the fact that any solution to C(c0) (in particular, S) is a solution
to C(c) ⊆ C(c0).

• If c = x, then Ec = {x : Ux} and C(c) = {(Ux, Vx)}.

1. Define Sc = {Ux := E(x), Vx := C}. Then Sc(Vc) = Sc(Vx) = C,
and Sc(Ec) = {x : E(x)} ⊆ E.

Furthermore, by Lemma 4.4, E(x) ≤ C, so Sc is a solution to C(c).

2. By (2), S(Ec) ` c : S(Ux).

And since S(Ux) ≤ S(Vx) = S(Vc), we have S(Ec) ` c : S(Vc) by
(7).

• If c = a.`, then Ec = Ea and C(c) = C(a)∪{(Va, [` : Ua.`]
→), (Ua.`, Va.`)}.

1. By Lemma 4.4, for some A and B, E ` a : A, A ≤ [` : B]→, and
B ≤ C.

By induction there is a solution Sa of C(a) such that Sa(Va) = A

and Sa(Ea) ⊆ E.

Define Sc = Sa ∪ {Ua.` := B, Va.` := C}. Then Sc solves C(c),
Sc(Vc) = Sc(Va.`) = C, and Sc(Ec) = Sa(Ea) ⊆ E.

19

2. By induction, S(Ea) ` a : S(Va).

Since S(Va) ≤ S([` : Ua.`]
→), by (7) we have S(Ea) ` a : S([` :

Ua.`]
→).

Then by (4), S(Ea) ` a.` : S(Ua.`).

Since S(Ua.`) ≤ S(Va.`) = S(Vc), by (7) we have S(Ea) ` a.` :
S(Vc).

Finally, Ec = Ea and c = a.`, so S(Ec) ` c : S(Vc) as desired.

• If c = [`i = ς(xi)b
i∈1..n

i], then Ec =
⋃

i∈1..n(Ebi\xi), and

C(c) = { ([`i : Vbi
i∈1..n]0, Vc)}

∪ { Uxj
≡ [`i : Vbi

i∈1..n]0 | j ∈ 1..n }
∪ (

⋃

i∈1..n C(bi)).

1. By Lemma 4.4, for some A, and some Bi for i ∈ 1..n, we have
E[xi : A] ` bi : Bi and A = [`i : B i∈1..n

i]0 ≤ C.

By induction, for every i ∈ 1..n there is a substitution Sbi such
that Sbi solves C(bi), Sbi(Vbi) = Bi, and Sbi(Ebi) ⊆ E[xi : A].

We first assume that the domain of any Sbi is Xbi∪Ybi (else restrict
Sbi to this set). Let Sc = (

⋃

i∈1..n Sbi) ∪ {Vc := C}

Clearly, if Sc is well-defined, then it is a solution to C(c), Sc(Vc) =
C, and Sc(Ec) ⊆ E.

To show that Sc is well-defined, it suffices to show that for any
distinct j, k ∈ 1..n, the substitutions Sbj and Sbk agree on all type
variables in their common domain. And if U is in the domain of
both Sbj and Sbk , it must have the form Uy for some term variable
y free in both bj and bk.

Then y must be assigned a type by E, so the conditions Sbj (Ebj) ⊆
E[xj : A] and Sbk(Ebk) ⊆ E[xk : A] guarantee that Sbj (Uy) =
E(y) = Sbk(Uy). Therefore Sc is well-defined, as desired.

2. By induction, S(Ebj) ` bj : S(Vbj) for all j ∈ 1..n.

By weakening, S(Ec[xj : Uxj
]) ` bj : S(Vbj) for all j ∈ 1..n.

Since S solves C(c), S(Uxj
) = S([`i : Vbi

i∈1..n]0) for all j ∈ 1..n.

Then by (3), S(Ec) ` c : S([`i : Vbi
i∈1..n]0).

Finally, since S solves C(c), S([`i : Vbi
i∈1..n]0) ≤ S(Vc), so we

have S(Ec) ` c : S(Vc) by (7).

20

• If c = (a.`⇐ ς(x)b), then Ec = Ea ∪ (Eb\x), and

C(c) = C(a) ∪ C(b) ∪ {(Va, Vc), Va ≡ Ux, (Va, [` : Vb]
→)}.

1. By Lemma 4.4, for some A and B, E ` a : A, E[x : A] ` b : B,
A ≤ [` : B]→, and A ≤ C.

By induction there is a solution Sa of C(a) such that Sa(Va) = A

and Sa(Ea) ⊆ E, and a solution Sb of C(b) such that Sb(Vb) = B

and Sb(Eb) ⊆ E[x : A].

Let Sc = Sa ∪ Sb ∪ {Vc := C,Ux := A}. (We omit a proof that Sc
is well-defined; this can be shown just as in the previous case.)

Then Sc is a solution to C(c), Sc(Vc) = C, and Sc(Ec) ⊆ E.

2. Since S solves C(c), S(Va) ≤ S[l : Vb]
→. By induction S(Ea) ` a :

S(Va) and S(Eb) ` b : S(Vb).

By weakening, S(Ec) ` a : S(Va) and S(Ec[x : Ux]) ` b : S(Vb).

Then by (5), S(Ec) ` c : S(Va), and by (7), S(Ec) ` c : S(Vc).

• If c = (a1 + a2), then Ec = Ea1 ∪ Ea2 and

C(c) = C(a1) ∪ C(a2) ∪ {(Va1 ⊕ Va2 , Vc)}.

1. By Lemma 4.4, for some A1 and A2, E ` a1 : A1, E ` a2 : A2,
and A1 ⊕ A2 ≤ C.

By induction there is a solution Sai
of C(ai) such that Sai

(Vai
) =

Ai, and Sai
(Eai

) ⊆ E, for i = 1, 2.

Let Sc = Sa1 ∪ Sa2 ∪ {Vc := C}. (We omit a proof that Sc is
well-typed; this can be shown as above.) Then Sc is a solution to
C(c), Sc(Vc) = C, and Sc(Ec) ⊆ E.

2. By induction S(Ea1) ` a1 : S(Va1) and S(Ea2) ` a2 : S(Va2).

By weakening, S(Ec) ` a1 : S(Va1) and S(Ec) ` a2 : S(Va2).

Then by (6), S(Ec) ` c : S(Va1)⊕ S(Va2), and by (7), S(Ec) ` c :
S(Vc).

2

21

5 Solving Constraints

In this section we present an algorithm for deciding whether a C-relation R

is solvable. We first list the terminology used in the later definitions.

Types = the set of types
States = P(Types)

RelTypes = P(Types × Types)
RelStates = P(States × States)

We use T to range over sets of types. For any type A such that A(ε) =
(S, φ), we write labs(A) = S. For any type A and label `, A.` is B if
A = [` : B . . .]φ, and is undefined otherwise. Notice that A(`α) = (A.`)(α).
We also make the following definitions.

T .` = {B | ∃A ∈ T . A = [` : B, . . .]φ}.

aboveR(T) = {B | ∃A ∈ T . (A,B) ∈ R}.

ABOVER(R′) = {(aboveR({A}), aboveR({B})) | (A,B) ∈ R′}

We define function VarR such that

• if type A is of the form [. . .]φ, then VarR(A) = φ;

• VarR(V ⊕ V ′) = 0;

• if V ⊕ V ′ or V ′ ⊕ V is in R, then VarR(V) = 0; and

• VarR(T) = u{VarR(A) | A ∈ T },

where u is the greatest lower bound of a nonempty set of variances; u∅ is
undefined.

The types of the above definitions are

T .` : States→ States
aboveR : States→ States

ABOVER : RelTypes→ RelStates
VarR : States→ Variances

For any set T of types we define LV : States → P(Labels), the labels
implied by T , by

LV(T) =
⋃

A∈T

labs(A(ε))

22

In the rest of the section, we first define the notions of satisfaction-closure
(Section 5.1) and satisfaction-consistency (Section 5.2), and we then prove
that a C-relation R is solvable if and only if there exists a satisfaction-closed
superset which is satisfaction-consistent (Theorem 5.15).

5.1 Satisfaction-closure

Definition 5.1 A C-relation R on types is satisfaction-closed (abbreviated
sat-closed) if and only if the following are true:

0 if type A of the form [` : U, . . .]φ is in R, then (A, [` : U]→) ∈ R.

A if (A,B), (B,C) ∈ R, then (A,C) ∈ R;

B if (A,B) ∈ R, then (A,A), (B,B) ∈ R;

C if (A,B) ∈ R, and VarR(B) = 0, then (B,A) ∈ R;

D if (A, [` : U]→), (A, [` : U ′]→) ∈ R, then (U, U ′) ∈ R;

E if (V, [` : U]→) ∈ R and V ⊕ V ′ is in R, then (V ⊕ V ′, [` : U]→) ∈ R.

F for all (V ⊕V ′, [` : U]→) ∈ R, we have either (V, [` : U]→) or (V ′, [` : U]→)
in R.

2

Notice that rule D is symmetric in the two hypotheses.

23

Lemma 5.2 For every solvable C-relation R, there exists a solvable, sat-
closed superset R′ of R.

Proof. For a substitution S, define a function

GS : RelTypes→ RelTypes (17)

GS(R) = R (18)

∪ { (A, [` : U]→) | type A of the form [` : U, . . .]φ is in R } (19)

∪ { (A,C) | (A,B), (B,C) ∈ R } (20)

∪ { (A,A), (B,B) | (A,B) ∈ R } (21)

∪ { (B,A) | (A,B) ∈ R ∧VarR(B) = 0 } (22)

∪ { (U,U ′) | (A, [` : U]→), (A, [` : U ′]→) ∈ R } (23)

∪ { (V ⊕ V ′, [` : U]→) | (V, [` : U]→) ∈ R ∧ V ⊕ V ′ is in R} (24)

∪ { (V, [` : U]→) | (V ⊕ V ′, [` : U]→) ∈ R ∧ S(V) has an `-field }(25)

∪ { (V ′, [` : U]→) | (V ⊕ V ′, [` : U]→) ∈ R ∧ S(V ′) has an `-field}(26)

Given a C-relation R with solution S, define R′ as follows:

R′ =
∞
⋃

n=0

Gn
S(R).

It is straightforward to show that R ⊆ R′ and that R′ is sat-closed. It
remains to be shown that R′ is solvable. It is sufficient to show that Gn

S(R)
has solution S, for all n. We proceed by induction on n. In the base of n = 0,
we have G0

S(R) = R and that R has solution S by assumption.
In the induction step, suppose Gn

S(R) has solution S. We will now show
that Gn+1

S (R) = GS(G
n
S(R)) has solution S. We proceed by case analysis on

the definition of GS.
Let Rn = Gn

S(R) and Rn+1 = Gn+1
S (R). We have from the definition of

GS that the constraints in Rn+1\Rn belongs to the union of the sets (19)
to (26). For each of the sets, we need to show that the constraints in it
preserve that S is a solution. In each case, S is preserved because:

(19) Straightforward from the definition of ≤.

(20) If (A,B), (B,C) ∈ Rn, then by induction hypothesis, we have S(A) ≤
S(B) ≤ S(C) and since the ≤ is transitive, we have S(A) ≤ S(C).
Hence, S is a solution to {(A,C)}.

24

(21) Since the ≤ is reflexive, we have S(A) ≤ S(A) and S(B) ≤ S(B).
Hence, S is a solution to {(A,A), (B,B)}.

(22) If (A,B) ∈ Rn and VarRn
(B) = 0, then by induction hypothesis,

S(A) ≤ S(B) and by definition of ≤, we have S(A) = S(B) as well,
which implies S(B) ≤ S(A). Hence, S is a solution to {(B,A)}.

(23) If (A, [` : U]→), (A, [` : U ′]→) ∈ Rn, then by induction hypothesis,
S(A) ≤ S([` : U]→) and S(A) ≤ S([` : U ′]→). By definition of ≤, ∃B,
such that S(A) = [` : B, . . .]φ and B = S(U) = S(U ′), which implies
S(U) ≤ S(U ′). Hence, S is a solution to {(U, U ′)}.

(24) If (V, [` : U]→) ∈ Rn, then by induction hypothesis, S(V) ≤ S([` :
U]→). From the definition of V⊕V ′, we have S(V⊕V ′).`i = S(V).`i, ∀`i ∈
LV(S(V)). Since S(V) ≤ S([` : U]→), we have S(V ⊕V ′) ≤ S([` : U]→).
Hence, S is a solution to {(V ⊕ V ′, [` : U]→)}.

(25) Since ` ∈ LV(S(V)), there exists B such that S(V) = [` : B, . . .]0. By
definition of≤ and S(V)⊕S(V ′) ≤ [` : S(U)]→, we have that B = S(U)
and S(V) ≤ [` : S(U)]→. Therefore, S is a solution to {(V, [` : U]→)}.

(26) The proof is similar to the previous case.

2

5.2 Satisfaction-consistency

Definition 5.3 A C-relation R on types is satisfaction-consistent (abbrevi-
ated sat-consistent) if and only if the following are true:

1. if ([`i : U i∈I
i]φ, [`i : U ′ i∈I′

i]φ
′

) ∈ R, then I ⊇ I ′ and φ v φ′;

2. if ([` : U, . . .]φ, V) ∈ R, and V ⊕ V ′ is in R, then φ = 0;

3. if V ⊕ V ′ is in R, then LV(aboveR({V })) ∩ LV(aboveR({V ′})) = ∅;

2

Lemma 5.4 If a C-relation R is solvable, then R is sat-consistent.

Proof. Immediate. 2

25

5.3 Main Result

In this section, we will show that if a C-relation is sat-closed and sat-
consistent, then it is solvable.

For a C-relation R we build an automaton with states consisting of sets
of types appearing in R, and the following one-step transition function:

δR(T)(`) =

{

aboveR(T .`) if T .` 6= ∅
undefined otherwise.

We write States(R) for the set of states of the automaton, and use g, h
to range over states.

The one-step transition function is extended to a many-step transition
function in the usual way.

δ∗R(g)(ε) = g,

δ∗R(g)(`α) = δ∗R(δR(g)(`))(α).

Any g defines a type, TypeR(g), and any relation R on States(R) defines a
constraint set on types TYPER(R), as follows:

TypeR(g)(α) = (LV,VarR)(δ∗R(g)(α)),

TYPER(R) = {(TypeR(g),TypeR(h)) | (g, h) ∈ R}

Notice that we use (LV,VarR)(g) to denote (LV(g),VarR(g)). We have that

TypeR : States→ Types
TYPER : RelStates→ RelTypes

Lemma 5.5 If g = δR(g′)(`), then TypeR(g) = TypeR(g′).`.

Proof.

(TypeR(g′).`)(α) = TypeR(g′)(`α)

= (LV,VarR)(δ∗R(g′)(`α))

= (LV,VarR)(δ∗R(δR(g′)(`))(α))

= (LV,VarR)(δ∗R(g)(α))

= TypeR(g)(α).

2

26

Definition 5.6 For any C-relation R on types, we define SR to be the least
substitution such that for every U appearing in R we have

SR(U) = TypeR(aboveR({U})).

Note that if A = [` : U, . . .]φ, then SR(A) = [` : SR(U), . . .]φ. 2

We claim that if R is sat-closed and sat-consistent, then SR is a solution
to R.

To prove this claim, the first step is to develop a connection between
subtype-closure and δ. Define the function A : RelTypes → RelTypes by
(A,B) ∈ A(R) if and only if one of the following conditions holds:

• (A,B) ∈ R.

• For some `, φ, and φ′, we have ([` : A, . . .]φ, [` : B, . . .]φ
′

) ∈ R, or
([` : B, . . .]φ

′

, [` : A, . . .]φ) ∈ R.

Note, the subtype-closure (Definition 2.4) of a C-relation R is the least fixed
point of A containing R.

Define the function BR : RelStates → RelStates by (g, h) ∈ BR(R), where
g, h 6= ∅, if and only if one of the following conditions holds:

• (g, h) ∈ R.

• For some ` and (g′, h′) or (h′, g′) ∈ R, we have g = δR(g′)(`), h =
δR(h′)(`).

The next four lemmas (Lemma 5.7, 5.8, 5.10, and 5.11) are key ingredients
in the proof of Lemma 5.12. Lemma 5.7 states the fundamental relationship
between TYPER, A, and BR. We will use the notation

f ◦ g(x) = f(g(x)).

Lemma 5.7 The following diagram commutes:

RelStates
TYPER−−−−−−−→ RelTypes

y
BR

yA

RelStates
TYPER−−−−−−−→ RelTypes

27

Proof. Suppose R ∈ RelStates. To prove TYPER ◦ BR ⊆ A ◦ TYPER,
suppose (A,B) ∈ TYPER ◦ BR(R). There must be a pair of states (g, h) ∈
BR(R) such that A = TypeR(g) and B = TypeR(h). We reason by cases on
how (g, h) ∈ BR(R). From the definition of BR we have that there are three
cases.

1. suppose (g, h) ∈ R. We have (TypeR(g),TypeR(h)) ∈ TYPER(R),
so from the definition of A we have (TypeR(g),TypeR(h)) ∈ A ◦
TYPER(R).

2. suppose for some ` and (g′, h′) ∈ R, we have g = δR(g′)(`) and
h = δR(h′)(`). From (g′, h′) ∈ R, we have (TypeR(g′),TypeR(h′)) ∈
TYPER(R). We have, from Lemma 5.5,

(TypeR(g′).`)(α) = TypeR(g)(α) = A(α),

so TypeR(g′).` = A. Similarly, TypeR(h′).` = B. From these two obser-
vations, and (TypeR(g′),TypeR(h′)) ∈ TYPER(R), and the definition
of A, we conclude (A,B) ∈ A ◦ TYPER(R).

3. Suppose for some ` and (h′, g′) ∈ R, we have g = δR(g′)(`) and h =
δR(h′)(`). The proof is similar to the previous case.

To prove A◦TYPER ⊆ TYPER ◦ BR, suppose (A,B) ∈ A ◦TYPER(R).
We reason by cases on how (A,B) ∈ A◦TYPER(R). From the definition of
A we have that there are three cases.

1. suppose (A,B) ∈ TYPER(R). There must exist g and h such that A =
TypeR(g), B = TypeR(h), and (g, h) ∈ R. From (g, h) ∈ R and the
definition of BR, we have that (g, h) ∈ BR(R), so (A,B) ∈ TYPER◦BR.

2. suppose for some `, φ, φ′, we have ([` : A, . . .]φ, [` : B, . . .]φ
′

) ∈ TYPER(R).
There must exist g′ and h′ such that TypeR(g′) = [` : A, . . .]φ, TypeR(h′) =
[` : B, . . .]φ

′

, and (g′, h′) ∈ R. Then g = δR(g′)(`) and h = δR(h′)(`)
are well defined, and (g, h) ∈ BR(R) by the definition of BR. From
TypeR(g′) = [` : A, . . .]φ, g = δR(g′)(`), and Lemma 5.5, we have
TypeR(g) = TypeR(g′).` = A. Similarly, TypeR(h) = B, so (A,B) ∈
TYPER ◦ BR(R) as desired.

3. Suppose for some ` and (h′, g′) ∈ R, we have g = δR(g′)(`) and h =
δR(h′)(`). The proof is similar to the previous case.

28

2

Lemma 5.8 Suppose R is sat-closed. If (g, h) ∈ ABOVER(R), then g ⊇ h.

Proof. Suppose (g, h) ∈ ABOVER(R). From the definition of ABOVER

we have that we can choose A,B such that (A,B) ∈ R, g = aboveR({A}), and
h = aboveR({B}). To prove g ⊇ h, suppose C ∈ h. We have (B,C), (A,B) ∈
R. Since R is sat-closed and by closure Rule A, we have (A,C) ∈ R and
C ∈ g. Hence, g ⊇ h. 2

The following lemma reflects that ≤ does not support depth subtyping.
As a consequence, we have designed the sat-closure rules such that, intu-
itively, if (A′, B′) ∈ R and R is sat-closed, then the types constructed from
{A′} and {B′} have the same ` field type.

Lemma 5.9 If R is sat-closed, (A′, B′) ∈ R, and aboveR(aboveR({B′}).`) 6=
∅, then aboveR(aboveR({A′}).`) = aboveR(aboveR({B′}).`).

Proof. From (A′, B′) ∈ R and Lemma 5.8, we have aboveR({A′}) ⊇
aboveR({B′}), so aboveR(aboveR({A′}).`) ⊇ aboveR(aboveR({B′}).`).

To prove aboveR(aboveR({A′}).`) ⊆ aboveR(aboveR({B′}).`), suppose
A ∈ aboveR(aboveR({A′}).`). So, there exists [` : U1, . . .]

φ1 such that

(A′, [` : U1, . . .]
φ1) ∈ R

(U1, A) ∈ R.

From aboveR(aboveR({B′}).`) 6= ∅, we have B ∈ aboveR(aboveR({B′}).`).
So, there exists [` : U2, . . .]

φ2 such that

(B′, [` : U2, . . .]
φ2) ∈ R

(U2, B) ∈ R.

From (A′, B′), (B′, [` : U2, . . .]
φ2) ∈ R, and closure rule A (transitivity), we

have (A′, [` : U2, . . .]
φ2) ∈ R. From

(A′, [` : U1, . . .]
φ1) ∈ R

(A′, [` : U2, . . .]
φ2) ∈ R,

29

and closure rule 0,A,D, we have (U2, U1) ∈ R. From (U2, U1), (U1, A) ∈ R

and closure rule A (transitivity), we have (U2, A) ∈ R. From

(B′, [` : U2, . . .]
φ2) ∈ R

(U2, A) ∈ R,

we have A ∈ aboveR(aboveR({B′}).`).
2

Lemma 5.10 If (g, h) ∈ (BnR ◦ ABOVER(R))\ABOVER(R), then g = h,
∀n ≥ 1, where R is sat-closed.

Proof. We proceed by induction on n.
In the base case of n = 1, suppose (g, h) ∈ (B1

R◦ABOVER(R))\ABOVER(R).
From the definition of BR, there are two cases.

• Suppose for some ` and (g′, h′) ∈ ABOVER(R), we have g = δR(g′)(`)
and h = δR(h′)(`). By the definition of ABOVER, there exist types
A′, B′ such that g′ = aboveR({A′}), h′ = aboveR({B′}), and (A′, B′) ∈
R. We have

aboveR(aboveR({B′}).`) = δR(aboveR({B′}))(`)

= δR(h′)(`)

= h,

and from (g, h) ∈ (BnR ◦ ABOVER(R)), and the definition of BR, we
have h 6= ∅. From (A′, B′) ∈ R, aboveR(aboveR({B′}).`) 6= ∅, and
Lemma 5.9, we have

g = aboveR(aboveR({A′}).`)

= aboveR(aboveR({B′}).`) = h.

• Suppose for some ` and (h′, g′) ∈ ABOVER(R), we have g = δR(g′)(`)
and h = δR(h′)(`). The proof is similar as in the previous case.

In the induction step, suppose

(g, h) ∈ (Bn+1
R ◦ ABOVER(R))\ABOVER(R).

From the definition of BR, there exist ` such that (g′, h′) or (h′, g′) ∈ (BnR ◦
ABOVER(R))\ABOVER(R) and g = δR(g′)(`), h = δR(h′)(`). From the in-
duction hypothesis, we have g′ = h′. From the definition of δR, it is immediate
that g = h. 2

30

Lemma 5.11 Suppose R is sat-closed. If (g, h) ∈ ABOVER(R), then VarR(h) =
0⇒ LV(g) = LV(h).

Proof. Suppose (g, h) ∈ ABOVER(R). From the definition of ABOVER,
∃A,B such that g = aboveR({A}), h = aboveR({B}) and (A,B) ∈ R. There-
fore, ∀A′ ∈ g, B′ ∈ h, we have (A,A′), (A,B′) ∈ R. Since VarR(h) = 0,
there exists a type B ′′ ∈ h such that VarR(B′′) = 0. From closure rule
A, we have that LV(aboveR{A

′}) ⊆ LV(aboveR{A}); and from closure rule
C, we have that LV(aboveR{A}) ⊆ LV(aboveR{B

′′}). Hence, LV(g) ⊆
LV(aboveR({B′′})) ⊆ LV(h).

From Lemma 5.8, we have g ⊇ h which implies that LV(g) ⊇ LV(h).
Therefore, LV(g) = LV(h). 2

Lemma 5.12 If R is sat-closed, then the subtype-closure of TYPER◦ABOVER(R)
is subtype-consistent.

Proof.

The subtype-closure of TYPER ◦ ABOVER(R)

=
⋃

0≤n<∞

An ◦ TYPER ◦ ABOVER(R) (Definition of subtype-closure)

=
⋃

0≤n<∞

TYPER ◦ B
n
R ◦ ABOVER(R) (Lemma 5.7)

=
⋃

0≤n<∞

⋃

(g,h)∈Bn
R
◦ABOVER(R)

{(TypeR(g),TypeR(h))} (Definition of TYPER).

Suppose (g, h) ∈ BnR ◦ ABOVER(R). From Lemma 5.8 and Lemma 5.10,
and a case analysis on why (g, h) is in BnR ◦ABOVER(R), we have that g ⊇ h.
From Lemma 5.11 and Lemma 5.10, and a case analysis on why (g, h) is in
BnR ◦ ABOVER(R), we have that VarR(h) = 0 ⇒ LV(g) = LV(h). Thus, it
is immediate from the definition of TypeR that {(TypeR(g),TypeR(h))} is
subtype-consistent.

Thus, the subtype-closure of TYPER ◦ ABOVER(R) is the union of a
family of subtype-consistent C-relations. Since the union of a family of
subtype-consistent C-relations is itself subtype-consistent, we conclude that
the subtype-closure of TYPER ◦ ABOVER(R) is subtype-consistent. 2

The following lemma is a key ingredient in the proof of Lemma 5.14.
Lemma 5.14 is the place where it is needed that a relation is satisfaction-
consistent.

31

Lemma 5.13 If A of the form [` : B, . . .]φ is in R and R is sat-closed, then

aboveR((aboveR({A})).`) = aboveR({B}).

Proof. To prove the direction ⊇, notice that from sat-closure rule B
and A appearing in R, we have (A,A) ∈ R, so A ∈ aboveR{A}, hence
B ∈ (aboveR({A})).`, and thus aboveR((aboveR({A})).`) ⊇ aboveR({B}).

To prove the direction ⊆, suppose C ∈ aboveR((aboveR({A})).`). From
that we have there exists C ′ ∈ (aboveR({A})).` such that (C ′, C) ∈ R.
From C ′ ∈ (aboveR({A})).` we have that there exists type D of the form
[` : C ′, . . .]φ

′

such that (A,D) ∈ R. Together with closure rule 0, A, B, and
D, we have that (B,C ′) ∈ R. From transitivity of R (sat-closure rule A)
and (B,C ′), (C ′, C) ∈ R, we have (B,C) ∈ R, and C ∈ aboveR({B}). 2

Lemma 5.14 If R is sat-closed and sat-consistent, then

1. for any type A appearing in R, SR(A) = TypeR ◦ aboveR({A}); and

2. SR(R) = TYPER ◦ ABOVER(R).

Proof. The second property is an immediate consequence of the first
property.

To prove the first property, we will, by induction on α, show that for all
α, for all A appearing in R, SR(A)(α) = TypeR ◦ aboveR({A})(α).

If α = ε and A is an ordinary type variable, the result follows by definition
of SR.

If α = ε and A is of the form V ⊕ V ′, SR(V) = [`i : B′
i

i∈I]0, SR(V ′) =

[`i : B′
i

i∈I′]0, and TypeR ◦ aboveR({A}) = [`i : Bi
i∈J]0, we need to show

that J = I ∪ I ′, Bi = B′
i, ∀i ∈ J , and I ∩ I ′ = ∅. From R being sat-closed

and closure rules 0, E, we have LV(aboveR({V, V ′})) ⊆ LV(aboveR({A})).
From R being sat-closed and closure rules 0, F, we have LV(aboveR({A})) ⊆
LV(aboveR({V, V ′})). We conclude LV(aboveR({A})) = LV(aboveR({V, V ′})).
Thus, J = I ∪ I ′ and by sat-consistency rule 3, we have I ∩ I ′ = ∅. Because
of closure rules 0, D, E, and F, we have that Bi = B′

i, ∀i ∈ J .

If α = ε and A = [`i : B
i∈{1..n}

i]φ, then SR(A)(α) = ({`i | i ∈ 1..n}, φ)
and TypeR ◦ aboveR({A})(α) = (LV(aboveR({A})), φ). From closure rule B
and A appearing in R, we have (A,A) ∈ R, so A ∈ aboveR({A}). From
A ∈ aboveR({A}), we have LV({A}) ⊆ LV(aboveR({A})). From A ∈
aboveR({A}) and sat-consistency rules 1 and 2, we have LV(aboveR({A})) ⊆

32

LV({A}). We conclude LV({A}) = LV(aboveR({A})). From the definition
of VarR, we have that VarR(A) = φ. By sat-consistency rule 1, we have
VarR(aboveR({A}) = φ, as desired.

If α = `α′ and A is a type variable, the result follows by definition of SR.
If α = `α′ and A is of the form V ⊕ V ′, then either SR(V) or SR(V ′) has

an ` field. Suppose it is SR(V) that has an ` field:

SR(A)(α) = (SR(V)⊕ SR(V ′))(α) (Definition of SR)
= SR(V)(α) (SR(V) has an ` field)
= TypeR ◦ aboveR({V })(α) (Definition of SR)
= TypeR ◦ aboveR({V, V ′})(α) (SR(V ′) has no ` field)
= TypeR ◦ aboveR({A})(α). (from the proof of the base case)

The case where it is SR(V ′) that has an ` field is similar, we omit the details.
If α = `α′ and A = [` : B, . . .]φ, then

SR(A)(α)

= SR(B)(α′) (Definition of SR)

= TypeR ◦ aboveR({B})(α′) (Induction hypothesis)

= (LV,VarR)(δ∗R(aboveR({B}))(α′)) (Definition of TypeR)

= (LV,VarR)(δ∗R(aboveR((aboveR({A})).`))(α′)) (Lemma 5.13)

= (LV,VarR)(δ∗R(δR(aboveR({A}))(`))(α′)) (Definition of δR)

= (LV,VarR)(δ∗R(aboveR({A}))(`α′)) (Definition of δ∗R)

= TypeR ◦ aboveR({A})(α) (Definition of TypeR and α = `α′).

If α = `α′ and A is a record without an ` field, then SR(A)(α) is undefined.
By sat-consistency rule 1, no C ∈ aboveR({A}) has an ` field, so from the
definition of TypeR we have that TypeR ◦ aboveR({A})(`α′) is undefined, as
desired.

2

Theorem 5.15 R is solvable if and only if there exists a sat-closed superset
R′ of R, such that R′ is sat-consistent.

Proof. If R is solvable, then we have from Lemma 5.2 that there exists
solvable, sat-closed superset R′ of R, so from Lemma 5.4, we have that R′ is
sat-consistent.

33

Conversely, let R′ be a sat-closed superset of R, and assume that R′

is sat-consistent. From Lemma 5.12 and Lemma 5.14, we have that the
subtype-closure of SR′(R′) is subtype-consistent. From the subtype-closure
of SR′(R′) being subtype-consistent and Lemma 2.6, we have A ≤ B for every
(A,B) ∈ SR′(R′), so SR′(A′) ≤ SR′(B′) for every (A′, B′) ∈ R′, and hence R′

has solution SR′ . From R ⊆ R′ and that R′ is solvable, we have that R is
solvable. 2

Theorem 5.16 The type inference problem is in NP.

Proof. From Theorem 4.6 we have the type inference problem is polynomial-
time reducible to the constraint problem. To solve a constraint set R gener-
ated from a program a, we first guess a superset R′ of R. Notice that we only
need to consider an R′ which has a size which is polynomial in the size of a.
Next we check that R′ is sat-closed and sat-consistent. It is straightforward
to see that this can be done in polynomial time. 2

34

6 NP-hardness

In this section we prove that the type inference problem is NP-hard. We
do this in two steps. First we prove that solvability of so-called simple con-
straints can be reduced to the type inference problem, and then we prove
that solving simple constraints is NP-hard.

6.1 From Constraints to Types

For any ς-term c, the the constraint set C(c) is defined as follows.

Definition 6.1 Given a denumerable set of variables, a simple constraint
set is a finite set of constraints of the forms

(V , [`i : V i∈1..n
i]0)

(V ⊕ V ′ , [`i : V i∈1..n
i]0)

where V, V ′, V1, . . . , Vn are variables. 2

Lemma 6.2 Solvability of simple constraint sets is polynomial-time reducible
to the type inference problem.

Proof. Let C be a simple constraint set. Define
aC = [`V = ς(x)(x.`V)

for each variable V in C
`Q = ς(x)[`i = ς(y)(x.`Vi

) i∈1..n]
for each Q in C of the form [`i : V i∈1..n

i]0

mQ,`j = ς(x)((x.`Vj
⇐ ς(y)(x.`Q.`j)).`Q)

for each Q in C of the form [`i : V i∈1..n
i]0

and for each j ∈ 1..n
kQ = ς(x)(x.`Q + [])

for each Q in C of the form [`i : V i∈1..n
i]0

`(V,Q) = ς(x)((x.`Q ⇐ ς(y)(x.`V)).`V)
for each constraint (V,Q) in C
where Q is of the form [`i : V i∈1..n

i]0

`(V⊕V ′,Q) = ς(x)((x.`Q ⇐ ς(y)(x.`V + x.`V ′)).`Q)
for each constraint (V ⊕ V ′, Q) in C
where Q is of the forms [`i : V i∈1..n

i]0

]

35

Notice that aC can be generated in polynomial time.
We first prove that if C is solvable then aC is typable. Suppose C has

solution S. Define
A = [`V : S(V) for each variable V in C

`Q : S(Q) for each Q in C of the form [`i : V i∈1..n
i]0

mQ,`j : S(Q) for each Q in C of the form [`i : V i∈1..n
i]0

and for each j ∈ 1..n
kQ : S(Q) for each Q in C of the form [`i : V i∈1..n

i]0

`V≤Q : S(V) for each constraint (V,Q) in C
where Q is of the form [`i : V i∈1..n

i]0

`V⊕V ′≤Q : S(Q) for each constraint (V ⊕ V ′, Q) in C
where Q is of the form [`i : V i∈1..n

i]0

]0

Clearly ∅ ` aC : A is derivable.
We now prove that if aC is typable, then C is solvable. Suppose aC is

typable. From Theorem 4.6 we get a solution S of C(aC). Notice that each
method in aC binds a variable x. Each of these variables corresponds to a
distinct type variable in C(aC). Since S is a solution of C(aC), and C(aC)
contains constraints of the form Ux = [. . .]0 for each method in aC (from
rule (12)), all those type variables are mapped by S to the same type. Thus,
we can think of all the bound variables of methods of aC as being related to
the same type variable, which we will write as Ux.

The solution S has the following two properties.

• Property 1 If V is a variables in C, then S(Ux)↓`V is defined.

• Property 2 For each Q in C of the form [`i : V i∈1..n
i]0, we have

S(Ux)↓`Q = [`i : (S(Ux)↓`Vi
) i∈1..n]0.

To see Property 1, notice that in the body of the method `V we have the
expression x.`V . Since S is a solution of C(aC), we have from the rules (8)
and (9) that S satisfies

(Ux, Vx) and (Vx, [`V : Ux.`V]).

We conclude that S(Ux)↓`V = S(Ux.`V) is defined.
To see Property 2, let Q be an occurrence in C of the form [`i : V i∈1..n

i]0.
For each j ∈ 1..n, in the body of the method mQ,`j , we have the expression
x′.`Vj

⇐ ς(y)(x.`Q.`j) where we, for clarity, have written the first occurrence

36

of x as x′. Since S is a solution of C(aC), we have from the rules (8), (15),
(8), (9), (10), (9), and (10) that S satisfies

(Ux , Vx′) and (Vx′, [`Vj
: Vx.`Q.`j]

→) (27)

(Ux , Vx) and (Vx, [`Q : Ux.`Q]→) (28)

(Ux.`Q , Vx.`Q) (29)

(Vx.`Q , [`j : Ux.`Q.`j]
→) (30)

(Ux.`Q.`j , Vx.`Q.`j) (31)

Thus,

S(Ux)↓`Q = S(Ux.`Q) from (28) and Lemma 2.2
≤ S(Vx.`Q) from (29)
≤ [`j : S(Ux.`Q.`j)]

→ from (30)
S(Ux)↓`Q ↓`j = S(Ux.`Q.`j) from Lemma 2.2

≤ S(Vx.`Q.`j) from (31)
= S(Ux ↓`Vj

) from (27) and Lemma 2.2

In the body of the method kQ, we have the expression (x.`Q + []). Since S
is a solution of C(aC), we have from the rules (8), (9), (10), and (16) that S
satisfies

(Ux , Vx) and (Vx, [`Q : Ux.`Q]→) (32)

(Ux.`Q , Vx.`Q) (33)

(Vx.`Q ⊕ V[] , Vx.`Q+[]) (34)

Thus, from (32), Lemma 2.2, (33), (34) and the definition of ⊕, we have

S(Ux)↓`Q = S(Ux.`Q) ≤ S(Vx.`Q) = [. . .]0. (35)

In the body of the method `Q we have the expression [`i = ς(y)(x.`Vi
) i∈1..n].

Since S is a solution of C(aC), we have from the rules (8), (9), (10), (11) and
(12) that S satisfies

∀j ∈ 1..n, (Ux , Vx) and (Vx, [`Vj
: Ux.`Vj

]→) (36)

(Ux.`Vj
, Vx.`Vj

) (37)

([`0i : Vx.`Vi

i∈1..n]0 , V[`i=ς(y)(x.`Vi
) i∈1..n]) (38)

Ux ≡ [. . . `Q : V[`i=ς(y)(x.`Vi
) i∈1..n] . . .]

0 (39)

37

Thus, from (38) and (39), we have

[`i : S(Vx.`Vi
) i∈1..n]0 ≤ S(V[`i=ς(y)(x.`Vi

) i∈1..n]) = S(Ux)↓`Q

and together with (36), Lemma 2.2 and (37), we have

∀j ∈ 1..n, S(Ux)↓`Vj
= S(Ux.`Vj

) ≤ S(Vx.`Vj
) = S(Ux)↓`Q ↓`j.

Since we have both

S(Ux)↓`Q↓`j ≤ S(Ux)↓`Vj
and

S(Ux)↓`Q↓`j ≥ S(Ux)↓`Vj
,

we have

S(Ux)↓`Q↓`j = S(Ux)↓`Vj
(40)

and together (40) and (35) give that S(Ux)↓`Q = [`i : S(Ux)↓`
i∈1..n

Vj
]0, that

is, Property 2.
From Property 1 we have that we can define

SC(V) = S(Ux)↓`V for each variable V in C. (41)

With this definition, we can restate Property 2 as

SC(Q) = S(Ux)↓`Q where Q = [`i : V i∈1..n
i]0. (42)

We will now show that C has solution SC.
Consider first a constraint (V,Q) in C, where Q = [`i : V i∈1..n

i]0. The
body of the method `(V,Q) contains the expression x′.`Q ⇐ ς(y)(x.`V) where
we, for clarity, have written the first occurrence of x as x′. Since S is a
solution of C(aC), we have from the rules (8), (15), (8), (9), and (10) that S
satisfies

(Ux , Vx′) and (Vx′, [`Q : Vx.`V]→) (43)

(Ux , Vx) and (Vx, [`V : Ux.`V]→) (44)

(Ux.`V , Vx.`V) (45)

We conclude

38

SC(V) = S(Ux)↓`V from (41)
= S(Ux.`V) from (44) and Lemma 2.2
≤ S(Vx.`V) from (45)
= S(Ux)↓`Q from (43) and Lemma 2.2
= SC(Q) from (42).

Consider next a constraint (V ⊕ V ′, Q) in C, where Q is of the form [`i :
V i∈1..n
i]0. The body of the method `(V⊕V ′,Q) contains the expression x′.`Q ⇐
ς(y)(x.`V + x.`V ′) where we, for clarity, have written the first occurrence of
x as x′. Since S is a solution of C(aC), we have from the rules (8), (15), (8),
(9), (10), and (16) that S satisfies

(Ux , Vx′) and (Vx′, [`Q : Vx.`V +x.`V ′
]→) (46)

(Ux , Vx) and (Vx, [`V : Ux.`V]→) (47)

(Ux , Vx) and (Vx, [`V ′ : Ux.`V ′
]→) (48)

(Ux.`V , Vx.`V) (49)

(Ux.`V ′
, Vx.`V ′

) (50)

(Vx.`V ⊕ Vx.`V ′
, Vx.`V +x.`V ′

) (51)

We conclude

SC(V) = S(Ux)↓`V from (41)
= S(Ux.`V) from (47) and Lemma 2.2
= S(Vx.`V) from (49) and (51)

SC(V
′) = S(Ux)↓`V ′ from (41)

= S(Ux.`V ′
) from (48) and Lemma 2.2

= S(Vx.`V ′
) from (50) and (51)

SC(V)⊕ SC(V
′) = S(Vx.`V)⊕ S(Vx.`V ′

) from above
≤ S(Vx.`V +x.`V ′

) from (51)
= S(Ux)↓`Q from (46) and Lemma 2.2
= SC(Q) from (42).

2

39

6.2 Solving Simple Constraints is NP-hard

In this section we show that solving simple constraint systems is NP-hard.
Suppose we are given a Boolean expression

ψ =
n
∧

i=1

(li1 ∨ li2 ∨ li3)

where Xψ is the set of variables occurring in ψ, and each literal lij is of
the form x or x̄, where x ∈ Xψ. We will use the notation Ix for the set of
positions (ij) for which lij = x or lij = x̄. Furthermore, if lij = x or lij = x̄,
then we use Iij to denote Ix. We will use the abbreviations

False = []0 True = [q : []0]0.

Their only significance is that False 6= True. We will construct a simple
constraint system Cψ over the variables

{ Ux, Ux̄, Vx, Vx̄, Tx, Tx̄, Rx | x ∈ Xψ }

∪ { Pij | i ∈ 1..n, j ∈ 1..3}

∪ { Aij | i ∈ 1..n, j ∈ 0..3}.

The constraint system Cψ consists of:

• for each x ∈ Xψ, the constraints

(Ux ⊕ Ux̄ , [k : Rx]
0) (52)

(Ux ⊕ Tx , [k : Vx]
0) (53)

(Ux̄ ⊕ Tx̄ , [k : Vx̄]
0) (54)

(Rx , [mij : A
(ij)∈Ix

ij]0) (55)

(Vx ⊕ Vx̄ , [mij : A
(ij)∈Ix

ij]0) (56)

• for all i ∈ 1..n and for all j ∈ 1..3, the constraints:

(Vlij ⊕ Pij , [mij : Ai(j−1), mi′j′ : A
(i′j′)∈Iij\(ij)

i′j′]0) (57)

• for all i ∈ 1..n, the constraints:

(Ai0 , False)

(Ai3 , True).

In the last constraint, we use the abbreviation (Ai3,True) to denote the two
constraints (Ai3, [q : B]0), (B, []0), where B is a fresh variable.

40

Lemma 6.3 Solving simple constraint systems is NP-hard.

Proof. Given that 3-SAT is NP-hard, it is sufficient to show that ψ is
satisfiable if and only if Cψ is solvable.

Suppose first that ψ has solution f . Here is a mapping Sf from the
variables of Cψ to types. If f(x) is true, then we have:

v Sf(v)
Ux []0

Ux̄ [k : Sf (Rx)]
0

Vx []0

Vx̄ Sf(Rx)
Tx [k : []0]0

Tx̄ []0

Rx [mij : Sf (Aij)
(ij)∈Ix]0.

If f(x) is false, then we have:

v Sf(v)
Ux [k : Sf (Rx)]

0

Ux̄ []0

Vx Sf(Rx)
Vx̄ []0

Tx []0

Tx̄ [k : []0]0

Rx [mij : Sf (Aij)
(ij)∈Ix]0.

For i ∈ 1..n and j ∈ 1..3, define

Sf (Pij) =

{

[mij : Sf (Ai(j−1)), mi′j′ : Sf(Ai′j′)
(i′j′)∈Iij\(ij)]0 f(lij) is true

[]0 otherwise.

Define the function g from Booleans to {False,True} such that g(false) = False
and g(true) = True. For i ∈ 1..n,

v Sf (v)
Ai0 False
Ai1 g ◦ f(li1)
Ai2 g ◦ f(li1 ∨ li2)
Ai3 True.

41

It is straightforward to check that Sf is a solution to the constraints in Cψ
of the forms (52)–(56), we omit the details. Here we will focus on showing
that Sf is a solution to the constraints in Cψ of the form (57). Suppose
we are given i ∈ 1..n and j ∈ 1..3. There are two cases. First, if f(lij) is
true, then Sf(Pij) = [mij : Sf (Ai(j−1)), mi′j′ : Sf (Ai′j′)

(i′j′)∈Iij\(ij)]0 and
Sf(Vlij) = []0. Hence, the constraint (57) is satisfied.

Second, if f(lij) is false, then Sf(Pij) = []0 and Sf(Vlij) = Sf(Rlij).
Hence, we must show that Sf (Aij) = Sf (Ai(j−1)). There are three cases.

• If j = 1, then Sf(Ai1) = g ◦ f(li1) = g(false) = False = Sf(Ai0).

• If j = 2, then Sf (Ai2) = g ◦ f(li1 ∨ li2) = g ◦ (f(li1) ∨ f(li2)) = g ◦
(f(li1) ∨ false) = g ◦ f(li1) = Sf(Ai1).

• If j = 3, then Sf (Ai3) = True. Since ψ is satisfiable and f(li3) is false,
we have that f(li1 ∨ li2) is true, so Sf (Ai2) = g ◦ f(li1∨ li2) = g(true) =
True. We conclude that Sf (Ai3) = True = Sf(Ai2).

Conversely, suppose S is a solution to Cψ.
Property 1: For every x ∈ Xψ, we have either S(Vx) = S(Rx) and

S(Vx̄) = []0, or we have S(Vx) = []0 and S(Vx̄) = S(Rx).
To prove Property 1, notice that from (52) we have exactly one of S(Ux) =

[k : S(Rx)]
→ or S(Ux̄) = [k : S(Rx)]

→. From that and (53)–(54), we have
that either S(Vx) = S(Rx) or S(Vx̄) = S(Rx). From that and (56) we get
Property 1.

Define

fS(x) =

{

false S(Vx) = S(Rx)
true otherwise.

Going for a contradiction, let us suppose that fS does not satisfy ψ. That
means that must exist i such that, for all j ∈ 1..3, fS(lij) = false. From the
definition of fS and Property 1 we have that, for j ∈ 1..3, there is a variable
x such that (ij) ∈ Ix and S(Vlij) = S(Rx). From that and (55) and (57), we
conclude

False = S(Ai0) = S(Ai1) = S(Ai2) = S(Ai3) = True,

a contradiction. 2

Theorem 6.4 The type inference problem is NP-complete.

Proof. We have that type inference is in NP from Theorem 5.16. NP-
hardness follows from Lemma 6.2 and Lemma 6.3. 2

42

7 Conclusion

Type inference with record concatenation, subtyping, and recursive types
is NP-complete. Future work includes implementing the algorithm for a
language such as Obliq, and to attempt to combine our technique with our
algorithm for type inference with both covariant and invariant fields [16].

The construction used in our NP-hardness proof may be applicable to
other types systems. In particular, our notion of simple constraint systems
may be reducible to even more restrictive type inference problems than the
one we have considered.

Acknowledgments. A preliminary version of this paper was presented
at LICS’02, IEEE Symposium on Logic in Computer Science, July 2002.
In that version of the paper, we mistakenly claimed that the type inference
problem can be solved in polynomial time. Two reviewers for Information and
Computation spotted a problem in the proof of a crucial lemma. The lemma
was indeed false and, as a consequence, we realized that the type inference
problem is NP-complete, and not polynomial. We thank the reviewers for
identifying that problem and for numerous other helpful comments.

Our work is supported by a National Science Foundation Faculty Early
Career Development Award, CCR–9734265.

A Proof of Lemma 2.3

Here we give a full proof that ≤ is a partial order.
First, ≤ is reflexive because the identity on T (Σ) is a simulation.

Lemma A.1 If R is a reflexive simulation, then (R ◦R) is a simulation.

Proof. Suppose (A,A′) ∈ (R◦R). Then there is an A′′ such that (A,A′′) ∈
R and (A′′, A′) ∈ R.

• If A′ = U , then A′′ = U because (A′′, A′) ∈ R; and then A = U because
(A,A′′) ∈ R.

• Similarly, if A = U , then A′ = U .

• Otherwise A′ = [` : B′i∈I′]φ
′

. Then since R is a simulation, we have

43

– A′′ = [`i : B′′ i∈I′′

i]φ
′′

,

– A = [`i : B i∈I
i]φ,

– φ v φ′′ v φ′,

– (Bi, B
′′
i), (B

′′
i , B

′
i) ∈ R⇒ (Bi, B

′
i) ∈ R ◦R, and

– (B′
i, B

′′
i), (B

′′
i , Bi) ∈ R⇒ (B′

i, Bi) ∈ R ◦R.

Since v is transitive we have φ v φ′.

If φ = φ′ = 0, then I = I ′′ = I ′ as desired.

2

Corollary A.2 ≤ is transitive.

Proof. Just note that ≤ is reflexive, and ≤ ⊇ (≤ ◦ ≤) because ≤ is the
largest simulation. 2

Lemma A.3 Every simulation is antisymmetric.

Proof. Let R be a simulation. We prove the following statement by
induction on α:

If (A,A′) ∈ R and (A′, A) ∈ R, then A = A′, that is, A(α) =
A′(α) for every α.

• If α = ε, we show A(α) = A′(α) by cases on the structure of A.

– If A = U , then by the definition of simulation, A′ = U . Therefore
A(α) = U = A′(α).

– If A is a record type, then by the definition of simulation and
the antisymmetry of v, A′ is a record type with exactly the same
labels and variances; that is, A = [`i : B i∈I

i]φ and A′ = [`i :
B′ i∈I
i]φ. Therefore A(α) = ({`i : i ∈ 1..n}, φ) = A′(α) as desired.

• If α = `α′, we consider two cases.

– If A(`) is undefined, then either A = U for some U , or A is a record
type with no ` field. In the first case, A′ = U because (A′, A) ∈ R.
In the second case, A′ has no ` field (otherwise (A,A′) ∈ R would
imply A has an ` field, contradiction). In either case, A′(`) is
undefined, so both A(α) and A′(α) are undefined.

44

– If A = [` : B, . . .]φ, then by the definition of simulation and the an-
tisymmetry of v, we have A′ = [` : B′, . . .]φ and (B,B′), (B′, B) ∈
R. Then by induction, B(α′) = B′(α′). So A(α) = B(α′) =
B′(α′) = A′(α) as desired.

2

References

[1] Mart́ın Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag,
1996.

[2] Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. ACM
Transactions on Progamming Languages and Systems, 15(4):575–631,
1993. Also in Proceedings of POPL’91.

[3] Alan H. Borning and Daniel H. H. Ingalls. Multiple inheritance in
Smalltalk80. In Proceedings of AAAI, 1982.

[4] Luca Cardelli. A language with distributed scope. In Proceedings of
POPL’95, 22nd Annual SIGPLAN–SIGACT Symposium on Principles
of Programming Languages, pages 286–297, 1995.

[5] Bruno Courcelle. Fundamental properties of infinite trees. Theoretical
Computer Science, 25(1):95–169, 1983.

[6] Patrick Cousot and Radhia Cousot. Modular static program analysis.
In Proceedings of CC’02, International Conference on Compiler Con-
struction, pages 159–178. Springer-Verlag (LNCS 2304), 2002.

[7] Neal Glew. An efficient class and object encoding. In Proceedings of
OOPSLA’00, ACM SIGPLAN Conference on Object-Oriented Program-
ming Systems, Languages and Applications, pages 311–324, Minneapolis,
Minnesota, October 2000.

[8] Robert Harper and Benjamin Pierce. A record calculus based on sym-
metric concatenation. In Proceedings of the Eighteenth Annual ACM
Symposium on Principles of Programming Languages, Orlando, pages
131–142. ACM, 1991.

45

[9] Dexter Kozen, Jens Palsberg, and Michael I. Schwartzbach. Efficient
inference of partial types. Journal of Computer and System Sciences,
49(2):306–324, 1994. Preliminary version in Proceedings of FOCS’92,
33rd IEEE Symposium on Foundations of Computer Science, pages 363–
371, Pittsburgh, Pennsylvania, October 1992.

[10] Robin Milner. Operational and algebraic semantics of concurrent pro-
cesses. In J. van Leewen, editor, Handbook of Theoretical Computer
Science, volume B: Formal Models and Semantics, chapter 19, pages
1201–1242. The MIT Press, New York, N.Y., 1990.

[11] Flemming Nielson. The typed lambda-calculus with first-class processes.
In Proceedings of PARLE, pages 357–373, April 1989.

[12] Jens Palsberg. Efficient inference of object types. Information and Com-
putation, 123(2):198–209, 1995. Preliminary version in Proceedings of
LICS’94, Ninth Annual IEEE Symposium on Logic in Computer Science,
pages 186–195, Paris, France, July 1994.

[13] Jens Palsberg and Patrick M. O’Keefe. A type system equivalent to
flow analysis. ACM Transactions on Progamming Languages and Sys-
tems, 17(4):576–599, July 1995. Preliminary version in Proceedings of
POPL’95, 22nd Annual SIGPLAN–SIGACT Symposium on Principles
of Programming Languages, pages 367–378, San Francisco, California,
January 1995.

[14] Jens Palsberg and Scott Smith. Constrained types and their expres-
siveness. ACM Transactions on Progamming Languages and Systems,
18(5):519–527, September 1996.

[15] Jens Palsberg, Mitchell Wand, and Patrick M. O’Keefe. Type inference
with non-structural subtyping. Formal Aspects of Computing, 9:49–67,
1997.

[16] Jens Palsberg, Tian Zhao, and Trevor Jim. Automatic discovery of co-
variant read-only fields. In Proceedings of FOOL’02, Ninth International
Workshop on Foundations of Object-Oriented Languages, Portland, Ore-
gon, January 2002.

46

[17] Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for mobile
processes. In LICS’93, Eighth Annual Symposium on Logic in Computer
Science, pages 376–385, 1993.

[18] Francois Pottier. Simplifying subtyping constraints. In Proceedings of
ACM SIGPLAN International Conference on Functional Programming,
1996.

[19] Francois Pottier. A 3-part type inference engine. In Gert Smolka,
editor, Proceedings of the 2000 European Symposium on Programming
(ESOP’00), volume 1782, pages 320–335. Springer Verlag, 2000.

[20] Didier Remy. Typing record concatenation for free. In ACM Symposium
on Principles of Programming Languages, pages 166–176, 1992.

[21] Mark Shields and Erik Meijer. Type-indexed rows. In Symposium on
Principles of Programming Languages, pages 261–275, 2001.

[22] Bjarne Stroustrup. A history of C++: 1979–1991. In History of Pro-
gramming Languages Conference (HOPL-II), pages 271–297, 1993.

[23] Martin Sulzmann. Designing record systems. cite-
seer.nj.nec.com/sulzmann97designing.html, 1997.

[24] Hideki Tsuiki. On typed calculi with a merge operator. In Foundations
of Software Technology and Theoretical Computer Science, pages 101–
112, 1994.

[25] Mitchell Wand. Type inference for record concatenation and multiple
inheritance. Information and Computation, 93(1):1–15, 1991.

[26] Andrew Wright and Matthias Felleisen. A syntactic approach to type
soundness. Information and Computation, 115(1):38–94, 1994.

[27] Jan Zwanenburg. Record concatenation with intersection types. Tech-
nical Report 95–34, Eindhoven University of Technology, 1995.

[28] Jan Zwanenburg. A type system for record concatenation and subtyping.
In Kim Bruce and Giuseppe Longo, editors, Informal proceedings of
Third Workshop on Foundations of Object-Oriented Languages (FOOL
3), 1996.

47

