Specific lysis of methicillin susceptible and resistant Staphylococcus aureus by the endolysin Staphefekt SA.100 $^{\rm TM}$

B.L. Herpers¹, P. Badoux¹, F. Pietersma², F. Eichenseher³, M.J. Loessner³

- 1. Regional laboratory for public Health Kennemerland, Haarlem, The
- 2. Micreos Human Health BV, Wageningen, The Netherlands
- 3. Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland

Objectives

New strategies in the treatment of infections are warranted, as antibiotic resistance is emerging. Endolysins originating from bacteriophages combine two characteristics essential for such new strategies: powerful killing of bacteria and limited likelihood of emerging resistance. We describe the *in vitro* activity against methicillin susceptible (MSSA) and resistant (MRSA) *S. aureus* of the endolysin Staphefekt SA.100TM. Furthermore, the *in vivo* effect on *S. aureus* skin carriage is described in a case series of rosacea and eczema.

Methods

The activity of Staphefekt SA.100TM was evaluated against 28 clinical strains of MSSA and 8 strains of MRSA, and four control strains (*S. epidermidis, S. hominis, S. haemolyticus* and *S. lugdunensis*).

Specificity of the activity and dose responsiveness was determined in a lysis assay, incubating 10⁶ cfu/ml in phosphate buffered saline (PBS) with a concentration range of Staphefekt SA.100TM (0-120 microgram/ml) and measuring optical density (OD) during one hour. The bactericidal activity was measured by counting the drop in cfu/ml six hours after

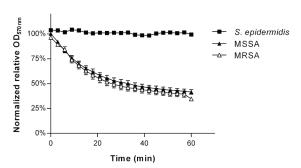


Figure 1. Specific lysis of MSSA and MRSA by StaphefektTM The mean lytic effect of 30 micrograms/ml Staphefekt on twenty eight strains of MSSA, eight strains of MRSA and one strain of S. epidermidis was calculated by normalizing the absolute OD to the matching controls (0 micrograms/ml). A similar reduction in OD was found with MSSA and MRSA, while no significant reduction was found with S. epidermidis. (mean +/- SEM)

incubating 10⁶ cfu/ml with 0 and 30 microgram/ml Staphefekt SA.100TM in PBS. Minimal inhibitory concentrations (MIC) were determined in tryptic soy broth (TSB) with a starting concentration of 10⁶ cfu/ml. After 24 hours of incubation, growth was visually determined.

Skin cultures were taken in seven patients with rosacea and two patients with eczema to study the effect of Staphefekt SA.100TM on lesional skin carriage of *S. aureus*.

Results

A dose dependent reduction in OD was observed with all S. aureus strains. The mean reduction in OD did not differ between MSSA and MRSA (58+/-11.6% vs. 65+/-4,1% with 30 microgram/ml, mean +/- SD, p>0.05; figure 1). Only 1-15% reduction was observed with the four control strains. A similar 100-fold reduction of viable bacteria was seen with both MSSA and MRSA (0.8+/-0.7% vs. 0.6+/-0.5%; p>0.05). MIC's did not differ for MSSA and MRSA, with a median MIC of 64 microgram/ml. Three of seven rosacea patients and two of two eczema patients were lesional S. aureus carriers. After the local application of Staphefekt SA.100TM, S. aureus was eradicated from the lesion, while other skin inhabitants remained present.

Conclusion

The *in vitro* data show that lysis of *S. aureus* by Staphefekt SA.100TM is dose dependent, specific and efficient. MSSA and MRSA are equally susceptible to the endolysin, and Staphefekt SA.100TM is equally effective in killing both methicillin susceptible and resistant strains. The case series furthermore provides evidence of the *in vivo* applicability of Staphefekt SA.100TM to specifically eradicate *S. aureus* without disturbing the normal skin flora. These results support further clinical studies in a placebo controlled setting on the effect of Staphefekt SA.100TM on *S. aureus* related skin diseases.

Published as abstract R144 at the 24th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID), Barcelona 2014