
I P S

HIGH LEVEL PROGRAMMING OF
SMALL SYSTEMS

Second Edition

Karl Meinzer, Ph.D.
University of Marburg
1978

IPS - High Level Programming of Small Systems

© Karl Meinzer 1978

First edition 1978
Second edition and first printing 1997.
Third edition (electronic PDF) with corrections 2016

Published by James Miller, Cambridge CB23 7PS, England.

No part of this publication may be reproduced or transmitted in any
form or by any means electronic, mechanical, photocopying,
recording or otherwise, or stored in any retrieval system of any kind
without the written permission of the copyright holder and the
publisher, application for which should be made to the publisher.

Author and publisher have used their best efforts in preparing this
book. They make no warranty of any kind, expressed or implied with
regard to programs or documentation contained in this book. The
author and publisher shall not be liable in any event for incidental or
consequential damages in connection with, or arising out of material
contained in this book.

This book was produced on an Acorn Risc Computer by James Miller.
It was edited with the StrongED text editor, and typeset using the
Impression Style DTP package.

Printed and bound by The Tavistock Press (Cambridge) Ltd.

ISBN 0-9530507-0-X

Contents

Prefaces vi
Introduction viii
Acknowledgements x
References x

CHAPTER I

1 Hardware requirements for IPS 1
2 Keyboard Operations 4

2.1 Your computer and IPS 4
 2.1.1 Communicating with IPS 4
2.2 The Stack 5
 2.2.3 Arithmetic operations 6
 2.2.4 Logical operators 7
2.3 Stack manipulations 8
2.4 Named constants and variables 9
2.5 Fields 10
2.6 Byte manipulations 13
2.7 Error messages 14

3 Programming 15
3.1 Definitions 15
3.2 Text handling 20
3.3 Tape cassette operations 22
3.4 Process control programming 24
3.5 Repeated execution and multiprogramming 27

4 IPS - Operation and memory organization 31
4.1 The address space 31
4.2 The dictionary 32
4.3 The emulator (inner interpreter) 33
4.4 The 20 ms pseudo-interrupt 34
4.5 The compiler 34

iiiContents

5 Cassette tape operations on binary data 35
5.1 Data storage 35
5.2 Reading data cassettes 35
5.3 Program storage 35

6 IPS programming hints and exercises 37
6.1 Programming method 37
6.2 Exercises 38
6.3 Solutions to the exercises 39

CHAPTER II
1 General 43
2 Basic philosophy of the assemblers 44
3 The CDP 1801 assembler 46

3.1 Register allocations 46
3.2 The instruction mnemonics 47
3.3 An 1801 assembler example 47
3.4 Listing of the CDP 1801 Assembler 48

4 The 8080 assembler 49
4.1 Resource allocations 49
4.2 The instruction mnemonics 49
4.3 An 8080 assembler example 50
4.4 Assembler for the 8080; 5. 3. 78 for IPS-N 50

5 The 6800 assembler 52
5.1 Resource allocations 52
5.2 The instruction mnemonics 52
5.3 A 6800 assembler example 53
5.4 The 6800 assembler for IPS-N, 27.1.78 53

6 The 6502 assembler 56
6.1 Resource allocations 56
6.2 The instruction mnemonics 56
6.3 A 6502 assembler example 58
6.4 The 6502 Assembler for IPS-N, 23. 1. 78 58

7 The CDP 1802 assembler 61
7.1 Listing of the CDP 1802 Assembler 61

IPS - High Level Programming of Small Systemsiv

CHAPTER III

1 General design considerations 63
2 The IPS implementation 67
3 Structure of the pseudocode 68
4 The Executive 70
5 The machine independent part 72

5.1 Compiler and the chain 72
5.2 Compiler support routines 76
5.3 Compiler auxiliary routines 80
5.4 Entry generating routines 80
5.5 Structuring words 82
5.6 Address fetching 82
5.7 Text handling routines 83
5.8 Stack display 83
5.9 Chain control operators 84
5.10 Miscellaneous high level routines 86

6 The machine dependent routines 87
6.1 More details about the executive 87
6.2 Directly available code routines 88
6.3 Code routines managed by the compiler 89
6.4 Initialization 90

7 Typical IPS Compiler Routines 90

Appendix A IPS - Short Reference Summary 97

Appendix B The AMSAT cassette standard 102

Appendix C The ASCII code 104

Contents v

Preface to 1st Edition

ARE YOU

owner of a microcomputer based on the 8080, 6800, 6502 or the CDP 1801/2 ?

ARE YOU

looking for an efficient, easy and clean way to program your computer using a
high level language ?

DO YOU

wish to use your microcomputer in time critical applications like controlling
devices, robotics or fancy games ?

DO YOU

wish to have your computer look after several tasks at the
same time ?

THEN LOOK NO FURTHER !!!

IPS has been designed to solve these problems for the AMSAT space projects
(communication satellites for radio amateurs) and has since been found to be a
very useful tool for programming small systems. It uses an extremely modular

and structured approach to develop programs interactively. Because IPS is a high
level language, it allows the sharing of programs regardless of the processor for

which they were developed.

IPS - High Level Programming of Small Systemsvi

Preface to 2nd Edition

This manual was written by Karl Meinzer in 1978 during the evolution of the
IPS operating system, but was never published in any substantive form. A hand
corrected draft printout was circulated to a few interested engineers who then
reproduced it ad hoc, minus several chunks, via ever worsening photocopies. But
the paper original was declared lost.

Happily, in 1996 the IPS manual was discovered to have survived on Atari
800XL (ca. 1980) computer cassette tapes, and moreover had recently been
transferred to floppy disc by Robin Gape, a prominent IPS contributor in the mid
'80s. Thus it became practical to republish the document.

In the late '70s, disc systems were uncommon. Thus the manual refers
throughout to cassette tape as its input/output medium; IPS computers usually had
two recorders. This anachronism does not detract in any way from the relevance
of IPS, and for the sake of consistency has been left in the document.

IPS development has not stood still. It has been written for the Atari ST and
in 1996 for 32-bit Acorn RISC Computers. The latter are based on the ARM
family of processors, and run IPS 100-1000x faster than the early 1802/6502/8080
systems. Hopefully re-publication of this manual will encourage versions for other
machines, notably the IBM-PC.

A significant application of IPS has been its use as the Operating System for
AMSAT's Phase III series of communications spacecraft. The Oscar-13
(Phase III C) satellite's 1802/IPS computer functioned without missing a beat for
eight years until it re-entered the atmosphere in 1996. Impressive for any
computer's OS, let alone one functioning in space.

This re-publication is dedicated to Dr Karl Meinzer DJ4ZC in recognition of
30 years outstanding contributions to the Amateur Space Programme.

James Miller
Cambridge, England, 1997.

Preface vii

Introduction

One of the most significant technological innovations during the last few years is
the integrated microcomputer. This device is permeating all walks of life; it
allows solution of a large number of engineering problems that previously could
not be solved due to excessive hardware complexity. With microcomputers the
limiting factor has become the effort one is required to invest in software
engineering. There are two phases to each project.

 1. The problem must be analyzed and the activities the computer is to
perform must be defined.

 2. A program has to be written and tested.

The work involved in point 1 can never be eliminated by programming aids,
but the workload of point 2 is heavily dependent on the quality of the
programming support used; with ideal support the work involved in point 2
should constitute only a small fraction of the total effort.

Most programming aids available fall far short of this goal. The
conventional "high-level" programming aids are derived from the classical data
processing environment with different goals and constraints than given with
microcomputers, so it is not surprising that most microcomputer programming is
still done at assembler level. This means that the problem must be broken down
into the small steps the computer is able to execute, and one is thus forced to live
with the sometimes quite unsystematic structure of a computer resulting from
hardware constraints.

For some time it has been known that the usual mini- and microcomputer
architectures (with their linear structure) are poorly matched to the "human"
method of understanding and decomposing a problem. Humans tend to think in
alternatives and hierarchies. This eventually led to the programming concepts of
"top-down design" and structured programming.

To date, there are no computers available matching these concepts. The next
best thing one can do is to use a conventional microcomputer to simulate
(emulate) such a high-level computer. The programming system IPS described in
this book uses a general approach somewhat similar to FORTH (Moore [1]), but
was designed to provide more demanding user interaction mechanisms and to use
the typical low-cost peripherals of microcomputers.

IPS - High Level Programming of Small Systemsviii

IPS mostly is a high level language allowing extremely modular structured
programming. In contrast to other languages it is essentially free of syntax rules. It
uses RPN (reverse polish notation) to make parameter passing between modules
extremely simple and is designed to be as unrestrictive as low-level assemblers.

The high-level emulation technique is extremely economical in terms of
memory usage - the entire system resides in 6 Kbytes of memory. But programs
execute only two to three times slower than optimum assembler code. In most
instances this represents no problem, however extremely time-critical applications
or special hardware may require some assembly language interfaces. IPS thus
employs an integral assembler to facilitate these extensions.

The design of IPS allows high level extensions as well. A detailed discussion
of the philosophy of IPS is given at the beginning of chapter III.

This book is organized into three chapters of increasing sophistication.
Chapter I presents an introduction to the language; the material presented there
will enable you to accomplish all "regular" programming tasks. Chapter II
introduces the assemblers for the COSMAC 1801/1802, the 8080, the 6800 and the
6502 allowing low-level extensions and interfaces. Finally, Chapter III describes
and documents the inner workings of IPS; this material will be useful if you wish
to extend or change IPS itself.

The easiest way to learn IPS is to have access to a computer with IPS
installed, so that you may "learn by doing" as you progress through this book.

Since IPS is an integrated programming system with no other software
required, it necessarily needs a number of interfaces to the particular hardware. If
your installation does not have the same configuration as the system for which IPS
was designed, some adaptations may be necessary. These generally are rather
trivial for a person familiar with IPS, but if this is your first exposure, it may be a
good idea to procure the assistance of someone more familiar with IPS during the
first installation on your system.

I am certain you will find IPS a useful tool for a vast number of programming
projects. If you should discover any errors or improvements, I will be pleased to
learn of them.

Karl Meinzer
Marburg, 1978.

Introduction ix

Acknowledgements

The development of IPS was triggered by the demanding and stimulating
environment of AMSAT, a volunteer organization building communications
satellites for radio amateurs as a public service with practically no funds.

Among the many individuals having contributed to IPS, I in particular wish
to acknowledge the many helpful discussions and suggestions from G. Groh who
suffered with me through the first implementations.

J. Lipfert applied IPS to a number of real-time applications within the
University of Marburg. His fighting with the many traps of early IPS resulted in
the present error philosophy.

R. Gerlich wrote a first implementation of IPS for the 6502. His work made
many problems transparent particular to that processor, enabling the more
compact version in this book.

R. Dunbar helped with the English mnemonics, the polishing of this book
and (in 10 hectic nights) bringing up the 8080 IPS.

References

1. C.H. Moore Forth: A new way to program a minicomputer
Astron. Astrophys. Suppl. 15,497-511, 1974

2. T. Dollhoff Making hash with tables
Byte, vol. 2, No.1, 18-30, January 1977

3. J.F. Herbster Improving quadratic rehash
Byte, vol. 2, No.5, 142, May 1977

4. W.W. Peterson Prüfbare und korrigierbare Codes
R.Oldenbourg Verlag, Munich and Vienna 1967

5. N. Wirth Software Practice and Experience
Modula, (3 papers) vol. 7, 3-35, 37-65, 67-84, 1977

6. D.W. Johnson Multitask µP executive routine uses only six instructions
Electronic Design 4, February 15, 1978

IPS - High Level Programming of Small Systemsx

CHAPTER I

How to use IPS

1 Hardware requirements for IPS

This book describes IPS for four microprocessors:
• The RCA COSMAC (CDP 1801/1802)
• The 8080 (thus also covering the Z80)
• The 6800
• The 6502
Hardware requirements

All four processors demonstrate similar performance in the IPS environment
and require about the same amount of memory to support IPS. The system
occupies about 6 Kbytes; in order to have sufficient space for user programs
16 Kbytes are recommended as the memory complement. My experience
indicates that the remaining space is sufficient to accommodate even very large
programs. As a guideline, you may assume that IPS programs require about one
half the memory of similar BASIC programs.

IPS is an extremely interactive system. Key to these interactions is a video
memory organized as 16 lines by 64 characters. This memory is part of the
processor address space; by storing into these addresses, the content is
immediately displayed on a TV-screen. (During processor access to this memory,
the TV-screen is blanked).

Some TV-memories on the market possess scrolling and selective blanking
features to facilitate emulating a teletype mode. IPS does not use a teletype
emulation mode and thus does not need nor use these features.

The TV-memory should at least be able to display the 64 ASCII character
subset. It should also allow inverting character and background brightness in order
to be able to display a cursor. If you utilize a hardcopy device having lower-case
capability, I recommend a display having the full 128 character set. This will
allow you to edit normal correspondence or other written material in a generally
acceptable form. inverse video

1Sect. 1 - Hardware Requirements

To enter text into the system, an ASCII keyboard is required. The
COSMAC and 8080 systems use a bit-serial approach for entering the characters,
the other two versions enter the seven character-bits in parallel. The 8080 may
also be used with the parallel configuration. The parity-bit is not used.

The keyboard preferably should have the "CTRL" characters marked on the
keys. Otherwise you will be required to mark some of the keys as to their control
function. Also, the keyboard should have a provision for locking it in upper case.
Make sure that the keyboard has the full ASCII character set; some keyboards do
not have the @ character (which is frequently used in IPS).

Mass storage in the IPS versions described in this book is done using
standard tape cassettes. The four systems use the AMSAT cassette standard.
(See appendix B). From a software point of view the significant property of this
standard is the fixed length of the records; all records are 512 bytes long and may
contain arbitrary data (character or binary). This length allows the use of the
TV-screen as an input buffer; one record (block) fills exactly one half of the
TV-screen.

The AMSAT standard uses a synchronous rate of 400 bit/s and thus is
approximately twice as fast as the asynchronous 300 bit/s Kansas-City standard.
The AMSAT standard is marginally acceptable from a speed point of view. If
you do not intend to use the AMSAT recording technique, any other standard
faster than this system and capable of blocks of 512 arbitrary bytes could be used;
of course the software drivers may have to be changed.

The IPS represents a multiprogramming system. It thus cannot use timing
loops or other programming techniques which tie up the computer in a single
task. In order to have a means of coordinating the various activities and to keep
time, a 20 ms hardware input of a sort is required. This input also allows the
software clocks to keep time. With the COSMAC this input is applied to
" External Flag 1 "; with the other processors it forces an interrupt.

Finally, the system requires a bootstrap capability to enter IPS initially. This
may be a hardware load feature (COSMAC) or a small ROM program
containing a loader. Bootstrap loader

Note that no front-panel switches or indicators are required; all
communication with the system is effected via the keyboard and the TV-display.
Only the cassette recorders need to be manipulated additionally.

Hardware requirements

2 Chapter I - How to use IPS

Here is a summary of the hardware requirements for an IPS installation:
• Processor : CDP 1801, CDP 1802, 8080, Z80, 6800 or 6502
• Memory : 16Kbytes RAM + loader ROM
• Display : 1024 byte video-RAM (16 x 64) ASCII character set, bit 7 to

 invert background and character
• Keyboard : ASCII keyboard featuring full character set
• Mass storage: Cassette system enabling the recording of 512 byte long

 blocks with arbitrary content
 e.g. the AMSAT cassette recorder standard
• Timing: 20 ms crystal derived input to processor (ext. flag or interrupt)
• Front-panel : None required Hardware requirements

Chapter III contains information on how to install IPS on computers using
other microprocessors than the ones mentioned. You may assume that in a system
like IPS most good points and bad points of the various processors average out, so
the performance variations between the different 8-bit-processors are not very
significant. A better guideline for the choice of a system would be hardware
availability and simplicity (chip-count).

Nevertheless, a processor should meet certain minimal criteria. Most
important, it should have 16-bit addressing capability (at least 15-bit) without any
data addressing discontinuities such as paging. Having to handle such
discontinuities would considerably slow down the system. Preferably the
processor should incorporate some 16-bit registers on the chip allowing indirect
addressing. Ideally they should have an auto increment feature and indexing
capability.

The COSMAC architecture comes closest to these requirements. The 8080 is
less well matched to IPS, but the powerful 16-bit instructions are a compensation.
With the 6800 operations requiring multiple 16-bit pointers are awkward, but the
capability of indexing with reference to the stack is very powerful. The 6502
suffers from not having a single 16-bit register on the chip. The high speed of this
processor and the additional addressing modes nevertheless make this processor
about as fast as the other ones. But the emulator code is significantly more
voluminous than that of the other processors.

IPS also could be installed on 16-bit computers. It will run there about 2 to 5
times faster than on 8-bit machines. I doubt that there are many installations
where this speed would actually be required. On the other hand, cost goes up
nearly by a factor of two; presently memories are only available as 16K by 1, but
not as 8K by 2. Also the choice of the processor becomes more critical; processors
well matched to a stack-organization (e.g. PDP 11) may perform significantly
faster than processors designed for a workspace concept.

3Sect. 1 - Hardware Requirements

2 Keyboard Operations

2.1 Your computer and IPS
Your computer, by its design, requires the instructions it is to perform as a

binary pattern in its memory. These instructions are difficult for humans to
handle, not only because of the binary nature, but also because of the linear
arrangement in the computer memory. A belated insertion, for example, requires
that the rest of the memory contents be modified.

Programming is much simplified, if we can instruct the computer in a
language which matches our thinking. In addition, programs thus become self
documenting, which eliminates the need for separate documentation (which is a
pain in the neck and thus is often badly neglected). We also need a simple and
transparent means of testing our programs. IPS is designed to provide these
services and to translate your program into a format which the computer can
execute.

IPS uses a kind of dictionary. This dictionary contains the name of an
activity and a description of the steps constituting that activity. IPS itself is
largely such a dictionary, defining the translation process. Each process the
computer can execute may be described by such a dictionary. Creating such a
dictionary describes to the computer how to handle the process. The computer
can interpret this dictionary, hence the name Interpreter for Process Structures
(IPS). Most of this book describes how to create such a dictionary by merely
explaining to the computer the problem you wish to solve.

2.1.1 Communicating with IPS
The following sections assume that you have loaded IPS into your computer.
The TV-screen has 16 lines with 64 characters each. In the lower 8 lines the

computer expects its instructions from you via the keyboard or from cassettes.
The cursor (a black bar) indicates the next position you may write into. The
eight upper lines are used by the computer to communicate back to you. separator

All input to the computer consists of words; they are separated by one or
more blanks. Words may consist of arbitrary strings of characters without blanks.
There are three different kinds of words: numbers, IPS-words and words you
have defined yourself. After you have written some words, and if you have made
no typing error, you press CR (Carriage Return) to tell the computer to process
the words. If the computer can process the words without error, it clears your
entry to indicate that it has complied with your text.

If you made a typing error, you may correct it before pressing CR by using
the following keys:

BS (CTRL-H) Backspace, moves the cursor 1 position back

4 Chapter I - How to use IPS

FS (CTRL-\) Forwardspace, moves the cursor to next position
LF (Line Feed) Moves the cursor 1 line down
You cannot move the cursor off the screen; if you try to move it beyond the

last line, it will show up in the first line and vice versa.
You correct your writing by simply overwriting the erroneous parts. The

division of the screen into lines of 64 characters is invisible to the computer; you
may write words over line boundaries without separation signs. The computer
"sees" the screen as a single line of 1024 characters.

After the CR, the computer reads the text from the beginning of the 8-th line
to the CR. You may write into the first 8 lines as well, but the computer ignores
this text.

2.2 The Stack
Before you attempt to make the computer perform simple operations, the

stack should be introduced. It is a temporary storage for numbers. You may
visualize it as a number of cards, each having one number written on it; these cards
are then "stacked" on top of each other in the sequence they are written. The last
number thus is on top.

Most instructions of IPS expect some numbers on the stack; they remove
these and replace them by results. Instructions expecting one number always refer
to the top of the stack, instructions expecting two numbers refer to the two top
numbers and so on. The results are then placed on top of the stack. Stack top of

You will see that such a stack is an ideal place to store and to pass
intermediate results within program modules as well as between them. To simplify
program development and debugging, the contents of the stack are displayed in the
first two lines of the TV-screen. The stack contents are displayed with the top
entries to the right. If there are more than 16 stack entries, only the 16 topmost are
shown. The stack display may be switched off. Parameter stack

2.2.1 Numbers
All numbers used by IPS are stored internally as 16-bit integers and thus

range from -32768 to 32767. Other number types may be defined if necessary.
The internal representation of the numbers is binary, with positive numbers

bit 15 is zero; with negative numbers bit 15 is set to one. Logically they are
produced by counting backwards from zero (-1 thus corresponds to
1111111111111111 , or in hexadecimal writing #FFFF) binary number

 Number range Number type

5Sect. 2 - Keyboard Operations

2.2.2 Number entries
In order to place a number on the stack, you simply type it on the keyboard.
a. Unsigned numbers are read by IPS as positive decimal numbers and

placed on the stack. (a + sign is not allowed)
b. A - sign followed by figures is read as a negative decimal number.
Number entries

For example:
123 -415 <CR> produces a stack display of 123 -415 <CR> will now

be tacitly assumed to follow all entries. You may remove numbers from the stack
one at a time by typing the word DEL . DEL DEL will thus remove both of the
above numbers.

c. In addition to decimal numbers you may also enter binary or hexadecimal
numbers. Hexadecimal numbers are numbers starting with the # and
having the digits 0 - 9 and A - F (10 - 15). Binary numbers start with a B
followed by digits of 0 or 1 .

With all numerical inputs, leading zeros may be omitted. But you must be
careful not to exceed the permissible range possible with 16 bit numbers.
Otherwise, erroneous numbers are placed on the stack. The largest permissible
numbers are: Number range Number type

 -32768 to 32767
 #0000 to #FFFF
 B0000000000000000 to B1111111111111111 (16 digits after B)

The format of the stack display on the TV-screen depends on the number last
entered. For example:

15 B111 #15 results in the display:
#000F #0007 #0015 (the last entry was in hexadecimal)

If you enter now -40 you get:
15 7 21 -40 (the last entry was in decimal)

If the last entry was binary, the stack is displayed in hexadecimal; there is no
binary display.

2.2.3 Arithmetic operations
The basic arithmetic operations are effected by the words:
 + - * / /MOD Operators arithmetic arithmetic operators

If you use the above stack content (15, 7, 21, -40) and enter the "word" +
you obtain: 15 7 -19

6 Chapter I - How to use IPS

The upper two numbers of the stack were removed, added and the result was
placed on the stack.

Entering a - now results in: 15 26
Now entering a * results in: 390

All arithmetic operations are modulo 216. There is no diagnostic at overflow;
it is the programmer's responsibility to ensure that the number range is not
exceeded.

The division and /MOD are defined for positive numbers only, but these may
extend up to #FFFF. /MOD is a division leaving a quotient and on top of it the
remainder.

2.2.4 Logical operators
In addition to the arithmetic operations IPS enables logical operations; there

are three operators (words): Operators logical logical operators

AND OR XOR
These operations expect two numbers on the stack just like the arithmetic

operators; the operation takes place bit by bit and the result is left on the stack.
With AND the bits have to be pairwise 1 in order to have the corresponding

bit in the result to be 1.
With OR at least one of the bits has to be 1 to have a 1 in corresponding bit in

the result.
With XOR a 1 in the result is obtained, if the two corresponding bits are

different.
e.g.: B1010 B1100 XOR results in #0006 (i.e. B0110)

So far we have seen only operations using two numbers. There are also
operations using a single number.

The word INV replaces all bits of a number by the opposite.
The word BIT takes a number from the stack and discards all bits except the

four least significant ones. This resulting number (it may range from 0 to 15 or #0
to #F) is taken as a number identifying a specific single bit in a 16-bit number.
(The 16 bits of a number may be identified as bits 0 through 15, bit 0 being the
least significant.) BIT now places a number on the stack in which all bits are 0
except the one identified by the original four least significant bits.

e.g.: #7 BIT results in #0080 equal B0000000010000000
 Bit-number: 15 7 0
This function is useful, if you want to test large numbers of bits in loops.

7Sect. 2 - Keyboard Operations

2.3 Stack manipulations
2.3.1 Parameter Stack Operations
So far you can see that the stack is the source and destination of all

operations involving numbers or logical quantities. In order to give you more
freedom in dealing with these quantities, IPS provides some stack manipulation
operators. You have already learned one; the word DEL . This is the complete
list: Stack manipulation Parameter stack Stack operators Operators stack

 DEL DELetes the top entry
 PDEL DELetes the two top entries (a Pair)
 DUP DUPlicates the top entry
 PDUP DUPlicates the two top entries (a Pair)
 SWAP interchanges the two top-entries
 RTU Rotates the Three top entry Up, the old topmost entry becomes the

third-lowest
 RTD Rotates the Three top entries Down, the old third-lowest

becomes the top entry
 SOT duplicates the Second entry On Top of the stack.

The following table demonstrates these operations:
Before operation After operation

SWAP 5 8 8 5
DUP 8 5 8 5 5
DEL 8 5 5 8 5
RTU 8 5 12 12 8 5
RTD 12 8 5 8 5 12
SOT 8 5 12 8 5 12 5
PDUP 8 5 12 5 8 5 12 5 12 5
PDEL 8 5 12 5 12 5 8 5 12 5

2.3.2 Return Stack Operations
In addition to the normal stack (the operand or parameter stack) there is

another stack IPS uses internally. This stack is called the return stack for reasons
explained later; the return stack may also be used by the programmer. There are
some restrictions to be observed though, that will be explained in the section
describing loops, (Sect. 3.1.2).

The return stack often represents a welcome intermediate storage area, if
you wish to access deeper layers of the stack.

8 Chapter I - How to use IPS

These three operations are available:
S>R takes a number off the stack and places it on the return stack
R>S takes a number off the return stack and places it on the stack
I (called Index, see Sect. 3.1.2) duplicates the content of the return

stack onto the stack without changing the return stack.

This table demonstrates the actions:
 Before operation After operation

S>R S: 5 7 5
 R: empty 7
I S: 5 5 7
 R: 7 7
R>S S: 5 5 7
 R: 7 empty
Note: Do not remove numbers from the return stack that you did not place

there previously !

2.4 Named constants and variables
The stack is very practical for short term storage and for the manipulation of

numbers, but it is not very suitable for the permanent storage of numbers. IPS
offers two possibilities to store numbers under a name: constants and variables.

To accomplish this, IPS creates an entry in the dictionary consisting of a
compressed form of the name (namecode, 4 bytes), a pointer to code (2 bytes),
an identifier of the code type (typecode, 2 bytes) and the value of the entry
(2 bytes). This structure is fully described in Chapter III. See also Sect. 2.5.

 constant variable

Constant entries are produced for those numbers which are not changed
during the course of the program.

To create a constant entry you enter the value the constant is to have, the
word CON and the name the constant is to have.

e.g.: 510 CON LIMIT produces a constant-entry named LIMIT containing
a value of 510.

If you now type the word LIMIT, the constant 510 is placed on the stack. (It
also continues to exist in LIMIT, of course.)

You may use any string of arbitrary characters for the names of dictionary
entries - that includes special and control characters. For example $ or >>> are
perfectly valid names. Only blanks and round brackets are not permissible. (See
Sect. 3.1)

9Sect. 2 - Keyboard Operations

Because changing the value of constants is a bit involved, there is a second
type of number-entry called variable.

e.g.: 745 VAR AUTO creates a variable entry.
Typing AUTO does not deliver the value of AUTO, but the memory position

where AUTO is stored. Variables thus are not named numbers, but named
locations (addresses) in which numbers may be stored.

In order to obtain the contents of such a location the word @ is used. It
replaces an address on the stack by the actual data residing at that address.

e.g.: AUTO @ results in 745 to be placed on the stack (Please remember
that words are separated by one or more blanks.)

Because the variables deliver the address on the stack, it is simple to change
their value. The word ! (store) expects two numbers on the stack; a number that
is to be stored and on top of it the address where it is to be stored. When
performing storage, the ! removes both numbers. store number

e.g.: LIMIT AUTO ! calls the constant LIMIT (510), calls the address
of AUTO ; then stores the 510 into AUTO. Now entering AUTO @ delivers 510
to the stack.

It is also possible to change the value of a constant; it is recommended that
this option be used during program development only, however. (Some IPS
versions store constants in ROM).

In order to store a new value into a constant, you need the address of that
constant. The word ? followed by the name of the constant delivers this address
to the stack.

e.g.: 45 ? LIMIT ! puts a 45 on the stack, then the address of LIMIT is
placed on the stack and finally ! stores the 45 into the address of LIMIT .

Some IPS versions do not allow use of the ? in programs. It is good practice
to create variable entries if the value of that entry changes during the program.

2.5 Fields
Often a set of numbers set required, which are stored under a single name

and which differs only by an index. Such structures are called fields. Such fields
may be defined by the use of an extension of the variable concept. In order to
understand this, let us take a closer look at how variables are stored in memory.
All entries in the dictionary (nametable) are very similar.

The nametable contains the "name" coded into 4 bytes. The first byte
contains the number of characters in the name (truncated to 63, if necessary).
The following three bytes contain a 24-bit number computed from all the ASCII

10 Chapter I - How to use IPS

characters of the name. All entries into the IPS dictionary utilize this name coding;
each name has a unique code and may thus be identified later.

In the nametable each namecode is followed by a pointer which indicates the
dictionary position containing the typecode of the entry. A variable entry in the
dictionary consists of a 2 bytes typecode for variable followed by 2 bytes
containing the actual numerical value of this particular variable. For full details
see Chapter III, Sect. 5.3.

IPS has a system-variable named $H, which contains a pointer to the next free
position in the dictionary. Thus IPS keeps track of where the next entry in the
dictionary is to go.

If you increment this pointer after creating a variable-entry, you make room
in the variable to contain more than two bytes. If you want to create a field for 10
numbers, for example, you must increase $H by 9 number positions (18 bytes
total, since you will recall that each number entry consists of two bytes.)

e.g.: 0 VAR GROUP produces a variable GROUP
 If you want to be able to store into it 10 numbers, you must increase $H

by 18 (bytes).
 $H @ 18 + $H ! (instead of writing $H @ you may also write

HERE ; it has the same effect)

To now store a value of 15 into component number 4 of the field (counting: 0
1 2 3 ...), you type:

15 GROUP 8 + ! The 8 + increases the address by 8 bytes, that is by four
numbers, before the storage takes place. Similarly, component 3 is accessed by:

GROUP 6 + @

11Sect. 2 - Keyboard Operations

Name Table

Program

Name Code Pointer

VAR

Value

}

Type
Code

2.5.1 Field Operations
To simplify the creation and manipulation of fields, IPS offers five words;

FIELD !FC >>> L>>> and F-COMP
To create a field you may write:
8 FIELD ALPHA This creates a field named ALPHA being 8 bytes wide.

In this field all numbers are initially undefined. To preset them to specific values,
you type:

5 9 -123 17 ALPHA 4 !FC (store field components)

This operation stores the 4 numbers 5 9 -123 17 (in this order) into the
field ALPHA ; the number of components must always be specified.

With the operation !FC, as with all other IPS operations expecting numbers
on the stack, the following principle is always observed: first the "source", then
the "destination" and finally additional information is expected on the stack in
this order. Operators field Field operators

To move components of a field into another field, you could accomplish this
component by component using @ and ! . With a large set of data this would be
clumsy and slow. To simplify and speed up this activity, a special word is
available.

Using the two fields GROUP and ALPHA of 20 and 8 bytes, respectively,
you might move ALPHA into GROUP say, beginning at position 10:

ALPHA GROUP 10 + 8 >>>

source destination no of bytes field transport
Graphically:

This transport takes place directly (not via the stack) and thus is much
faster than transporting individual components. The transport takes place byte by
byte starting at the lower addresses. The addresses may overlap. This enables
the following useful function:

12 Chapter I - How to use IPS

ALPHA
0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

>>>

GROUP

Assume you wish to set a total field to zero, you type:
0 ALPHA ! (clears the first two bytes)
ALPHA ALPHA 1 + 7 >>>

Graphically:

The word >>> transports 1 - 256 bytes. If you wish to transport a larger
number of bytes, you may use the word L>>> . This word transports between 0
and 32767 bytes. If the number of bytes to be transported is negative, no transport
takes place.

The word L>>> takes slightly longer to execute than >>> . For short
transports the word >>> thus is the preferred one.

In this context note that there is also an instruction which compares two
fields, byte by byte (length: 1 - 256 bytes).

Write:
GROUP ALPHA 8 F-COMP

field 1 field 2 no. of bytes field comparison

This operation compares the first 8 bytes of the two fields. If these field
contents are identical, F-COMP leaves a 1 on the stack. If GROUP is numerically
smaller than ALPHA , the result is 0; if GROUP is larger, the result is 2 . The
bytes having the higher addresses are also treated as the more significant ones.

2.6 Byte manipulations
Numbers are stored in two bytes, and the numerical or logical operations

always operate on 16-bit (2-byte) quantities. Often it is desirable though, to
access single bytes (8 bits) particularly if you wish to manipulate text strings.
There are two words enabling byte accesses:

@B expects an address on the stack; it removes it and replaces it with the
content of the byte at that address. This number may have values between 0 and
255 (#00 to #FF) and is the least significant byte on the stack. The most
significant byte on that stack entry is set to 0 (#00).

!B stores a single byte into an address. The operation is analogous to the ! ;
the most significant byte of the number to be stored is discarded.

13Sect. 2 - Keyboard Operations

ALPHA
0 0 0 0 0 0 0 0

0

In variables and constants, the byte having the lower address is also the least
significant one. Numbers on the stack always are held and handled as two bytes -
there is no single byte access to the stack.

2.7 Error messages
If IPS does not recognize a word or a number, an error indication is

produced. IPS at first checks whether the input word is already in the dictionary.
If so, the word is executed. Else IPS checks whether the input word is a valid
number. In this case the number is placed on the stack. If both of these tests fail,
IPS writes in front of the unidentified word, an inverted ? and stops processing
the input. You may now correct (starting after the ?) your text. If you enter CR
again, IPS continues to read after the ? .

There are a few activities, in which the instruction is followed by a name
(e.g. VAR). If there is an error in such an operation, both words must be
repeated.

Often there is a longer text following the error ? . Make sure that you place
the cursor after the last word of your entry before pressing CR. IPS reads only to
the position of the cursor prior to entering CR .

There are only a few error messages beyond the ? mentioned; they are
written into the seventh line:

STACK EMPTY ! You removed a number from the empty stack;
 the stack had to be restored.

MEMORY FULL ! The dictionary cannot accept further entries.
 This will rarely be encountered.
DUPLICATE NAME ! The name is already in use by you or the
 system; select a different one.
TEXT-ERROR !)
STRUCTURE ERROR!) These will be explained in Section 3.
NAME MISSING !)

The error messages remain on the screen until they are acknowledged by
typing OK. This will clear the message and also re-enable cassette reading. (An
error will stop it, see Sect. 3.3, Tape Operations)

14 Chapter I - How to use IPS

3 Programming

3.1 Definitions
So far, methods have been introduced which allow the computer to perform

mathematical or logical operations. The main strength of a computer though, lies
in its ability the "remember" a sequence of actions and to perform them at a later
time as dictated by other events, e.g. at a certain time or after certain external
events. programming

To enable the computer to remember a set of actions, select a name and then
enter the actions required. To be precise, type:

: name word word ... word ;
The colon produces an entry identified by the name which follows the colon.

The following words are not executed, but stored in the entry for later execution
(coded internally as addresses). The semicolon terminates the entry. Again:
words are separated by blanks; the semicolon is a word, too. separator

In order to make such definitions of actions more readable, you may insert
arbitrary comments - simply enclose these comments by parentheses. IPS will
ignore these comments, but later they may help you to understand your programs.

Example of a definition:
: 4NUMBERS 10 DUP (PUTS 10 ON THE STACK TWICE)

 15 DUP (PUTS 15 ON THE STACK TWICE) ;

If you now type 4NUMBERS , the stack will display:
10 10 15 15
You may see something new from this example beyond the creation of

definitions: within definitions numbers are also not executed (put on the stack),
but "compiled" into the definition in such a way that they will be put on the stack
at the time of actual execution of the definition.

The only rule which must be observed is that you can put into definitions only
items as are defined within IPS itself, or those which you have defined previously.
Of course you may put into definitions other definitions you created before; thus
you may create arbitrary hierarchies of definitions.

3.1.1 Branches
One of the most important properties of computers is their ability to make

decisions based on the result of calculations or other events. IPS offers several
possibilities towards this end. They assume that you have left a number on the
stack. This number is to govern the further actions of the computer. For the time
being, let us assume that there is a 0 or a 1 on the stack. You may then use the
following words:

15Sect. 3 - Programming

YES? word word ... word (actions to be performed, if a 1 was
 on the stack)
NO: word word ... word (actions to be performed, if a 0 was
 on the stack)
THEN word word ... (continuing action in both cases)

The word YES? removes a number from the stack and checks it. If it is a 1,
the words following the YES? are executed and then the words following the
THEN. If there was a 0 on the stack, the words following the NO: are executed
and the program continues after the THEN. branch rule

Rule: Each YES? must be followed by a corresponding THEN
The NO: may be omitted; if the number on the stack is 0,
the program continues after the THEN.

Generally there is not a 0 or 1 on the stack to base a decision on, it rather has
to be calculated or produced by a comparison.

Strictly, only the least significant bit of the number is checked. An odd
number leads to the YES? action, an even number results in the NO: action.

IPS offers the following standard comparisons:

>0) These compare a number on the stack against 0. They
<0) remove the number and replace it by a 1, if the
=0) condition is true, else they put a 0 on the stack.

>)
<) These compare two numbers on the stack and remove them.
=) They put a 1 on the stack, if the condition is
>=) true, else they put a 0 on the stack.
<=) operators comparison comparison operators

=/)
<>) Equivalent to =/ in some versions of IPS.

F-COMP Compares two fields, as explained earlier.

>0 <0 =0

> < = >= <= =/ <>

16 Chapter I - How to use IPS

In addition to these standard comparisons, you may also use the logical
operations. In this case you utilize only their effect on the least significant bit.

e.g.: A @ B @ > C @ D @ < AND
 YES? ...
 NO: ...
 THEN ...
These words will test, if A > B and C < D . Only if both are true, the words

following YES? are executed. It is a good exercise to write down the state of the
stack after each word.

The "aligned" method of writing the YES? NO: THEN of course is not
mandatory, but it helps to improve the readability of programs and is an insurance
against trivial errors (like forgetting the THEN).

3.1.2 Loops
Many problems require a repetition of actions before you may continue with

other instructions. IPS has four ways of effecting repetitions. operators looping

looping operators

1. Instruction sequences requiring an initially unknown number of repetitions
are written between the words LBEGIN and LEND? . LEND? expects a number
on the stack and removes it. If it was 1, the loop terminates and the computer
proceeds with the activities following the LEND? . If the number found by
LEND? was 0, the instructions following the LBEGIN are repeated again. This
repetition continues until the LEND? finally finds a 1. (Again, as with the YES? ,
only the least significant bit is tested; the loop terminates with an odd number.)

The following program demonstrates this concept.

: PICTURE TV4 (THIS IS THE ADDRESS OF THE 4TH LINE)

 LBEGIN #40 (ASCII FOR @)

 SOT (GETS ADDRESS, INITIALLY TV4)

 !B (DEPOSITS @ INTO THE ADDRESS)

 1 + (INCREMENTS ADDRESS)

 DUP TV4 64 + = (ADR. = TV4 + 64 ?)

 LEND? DEL (ADDRESS) ;

This program may now be executed by typing PICTURE . It will fill line 4 of
the TV with @-characters.

Note: IPS has the constants TV0 , TV4 and TV8 containing the addresses of
the start of line 0, 4 , 8 of the TV-screen. The constant $TVE is the address of the
last character on the TV. TV0 TV4 TV8

17Sect. 3 - Programming

2. With the LBEGIN ... LEND? construct the loop is executed at least
once, because the termination test is at the end. If you need a loop with the test at
the beginning, use this construct:

 LBEGIN words for the test
 YES? words to be executed, if test delivered 1
 THEN/REPEAT

The THEN/REPEAT always transfers control back to LBEGIN. The loop
terminates if the test prior to YES? delivers a 0.

Again a small sample program:

: A-LINE TV4 LBEGIN

 DUP TV4 64 + < (LINE NOT YET COMPLETE)

 YES?

 #41 (ASCII FOR A) SOT !B 1 +

 THEN/REPEAT DEL ;

This program will fill line 4 with As. operators looping looping operators

In the LBEGIN ... YES? ... THEN/REPEAT construct the word NO: is not
permissible. Logically the same result will be obtained, if the NO: action follows
the THEN/REPEAT.

3. Actions to be performed a specific number of times, are placed between
the words EACH ... NOW . This construct has an iteration counter (also called
index). The word EACH expects two numbers on the stack, the loop begin (the
initial value of the iteration counter) and the loop limit. The loop is executed for
each consecutive number of the iteration counter until it exceeds the loop limit.
You may simplify the sample program of above by writing:

: CLEAR TV4 TV4 63 + EACH #20 (ASCII BLANK)

 I (GETS THE INDEX, IN THIS

 CASE THE ADDRESS)

 !B

 NOW ;

CLEAR will clear line 4 .

The EACH takes the two parameters off the stack and puts them on the
return stack. The NOW increments the iteration counter and then checks whether

18 Chapter I - How to use IPS

it exceeds the loop limit. If not, the loop (between EACH and NOW) repeats.
Else, the NOW discards the two parameters on the return stack and the loop is
terminated. Inside the loop the loop limit and the iteration counter are on the
return stack; the later on top. You may thus use the word I to access the iteration
counter. If the initial value of the iteration counter exceeds the limit, the loop
action is not executed at all. loop index operators looping looping operators

4. If you desire another increment than one with the loop index, you may use
the word +NOW instead of NOW. +NOW expects a number on the stack and
removes it. The iteration counter is incremented by this number. e.g.

: PATTERN TV4 TV4 63 + EACH #5F (ASCII FOR _)

 I !B

 3 +NOW ;

will write an "_" into each third position when you type PATTERN .

The return stack first belongs to IPS; if you wish to use it, you must comply
with these restrictions:

a. If you place something on the return stack within a definition you must
remove it again in the same definition. IPS uses the return stack to remember
where it is to return after executing a definition.

b. The EACH ... NOW construct also uses the return stack. If you place a
number on the return stack within the EACH ... NOW loop, you also must remove
it inside the loop. If you call a definition from within the loop, note that this
definition puts a number on the return stack. Thus you cannot call I within this
definition. If you need I within the definition, put it on the stack prior to calling
the definition. (These rules may be circumvented by appropriate stack
manipulations. But programs become difficult to read this way and this practice is
therefore not recommended.) loop nesting rules

3.1.3 Nesting rules
Constructs using the YES? NO: THEN and loops may be arbitrarily nested.

If you nest EACH ... NOW loops note that only the loop index of the inner loop is
available by I. If you need the loop index of an outer loop, you have three options;
you may "unpack" the return stack, you may put the index in the outer loop on the
stack or you may store the index in the outer loop into a variable. Which of the
solutions is optimum depends on the particular problem. Usually the last one is
the most straightforward solution. Make sure that each YES? has a corresponding
THEN, each EACH has a corresponding NOW or +NOW and each LBEGIN has a
corresponding LEND? or THEN/REPEAT. If you violate this rule, IPS will write
STRUCTURE ERROR! and the definition is not deposited into the dictionary.

19Sect. 3 - Programming

STRUCTURE ERROR! with a residual number on the stack indicates a
missing THEN, NOW or LEND? . If you also get the message STACK
EMPTY ! , there is an excessive THEN, NOW or LEND? . It is good practice to
define definition entries with an empty stack, only in this way are you guaranteed
that a structuring error will not result in additional damage to your program. After
a structuring error therefore, remove residual numbers from the stack with DEL .

Entries expecting a name (e.g. VAR) must receive the name during the same
input. Otherwise you will get the message NAME MISSING and the action is
not executed. Apart from this rule, definition entries may extend over multiple
inputs. In this case there will appear numbers on the stack, which you may
ignore. The first number is always the same on your system and you may
consider it an indicator for the definition mode of IPS. definition very long

3.2 Text handling
Besides handling numerical or logical quantities, IPS also must be able to

communicate with humans. Therefore, there are a few words to allow the
handling of text, particularly for output to the TV-screen. Basically text is treated
similarly to numbers, that is; you may include your text output in definitions or
you may put it into fields. Each character occupies one byte. There are no basic
differences between variables, fields containing numbers, or fields containing text
strings except for the length of the parameter field. With variables it is two bytes,
with fields you must define the length. text handling

Numbers you put into a definition are placed on the stack when you execute
the definition. Text strings, on the other hand, will be written on the TV-screen.
There is a variable SP (screen pointer) whose content points to the position on
the TV, where the next writing is to go. After writing, SP points to the first
position following your writing. Text strings are marked as such by quotation
marks, e.g.

: TEST " THIS IS A TEST " ;

will create a definition, whose sole purpose is to write THIS IS A TEST . If
you type now TEST, IPS will write into line 4 THIS IS A TEST . (SP is
initialized to TV4.)

Entering TEST once more will append this text to the old one, and so on.

Since the TV-screen must be reused, there is a clear-word: BLANKS . This
word expects a number on the stack and writes this number of blanks beginning
at SP. SP is not changed.

You may set SP again to line 4 and clear the screen by typing:
TV4 SP ! 256 BLANKS

If now you call TEST, the game starts all over again.

20 Chapter I - How to use IPS

If a text string is used by different program parts, it is more economical
memory-wise to place it into a text array. If you are not in the definition-mode, a
text string as input (in quotation marks) will leave on the stack the position of the
first character on the screen and the number of characters in the string. (Blanks
are characters too, of course). You may then store a text string into a field using
!T e.g.:

" MOTOR DEFECT " GROUP !T

implies that there is a field named GROUP having a length of at least 12
bytes. MOTOR DEFECT will be stored into these 12 bytes, the rest remains
unchanged. If GROUP is 20 bytes long, and you want to fill the rest by blanks,
you may write:

" MOTOR DEFECT " GROUP !T

Caution: If the text contains more characters than the field has bytes, IPS will
 be destroyed. The number of characters of a text-string is the
 number of positions between the quotation marks minus two.

You may create the field in conjunction with the text input.
" COLD " 4 FIELD CD CD !T

Instead of writing 4 you might also have written DUP, but the length of the
array would not be documented that way. text handling text length

Text strings may have a length between 1 and 256 characters. If you forget
the closing " or if the string is too long, you will get the diagnostic message
TEXT-ERROR ! and the stack indicates the length of the erroneous string. Within
a definition this also will result in a structuring error.

Outside definitions, the text string and the words connected with the further
processing of the text must be within the same input, since the screen will be
cleared after the input and thus the text will not available beyond the input.

Text stored in fields is transported to the screen using the word WRITE .
WRITE expects on the stack the address of the field containing the string and on
top the number of characters to be written. Again SP is used as pointer, and after
writing, SP points to the next free position.

CD 4 WRITE

will write COLD on the screen. (See previous example).

21Sect. 3 - Programming

To write numbers on the screen, you may use the word CONV . It takes a
number from the stack, converts it into an ASCII string and then writes it at SP .
SP again is updated to the next free position. The format of this writing is
identical to the stack display. number writing

The presentation (decimal or hexadecimal) depends on the last input. If
you want to make certain, that the display is either decimal or hexadecimal, you
must store (prior to calling CONV) a 10 or a 16 into the variable BASE .

e.g.: 10 BASE ! before calling CONV will guarantee a decimal display.
CONV may produce up to six characters. text handling

Text strings of course also may be transported to the screen using >>> . In
this case SP , if you use it, is not updated. Also you may produce text on the
screen by explicitly storing the numerical representation of the ASCII characters
as was demonstrated in the loop sample-programs. All techniques together give
you the choice to create the display handling best suited for your application.

3.3 Tape cassette operations
Programs (definitions) so far were only entered manually. But you may

store your typing on cassettes. The recording technique uses low-cost cassette
recorders and tape cassettes. The technical details are described in appendix B.
Each recording operation records a "block" of 512 bytes at a time (exactly one
half TV-screen, 8 lines). The recorder should be modified in such a way that the
computer can start and stop the recorder motor. This feature allows automation
of the more important tape operations. tape cassette operations

To create a text recording, you first put IPS into the text editing mode by
entering the word TEXT . Then you have a number of additional editing keys at
your disposal.

1. CTRL P (DLE) clears the rest of the screen after the cursor. The cursor
then is positioned at the beginning of the screen. Hitting DLE twice thus will
clear the whole screen.

2. CR (Return) will not turn the text over to IPS, rather it positions the
cursor at the beginning of the next line.

3. CTRL ^ (RS) initiates the recording of the upper half of the screen (8
lines). The 8 lower lines of the screen move into the position of the upper 8
lines, the lower 8 lines will be cleared and the cursor will be at the beginning of
line 8.

Before you can do a recording you must wind the tape cassette manually
until the brown oxide coated layer is visible in the center window of the cassette.
(Only with cassettes having a leader and trailer tape). You then put the cassette
into the recorder and press the "start" and the "record" button. The computer will
start and stop the recorder after pressing RS.

22 Chapter I - How to use IPS

Playing back your recordings will place them on the screen again starting at
the position of the cursor. Do not stop the recorder while the "block" lamp is on.
If the space following the cursor is fewer than 8 lines, the rest of the block is lost.

Most IPS-versions incorporate additional editing keys.
1. DEL moves the cursor 1 line up, it thus is the opposite of LINEFEED.
2. CTRL O (SI) deletes one character under the cursor, the rest of the line

moves one position left and the last character of the line becomes a blank.
3. CTRL N (SO) inserts a blank at the cursor. The character under the

cursor and the rest of the line moves one position to the right, the last character of
the line is lost.

4. CTRL R (DC2) (delete line) replaces the rest of the line starting at the
cursor by the corresponding part of the next line. The following lines move one
line up, the last line is being filled by blanks.

5. CTRL Q (DC1) inserts a line filled with blanks starting at the cursor; the
rest of the line following the cursor and all lines below move one line down. The
last line is lost.

6. CTRL X (CAN) resets the block counter to one. The block counter is
incremented with each recorded block and written after RS into the last position of
the screen. After count 5 it starts with 1 again. The purpose of this counter is to
simplify editing large amounts of text. This concept assumes that your text
material will be printed with a hard-copy device onto pages. If 5 blocks constitute
one page (40 lines), block number 5 signals the last block on a page. The block
counter thus enables you to keep track of the page format.

If you have completed your text editing, you may leave the edit mode again
by pressing CTRL D (EOT). IPS once again expects IPS words starting at line 8.

Instead of manual entries, you may now also play back text recordings. Make
sure the cursor is at the beginning of line 8 . Since CR is not recorded, IPS will
recognize only complete blocks of 512 bytes. Entering such a block is equivalent
to the CR. IPS will stop the recorder while it is processing the block. After
completion it restarts the recorder. If there are further blocks, it will process them
one after another. tape cassette operations

Because the cassettes contain no inherent file identification, you must write
appropriate notes on the cassettes to maintain order in your recordings; there is no
automatic file search available due to the limited control the computer has over the
recorder.

During program development it is a good idea to not record too many blocks
on a cassette, modifications of text are much faster this way. You may overwrite
individual blocks on the cassette without problems; you merely have to position
the tape to the block gap before the block to be overwritten. If you listen to the
recording, the block gap easily can be identified by a momentary increase in pitch.

23Sect. 3 - Programming

You may also record spoken comments on the cassette between blocks; the
system will ignore this voice recording.

Later on it will be explained, how you may record data or complete
translated programs and how you may enter them again.

3.4 Process control programming
3.4.1 Inputs and outputs
IPS primarily was created to allow for controlling of technical processes.

For this purpose there are some fields representing the "outside world". The
length of these fields depends on the hardware of your installation, particularly
on the number of I/O ports.

The field OUTPUT usually will have four or more bytes. Numbers you
store into these field components will appear, bit by bit, on the corresponding
output lines of the output-ports. Process control inputs and outputs

The field INPUT (generally three or more bytes) works in the opposite
direction. Signals to the input ports appear in the field INPUT and may be
evaluated by reading these bytes. For example:

INPUT 2 + @B fetches the byte at input port 2 and places it on the stack.
#55 DUP OUTPUT !B OUTPUT 3 + !B stores #55 (B01010101) into

output-ports 0 and 3 and thus forces the output lines to the pattern 01010101 on
each port.

The approach of handling I/O ports by fields corresponds to the so-called
memory mapped I/O hardware concept. Although all processors may employ this
I/O philosophy, processors having special CPU I/O instructions usually lack the
supporting hardware of this technique. If your processor has special I/O
instructions (COSMAC or 8080), and your hardware does not support mapped
I/O, IPS simulates this mode by transporting the contents of the field every 20 ms
to the corresponding I/O ports and vice versa. In most applications the resulting
delay may be neglected (e.g. a power relay pulls in about 40 ms). If you cannot
tolerate this delay, chapter II will explain how you may design custom I/O
without delay.

If your computer contains an A/D converter, there is another field for this
input called A/D-CONV . The converter is assumed to convert one analog input
voltage (typically 0 - 2 Volts) into a number the computer "understands". With
an 8-bit converter these numbers range from 0 - 255 (one byte, #00 - #FF). The
converters used by AMSAT maintain #FF with overranging and #00 with
underranging. Normally there is a commutating switch (multiplexer), which
scans a number of analog lines and thus their values are sequentially converted
into numbers. These numbers are then placed into the field A/D-CONV . Each
analog input line thus corresponds to a byte in the field and may be inspected by
the program. The IPS operating system controls the multiplexer and puts the

24 Chapter I - How to use IPS

conversion results into the field. The converters used by AMSAT convert one
level every 20 ms. If there is a large number of analog voltages, say 32, every
value in the field is updated every 0.64 seconds. Chapter III contains information
for customisation of the A/D converter.

3.4.2 Clock
To simplify programming time-dependent problems, IPS contains a clock

supplying the time, day and 4 stopwatches. The field CLOCK supplies time in 6
bytes. (The operating system keeps the time).

CLOCK byte 0 contains 1/100 seconds. It is updated every
 20 ms up to 98, then it is reset and there is
 a carry into byte 1.
 byte 1 contains seconds (0 - 59)
 byte 2 contains minutes (0 - 59)
 byte 3 contains hours (0 - 23)
 byte 4 and
 byte 5 contain days, continuous counting without
 special limit or reset (16-bit number)
You must set the clock after loading IPS, if you wish to use it. For this

purpose you may enter the definition:
: SET 0 CLOCK ! CLOCK 2 + DUP 2 +

 EACH I !B

 NOW 0 CLOCK 5 + !B ;

You then may enter 15 12 24 SET and the clock is set to date 15, time
12:24 hours.

If your program needs to check the time for a limit, it is recommended to
proceed backwards from date to hours and so on. You thus avoid problems if the
time changes during your checking. The following definition checks if a certain
time has been reached or exceeded. If not, it will deliver 0, else 1 onto the stack.

: YET SWAP CLOCK 4 + @B > (HOURS NOT YET REACHED)

 YES? DEL 0

 NO: CLOCK 3 + @B > (MINUTES NOT YET REACHED)

 YES? 0

 NO: 1

 THEN

 THEN ;

e.g. 12 30 YET delivers 0 before 12:30 and and 1 afterwards.

25Sect. 3 - Programming

A more simple test is possible, if your time limit is available in a field. In
this case you may use F-COMP to compare the clock against your limit and
immediately get the result of the comparison. (During F-COMP and >>> the
clock does not change).

3.4.3 Stopwatches
In addition to the clock there are four stopwatches. They are fields, 4 bytes

each, and are named SW0 , SW1 , SW2 and SW3 .

SW0, 1, 2, 3 byte 0 contains 1/100 seconds (98 - 0)
 byte 1 contains seconds (59 - 0)
 byte 2 and
 byte 3 contain minutes (16 bits, 32767 max)

Byte 0 is reduced by 2 every 20 ms by the operating system. If byte 0
contains an odd number, the stopwatch is stopped. You may thus stop it
momentarily by incrementing byte 0. You may later restart the watch by
reducing byte 0 again by 1. If the time of the stopwatch has expired, all bytes are
0 except byte 0; it is 1. To test whether the stopwatch has expired, you only need
to test byte 0. While the watch is running, this byte is even and thus will fail the
YES? test.

e.g.:
 SW1 @B YES? ... (WATCH EXPIRED)

 NO: ... (WATCH STILL RUNNING)

 THEN

In setting the stopwatches to a particular time, byte 0 should be the last byte
set; the watch will start only then. (Or you may use >>> to set all four bytes at a
time).

e.g.: (SW2 is to run for five minutes)
 5 SW2 2 + ! 0 SW2 ! (byte 0 and 1 are set together, which is OK)

If you are interested whether a stopwatch is below a certain value, you again
may use F-COMP . The stopwatch is not updated while F-COMP is being
executed.

26 Chapter I - How to use IPS

3.5 Repeated execution and multiprogramming
3.5.1 The chain
So far we learned only how to execute a definition once by typing its name.

Many technical problems require a continuous repetition of a program. A routine
checking a machine for example, is to perform this check periodically; in case of
problems it then is to perform the appropriate actions. repeated execution

In the general situation of the computer controlling outside activities, there
are usually a few more or less independent processes the computer is to look after.
This multiprogramming and the repeated execution is solved with IPS by the
concept of a chain. This is a field containing not numbers, but programs that are
to be performed in sequence. IPS executes these programs one after the other, and
at the end of the chain starts again at the beginning. chain multiprogramming

The chain has eight positions in which to put programs. A ninth position in
front of the chain positions contains the COMPILER, the program processing
keyboard and tape inputs. Position 0 contains the program displaying the stack
contents; all other positions are preset with no-ops, words resulting in no action of
the computer. You may add further programs to the chain which then are also
periodically executed. Experience shows that even with large programs it seldom
takes longer than 100 or 200 ms to run once through the complete chain. For
many technical applications this is fast enough and eliminates the need of
interrupts and their associated problems typical with real-time programming. To
put or remove programs from the chain is very easy; it may take place by keyboard
or by definitions. In particular, a definition may remove itself from the chain.

It later may be put into the chain again by another definition. With these
operations the rule always holds that a definition in the chain is always executed to
the end. Its removal from the chain means only that during the next pass through
the chain the definition no longer exists in the chain.

Before you put definitions into the chain, you have to make sure that they
leave the stack as they find it upon entry. A definition leaving a number on the
stack will leave this number upon each pass of the chain; thus the stack will
overflow or underflow resulting in a program crash. (While executing definitions
in the chain, the stack is not checked.)

27Sect. 3 - Programming

CHAIN

Def: 0

}

Def: 1 Def: 2 Def: 3 Def: 4 Def: 5 Def: 6 Def: 7
Com-
piler

Jump
Back

To put a program into the chain, you first specify the chain position (0 - 7),
followed by the word ICHN and the name of the program to be put into the chain.
e.g.:

4 ICHN TEST puts the definition TEST into position 4 for
 periodic execution.
4 DCHN removes the definition at position 4 and replaces

it by a no-op.
In particular, 0 DCHN removes the stack display from the chain. This may

be useful if you have other ideas on the use of the display. To switch it on, you
may type 0 ICHN STACKDISPLAY .

Of course you might have put the stack display into position 5 as well, the
net result would have been the same.

If you design programs in- and de-chaining each other make sure that there
are no states from which there does not exist an exit. It is a good idea to prepare
a list of the use of the chain positions and the conditions under which definitions
are put there and removed.

Although the chain is a simple tool to allow multiprogramming, there may
exist situations where this concept is not fast enough. In chapter III another
concept is presented allowing high-level interrupts (so-called pseudo-interrupts)
to exist in parallel to the chain. Where even this is not fast enough, the assembler
of chapter II will enable you to use machine interrupts. The two later techniques
are slightly more complex to use, thus the chain is the preferred mode if the
timing is not critical. chain add item chain remove item

The following table relates the applicability and response time requirements
of the three techniques.

a. Chain: Up to a few 100 milliseconds until service
 depending on rest of chain.

b. Pseudo-interrupt: Up to 18 ms until service with single user-
 pseudo-interrupt. With more, add duration
 of higher priority routines.

c. Machine interrupt: 50 - 250 µs until service depending on processor
 and hardware.

3.5.2 Waiting for events in the chain
A common situation in a program is: can you proceed with execution only if

certain internal or external events have occurred? In principle you could program
such parts using the LBEGIN ... LEND? construct for waiting. But the computer
then "hangs" at this point and cannot execute other programs in the chain in
between. There are two words to solve this problem. The idea behind them is to
remove from the chain the program which cannot be continued at the present

28 Chapter I - How to use IPS

time and to replace it by a program which checks on each pass whether or not the
required event has occurred. If so, the original program is again put into the chain
and resumed at the position after the suspension. To make this possible, IPS stores
at such a wait call the original chain content and the position of where to resume in
it later. chain waiting for events

The word WAITDEF is used to effect the suspension; it expects on the stack
the address of the definition to be used to do the wait and checking. The word '
followed by the name delivers the address put by WAITDEF into the chain. The
action is reversed by the word YES:CONT . This word expects a 1 or 0 on the
stack. With a 0 no action results, with a 1 the original program is again put into the
chain and continued after the WAITDEF .

The following example assumes that stopwatch SW3 is available for waiting.
The program is to continue only after it has waited for a specific time. The actual
waiting is done by the definition TIMEOUT .

: TIMEOUT SW3 @ YES:CONT ;

If the stopwatch has run out, the least-significant byte becomes odd activating
the YES:CONT and thus resuming the program. We still need the definition which
initiates the waiting.

: M/WAIT SW3 2 + ! 0 SW3 ! ' TIMEOUT WAITDEF ;

This definition expects a number on the stack; the number of minutes to wait.
By calling it, the program will continue after this number of minutes. For example
the MAINPROG in the chain is to wait for 20 minutes before continuing:

: MAINPROG ... 20 M/WAIT ... ;
While MAINPROG waits for the 20 minutes to expire, the rest of the

programs in the chain are periodically executed.

IPS has to store some addresses to enable the WAITDEF and YES:CONT.
This results in the restriction that YES:CONT may only occur in the definition that
is directly put into the chain. (Since only one return address is stored the
YES:CONT should not be invoked by further nested definitions).

The WAITDEF has a similar restriction, only it is to occur in a definition
which is called by the definition in the chain.

Furthermore, while invoking such a wait action, the stacks should be empty
(do not use it inside a EACH .. NOW). Routines containing wait actions can
only be tested by putting them into the chain. Do not call them by the keyboard.

29Sect. 3 - Programming

3.5.3 Limited input mode
With IPS the keyboard and the display may be used for two different

purposes. Initially they serve to help the program development and debugging,
later they may be used to operate a machine or other device. In this case the
program must be protected from inadvertent abuse. This can be achieved by
entering the "limited input mode".

The effect of this mode is to allow access to only certain definitions - those
which are required to control the application. All other words are marked by ?
and not executed. Furthermore, numbers are not recognized and are not put on
the stack. Rather they will be accepted only if they were requested by the
program and then are put into the variable N-INPUT . While the program is
waiting for a number input, no other words are recognized. Inverted ?

The words to be recognized must be the last words defined into the
dictionary. Entering the limited input mode involves two steps. The typecode
address (' name) of the earliest word in the dictionary to be recognized must be
stored in the variable LIS . For instance, if OFF is the first word to be
recognized, type:

' OFF LIS !

After this store a 1 into the variable LIM (limited input mode) .

1 LIM !

 puts IPS into the limited input mode and it will then only recognize OFF
and entries defined thereafter. number requested

If you desire to request a number from the computer operator, set the
variable N-READ to 1 . Your program then needs to check if N-READ again has
become 0; in this case the requested number is available in the variable
N-INPUT . The actual input resets N-READ . Until a valid number has been
entered, no other words are recognized.

You may leave the limited input mode by typing RUMPELSTILZCHEN .
This resets LIM and all words are again available.

30 Chapter I - How to use IPS

4 IPS - Operation and memory organization

By now you have learned all important properties of IPS except how to
record and re-enter data and translated programs by tape. In principle you could
enter all programs always as source, but this requires more time and tape than
entering objects in their translated form. To understand the necessary actions, let
us have a look at the IPS-memory organization first. This is only a cursory
introduction, the details are presented in chapter III. memory organisation

4.1 The address space
A typical computer on which IPS is running is assumed to have 16 Kbytes

RAM. These generally would be located starting at address #0000 and extending
up to #3FFF (0 - 16383). In addition 1 Kbyte of memory is represented by the
TV-screen. This segment may start in address space either at #8C00 or at #CC00.
The display electronics treat the first seven bits of each byte as an ASCII-character
and displays it on the screen. The most significant bit of each byte is used to
invert character and background brightness - the cursor is generated this way.

The video electronics continuously scan the 1 Kbyte memory to produce the
displayed picture. If the computer needs access to this storage though, it has
priority. The display is blanked for this duration. Because these accesses are very
fast, this is hardly noticeable to the observer. With frequent accesses you may
notice some short blanked lines running over the screen. inverse video

Earlier you learned that IPS uses a dictionary, a nametable and two stacks.
The dictionary grows linearly in memory starting at lower addresses and extends
to about #1400 depending on the particular version. HERE delivers the first
unused position of the memory.

The first pages (1 page = 256 bytes) contain machine code to connect IPS to
your processor, the rest is IPS code constituting the system and a buffer for tape
output (512 bytes). output buffer

The nametable and the stacks fill the memory from the other end downwards.
The nametable is located between #3400 and #3FFF. except for the 6502, the
return stack extends from #3400 downwards and the parameter stack starts #3300

31Sect. 4 - Operation and memory organization

Stack Pointer

Parameter
Stack

Return Stack
Pointer

Return
Stack

downwards. (6502: return stack #0200, parameter stack #3400) IPS has two
variables containing pointers to the last position in use by the stack. Thus the
system "knows" how many numbers it has on the stack; it keeps track of the
entries by decrementing or incrementing these pointers. Only 16-bit numbers are
held on the stacks. Thus the stack pointers always change in twos.

4.2 The dictionary
Each dictionary entry consists of an entry in the nametable having six bytes.

The first four contain a code for the name (length of the word and a 3-byte code)
and a pointer to where the entry proper starts in memory. The entry itself always
starts with a typecode identifier (a pointer to executable code) and additional
parameters. namecode

 With variables and constants there is a two byte parameter field containing
the actual value. entrytype

Field entries have an extended parameter field to maintain additional
numbers, but otherwise are identical to variable entries.

Definitions contain, in the parameter field, the addresses pointing to the
typecode of the particular entries constituting the definition. Because these
addresses are compiled into the definitions rather than the names, IPS executes

32 Chapter I - How to use IPS

CON Value

Parameter Field

TypeCode Field

(or VAR)

Constant

Variable
or

VAR Value

Extended Parameter Field

TypeCode Field

Field

Value Value

Next entry

Value

DEF

TypeCode Field
Definition

First
action
addr

2nd
action

Next entry

Last
action

RETEX
;:

extremely fast. There is no search action necessary, after fetching two pointers the
position of executable code is available.

Most entries into a definition result in two bytes of code. But there are some
exceptions. Numbers require 3 or 4 bytes depending on whether they are between
0 and 255 or not. If certain numbers are required often in a program, it thus may
be of advantage to create a constant entry. Large numbers used more than 5 times
or small numbers used more than 10 times justify a constant entry. Referencing a
constant in a definition requires only two bytes.

Entries connected with branches do not result in a straightforward 2-byte
address compilation. These words are really executed during the compilation
process to handle jump addresses. These are maintained on the stack during
compilation and explain the numbers seen on the stack during a definition
compilation. The list shows the number of bytes compiled with the jump words.

ICHN 6 bytes NO: 4 bytes
DCHN 6 bytes THEN 0 bytes
EACH 4 bytes LBEGIN 0 bytes
NOW, +NOW 4 bytes LEND? 4 bytes
YES? 4 bytes THEN/REPEAT 4 bytes

All entries eventually must lead to executable code. These entries are called
RCODE or CODE. The entry simply consists of a pointer pointing to actual
machine code which the processor can execute. The IPS code routines are
collected on the lower pages of memory to simplify transcription of the system to
new processors. Thus the RCODE entries point to this code. CODE entries
produced by the assembler have the executable code following the entry.

4.3 The emulator (inner interpreter)
IPS words are executed in three stages. There is a Pseudo-Program Counter

(PPC) pointing to the next word to be emulated. The content of this location is
read and is called the Header Pointer (HP). The PPC is incremented by two to
point to the next instruction in line. HP points to the typecode field of the entry to
be executed. The content of this position is read; it points to executable code. The
emulator jumps to this position to execute the code there. After this execution the
code contains a jump back to the emulator and the emulation cycle starts all over
again. emulator inner interpreter Pseudo-PC

If the emulator executes a definition, the code (called DEFEX) executed at
the beginning of the definition places the PPC on the return stack. HP+2 becomes
the new PPC. This sub-routine calling mechanism does not require an explicit
jump address; it is implicitly available by the indirect emulation.

33Sect. 4 - Operation and memory organization

The emulator requires only a few instructions and a few bytes of code; with
some processors it is faster than a standard sub-routine call and thus responsible
for the fast execution of IPS.

4.4 The 20 ms pseudo-interrupt
The emulator is designed in such a way as to accept interruptions between

the execution of code routines. This is similar to conventional interrupts, only the
high-level stack-computer is interrupted resulting in no "saving overhead".

Every 20 ms such a pseudo-interrupt is forced to do various tasks that have
to be executed periodically. Most important, the clocks have to be updated and
with some processors I/O actions are performed.

The pseudo-interrupt principle has two important consequences. First, the
latency of the interrupt is governed by the duration of the longest code routine;
under no circumstances should code routines take longer than 15 ms to execute.
(This is easy to ensure with modern processors)

Second, since code routines are not interrupted, it is assured that during the
execution of the code the interrupt related activities do not take place. Thus the
time of the clocks does not change, e.g. while the code >>> is being executed.
The same applies with I/O; if >>> is used, all outputs will occur within
microseconds at the same time. You need not fear that part of your output will
show up 20 ms later.

4.5 The compiler
The compiler is the program processing keyboard and tape inputs. It is

entirely written in IPS and thus not directly related to the low-level activities
discussed so far. If there is an input word, the following actions are taken:

1. The compiler checks whether the word is available in the nametable.
 Depending on the present mode, the word is either executed or compiled.

2. If the word is not in the nametable, the compiler checks whether it is a
 number. In this case it is either put on the stack or compiled into the
 definition. compiler outline

3. If the word is neither a known name or valid number, it is marked by an
 error ? and further input processing is halted.

34 Chapter I - How to use IPS

5 Cassette tape operations on binary data

5.1 Data storage
To facilitate recording data on cassettes IPS maintains a field named $BU

having a capacity of 512 bytes. You may write any data into this field and then
record them by typing RECORD . For the duration of the recording you should
not write into the buffer, of course. You may check by program if the recording is
still taking place by calling the variable C/Z (cassette counter). This variable is
only one byte wide and thus has to be fetched by C/Z @B . During the recording
action it is greater than zero. Tape cassette operations

5.2 Reading data cassettes
You may read data into the buffer $BU again by typing READ . While the

READ takes place, the variable LOADFLAG (1 byte) is 1. After the completion
of the reading (512 bytes being put into the buffer) the system resets
LOADFLAG to 0 again. During the READ the keyboard may only be used to
write to the TV.

The motor of the cassette recorder may be controlled automatically. It is
switched on if the variable LOADFLAG is 1 or if the variable TEXTREAD is 1.
Because TEXTREAD is initialized by IPS to 1, the motor is always switched on
except for the time IPS is processing text input. An input error resets TEXTREAD
thus inhibiting further reading. The word OK sets it again.

If you want to enter data only, you must set TEXTREAD to 0 to prevent data
from being treated as text input. Then the recorder is started only if a READ has
requested data. The variables LOADFLAG and TEXTREAD, like C/Z , are
1-byte variables. Use @B and !B only.

If you design your own buffers (e.g. a cyclic buffer), you may read data into
these buffers directly by using the word $LOAD . $LOAD expects the address of
where the data is to be loaded and on top of it the address of the last byte to be
loaded plus one.

Thus the definition READ is defined as
: READ $BU $BU 512 + $LOAD ;
Note that this way you may enter multiple blocks, but you cannot enter

fractional blocks.

5.3 Program storage
Programs are stored by using the program DUMPER (appendix A.10). You

first enter this program (3 blocks) like any other IPS program. It requires 74
bytes of storage still left above $H and the translation process will leave one
number on the stack. It does not add any names to the nametable.

35Sect. 5 - Cassette tape operations on binary data

Now type $TUE and your program including IPS is recorded as a whole on
the cassette.

You re-enter this program into the computer simply by loading the tape just
like the IPS tape, only your load now contains IPS plus your program.

By this means you also may duplicate IPS. Note that with the program
DUMPER you can produce only one copy; by doing the copy, DUMPER is
destroyed. You thus have to re-enter DUMPER for each copy.

36 Chapter I - How to use IPS

6 IPS programming hints and exercises

6.1 Programming method
To write IPS programs proceed in the following order:

1. Define the problem by a description or a flowchart. Also define the data
structures and how you want to organize them.

2. Now write down definitions describing the problem by words having
specific intended functions.

3. These specific function words are defined in terms of new words
describing in more detail the actions of the words.

4. Continuing this process you work downwards until all details are described
using only IPS words.

5. Now the definitions are entered, the lowest ones first, and tested by typing
their name. If they work properly, you enter the next higher level and
test these definitions. Eventually all definitions are entered and
tested, the program is ready. exercises hints programming

Note that you start writing a program by always defining the more general
items first (top-down design), but you must enter it in reverse since you can
reference only those items already defined.

It is not a good idea to start writing a program by defining details first which
you feel might be useful later. You lose only time this way because these details
never turn out the way you need them later.

If you have already programmed in FORTRAN or BASIC, try to resist the
temptation to name too many variables. As a guideline, use the rule that variables
should be named only if you must access them from more than one definition
(global variables). If you need a variable only for in-between storage within a
definition, use the stack or the return stack.

You may remove items from the dictionary again and thus reclaim the
memory space by typing DEL/FROM name . For instance typing DEL/FROM
TEST removes the word TEST and all words defined after TEST from the
dictionary and the nametable.

When you create definitions, it is a good idea to adopt the same philosophy
with regard to the stack as IPS uses itself. This means that definitions remove all
parameters intended for it and leave only explicit results. This helps you to avoid
hard to locate stack errors (unaccounted items on the stack).

37Sect. 6 - IPS programming hints and exercises

Also make sure that both ways through a YES? ... THEN leave the stack
with an identical number of parameters on it.

If you have problems with a definition, simply test it by keying the words
constituting it individually and observe the stack. Most errors are readily located
this way. Of course, you must manually simulate the effect of branches and loops.

Do not test too many untried definitions at once. Debugging may get too
involved this way. IPS offers you the possibility to start with the low-level items
first. You thus are able to create a base of proven definitions on which you can
rely at the next higher level.

Before you put definitions into the chain, make sure beyond any doubt that
they leave the stack as they found it. If you have definitions in the chain, first
dechain them prior to eliminating them by DEL/FROM .

6.2 Exercises
The following exercises were designed to acquaint you with the use of the

more common IPS words. The solutions given are by no means the only possible
solutions and possibly not the best. Type in your solutions and give them a test.
You will learn more this way than by hours of theoretical deliberations.

a. Write a definition adding all numbers from 1 to N, N being
 supplied on the stack. Leave the result on the stack.
b. Modify a. in such a way that it sums M to N, both on the stack.
c. Modify b. in such a way that it will accept M and N also,
 if their order on the stack is reversed.
d. Modify b. in such a way that it will add only the even
 numbers of the sequence.
e. Modify b. such that it will add only the numbers divisible by seven.
f. Write b. in such a way as to use the other two repetition constructs.
g. Write a definition filling 4 TV-lines starting at TV4 with
 all the characters your display is capable of (one byte may
 contain 256 different numbers and thus characters.)
h. Write a clock displaying the time HH:MM:SS at TV4. Update
 it once per second. (This exercise is more difficult; you
 may need a few test iterations until it works properly)
 Note, that using CONV the result may have only one digit.
 Make sure that this does not spoil the display.
i. Write a hex dump memory display program.

38 Chapter I - How to use IPS

6.3 Solutions to the exercises
a. : 1SUM 0 1 RTU RTU EACH I + NOW ;

b. : SUM 0 RTU EACH I + NOW ;

c. : SSUM SOT SOT > YES? SWAP THEN SUM ;

d. : ESUM SOT YES? (ODD) SWAP 1 + SWAP
 THEN 0 RTU EACH I + 2 +NOW ;

 (This solution is preferable to an even/odd test within the loop. Why?)
e. : 7SUM 0 RTU EACH I 7 MOD =0 YES? I +
 THEN

 NOW ;

 (Also try to write it using the technique of d.)
f. : SUM 0 S>R SWAP SOT SOT >=
 YES? LBEGIN DUP R>S + S>R 1 +

 SOT SOT <

 LEND?

 THEN DEL DEL R>S ;

 : SUM 0 S>R SWAP LBEGIN SOT SOT >=

 YES? DUP R>S + S>R 1 +

 THEN/AGAIN DEL DEL R>S ;

g. : DISPLAY TV4 TV4 255 + EACH I I !B
 (!B STORES ONLY LOWER BYTE OF I)

 NOW ;

h.
: TIMEWRITE SP @ " 00:00:00 " SP ! CLOCK 3 +

 0 2 EACH DUP @B DUP 10 < YES? SP INCR

 THEN

 CONV SP INCR 1 -

 NOW DEL ;

0 VAR AUX

: TDISPLAY CLOCK 1 + AUX 1 F-COMP INV

 YES? TV4 SP ! 10 BASE ! CLOCK 1 + AUX 1 >>>

 TIMEWRITE

 THEN ;

2 ICHN TDISPLAY

Exercises solutions

39Sect. 6 - IPS programming hints and exercises

i. A program displaying a page (256 bytes) of memory as a list of
hexadecimal numbers.

(HEX-DISPLAY FOR IPS-N)

: NUMB SWAP #30 + DUP #39 > (WRITE No. in HEX)

 YES? 7 +

 THEN SOT !B 1 + (POS) ;

: NUMBI NUMB 1 - DUP @B #80 OR SWAP !B ;

 (WRITE INVERTED No.)

: POX

 R>S I #40 * I #F0 AND 4 / + #3FF AND TV0 + SWAP S>R ;

: HEXDISPLAY

 0 255 EACH DUP I + @B DUP #F AND SWAP 16 / POX

 NUMB NUMB #2020 SWAP !

 NOW WEG

 0 15 EACH I I 4 * 2 + TV0 + NUMBI (ANNOTATE)

 I I 64 * 63 + TV0 + NUMBI (DISPLAY)

 NOW

 TV8 2 + $CEN 0 $P2 ! ;

: 0H 0 HEXDISPLAY ;

: 1H 256 HEXDISPLAY ;

After translation the program is used by typing 0H or 1H . It then displays
page 0 or page 1 of the tape buffer using the full TV-screen in a column format.

An arbitrary section of memory may be displayed by typing the starting
address followed by HEXDISPLAY . memory hex display

After 0H , 1H or HEXDISPLAY the stack display is momentarily disabled
to prevent clobbering the display.

The display is annotated with horizontal and vertical 0 - F in inverse video
characters.

40 Chapter I - How to use IPS

7 A larger sample program (StarTrek)

This sample program was modelled after the StarTrek described by David
Price (Byte Vol.2, No.3 (March 1977), pp 106). The main differences are in the
command structure and in the fact, that the Klingons fight back. The original
version was written in BASIC requiring 22 Kbytes of memory. The IPS version
uses about 11 Kbytes including IPS.

 [At this point the example program should follow but, tantalisingly, has not
been found either in paper or electronic form. - Ed.]

Where is the machine readable source of the infamous StarTrek program?

Kirk: Has Meinzer lost it?

Spock: Logical Captain; illogical Meinzer! [Gape,1983]

41Sect. 6 - IPS programming hints and exercises

42

CHAPTER II

The Assemblers

1 General

IPS is sufficient to program almost all problems without having to know the
structure or machine language of your processor.

But there are three exceptions:
a. You want to interface to some special hardware. The IPS I/O structure may

not be sufficient for this purpose, particularly if interrupts are involved.
b. You want to program an extremely time critical problem, that cannot

tolerate any overhead. The IPS emulator has an overhead of about 40 - 50
µs per executed word. Further, IPS treats all numbers as 16-bit quantities.
This results in additional overhead if you are mostly concerned with 8-bit
quantities. The combined effect results in IPS-programs running about
2 - 3 times slower than optimum machine code.

c. The mathematical precision available from 16-bit integers is not sufficient
for your problem and you want to add multiple precision or special
arithmetic operators.

All these problems are solved elegantly by being able to define words, not in
terms of other IPS words, but by machine instructions. These words then may be
used like all other IPS words, but by being defined at the machine level they give
you the facilities mentioned above. The program allowing you to add the machine
instruction definitions is called assembler. To use it you must of course be familiar
with the instruction set of your processor. assembler purpose

The IPS assemblers are intended mainly to allow you to build short interface
routines between your processor, your hardware and high-level IPS. They are not
intended for extended programs. It is not reasonable to do any extended assembly
programming with IPS because assembly programs are harder to debug, usually
require more memory and most important, prevent your programs from being run
on other computers using a different processor. It is thus a good idea to keep the
machine routines as short and simple as possible.

43Sect. 1 - General

2 Basic philosophy of the assemblers

The IPS assemblers create assembly language definitions by using the word
CODE followed by a name instead of using the colon. The last word is NEXT
instead of the semicolon. In contrast to the creation of high-level IPS definitions,
the assembly takes place in the keyboard mode; definition mode is not entered.
Typing a mnemonic, e.g. LDA , results in the appropriate code being deposited at
HERE and then HERE being incremented to the next free position. This has
important ramifications as we shall see later.

There are two major departures from conventional assemblers. First, the
sequence of specifying operations follows the IPS convention, i.e. first source,
then destination and then the operation. Most conventional assemblers use the
reverse order. Second, the usual branch mnemonics are not used, rather the
words Y? N: TH and BEGIN END are used similarly as in IPS. The Y? and END
are preceded by a condition (usually one of the condition codes of the processor
status register). Thus there are no labels or GOTOs used with the assemblers.

Just as with IPS, the stack is used to handle the jump addresses. Let us have
a closer look at this mechanism. If the word Y? is encountered, the appropriate
jump code is deposited at HERE and the address of the following position is put
on the stack; HERE is then incremented further to where the next instruction is to
be placed. Thus there is on the stack the address where later the jump destination
of the Y? is to be inserted. When the TH is encountered later, the Y? jump may
be completed; HERE is the address where the jump is to go. Thus, TH takes the
address off the stack left by the Y? and inserts there the jump destination.

The N: similarly assembles an unconditional branch leaving on the stack the
position where the jump address is to be inserted. The address left by the Y? is
removed and used to insert the position following the N: jump into the Y? .

The BEGIN is equivalent to HERE ; it simply leaves the address to which
the END must assemble a conditional branch. Because the addresses are on the
stack, you may manipulate them, e.g. by SWAP, to be able to depart from the
strict IPS nesting rules or DUP them to return from multiple points to a loop
begin. assembler principles assembler macro

The assembler works in the interpretive mode. Thus you may use any
regular IPS words in between assembly mnemonics. (e.g. to compute numbers
used in immediate instructions) You may also use the word NEXT as often as
you wish to create multiple exit points from a code definition.

You may collect a recurring sequence of mnemonics into a regular
definition; calling it each time deposits the whole sequence of assembly
instructions. Such definitions are called macros. Macros of course may contain

44 Chapter 2 - The Assemblers

the structuring words (e.g. Y? or END) as well. Because IPS uses different
structuring words, you might use these as well to create different assemblies
depending on parameters received by the macro definition. This facility is called
conditional macro assembly.

Although IPS offers these advanced capabilities, do not get carried away by
them. Always remember that assembly routines serve a sort of crutch function and
should not be allowed to mushroom. Even in extremely time critical situations it
usually pays only to code the innermost loop in assembly language. The effect of
the high-level overhead on total execution time is negligible if outer loops are
coded in IPS.

The main function of machine code routines is to create an interface to IPS
via the stack. At the machine level the stack operations are not automatic.
Depending on the processor, the stack is maintained explicitly by a pointer and
appropriate machine code instructions. If the processor already has instructions
for stack operations, this stack is usually the parameter stack. The return stack is
simulated by another pointer. (exception: 6502)

The assemblers by and large use the original mnemonics of the manufacturer.
Unfortunately this approach precludes much commonality between the several
processor's assemblers. But most likely you will work only with one processor,
anyway. Thus the differences will be of little consequence.

IPS occupies certain machine resources. Make sure that you are familiar with
the registers or memory sections used by IPS, which are not to be disturbed.

Handling interrupts is a bit more involved and thus is postponed until
chapter III.

The assemblers are written in high-level IPS. Thus they may also be used to
produce code for different processors than the one on which they are running.
This cross-assembly is particular useful for transplanting IPS onto new processors.

In addition to the mnemonics for the individual processors all assemblers
allow to deposit in-line numbers by using the word , . One byte is deposited at a
time. deposit 1 byte

All assemblers may create certain error messages. These differ from
processor to processor but are self explanatory. If you encounter such a message,
generally it is not recommended to manually correct the code. Rather the entire
code word should be re-assembled because the stack may have been modified
unpredictably. If your assembly leaves numbers on the stack or results in "stack
empty", you may take this as an indication of an error in your code. Do not
execute this code, rather re-assemble it word by word to identify the problem.

The 8080 assembler is coded using English IPS words; the others use the
German set.

45Sect. 2 - Philosophy of the assemblers

3 The CDP 1801 assembler

AMSAT makes use of numerous CDP 1801s. This assembler therefore
recognizes only the instruction subset of this processor. If you wish to make use
of the extended instruction set of the CDP 1802, it is a relatively trivial exercise
to add these to the assembler. (See section 7).

3.1 Register allocations
R0 is the DMA pointer used for recording of cassettes
R1 contains the entry address of interrupt program handling cassette inputs
R2 also named RS is the return stack pointer pointing to the lowest address

in use. Decrement before storing into it !
R3 is the program counter during the execution of all code routines
R4 used for temporary storage like RD, RE and RF
R5 unused by IPS
R6 is the program counter during the low-level interpretation of IPS

words. (Emulator pc)
R7 is the pseudo-program counter (PPC) of IPS
R8 input pointer for tape inputs while LOADFLAG is set to 1
R9 input pointer for keyboard and tape input with LOADFLAG =0
RA system page (#04) pointer. RA.1 should always contain #04
RB also named PS is the parameter stack pointer. It points to the lowest

address in use. The parameter stack always handles two-byte numbers,
the lower address containing the more significant byte. Do not use RB
from interrupt programs because code routines may temporarily store
relevant data up to 8 bytes below pointer position.

RC is used as the emulator header pointer + 2 (HP+2). If you do not need
this information in your code, you may reuse it and destroy its contents.

RD) used for temporary storage within code routines
RE) you may use them without restriction. But they cannot
RF) be used for storage beyond your code routine.

The X register is not being kept pointing to any particular register. You
must set it in each code routine prior to using the first X referencing instruction.
Between code routines X may get changed by the operating system, so never
forget to set X ! EF 1 is connected to the 20 ms flip-flop, it is reset by output 5.
EF 4 is the keyboard input, it is scanned every 20 ms. If EF 4 is active, output 6
instructions are used to strobe in 7 bits of the character sequentially via EF 4,
LSB first. Outputs 5 and 7 are reserved for special functions; see chap. I, sect 3.4

46 Chapter 2 - The Assemblers

3.2 The instruction mnemonics

The following mnemonics are identical to the RCA mnemonics; they expect a
number (0 - 15) on the stack. You may also use the constants RS (2) or PS
(#B) instead:
INC DEC GLO GHI PLO PHI LDA STR

SEX and SEP are replaced by ->X ->P
INP and OUT are replaced by I/O (0-7 output, 8-#F input)

The instructions IDL , RET , DIS , SAV and SHR are identical to RCA usage
and do not expect a parameter.

The ALU instructions are changed, the accumulator is renamed A.
LD , ORA , AND , XRA , ADD, -A , A- are followed either by MX or IM
(separate word). If it is IM, a number is expected on the stack of which the
lower byte is used in the immediate instruction. (e.g. #20 LD IM)

Control structures are created by: Y? N: TH and BEGIN END . The words
Y? and END must be preceded by the conditionals:

D=0 , DF , n (1-4) EF or 0 (the 0 has the meaning of never). The
conditionals may be followed by NOT to express the opposite. (e.g. 2 EF
NOT Y?) Also the word SKP is available.

3.3 An 1801 assembler example

This code routine checks EF 3 and returns a 1 on the stack, if EF 3 is set,
otherwise a 0.

CODE EF3 1 LD IM 3 EF NOT Y? SHR

 TH

 PS DEC PS STR SHR PS DEC PS STR NEXT

47Sect. 2 - CDP 1801 assembler

3.4 Listing of the CDP 1801 Assembler

:INT CODE ENTRYSETUP JA? HIER VERT !
 DANN ;
: , HIER !B $H INCR ;

16 FELD $JERROR " DESTIN. OFF PAGE " $JERROR !T
16 FELD $CERROR " PREINSTR. ERROR! " $CERROR !T

: $INADR ZWO ZWO EXO #FF00 UND
 =0 JA? VERT !B
 NEIN: WEG $JERROR SYSWRITE
 DANN ;
: $TERM WEG $CERROR SYSWRITE ;
: $AD VERT DUP 15 > ZWO <0 ODER JA? $TERM
 NEIN: + ,
 DANN ;
: $ALUACT ZWO DUP 7 > VERT 6 = ODER
 JA? $TERM
 NEIN: $AD
 DANN ;

: INC #10 $AD ; : DEC #20 $AD ; : RET #70 , ;
: GLO #80 $AD ; : GHI #90 $AD ; : SAV #78 , ;
: PLO #A0 $AD ; : PHI #B0 $AD ; : DIS #71 , ;
: LDA #40 $AD ; : STR #50 $AD ; : SHR #F6 , ;
: ->X #E0 $AD ; : ->P #D0 $AD ; : IDL #00 , ;
: I/O #60 $AD ; : NEXT #D6 , ; : SKP #38 , ;
: MX #F0 $ALUACT ; : IM #F8 $ALUACT , ;

0 KON LD 1 KON OR 2 KON AND 3 KON XOR
4 KON ADD 5 KON -D 7 KON D- 10 KON D=0
11 KON DF 2 KON RS 11 KON PS

: NOT 8 - ;
: EF 11 + ;
: BEGIN HIER ;
: Y? #30 $AD HIER $H INCR ;
: N: #30 , HIER VERT $H INCR HIER $INADR ;
: TH HIER $INADR ;
: END #30 $AD HIER VERT $INADR $H INCR ;

 (END CDP 1801 ASSEMBLER)

48 Chapter 2 - The Assemblers

4 The 8080 assembler

4.1 Resource allocations
Since the 8080 does not contain enough registers on the chip to maintain all

pointers required by IPS, most of them are located on the system page (#300).
Only the pseudo-program counter is maintained in the register pair B,C (also
named PC). The stack pointer on the chip is used for the parameter stack; the
return stack is simulated with a pointer stored on the system page.

4.2 The instruction mnemonics
The following mnemonics are identical to the original 8080 mnemonics with

the exception that the additional parameters precede the mnemonics as separate
words:

MOV , ADD , ADC , SUB , SBB , ANA , XRA , ORA , CMP , RST ,
POP , OUT , IN , XTHL , XCHG , EI , DI , HLT , INR , DCR , LDA ,
MVI , LXI , STAX , INX , DAD , LDAX , DCX , PUSH , NOP , RLC ,
RRC , RAL , RAR , DAA , CMA , STC , CMC , SHLD , LHLD , STA ,
LDA , SPHL , PCHL
Except for MVI and LXI the immediate instructions do not use separate

mnemonics, but use the general mnemonics. These are preceded by the number
followed by the word IM . (e.g. #41 IM XRA , but #41 E MVI)

The 8080 incorporates unconditional and conditional call and return
instructions. The unconditional cases use the words SCALL (preceded by the
address) and SRET . The conditional cases use the words CALL and RET . CALL
needs an address followed by a condition code (see further down); RET is only
preceded by a condition code.

With registers a clear distinction is made between 8-bit registers and register
pairs. The 8-bit registers are identified by the letters B C D E H L and A , M being
used for memory references using H,L as pointer.

Register pairs are identified by the words B,C D,E H,L and PSW . The stack
pointer is referenced as $SP to avoid confusion with the IPS screen pointer SP. B,C
may also be referenced as PC ; remember to save these registers (e.g. push them
on the stack) if you wish to use them.

Example: #400 D,E LXI or H,L INX , but L INR

Control structures are created by words Y? .. N: .. TH and BEGIN .. END .
Y? and END must be preceded by one of the following condition codes:

NZ Z NCY CY PO PE POS NEG or NEVER
The same codes are used by the CALL and RET instructions.

49Sect. 2 - 8080 assembler

4.3 An 8080 assembler example
This code routine transfers a byte from input port #0D to the stack; the most

significant byte on the stack is set to zero.

CODE IN#0D #0D IN A L MOV 0 H MVI H,L PUSH NEXT

4.4 Assembler for the 8080; 5. 3. 78 for IPS-N

:INT RCODE ENTRYSETUP YES? ! THEN ;
:INT CODE ENTRYSETUP YES? HERE SWAP !
 THEN ;
: , HERE !B $H INCR ;
16 FIELD VBM " INSTRUCTION ERR! " VBM !T
: FVB YES? 0 VBM SYSWRITE THEN ;
: 7t DUP 7 > SOT <0 OR FVB ;
 #55AA CON IM
: 7txa SWAP 7t 8 * + , ;
: 7tad SWAP DUP IM = YES? DEL #46 + ,
 NO: 7t +
 THEN , ;
: pt RTU DUP <0 SOT 6 > OR SOT OR (ODD) FVB
 SWAP DUP <0 SOT 3 > OR FVB RTU 8 * + , ;
: MOV 7t 8 * #40 + 7tad ;
: ADD #80 7tad ;
: ADC #88 7tad ;
: SUB #90 7tad ;
: SBB #98 7tad ;
: ANA #A0 7tad ;
: XRA #A8 7tad ;
: ORA #B0 7tad ;
: CMP #B8 7tad ;
: RET #C0 7txa ;
: CALL #C4 7txa $DEP ;
: RST #C7 7txa ;
: POP #C1 pt 2 = FVB ;
: SRET #C9 , ;
: SCALL #CD , ; : SPHL #F9 , ;
: OUT #D3 , , ; : PCHL #E9 , ;
: IN #DB , , ;
: XTHL #E3 , ;
: XCHG #EB , ;
: DI #F3 , ;
: EI #FB , ;

50 Chapter 2 - The Assemblers

: HLT #76 , ;
: INR #04 7txa ;
: DCR #05 7txa ;
: MVI #06 7txa , ;
: LXI #01 pt 2 > FVB $DEP ;
: STAX #02 pt >0 FVB ;
: INX #03 pt 2 > FVB ;
: DAD #09 pt 2 > FVB ;
: LDAX #0A pt >0 FVB ;
: DCX #0B pt 2 > FVB ;
: PUSH #C5 pt 2 = FVB ;
: NOP #00 , ; : RLC #07 , ;
: RRC #0F , ; : RAL #17 , ;
: RAR #1F , ; : DAA #27 , ;
: CMA #2F , ; : STC #37 , ;
: CMC #3F , ;
: SHLD #22 , $DEP ;
: LHLD #2A , $DEP ;
: STA #32 , $DEP ;
: LDA #3A , $DEP ;
 0 CON B 0 CON NZ 100 CON NEVER
 1 CON C 1 CON Z #0354 CON RS
 2 CON D 2 CON NCY
 3 CON E 3 CON CY
 4 CON H 4 CON PO
 5 CON L 5 CON PE
 6 CON M 6 CON POS
 7 CON A 7 CON NEG
: B,C 0 0 ; : PC B,C ;
: D,E 0 2 ;
: H,L 1 4 ;
: $SP 2 6 ;
: PSW 3 6 ;
: BEGIN HERE ;
: N: #C3 , HERE SWAP H2INC HERE SWAP ! ;
: TH HERE SWAP ! ;
: JPCODE DUP NEVER = YES? DEL #C3 ,
 NO: 1 XOR #C2 7txa
 THEN ;
: Y? JPCODE HERE H2INC ;
: END JPCODE $DEP ;
: NEXT #0380 NEVER END ;

 (END ASSEMBLER 8080)

51Sect. 2 - 8080 assembler

5 The 6800 assembler

5.1 Resource allocations
With the 6800 access to page #00 has addressing advantages and thus is

used as the system page. Except for the stack pointer on the chip, no 6800
registers are permanently occupied and thus may be used without saving
operations. The 6800 stack is the parameter stack; the return stack is simulated
by a pointer stored on page #00.

Page zero is occupied by IPS between #00 and #9F, you may use locations
#A0 to #FF for your code routines as storage area.

Note that with the 6800 16-bit operations use memory in reverse order
compared to IPS - the most significant byte is stored at the lower address.
Named variables (pointers) utilizing this reverse storage are identified in IPS by
words starting with a reverse slash (\). If you wish to use with these words @
and ! , you need to swap the bytes.

Although the stack pointer points to a position one byte lower than the
lowest position in use, this is invisible with normal programming; as far as a
transfer of this pointer to high-level IPS is concerned, the last position in use is
transferred. Also the return stack pointer indicates the lowest position in use.

5.2 The instruction mnemonics
The instruction mnemonics either are the original 6800 words or are only

slightly modified. They are preceded by an addressing code; and where
applicable, this is preceded by an address or an immediate argument.

 These are the mnemonics requiring no parameter:

TAB TBA TAP TPA TSX TXS PLA PLB PUA PUB A+B A-B INA INB INS
INX DEA DEB DES DEX ACOM BCOM ANEG BNEG DAA SLA SLB
SRA7 SRB7 SRA SRB RLA RLB RRA RRB CBA ATST BTST RTS RTI
SWI WAI NOP CLA CLB 0>C 1>C 0>OF 1>OF EI DI

The following words need to be preceded by an address or the immediate
parameter followed by an address code (C indicates the carry):

LDA LDB LDS LDX STA STB STS STX +A +B +CA +CB A- B- A-C B-C
INC DEC COM NEG ANA ANB ORA ORB XRA XRB SL SR7 SR ROL
ROR ACMP BCMP CPX OST ABIT BBIT JSR JMP CLR

52 Chapter 2 - The Assemblers

The addressing modes are identified by one of these preceding address codes:
IM P0 ABS IX
 (e.g.: 5 IX LDA load A at the memory position pointed to by the index

register + 5)

Control structures are created by:
Y? N: TH and BEGIN END . The words Y? and END must be preceded by

one of the following condition codes:
LS lower or same OF overflow
C carry NEG negative
Z zero LZ less than zero
LEZ less or equal zero

These conditionals are negated, if they are followed by NOT .

5.3 A 6800 assembler example
This code routine divides a number by four by shifting both bytes two

positions to the right. Note that the stacks store the most significant byte at the
lower address.

CODE /4

TSX 0 IX SR 1 IX ROR 0 IX SR 1 IX ROR NEXT

5.4 The 6800 assembler for IPS-N, 27.1.78

(ADDRESS-CODES)
#5500 KON IM #6610 KON P0
#9930 KON ABS #AA20 KON IX

(BRANCH-CODES) : NOT 1 + ;
#20 KON NEVER #22 KON LS #24 KON C #26 KON Z
#28 KON OF #2A KON NEG #2C KON LZ #2E KON LEZ

(FIELDS)
16 FELD $VB " WORD COMB. ERROR " $VB !T
16 FELD $UK " ADDR-MODE ERROR! " $UK !T
16 FELD $UB " CONDITION ERROR! " $UB !T
16 FELD $ZW " BR.OUT OF RANGE! " $ZW !T

(cont.)

53Sect. 2 - 6800 assembler

(6800 assembler, cont.)

(AUX.ROUTINES)
: , HIER !B $H INCR ;
: $AWR SYSLINE 32 + 16 >>> 0 IE ;
:INT CODE ENTRYSETUP JA? HIER VERT ! DANN ;
:INT RCODE ENTRYSETUP JA? ! DANN ;

: $ALTERNATIVDEP
 JA? + , DUP 256 / , ,
 NEIN: DUP P0 = ZWO IX = ODER ZWO IM = ODER
 JA? + , ,
 NEIN: WEG $VB $AWR
 DANN
 DANN ;
: $3ALL VERT DUP IM = ZWO ABS = ODER $ALTERNATIVDEP ;
: $2ALL VERT DUP ABS = $ALTERNATIVDEP ;
: $0ABIX ZWO IM = JA? WEG $UK $AWR RETEX
 DANN $2ALL ;
: $ABIX ZWO P0 = JA? VERT WEG IM VERT
 DANN $0ABIX ;

: $INSERT (RECEIVES DEPOSIT POSITION AND
 ON TOP, JUMP-DESTINATION)
 VERT ZWO ZWO 1 + - S>R I 127 > I -128 < ODER
 JA? ZWO ZWO < ZWO 1 - @B #20 = UND
 JA? DUP 1 - #7E VERT !B $H INCR
 S>R DUP 256 / I !B R>S 1 + !B
 NEIN: WEG WEG I $ZW $AWR
 DANN
 NEIN: I VERT !B WEG DANN R>S WEG ;

(STRUCTURING WORDS)
: BEGIN HIER ;
: Y? DUP #FFD0 UND =0 ZWO #21 =/ UND
 JA? , HIER $H INCR
 NEIN: $UB $AWR DANN ;
: N: #20 , HIER VERT $H INCR HIER $INSERT ;
: TH HIER $INSERT ;
: END Y? VERT $INSERT ;

54 Chapter 2 - The Assemblers

(SIMPLE ONE-BYTE CODE-DEPOSITS)
: TAB #16 , ; : TBA #17 , ; : TAP #06 , ;
: TPA #07 , ; : TSX #30 , ; : TXS #35 , ;
: PLA #32 , ; : PLB #33 , ; : PUA #36 , ;
: PUB #37 , ; : A+B #1B , ; : A-B #10 , ;
: INA #4C , ; : INB #5C , ; : INS #31 , ;
: INX #08 , ; : DEA #4A , ; : DEB #5A , ;
: DES #34 , ; : DEX #09 , ; : ACOM #43 , ;
: BCOM #53 , ; : ANEG #40 , ; : BNEG #50 , ;
: DAA #19 , ; : SLA #48 , ; : SLB #58 , ;
: SRA7 #47 , ; : SRB7 #57 , ; : SRA #44 , ;
: SRB #54 , ; : RLA #49 , ; : RLB #59 , ;
: RRA #46 , ; : RRB #56 , ; : CBA #11 , ;
: ATST #4D , ; : BTST #5D , ; : RTS #39 , ;
: RTI #3B , ; : SWI #3F , ; : WAI #3E , ;
: NOP #02 , ; : CLA #4F , ; : CLB #5F , ;
: 0>C #0C , ; : EI #0E , ; : 0>OF #0A , ;
: 1>C #0D , ; : DI #0F , ; : 1>OF #0B , ;

(COMPOSITE CODES)
: LDA #86 $2ALL ; : LDB #C6 $2ALL ; : LDS #8E $3ALL ;
: LDX #CE $3ALL ; : STA #87 $0ABIX ; : STB #C7 $0ABIX ;
: STS #8F $0ABIX ; : STX #CF $0ABIX ; : +A #8B $2ALL ;
: +B #CB $2ALL ; : +CA #89 $2ALL ; : +CB #C9 $2ALL ;
: A- #80 $2ALL ; : B- #C0 $2ALL ; : A-C #82 $2ALL ;
: B-C #C2 $2ALL ; : INC #4C $ABIX ; : DEC #4A $ABIX ;
: COM #43 $ABIX ; : NEG #40 $ABIX ; : ANA #84 $2ALL ;
: ANB #C4 $2ALL ; : ORA #8A $2ALL ; : ORB #CA $2ALL ;
: XRA #88 $2ALL ; : XRB #C8 $2ALL ; : SL #48 $ABIX ;
: SR7 #47 $ABIX ; : SR #44 $ABIX ; : ROL #49 $ABIX ;
: ROR #46 $ABIX ; : ACMP #81 $2ALL ; : BCMP #C1 $2ALL ;
: CPX #8C $3ALL ; : TST #4D $ABIX ; : ABIT #85 $2ALL ;
: BBIT #C5 $2ALL ; : JSR #8D $ABIX ; : JMP #4E $ABIX ;
: CLR #4F $ABIX ;

: NEXT #7E , 0 $DEP ;

 (ENDE 6800 ASSEMBLER)

55Sect. 2 - 6800 assembler

6 The 6502 assembler

6.1 Resource allocations
With the 6502 access to page #00 has addressing advantages and this page

thus is used as the system page. The return stack is implemented by using the
6502 stack. This stack occupies, by virtue of the 6502 hardware, page #01. The
IPS parameter stack is simulated by a pointer (PS) residing on page #00.

Page #00 is occupied by IPS between #00 and #9F, you may use locations
#A0 to #FF for your code routines as a storage area.

Both stacks use the lower addresses in memory for the lower bytes of 16-bit
numbers. The simulated parameter stack pointer (PS) points to the lowest
position in use. The return stack pointer points to the first free position, due to
the 6502 hardware design.

All code routines are entered by the emulator with C=0 and Y=1, X is
undefined.

With the 6502 the manipulation of 16-bit pointers is somewhat involved. To
prevent the code of the IPS primitives from becoming excessively large, six
subroutines are available to provide the more common pointer functions required
by code routines. These subroutines represent a compromise between code size
and speed; they were designed with the objective of not slowing down the system
by more than 10%. Although a more complete set could result in further code
reduction, the speed degradation would become significant.

In addition to the word NEXT for leaving a code routine, there are the words
DNEXT and PDNEXT. These words return to the emulator, and also increment
the parameter stack by 2 (DNEXT) or by 4 (PDNEXT). These words are
useful if a code routines leaves fewer parameters on the stack than it receives; it
eliminates the explicit pointer manipulation.

6.2 The instruction mnemonics
The instruction mnemonics are largely the original 6502 words; only a few

were changed to improve the readability.
These are the mnemonics requiring no preceding parameters:

BRK 0>C 0>D DI 0>OF DEX DEY INX INY NOP PUA PUS PLA PLS
RTI RTS 1>C 1>D EI TAX TAY TSX TXA TXS TYA

The following words need to be preceded by an address or the immediate
parameter followed by an address code:

STA SHL SHR ROL ROR STX STY BCMP INC DEC CPY CPX LDX
LDY A+ ANA CMP XRA LDA A- ORA

56 Chapter 2 - The Assemblers

The addressing modes are identified by one of these addressing codes:
A (accumulator without anything else preceding, e.g. A SHR)
IM P0 0X@ 0@Y 0X 0Y ABS AX AY

Control structures are created by :
Y? N: TH and BEGIN END . The words Y? and END must be preceded by

one of the following condition codes; the N as first letter (for NOT) indicates the
opposite:

C carry NC not carry
Z zero NZ not zero
NEG negative NNEG not negative
OF overflow NOF not overflow

The word @JMP, preceded by an address, assembles an indirect jump using
the contents of the specified address as jump destination.

The word JSR (jump subroutine) expects the starting address of a subroutine
and assembles a call to that address. As mentioned before, six subroutines are
available to simplify the more common 16-bit pointer manipulations.

Page #00 contains a field $AF (8 bytes) for temporary storage of parameters
within code routines. Some of the subroutines communicate parameters into this
field, because some operations require the addresses residing on page #00.

The subroutine entry addresses are stored in the assembler as constants. By
mentioning its name followed by JSR the call is assembled.

1S->$AF transfers one parameter (2 byte) from the stack into $AF .
It expects Y=1 and delivers Y=0 . C and the stack
remains unchanged.

S->$AF transfers n bytes from the stack into $AF. It expects Y=n-1
and delivers Y=0 . C and stack remain unchanged.

PS-2 decrements the parameter stack pointer by 2 . It does not expect
any particular register setting and only clobbers C.

PS+2 increments the parameter stack pointer by 2 . It does not expect
any particular register setting and only clobbers C.

PC+2 increments the pseudo-PC by 2. It does not expect any particular
register setting and only clobbers C.

D-PREP expects Y=1 . It transfers the stack pointer into $AF and then
increments the stackpointer by 2. It then sets Y=0 and loads A by
performing a PS 0@Y LDA . It returns with this A , C=0 and
Y=0 . This subroutine is most useful for operations working
on two parameters on the stack and leaving a single result.

57Sect. 2 - 6502 assembler

6.3 A 6502 assembler example
This routine swaps the two bytes of a number on the stack.
CODE BSWAP

 PS 0@Y LDA TAX DEY PS 0@Y LDA INY PS 0@Y STA

 DEY TXA 0@Y STA NEXT

6.4 The 6502 Assembler for IPS-N, 23. 1. 78

(ADDRESS-CODES)
0 KON A 1 KON IM 2 KON P0
3 KON 0X@ 4 KON 0@Y 5 KON 0X
6 KON 0Y 7 KON ABS 8 KON AX 9 KON AY

(BRANCH-CONDITIONALS) #4C KON NEVER
#90 KON C #B0 KON NC #F0 KON NZ #30 KON NNEG
#D0 KON Z #10 KON NEG #50 KON OF #70 KON NOF

(FIELDS)
210 FELD $CTAB
16 FELD $VB " PREC.WORD EERROR " $VB !T
16 FELD $UK " ADDR-MODE ERROR! " $UK !T
16 FELD $UB " CONDITION ERROR! " $UB !T
16 FELD $ZW " BR. OUT OF RANGE " $ZW !T

(AUX-ROUTINES)
: $AWR SYSLINE 32 + 16 >>> 0 IE ;
: , HIER !B $H INCR ;
:INT CODE ENTRYSETUP JA? HIER VERT !
 DANN ;
:INT RCODE ENTRYSETUP JA? ! DANN ;

: !FB (FIELD BYTES) DUP S>R + 1 R>S
 JE 1 - DUP S>R !B R>S NUN WEG ;

: $AINS ZWO 1 - @B #4C = (DEPOSIT POSITION AND
 ON TOP DESTINATION)
 JA? VERT !
 NEIN: ZWO 1 + - DUP 127 > ZWO -128 < ODER
 JA? $ZW $AWR VERT WEG
 NEIN: VERT !B
 DANN
 DANN ;

58 Chapter 2 - The Assemblers

: $MDEP VERT S>R I 9 > I <0 ODER
 JA? $VB $AWR
 NEIN: I + $CTAB + @B DUP =0
 JA? $UK $AWR
 NEIN: , I >0 JA? I 6 > JA? $DEP
 NEIN: ,
 DANN
 DANN
 DANN
 DANN R>S WEG ;

(STRUCTURING WORDS)
: @JMP #6C , $DEP ; : JSR #20 , $DEP ; : BEGIN HIER ;
: Y? DUP #4C =
 JA? , HIER H2INC
 NEIN: DUP #10 - #FF1F UND =0
 JA? , HIER $H INCR
 NEIN: $UB $AWR DANN DANN ;

: N: #4C , HIER VERT H2INC HIER $AINS ;
: TH HIER $AINS ;
: END Y? VERT $AINS ;

(SIMPLE CODE-DEPOSITS)
: BRK #00 , ; : 0>C #18 , ; : 0>D #D8 , ;
: DI #58 , ; : 0>OF #B8 , ; : DEX #CA , ;
: DEY #88 , ; : INX #E8 , ; : INY #C8 , ;
: NOP #EA , ; : PUA #48 , ; : PUS #08 , ;
: PLA #68 , ; : PLS #28 , ; : RTI #40 , ;
: RTS #60 , ; : 1>C #38 , ; : 1>D #F8 , ;
: EI #78 , ; : TAX #AA , ; : TAY #A8 , ;
: TSX #BA , ; : TXA #8A , ; : TXS #9A , ;
: TYA #98 , ;

(ZUSAMMENGESETZTE BEFEHLE)
: STA 0 $MDEP ; : SHL 10 $MDEP ; : SHR 20 $MDEP ;
: ROL 30 $MDEP ; : ROR 40 $MDEP ; : STX 50 $MDEP ;
: STY 60 $MDEP ; : BCMP 70 $MDEP ; : INC 80 $MDEP ;
: DEC 90 $MDEP ; : CPY 100 $MDEP ; : CPX 110 $MDEP ;
: LDX 120 $MDEP ; : LDY 130 $MDEP ; : A+ 140 $MDEP ;
: ANA 150 $MDEP ; : CMP 160 $MDEP ; : XRA 170 $MDEP ;
: LDA 180 $MDEP ; : A- 190 $MDEP ; : ORA 200 $MDEP ;

(cont.)

59Sect. 2 - 6502 assembler

(6502 assembler, cont.)

(TABLE $CTAB , ADDRESSING SEQUENCE :
 INSTR A IM P0 0X@ 0@Y 0X 0Y ABS AX AY)
(STA) 0 0 #85 #81 #91 #95 0 #8D #9D #99
(SHL) #0A 0 #06 0 0 #16 0 #0E #1E 0
(SHR) #4A 0 #46 0 0 #56 0 #4E #5E 0
(ROL) #2A 0 #26 0 0 #36 0 #2E #3E 0
(ROR) #6A 0 #66 0 0 #76 0 #6E #7E 0
(STX) 0 0 #86 0 0 0 #96 #8E 0 0
(STY) 0 0 #84 0 0 #94 0 #8C 0 0
(BCMP) 0 0 #24 0 0 0 0 #2C 0 0
(INC) 0 0 #E6 0 0 #F6 0 #EE #FE 0
(DEC) 0 0 #C6 0 0 #D6 0 #CE #DE 0
(CPY) 0 #C0 #C4 0 0 0 0 #CC 0 0
(CPX) 0 #E0 #E4 0 0 0 0 #EC 0 0
(LDX) 0 #A2 #A6 0 0 0 #B6 #AE 0 #BE
(LDY) 0 #A0 #A4 0 0 #B4 0 #AC #BC 0
(A+) 0 #69 #65 #61 #71 #75 0 #6D #70 #79
(ANA) 0 #29 #25 #21 #31 #35 0 #2D #3D #39
(CMP) 0 #C9 #C5 #C1 #D1 #D5 0 #CD #DD #D9
(XRA) 0 #49 #45 #41 #51 #55 0 #4D #5D #59
(LDA) 0 #A9 #A5 #A1 #B1 #B5 0 #AD #BD #B9
(A-) 0 #E9 #E5 #E1 #F1 #F5 0 #ED #FD #F9
(ORA) 0 #09 #05 #01 #11 #15 0 #0D #1D #19
$CTAB 210 !FB

(AUX-OPERATIONS, CONSTANTS AND SUBROUTINES)
: NEXT #0080 NEVER END ; : JNEXT #0000 NEVER END ;
: WNEXT #0000 NEVER END ; : PWNEXT #0000 NEVER END ;

#0000 KON HP #0000 KON PS
#0000 KON PC #0000 KON $AF

#0000 KON 1S->$AF #0000 KON S->$AF #0000 KON PS-2
#0000 KON PS+2 #0000 KON PC+2 #0000 KON D-PREP

 (END ASSEMBLER FOR IPS-N)

60 Chapter 2 - The Assemblers

7 The CDP 1802 assembler

The RCA COSMAC CDP 1802 is used in the flight computer of all AMSAT
Phase III communications satellites.

The 1802 is similar to the 1801, with an extended instruction set. Refer to
section 3 (CDP 1800) for details of resource allocations and instruction
mnemonics.

7.1 Listing of the CDP 1802 Assembler

: , HIER !B $H INCR ;
:INT RCODE ENTRYSETUP JA? ! DANN ;
:INT CODE ENTRYSETUP JA? HIER VERT !
 DANN ;

(ERROR MESSAGES)
16 FELD $JERROR " DESTIN. OFF PAGE " $JERROR !T
16 FELD $CERROR " PREINSTR. ERROR! " $CERROR !T

(AUX ROUTINES)
: $TERM WEG $CERROR SYSWRITE ;

: $INADR PDUP EXO #FF00 UND
 =0 JA? !B
 NEIN: WEG $JERROR SYSWRITE
 DANN ;

: $AD ZWO #FFF0 UND =0 JA? + ,
 NEIN: $TERM
 DANN ;

: $ALUACT ZWO #FF00 UND #A500 =
 JA? VERT $AD
 NEIN: $TERM
 DANN ;

(cont.)

61Sect. 2 - CDP 1802 assembler

(CDP 1802 assembler, cont.)

: MX 0 $ALUACT ;
: IM 8 $ALUACT , ;

: LDN #00 $AD ; : RET #70 , ; #A574 KON ADC
: INC #10 $AD ; : DIS #71 , ; #A575 KON -DC
: DEC #20 $AD ; : LDXA #72 , ; #A577 KON DC-
: LDA #40 $AD ; : STXD #73 , ; #A5F0 KON LD
: STR #50 $AD ; : ROR #76 , ; #A5F1 KON OR
: I/O #60 $AD ; : SAV #78 , ; #A5F2 KON AND
: GLO #80 $AD ; : MARK #79 , ; #A5F3 KON XOR
: GHI #90 $AD ; : 0>Q #7A , ; #A5F4 KON ADD
: PLO #A0 $AD ; : 1>Q #7B , ; #A5F5 KON -D
: PHI #B0 $AD ; : ROL #7E , ; #A5F7 KON D-
: ->P #D0 $AD ; : NOP #C4 , ; #0002 KON RS
: ->X #E0 $AD ; : SKP2 #C8 , ; #0000 KON NEVER
 : LSIE #CC , ; #0009 KON Q=1
: IDL #00 , ; : SHR #F6 , ; #000A KON D=0
: SKP #38 , ; : SHL #FE , ; #000B KON DF
: INCX #60 , ; : NEXT #D6 , ; #000B KON PS

: NOT 8 EXO ; : EF 11 + ; : BEGIN HIER ;
: Y? #30 $AD HIER $H INCR ; : TH HIER VERT $INADR ;
: N: 0 Y? VERT TH ; : END Y? $INADR ;

: $SBRT ZWO 4 UND >0 JA? VERT (PROVOZIERT FEHLER)
 DANN $AD ;
: LEND #C0 $SBRT DUP 256 / , , ;
: LSKP #C4 $SBRT ;

 (END CDP 1802 ASSEMBLER)

62 Chapter 2 - The Assemblers

CHAPTER III

The IPS System

1 General design considerations

IPS was primarily designed to allow the speedy writing of programs intended
for the control of satellites, scientific data collection and other engineering
applications. There are many programming languages claiming to be suitable for
these applications. But on closer inspection most of these require either rather
large systems and thus are not very practical for microcomputers or they have
serious limitations, like insufficient speed or no multiprogramming. Most control
oriented languages are derived from languages created for mathematical or
commercial data processing. Generally this means that the real-time part needs to
be handled by the operating system, and the power of this combination is highly
dependent on the capabilities of the operating system.

With IPS a different approach was possible, since there is no real need to
maintain compatibility with other languages and an entirely different approach
could be taken. Every programming language represents an interface between
machine and men. Thus it must comply with two requirements:

1. The language should allow the translation of programs making efficient use
of the underlying processor, both from a speed and memory economy point
of view. This is essentially an engineering problem.

2. The language should allow the expression of problems in a way matching
the human understanding and decomposition of problems; the system is to
be "user-friendly". Achieving this is not an engineering problem, but a
problem of psychology and aesthetics - a form of art. IPS general design

Let us look at the second point first. In order to be able to put the problem
into perspective it would be necessary to define the "human way of
understanding"; obviously an impossible task because it would have to take into
account the different backgrounds of all the people intending to use the system.
The second best approach would be to isolate certain general aspects of a problem
area and make sure that these are matched by the language. Along this track lots

63Sect. 1 - General design considerations

of subjective judgements are bound to creep into the language. This is not as bad
as it implies, though. We adapt easily to a given structure and thus soon feel
comfortable with it. This adaptation, on the other hand, causes us to cling to
given structures we are used to. This makes progress in this discipline very slow
because once somebody is adapted to a language lots of energy is necessary to
learn or invent some new way.

Most programming languages initially were designed to allow mathematical
problem solving. There we have at the core of the problem the requirement to
solve algebraic expressions as given by mathematical formulas. These describe a
desired result in terms of the formulas. If the syntax of these formulas is
unambigious a program may turn this syntax into actions (procedures)
producing the result. This general approach resulted that most programming
languages today are essentially syntax driven and the main thrust of investigation
went into the understanding of syntax. IPS general design

Although significant progress has been made in syntax driven high-level
languages, their generally somewhat static frame has prevented them from being
used extensively in systems programming and real-time engineering. In these
disciplines the tremendous power of the strictly procedural assembly language
was needed and outweighed the need to live with the sometimes quite baroque
instruction sets of the hardware. In this problem area the programmer, in
planning and thinking, wants the computer to perform certain actions. If he uses
a high level language, he has to transform these procedures into the syntax of the
programming language. The compiler in turn decomposes this syntax again into
a set of instructions.

Thus it becomes clear that two translation processes take place. A short cut
is possible if the detour via the syntax can be avoided. With IPS it was attempted
to design a language that is strictly procedural and thus offers the power of
assembly language. But the underlying instruction set was designed to be more
acceptable from a human point of view than the instruction sets defined by
hardware constraints.

One of the most powerful procedural computer architectures can be built
around the concept of the stack. This technique has been in use for a long time in
systems programming, and it became widely known by its use in the Hewlett
Packard calculators. A very powerful and comfortable instruction set can be built
around this concept, but it requires some relearning to become comfortable with
reverse polish notation (RPN). The acceptance of this approach for
mathematical problem solving is a good demonstration of its power. With
engineering problems it is even more appropriate, because its only disadvantage,
the reduced readability of algebraic expressions, is less serious. With these
problems the intelligence of the programs resides in the flow of control.
Expressions play a minor role.

64 Chapter 3 - The IPS System

Designing a language for small systems is constrained by the amount of
memory that can be allocated for the system. With IPS the target system was to
use 16 Kbytes of which a not to large fraction could be allocated to the compiler.
This size necessarily limits the system to the more basic capabilities needed in
most programs. More esoteric features are not made part of the language; rather
the language was kept open ended to allow special extensions. This open
endedness results from the inclusion of an assembler and from its procedurality:
there is no distinction between the language words, the application words and the
command words (if an interpretive mode is included). Thus the language
provides the means to change itself (it is reflexive). IPS general design

The interpretive mode is most useful for testing; it simplifies the
communication with the system and allows a fast localisation of problem areas and
also allows the unique macro capabilities of the assembler.

The "friendliness" of a language is largely governed by the availability of an
interpretive mode. It allows the resolution of problems in a dialogue. This implies
that the language is as unrestrictive as possible, but has sufficient diagnostics to
catch most trivial errors caused by the human inability to be 100 % reliable.

With the diagnostic mechanism of most programming languages three areas
are relevant. First they strictly enforce their syntax at the compilation time. This
also generally assures the integrity of the translation systems. (A syntax error
does not bomb the compiler.)

Second, with data, syntax checking alone is not sufficient, so often it is
augmented by run time checks.

Thirdly, the semantics of the program should be checked. Even with simple
programs it is impossible for practical reasons to check a program for correctness.
So at best plausibility checks can be applied.

Given the limited resources of microcomputers, with IPS a somewhat relaxed
attitude was taken. IPS has very little syntax to enforce; it will find only the most
trivial error like misspelled words. Some additional diagnostic was added to find
the more typical errors. Some simple plausibility checks are possible because
most semantic errors are accompanied by unaccounted for items on the stack.
Although this technique does not provide a tight net, most typical errors get caught
this way. On the other hand this approach does not restrict the language because
these checks always can be circumvented.

As to the data types, IPS was designed to be completely transparent with
regard to the underlying hardware. Because all relevant processors use a 8/16 bit
memory organisation, IPS uses these types as the data primitives. This allows a
very effective use of the hardware and results in a similar power as assemblers in
defining other arbitrary data types. This power is augmented by the fact that
memory addresses also have a 16 bit structure and thus can be manipulated just
like other numerical data. Because IPS is primarily aiming at real time

65Sect. 1 - General design considerations

applications, no run-time checking is provided. This would provide considerable
overhead, but could not ensure programs to live up to their expectation in case of
an error. If there is an error, an abort with a real-time application is as bad as a
commissive error. So it would be hard to justify the overhead.

The use of floating point arithmetic is also a sort of generalized run time
checking; if the programmer thinks about the scaling of his numerical types while
writing the program, the run-time scaling operations of floating point operations
with their overhead are not necessary. If run-time efficiency is a primary
consideration, it makes sense not to use floating point arithmetic. This is
particularly true, since the careless use of floating point numbers may
occasionally result in an exponent overflow; so after all the programmer is not
entirely relieved of the burden of thinking about the ranges of his data.

Although a procedural language design like IPS cannot provide the degree
of "protection" like languages with a fixed syntax, it turns out that the plausibility
checks provided are adequate for all practical situations. IPS general design

The use of a stack architecture eliminates a problem area plaguing syntax
driven languages. There the passing of parameters between modules, the
initialization of variables and their range of validity always requires special
consideration. With a stack computer local variables are unnamed and kept on
the stack, only global variables are named. On the stack the exchange of
parameters becomes completely transparent; no formal techniques are required.

One of the major breakthroughs with programming languages occurred with
the introduction of the concept of structured programming and top-down design.
Structured programming implies that the arbitrary flow of control in programs, as
exemplified by GOTOs and labels, is eliminated. The control structures are
rather designed as to have only a single entry and exit point. Programs written
along these lines are naturally modularized and thus much easier to manage
mentally. Most languages supporting structured programming additionally allow
labels and GOTOs. With IPS the implementation was significantly simplified by
the complete elimination of labels. Initially this caused some mixed feelings.
Using hindsight, though, this step was completely justified; after some practice
the absence of labels is not noticed anymore.

The top-down design of programs implies an effective parameter passing
and nesting mechanism of subroutines. A stack architecure like IPS is probably
the most effective structure known today towards this end. In fact the
effectiveness results from the presence of a second stack for the internal return
address management. The parameter stack thus may be used exclusively for
subroutine parameter passing and thus is entirely transparent to the programmer.

At compile time the parameter stack is used for the address management of
the control statements. With strictly structured programming the jump addresses
require a last-in first-out structure; this is equivalent to maintaining them on the

66 Chapter 3 - The IPS System

stack. Thus there is a close relationship between structured programming and a
stack computer.

Because of the match of structured programming to the human way of
thinking one may speculate that the stack computer as a generalisation of this
principle also matches well the human way in other regards, e.g. the fact that
definitions using the stack are re-entrant and recursive or that syntax with IPS is
largely replaced by an interaction mechanism between operators and the stack. At
any rate, most people exposed to IPS become very comfortable with it after a short
while.

2 The IPS implementation

For the implementation of a language three different techniques are available.
The classical interpreter stores the program source text. At execution time this text
is analysed and the appropriate actions are executed. The analysing results in
considerable overhead; such interpreters thus are typically very slow.

The other common approach is the compiler. With this technique the
program is analysed and translated into machine instructions; at the execution time
these instructions can be executed without any additional overhead. The problem
with this approach is the fact, that the produced code usually is "bulky" and
contains lots of repetitions of basic instruction sequences. A good compiler,
though, can produce code that may be very close to optimum. Smaller compilers
with a size fit for microcomputers usually produce sub-optimum code invoking
size and speed penalties of a factor of two or more. IPS implementation

A third approach chosen for IPS tries to combine the best out of both
techniques. It uses a set of high level instructions defined by optimized code
routines. A compiler produces pseudocode treating these code routines as the
"instruction set" of a virtual high level machine. Because these "instructions"
(usually addresses to code) take only very little overhead to interpret, such a
system only is two or three times slower than optimum assembler code. Provided
that this is acceptable, this technique results in extremely compact programs
requiring considerably less memory than the other approaches. Furthermore, the
pseudocode is machine independent; only some 40 primitive code routines
represent an interface to the underlying processor. This makes it very easy to
transcribe the system to a new microcomputer; only about 1 Kbyte of code has to
be rewritten in each case. This effectively decouples the software from the
volatility of changing hardware technology.

Most of the system, of course, is written in IPS and thus is identical with each
processor.

67Sect. 2 - The IPS implementation

3 Structure of the pseudocode

The pseudocode should produce as little overhead as possible to interpret.
Rather than using a fixed "pseudo instruction set" the overhead may be reduced,
if addresses to executable code are used. In this case the "instruction" is an
address pointing to executable code; no lookup is necessary.

IPS pseudocode

This technique can be extended by using the pseudocode not as addresses to
executable code, but to a pointer which in turn contains the address of the
executable code. This indirect execution requires at the head of each instruction
a "descriptor" or typecode containing the pointer to executable code.

68 Chapter 3 - The IPS System

Program

Addresses as pseudocode

"Instruction" = Address

Code addresses constitute "instructions"

}

Program

Indirect execution of IPS

"Instruction" = Address

Code executes definition " : "

}

Pointer

def :

}

next
def

next
def

next
def

next
def

last
def ;

This indirect interpretation results in two significant advantages over the
direct concept. If the header of a routine identifies it as a definition
(a subroutine), the pseudocode does not need to contain the call address; it is
implicitly available; it is header + 2. Thus memory is saved. Even more important
is the fact that indirect execution results in the same format for all instructions.
Thus at compile time the compiler need not check the nature of the instruction in
order to be able to produce code. All instructions compile along the same rule.

By putting this semantic descriptor of the instruction where it logically
belongs, namely at the head of it, a concise instruction format is achieved without
creating additional overhead. In fact because of this unified instruction format no
distinction between IPS words, application words, code routines or command
words is necessary. It is the key to the natural extensibility of the language.code
structure example

As an example, the following diagram shows the code structure of the word
H2INC . This definition is used by the compiler to increment the contents of $H
by two. It is defined as:

 : H2INC HERE 2 + $H ! ; with HERE previously defined as : HERE $H @ ;

69Sect. 3 - Structure of the pseudocode

H2INC

Code Structure of H2INC

}

HERE

HERE

DEFEX

(:)

DEFEX

(:)

$H @ RETEX

(;)

VAR value
$H

CODE @ execution code next
@

} }
}

CODE + execution code next
+

}

ERAL 2 + $H ! RETEX
1BLIT-

(;)}}

4 The Executive

The pseudocode is executed by the inner interpreter. This routine employs a
pointer, the so-called pseudo-program counter. This pseudo-PC points to the next
pseudo instruction to be executed in turn. Pseudo-PC

The inner interpreter fetches the contents of the location the pseudo-PC
points to (16 bit) and then increments the pseudo-PC by two. This fetched
number is called header pointer (HP) and it points, as the name implies, to the
header of the routine to be executed. IPS Executive

The interpreter now fetches the contents of this location. The fetched
number is the address where the executable code of the particular routine starts;
the interpreter jumps to this address and the program continues by executing the
instructions at this address.

At the end of this code there is a jump back to the inner interpreter, which
then fetches the next pseudo instruction in turn.

It is clear from this description, that the computer spends a significant
fraction of its time in this inner interpretation loop. Thus care was taken to code
this inner interpreter to be as fast as possible.

The inner interpreter stores HP at some location, because some instructions
need this pointer. With a definition it defines the address where to continue, with
a variable it defines the parameter field. Ideally HP also gets incremented by two
by the interpreter. But with some processors this is not possible without overhead
and thus is not done. The code routines then have to increment it as required.

With the COSMAC, HP is incremented by two; with the 8080 by one and
with the 6800 and 6502 not at all. HP storing IPS 20 ms routine

Every 20 ms the normal interpretation loop is suspended (after completion
of the last code routine) in order to do some housekeeping jobs. Within this
"pseudo-interrupt" the clock and the stopwatches are updated, keyboard entries
are treated, and the compiler is informed if there is an input to be processed. If
there is special hardware I/O, the 20 ms routine handles these devices. Finally,
the tape cassette write output and motor control is updated every 20 ms.

An external hardware input has to inform the inner interpreter if 20 ms have
expired. With the COSMAC this is done in a straightforward way using the
"external flag 1" input. The inner interpreter requires a jump back into the
interpretation loop; by making this jump conditional on 1 EF NOT the interpreter
leaves the loop if EF1 is set. Within the 20 ms routine the 20 ms input flip-flop is
reset waiting to be triggered with the next 20 ms pulse again.

70 Chapter 3 - The IPS System

With the other processors, unfortunately, such a simple technique is not
possible. The only way would be to add a few instructions in the interpreter to
scan the 20 ms input after each interpretation cycle. This would considerably slow
down the system; a serious penalty considering the fact that the computer already
spends about half of its life in the interpretation loop.

Since the interpretation speed is a primary consideration, the only way out is
to use a real interrupt every 20 ms to replace the first instruction of the interpreter
by a call or jump into the 20 ms routine. On the "next time around" thus the
computer jumps into the 20 ms program. This, among its other duties, restores the
interpreter code again to its original state. After the 20 ms routine the normal
interpretation is resumed.

The described technique of self-modifying code basically is very undesirable
for a number of reasons. But because this technique increases the speed of the
computer effectively by some 20%, and because it is localized to a single instance
within a short interpretation routine, it is a well considered technical compromise
to circumvent the shortcomings of some processors.

In addition to the interpreter and the 20 ms routine, an interrupt routine is
provided to process cassette inputs. This handler is very simple; it deposits an
input byte at a pointer location and then increments the pointer. One of two
pointers is used, depending if LOADFLAG is set or not. Each pointer has a limit
(LOADLIMIT and $PE); the 20 ms routine checks if the input has progressed
beyond these pointers and then initiates the appropriate actions.

71Sect. 4 - The Executive

5 The machine independent part

During the following discussion please refer to the listing of your processor
at the end of this chapter (Sect. 7). The listed program describes your compiler in
a way usable for an automated translation. There we run into the problem of
having to define a language in its own terms. In principle this is possible if the
translation process is carefully sequenced and the prohibition to redefine words is
disabled. The first IPS versions were translated this way using a previous version
to produce the new version.

Unfortunately this technique becomes very clumsy if the compiler is to be
translated for a different processor.

A much more general solution to this problem results if the language is not
defined in its own terms, but in a different language; a so-called meta language.
This meta language of course may be exactly the same as to the meaning of the
words, only different names are to be used to distinguish between the translation
operation and the object to be translated.

To aid portability of IPS, such a meta language and the compiler to go with
it (IPS-X) was developed. This was a very worthwhile investment; it enables a
very fast transcription of IPS to an arbitrary processor. IPS cross-compiler

The IPS-X meta language was derived from the German version of IPS
simply by using lower case letters instead of the usual upper case letters. Where
this was not applicable (e.g. with the colon), the meta language words were
produced by appending a lower case n .

This list should allow you to read the listings, it shows only the words
differing from the English version:

weg DEL , hier HERE , aufnahme RECORD , !fk !FC , ja? YES? ,
nein: NO: , dann THEN , je EACH , nun NOW , +nun +NOW ,
anfang LBEGIN , ende? LEND , dann/nochmal THEN/REPEAT ,
kon CON , feld FIELD , ~ " , zwo SOT .

5.1 Compiler and the chain
The main program executed continuously by IPS is the chain. This program

consists of 9 instructions (pseudo instructions, of course) and a jump back to the
first instruction. It is usually located on the system page. Initially the last 7
instructions are no-ops, an instruction not changing anything. The first position
contains the address of the COMPILER , the program that processes keyboard
and cassette inputs. The second position (CHAIN position 0) contains the
STACKDISPLAY . Compiler description

72 Chapter 3 - The IPS System

Please try to find the COMPILER in your listing (next page and also Sect. 7)
for the following discussion. Compiler input Compiler description

The compiler is executed periodically and processes one input word with
each pass through it, provided an input is available. It does so by calling $NAME .
This definition scans the input and encodes the word in the standard IPS format
(see further down) and returns a 1 if a word is available. Otherwise it returns a 0
on the stack. If after the word the end of the input buffer has been reached,
$NAME (or $CSCAN) additionally sets the variable $P2 to 1, else it clears it.

If a word is available, $SUCH tries to find it in the nametable. If it finds it, it
returns the starting address of the particular routine. If the word does not exist in
the nametable, a 0 is returned. On top of this address the position of the entry in
the nametable is returned. This is put into $V1 for possible later use.

Now the compiler checks if the system is in the limited input mode. If so, the
word RUMPELSTILZCHEN can reset this mode. If the address found by $SUCH
is lower than LIS or the system expects a number input, the necessary actions are
taken.

An input error is treated by calling IE . This word marks the input with a
question mark and terminates further processing. IE removes one item from the
stack. $SUCH description

Provided that so far everything went well, the return of $SUCH is checked for
0. If a 0 has been returned, the input may be a number ("number processor"). In
this case $ZAHL is called to convert the input word into a number on the stack. If
this conversion was successful, a 1 is returned on top of this number by $ZAHL ,
else a 0. Let us assume a number is available. In this case the number is simply
left on the stack in the interpretive mode. But in compile mode (COMPILEFLAG
= 1) the compiler has to deposit a literal code and then the number. If the number
is between 0 and 255, the address of 1BLITERAL is deposited followed by a
single byte containing the number. Else the address of 2BLITERAL is deposited
followed by the number stored into two bytes.

If the system is in the limited input mode, the number is placed into
N-INPUT and N-READ is reset.

If the input word could not be converted into a valid number, again IE is
called.

If $SUCH returned an address (i.e. the name is available in the nametable),
the "found processor" is invoked. The action to be taken depends on the type of
the entry and if the system is in compile mode or not. There are four different
types of entries:

73Sect. 5 - Machine independent part

Compiler action matrix

Names of ":" definitions and names of VAR , CON and FIELD entries are
entrytype normal. Words like YES? and THEN are entrytype :PRIOR in order to
allow stack manipulations at compile time. The words ' " ICHN DCHN are of
entrytype :HPRI . This allows the compiler to take the appropriate actions in
both modes. Words like : CON and VAR are defined as entrytype :INT to
prevent entries within entries; i.e. they can only be interpreted.

The "found processor" first fetches the entrytype code out of the nametable.
It is stored as the two most significant bits of the first byte of the namecode. The
position of this code was stored after $SUCH in $V1 . This code, in conjunction
with the COMPILEFLAG , defines the position in the action matrix. If the word
is to be compiled, at first there is a check of HERE against $ML (memory limit)
to see if there is still room left. Then the address is deposited by $DEP .

If the word is to be executed, this is done by the word $TUE . This word
expects the typecode field address and executes the word. Because this execution
may affect the return stack, it is turned into a virgin state by storing the return
address of the compiler into $V1 . While the compiler is being executed, its
return address to the chain is on the return stack. After execution the return stack
is restored from $V1 . deposit 2 bytes Compiler description $SUCH description

After these actions the stack pointer is checked against $SL (stack limit).
If the pointer exceeds the limit, the pointer is restored and an error message is
written. The first underflow position of the stack is preset to $F1 for a reason
explained later.

Compiler activities are governed by the state of the READYFLAG . If it is
1, an input is available for processing. IE resets this flag. If $P2 has become 1 ,
$NAME reached the end of the input buffer; COMPILER has to reset
READYFLAG in this case and also clear the input buffer to indicate the
successful completion of input processing.

 A generic compiler program listing is as follows. See also Sect. 7.

74 Chapter 3 - The IPS System

#00

#80

#40

#C0

Code
Entrytype

Interpretive
Mode

Compile

execute compile

IE

: (normal)

:PRIOR

:HPRI

:INT

Mode

execute

execute IE

execute

execute

Compiler Action Matrix

IE = Input Error

COMPILEFLAG = 0 = 1

: COMPILER $NAME
YES? $SUCH
 1 (TO CONTINUE) LIM @B
 YES? SOT ' RUMPELSTILZCHEN
 = YES? (RUMP.) 0 LIM !
 NO: (NOT RUMP.) N-READ @
 YES? PDEL 0 1
 NO: SOT LIS @ <
 YES? IE DEL 0
 THEN
 THEN
 THEN
 THEN
 YES? (CONTINUE ?) DUP =0
 YES? (NUMBER PROCESSOR)
 DEL $ZAHL
 YES? COMPILEFLAG @B
 YES? DUP #FF00 AND
 =0 YES? ' 1BLITERAL $DEP
 HERE !B $H INCR
 NO: ' 2BLITERAL $DEP $DEP
 THEN
 NO: LIM @B YES? N-INPUT ! 0 N-READ !
 THEN
 THEN
 NO: IE
 THEN
 NO: (FOUND PROCESSOR) DUP 6 - @B #C0 AND
 COMPILEFLAG @B OR DUP 1 =
 YES? DEL HERE $ML >=
 YES? DEL MEMMESSAGE SYSWRITE
 NO: $DEP
 THEN
 NO: DUP #80 = SWAP #C1 = OR
 YES? IE
 NO: R>S $V1 ! $TUE $V1 @ S>R
 THEN
 THEN
 THEN
 $PSHOLEN $SL > YES? $SL $PSSETZEN
 STACKMESSAGE SYSWRITE DEL $F1
 THEN
 THEN
THEN
READYFLAG @B $P2 @B AND ($BU ALL PROCESSED?)
 YES?
 #20 $BU !B $BU DUP 1 + 511 L>>> $CEN
 THEN
;

75Sect. 5 - Machine independent part

5.2 Compiler support routines
Compiler support routines input scanner

5.2.1 Scanner and namecoding
The processing of the input string in the input buffer (second half of the TV-

screen) is effected by the definition $NAME . Two operations are necessary:
1. The input string needs to be segmented to isolate individual words.
2. The thus isolated word must be transformed into the 4-byte IPS namecode

to simplify further activities. $NAME listing

: $NAME 0 READYFLAG @B
 YES? 1 $CSCAN >0
 YES? $PI @ $P1 !
 2 $CSCAN PDEL #CE57 #8D
 $P1 @ $PI @ SOT - DUP 63 > YES? DEL 63
 THEN
 DUP $ND !B 1 - SOT +
 EACH I @B $POLYNAME
 NOW $ND 3 + !B $ND 1 + ! 1
 THEN
 THEN ;
The scanning process uses two pointers. The input characters are first

scanned until the first non-separating character is found. (Separators are blanks,
comments and end of input block). The pointer variable $P1 is left pointing to
this first valid character. Scanning then continues for valid characters until a
separating character is again found. The pointer variable $PI then is left pointing
at the first position after the last valid character of the word. Name encoding

The actual scanning is effected by $CSCAN . This definition takes a 1 from
the stack to scan over the separators and terminates scanning upon finding the
first non-separator. It returns a number >0 if it found a valid character; else a 0.
$CSCAN additionally sets $P2 to 1 if it reached the end of the input buffer. The
last character of the input buffer is pointed to by the contents of $PE .

The definition $CSCAN always uses $PI as the scan pointer. Because the
first character is to be identified by $P1 , the content of $PI is put into $P1 after
scanning the separators. $CSCAN description

Then $CSCAN again is called with a 2 on the stack. This signals to it to
scan now all valid characters until a separator is found again. It again returns a
number; that is discarded. Now the input word is bracketed by $P1 and $PI as
desired. The next operation for $NAME is to encode the identified word in the
format used by all names stored in the nametable.

To understand this process some general remarks are in order. Names are
used to identify objects and may use up to 63 characters. If the names were
stored in the original form, inordinate amounts of memory would be required.
Thus some encoding of the name is desirable to reduce the amount of storage
required.

76 Chapter 3 - The IPS System

Conventional languages generally accomplish this by storing the first few
characters of the name, usually 6 or 8, as a namecode and ignore the rest. With
IPS this technique is not practical. The needed storage space still would be rather
large. More important, the inadvertent omission of a separating blank could lead
to a concatenation of words without error message. This would constitute very
hard to find errors.

The technique used with IPS attacks the problem along an entirely different
line. All possible names may be viewed as a vector space with 25663 different
points. The permutations possible with 63 bytes is a number large beyond grasp;
about 10150.

On the other hand a practical system will hardly ever use more than 500
names. After all these names have to be learned and managed by humans. This
means that the name space is practically empty in comparison to the total number
of possibilities. Name encoding

The idea of the IPS name coding is to map the extremely large original name
space in a pseudorandom fashion into another space. If this new "code space" is
still very large as compared to say 500, this space again will be nearly empty.
Thus the probability of two different names mapping to the same point in the code
space can be extremely small.

If 4 bytes are selected as the size of the namecode, the resultant code space
contains 2564 (about 4 x 109). With 500 points occupied, the probability of a
collision is on the order of 10-7 and thus may be neglected for all practical
purposes. Still, if a collision would occur, a very confusing situation could arise.
With the stack language IPS this problem does not exist though, because with IPS
all named objects are global and the redefinition of names would not make sense.
The compiler thus rejects an attempt to redefine a name. If a namecode collision
did occur, the same rejection would prevent its entry into the nametable. Thus the
IPS name coding technique, despite its statistical reasoning, leads always to unique
name codes.

The routine $NAME now needs a mechanism to map the original name space
into 4 bytes. In order to solve the above mentioned concatenation problem, the
first byte is used to store the length of the name. With a maximum namelength of
63 characters, only 6 bits are needed. The remaining 2 bits are used to store the
entrytype, as explained with the compiler routine.

The remaining 3 bytes contain the namecode proper. Subdivision of the name
space into subspaces with fixed namelengths shifts the collision probabilities
slightly. A detailed analysis revealed that this approach reduces the collision
probability with short names at the expense of very long names. This is a
desirable feature since short names are more common. In fact with names of 3
letters or shorter, collisions turn out to be impossible.

77Sect. 5 - Machine independent part

The pseudorandom mapping process used is a division by a 24 bit
polynomial. The remainder of this division is used as the code. $NAME does
this division using all characters of the name. If it is inadvertently longer than
63, the loop doing the division nevertheless uses only the first 63 characters.
Before starting the division, the remainder is preset to some more or less arbitrary
number, #57CE8D. The reason for this is explained later.

The actual division is performed by the code routine $POLYNAME . It is
organized to perform the operation using one character on the stack and
modifying the remainder, also on the stack. It operates mostly byte-wise and thus
is very fast; so this complicated operation does not slow down the translation
process. Finally, $NAME stores the thus computed namecode in the field $ND
(4 bytes) for further processing by other definitions. Name encoding

$POLYNAME algorithm
1. Get word and 1 byte [A B] C, and 1 character byte D from the stack
2. Form 24 bit word X = [A B C]
3. Calculate the product P:

P = D EOR X EOR X>>1 EOR X>>2 EOR X>>7
 where X>>n means X logically shifted right n places
4. Take the LS byte of P and form 32 bit word X = [P A B C]
5. Shift X right 7 places
6. Return three LS bytes of X = [.. A' B' C'] to stack, in entry format.

Some IPS versions use as the scanning routine ($CSCAN) a code routine
because the compiler spends a significant fraction of the time in this scanner.
This is somewhat involved, because a scan may take more than 20 ms. Thus
provisions are needed to handle the pseudo-interrupt in between. In the interest
of portability the high-level $CSCAN is more straightforward and thus was
selected for the faster processor.

5.2.2 Nametable and searching
In order to allow the compiler to communicate with the user, some

relationship between the names (namecodes) and the objects thus identified
must be established. Nametable linked-list

The names could be stored in front of the entry proper in memory. In this
case a linking pointer has to be included with each name to facilitate searching.
This technique is called a "linked list".

Or, with a different approach the names are stored in a separate table. In this
case each name entry needs a pointer to point to the respective entry. Such a
nametable could be organized in various forms. One of the most effective
approaches is to try to calculate from the namecode a position in the table. If this
position does not contain the name, it may either be empty or contain a different

78 Chapter 3 - The IPS System

name. If it is empty, the name is not in the table; if a different name is found, a
recalculation of the position yields a new spot. This may be continued until the
name is found or an empty spot is hit. This technique of list organization has
become known as a "hash table". Nametable hash-table

Both techniques have advantages and disadvantages in the context of IPS.
The linked list is more open ended and makes slightly better use of the memory
space. But the searching process typically has to look up more than one half of the
entries until the name is found. This makes it essential that the search routine is a
code routine to get an acceptable compiler speed.

The hash table keeps names separate from the program and thus is more
suitable if objects are to be "transcompiled" for processors without human
interaction peripherals. Its main disadvantage is the fixed size of the hash table.
Even if it is nearly empty, it has to be loaded in its entirety taking some time. But
the search process is extremely fast; on the average only 1.5 accesses are necessary
with a table half full. Thus the search algorithm may be coded in high level IPS
without disadvantage. This helps portability of the system, of course.

At the time of the writing of this book, there exists only a linked list version
of IPS for the COSMAC, but there are hash table versions in existence for all four
processors. Thus the hash table version was selected for this book.

The size of the hash table was chosen for 512 entries. Experience has shown
that with a 16 Kbyte system table and the rest of the memory saturate at about the
same time. Further, there are hardly any applications conceivable, where this size
would be insufficient.

Each entry consists of 6 bytes, four for the name and 2 for a pointer to the
actual routine. Thus 3 Kbytes of memory are needed for the table. The last entry
is not used; it contains the synch-vector for the tape cassette recording program.
Because the tape output buffer is supposed to follow the hash table, this simplifies
the recording program.

To calculate the position of the name in the table, a random mapping
technique is required. Since the namecode already represents such a random
number, it suffices to take 9 bits of this code as a key to the table. With short
names this would lead to some clustering. For this reason the namecode is preset
to some non-zero value to ensure a good random distribution of the 9 bits even
with short names.

If the position is in use by a different name, a new position must be
calculated. This is done by the so called quadratic rehash technique. Normally
only half of the table could be reached by this technique. If an odd increment (not
the customary 2) is chosen, the whole table may be accessed. For a detailed
discussion of hashing techniques please refer to the literature [2,3,4].

The definition $SUCH returns the pointer of the routine and on top of it the
position of the first byte of the namecode. The compiler may inspect this to find

79Sect. 5 - Machine independent part

the entrytype of the entry. If the name is not available in the table, $SUCH
returns a 0 and on top of it the position where an entry with such a name may be
placed into the nametable. If the table is full and the name has not been found, it
returns two zeros.

5.3 Compiler auxiliary routines
The other routines called by COMPILER are straightforward and thus are

described only shortly. Compiler auxiliary routines

$ZAHL uses a word bracketed by $P1 and $PI (provided by $NAME) and
tries to convert it to a number. It first checks if the first character is - # or a B
and sets the conversion base accordingly. The sign is pushed on the return stack.
Then the conversion proceeds character by character. $ZAHL returns the number
and on top of it a 1 if the conversion found only characters consistent with the
number base; else it returns an undefined number and on top of it a 0.

$DEP deposits a two byte number from the stack at HERE and then
increments $H by two. deposit 2 bytes

$CEN is the clean-up operation at the end of input processing. It expects on
the stack the position of where the new input is to go and from where it is to be
processed. It sets the input pointer, places a cursor there and sets $PI . It puts
$TVE into $PE and then clears the READYFLAG .

IE is the termination if an error has been found in processing the input. It
disables the cassette reading by clearing TEXTREAD and then places a ? in front
of the erroneous word. IE then calls $CEN with this position of error to give the
user the opportunity to correct the error. IE takes one number off the stack and
discards it. Inverted ?

SYSWRITE expects the address of a 16 byte long field on the stack
containing an error message. It writes this message to the TV screen and then
terminates further processing by calling IE .

L>>> checks the length of the field to be transported and if necessary breaks
this transport down into consecutive calls of >>> . With the length equal or
smaller than zero no transport takes place. Entry generation Entry : Entry VAR
CON Entry FIELD

5.4 Entry generating routines
Entries are created, among others, by : , VAR , CON or FIELD . These all

call first ENTRYSETUP to place an entry into the nametable. ENTRYSETUP
returns a 1 if this was successful. HERE points to the parameter field of the entry
and below the 1 on the stack there is the pointer to the typecode field of the entry.
If ENTRYSETUP could not create an entry because no name was in the input, it
writes NAME MISSING and returns only a 0 . It then stops processing by
calling IE . Entry generation Entry : Entry VAR CON Entry FIELD

The creation of a variable, a constant or a field is straightforward. The

80 Chapter 3 - The IPS System

parameters returned by ENTRYSETUP are use to complete the entry. Into the
typecode field are placed the starting addresses (code !) of VAREX or CONSEX ,
the executive code for variables and constants.

The creation of a : entry involves some more steps. After calling
ENTRYSETUP the typecode field is filled by DEFEX , the executive for
definitions. The COMPILEFLAG is set and the address of $F2 is pushed on the
stack. This last action serves two purposes. First, the word ; checks and removes
this number from the stack. If there has been a structuring error, there is either a
residual address additionally on the stack, or this number has been removed by one
of the jump words by taking it as an address. Thus structuring errors are
identified.

The second reason for this number is also connected with structuring errors.
If a word like YES? has been omitted, the THEN will treat any number on the
stack as the location to insert the jump address. If a number is on the stack that is
an address of vital code, a structuring error could bomb the system. By placing
$F2 on the stack, this address is placed into $F2, a variable just created for this
purpose. This is also the reason why the first underflow position of the stack is
preset by $F1 ; it serves the same purpose and still allows the distinction between
$F2 to be able to identify a structuring error.

Entry summary:
An IPS entry consists of four fields.

Namecode field 4 bytes
Pointer or Link field 2 bytes
Typecode field 2 bytes
Parameter field n bytes

Namecode example: :INT WEG/AB encodes as #C6 #D5 #10 #17. The
first byte is #C0 (entrytype :INT) plus 6 (number of bytes in the name). The
other three bytes are produced by $NAME running "WEG/AB" through
$POLYNAME . (Sect. 5.2.1)

Pointer or Link: Namecodes are collected into either a nametable (4+2 =
6 bytes per entry) or a linked list. In a nametable system the pointer points to the
entry's associated typecode field. In a linked list system, Link points to the
namecode field of the previous entry; the first entry has the value of Link set to
zero. (Sect. 5.2.2)

Typecode: The address of executable code that characterises an entry.
Standard typecodes are CON VAR : and FIELD (as above).

Parameter field: Additional data required by the executable code; for
example the actual 2-byte value of a variable (VAR) entry. A definition (:) entry
is followed by many bytes, representing the words that make up the definition.

81Sect. 5 - Machine independent part

Now let us have a closer look at ENTRYSETUP . It first calls $NAME to
get the name of the entry. It then procures the position in the nametable where
this entry may be placed by calling $SUCH. If an entry with this name already
exists, processing is stopped. (This feature may be disabled by clearing $RS .)
Processing is also terminated if the table is full. Otherwise, ENTRYSETUP
proceeds by transferring the name from $ND into the nametable. Because
ENTRYSETUP is also used for colon entries, it stores the position of the entry in
the nametable into $KK . If the entry needs to be removed later due to a
structuring error, this position is available to restore the table to its original state.

Storage of the table position also enables the routines calling
ENTRYSETUP to modify the entrytype bits in the name if a different than
normal entry is generated. In order to prevent damage to the program if
ENTRYSETUP was unsuccessful, $KK is set to $F1 in this case. An entrytype
modification attempt will then take place in $F1 and thus causes no damage.

The word ; deposits the address of RETEX (the definition return executive)
and then reverses the action of the : . If it did not find $F2 on the stack, it
eliminates the entry using the table location stored in $KK . It then terminates
processing with an error message.

Definitions of types other than normal are produces by the words :HPRI ,
:PRIOR and :INT . These simply call : and afterwards modify the type in the
name by calling PRIMODIFY . This routine uses the position of the name in the
table as stored in $KK to set the appropriate bits.

5.5 Structuring words
The control of flow in the program is governed by the branch generating

words like YES? NO: THEN and LBEGIN LEND? . In addition to depositing
the appropriate branch instruction these words also have to handle the jump
addresses. The procedure is identical to the way the assembler handles this. The
jump addresses or the positions where the jump addresses are to be inserted later,
are kept on the stack. All entries of this sort are of type :PRIOR because they are
executed during the compilation. In the interpretive mode they are illegal.

The description of the machine dependent part contains a list of all
instructions (code routines) related to branch operations.

5.6 Address fetching
Writing programs in IPS involves the fetching of various addresses. With

variable entries this is automatic, mentioning the variable name pushes the
address of the parameter field on the stack. With constants the ? may be used to
get the address of the parameter field. On other occasions, particularly with
systems programming, the typecode field is required. The word ' followed by the
name pushes this address on the stack.

82 Chapter 3 - The IPS System

The word ' is of type :HPRI . This means that it is executed in the interpretive
mode and in the compile mode. In compile mode (COMPILEFLAG set) this
word first deposits the code of 2BLITERAL and then the address. Thus the
address is pushed on the stack only at execution time of the definition.

Most of the address fetching routines use the word $GETADR . This
definition first calls $NAME to encode the name of the word for which the address
is to be fetched. Then $SUCH is used to locate the address. $GETADR returns a
1 if successful and below it the address. Otherwise it returns only a 0 and also
terminates input processing.

5.7 Text handling routines
A set of routines is provided to facilitate text manipulation. Central towards

this end is the definition " allowing direct entry of text, either as string to be
entered into fields or as literal operation in definitions. Text handling

The :HPRI word " first increments $PI over the first blank after the " and then
scans the input string using $PI until it finds another " or it has scanned over the
end of the TV screen. The length of the string minus one (to account for the blank
required in front of the terminating ") is checked to be in the range of 1 and 256.
If not, processing is halted with a message. Provided that the length is ok, further
action depends on the COMPILEFLAG .

In the interpretive mode, " returns simply the address of the first character of
the string on the screen. If IPS is in compile mode, at first the address of
TLITERAL is deposited. The following byte contains the length of the string.
Finally the string is deposited, HERE pointing to the first byte after the string.

At execution time TLITERAL , being a definition, finds the pseudo-program
counter on the return stack. It thus can fetch the length of the string and the string
itself and write it on the TV screen using SP as pointer. Also the return stack
containing the pseudo-PC is incremented beyond the string. Thus the program will
continue with the first instruction following the string.

The text editing mode finally is entered by setting the EDITFLAG to 1. The
20 ms keyboard handling routine then does not set READYFLAG after a return
and enables additional editing keys. The edit mode thus is handled within the
20 ms pseudo-interrupt. Stack display description

5.8 Stack display
The definition STACKDISPLAY is normally in the chain at location 0. If the

compiler reached the end of the input buffer after having processed the last input
word, the variable $P2 is set to 1. The next pass through the compiler clears it
again. STACKDISPLAY picks up this variable and displays the stack contents if
$P2 is set.

At first, the first two lines of the screen are cleared to make room for the new

83Sect. 5 - Machine independent part

display. Then the stack pointer is fetched by calling $PSHOLEN . (With the
6502 it is picked up directly from memory.)

By subtracting $SL (stack limit) the number of stack items is calculated. If
it is more than 32 bytes (16 numbers), only the 16 top most are displayed. The
number of bytes is put on the return stack, the parameter stack contains the
address of the topmost entry. A loop is entered now using the current number as
index for the TV screen display position.

The stack content is then picked up. With the COSMAC and the 6800 the
stack maintains the most significant byte at the lower address. It thus has to be
transposed, before it can be displayed using CONV. This routine uses SP. To
prevent clobbering SP with the stack display, SP is pushed on the return stack and
at the end of the display it is restored again.

The definition CONV is straightforward; it uses BASE , the variable used by
the input number converter $ZAHL , as its number base. Thus the display format
depends on the type of the last number entry. It works by continuously dividing
the number starting with the highest possible digit value (10,000 or #1000) and
then displaying the quotient. The remainder then is divided by the next digit
value and so on. With the decimal display mode leading zeros are suppressed by
keeping a switching variable on the return stack. If a zero is converted, at least
one zero is displayed. hex display

5.9 Chain control operators
Since IPS was primarily designed for real-time control applications, some

provision is needed to let the computer handle several tasks "simultaneously".
The processor of course can serve only a single task at a time. Therefore some
strategy is needed that distributes the available processor time in a fair way
between the tasks. chain principles

A typical solution in large scale processing centres would be to give to each
task a certain fraction of the total time available and switch between the tasks
often enough so that no task is excessively delayed. Unfortunately this scheme
would be grossly inefficient in the problem area we are concerned with, because
in real-time applications most of the tasks usually are dormant (waiting for some
external or internal event). Thus task oriented time slices would allocate most of
the time to waiting tasks. The problem may be resolved by the observation that if
a tasks becomes active, it usually takes only very little time to service it until it
becomes dormant again. This suggests serving tasks in a "round robin" fashion.

If the tasks are put in a ring, the processor polls each task to see if it needs
servicing. If not, the processor is passed to the next task. A task needing service
then may grasp the processor and do the required actions before passing on to the
next task. This is an effective solution as long as single tasks do not occupy the
processor for an excessive amount of time. Since this is under control of the

84 Chapter 3 - The IPS System

programmer, this is not a serious restriction.
Solutions of this kind have been proposed in [5] and [6]. The straightforward

implementation of this technique assigns to each task individual stacks (parameter
and return). Most 8-bit processors typically would maintain some or all system
pointers in on-board registers. This results in significant context swapping
overhead as the program jumps from task to task. These routines must be
implemented at machine level and thus are not portable. Worst, keeping two
stacks per task would lead to an undesirable fragmentation of the memory space.
particularly with the small systems for which IPS was created, this is a serious
drawback.

This situation led to the question of whether the tasks really need individual
stacks. With the ring structure proposed (chain) context switching occurs only
under control of the programmer. Interrupts do not present a problem because they
do not communicate with the programs in the ring via the stacks and thus do not
modify them as far as the chain is concerned. Using only one parameter and one
return stack shared by all tasks naturally leads to some restrictions: if a task is
abandoned for the time being, it should leave no items on the stack. Practical
experience shows that this normally would be the case anyway, and where not, no
problems result from satisfying this rule.

A single return stack is more serious. It implies that the suspension and
resumption of programs in the chain can occur only at certain levels within the
nesting of definitions. Only practical experience could tell whether this is overly
restrictive. After two years of experience with the shared stack solution no
situation was encountered yet where this technique was found to be inadequate or
too cumbersome and involved. As IPS is put to more varied uses, a more general
solution may become necessary, though. chain principles chain description

The chain technique described is implemented in addition to the chain itself
by four operators. The words DCHN and ICHN are straightforward as to their
implementation. The chain contains the address of the definition constituting the
task. The word $INSERT receives the chain location to be modified (0-7) and on
top of it the address to be put there. $CHAINACT uses this word to perform the
chain modification. If IPS is in the interpretive mode, the chain location is
checked to be in the range 0-7. Otherwise an error stop is performed. In compile
mode the action is to be performed later upon execution of the definition. Thus the
address must be compiled as an immediate instruction before compiling the
$INSERT.

DCHN fetches the address of the no-op (RUMPELSTILZCHEN) and inserts
it into the chain. ICHN on the other hand gets the address of the following word
and puts this into the chain.

85Sect. 6 - Machine dependent routines

The words WAITDEF and YES:CONT require a storage area for storing the
original chain content and the address as to where the program is to resume. The
field IMMAGE thus has four bytes for each chain position. The word WAITDEF
stores the chain address and the resumption address in this field. When called it
first discards its own return address, then calculates the chain location it involves
by making use of the fact that the third item on the return stack is this address
plus two. It then stores the chain content of this location and the resumption
address (item 2 on the returnstack) at the appropriate location in the field
IMMAGE. chain description

YES:CONT reverses this process if it finds a 1 on the stack. It again
discards its own return address, again calculates the chain location, picks up from
IMMAGE plus chain position times two (the first index) the address to
continue, pushes it on the return stack and then picks up from IMMAGE 16 bytes
higher the original chain operator and stores it in the chain. IMMAGE contains,
in the 16 lower bytes, the resumption address and in the 16 higher bytes the
original chain operators.

5.10 Miscellaneous high level routines
The word ? fetches the address of the parameter field of a constant. Because

$GETADR fetches the address of the typecode field, this address must be
increased by two. ? is defined as :INT to prevent its use in definitions in view of
ROM versions of IPS.

$LOAD initializes a load operation by setting the load limit pointer and the
running load pointer. Then it sets LOADFLAG thus starting the load sequence
and decoupling the tape input from the TV/keyboard input.

READ starts a load sequence into the tape buffer $BU .

RECORD starts the recording action by putting #70 into the variable C/Z .
The 20 ms routine picks it up there and starts the recording. After completion, it
is reset to zero by the 20 ms routine.

DEL/FROM eliminates an entry and all subsequent ones from the
nametable. If the address of the entry is smaller than $LL (the beginning of the
user area), the operation is illegal because it is assumed that the system is not to
be removed. Provided that the removal is legal, $H is reset and all table entries
having equal or larger addresses than the one to be removed are cleared.

86 Chapter 3 - The IPS System

6 The machine dependent routines

The low level routines of IPS break down into the IPS words defined by
machine code (the primitives) and into the executive responsible for bringing
these routines to execution and doing various housekeeping tasks.

The IPS codewords are made up of two groups. The words constituting the
high level are already known from the description in chapter I. In addition there
are other words that are not directly handled by the user, but are compiled in the
right context by the compiler. (Like the branch compiled when the compiler
encounters a YES?).

6.1 More details about the executive
Most of the executive is described in section 4. Please refer there for its

operation. With the COSMAC the 20 ms routine is completely implemented as a
pseudo-interrupt and the tape output is handled by DMA hardware. With the other
processors the 20 ms actions occur in two steps. The sequence starts with an
interrupt every 20 ms. Within this interrupt two actions are taken: the tape output
is served if necessary and the emulator is modified in such a way as to jump to the
20 ms pseudo-interrupt routine after completion of the current code routine.

The 20 ms routine performs these tasks: IPS executive

1. Serve an A/D converter, if available.
2. Handle tape recordings, if not already done by the true 20 ms interrupt,

including motor control.
3. Check, in load mode, if the load pointer exceeds the INTLIMIT. If so,

reset LOADFLAG.
4. If not (READYFLAG or EDITFLAG), check if the input pointer exceeds

$PE, if so set READYFLAG.
5. Enable the cassette read motor if not (TEXTREAD and READYFLAG) or

if LOADFLAG ; else disable motor.
6. Transport output bytes from field to ports; input bytes from ports to fields

where applicable.
7. Update clock and stopwatches
8. Input keyboard character, if available. If READYFLAG not, the character

processor is called. This processor first normalizes the input pointer to
ensure it is on the screen and then removes the cursor. Unless some
special control character is found, the character is put on the screen and the
input pointer is incremented. Then the cursor is set again. If an editing
character is found, the appropriate action is performed. If EDITFLAG is
set, the character processor checks for additional control characters and

87Sect. 6 - Machine dependent routines

performs the action (including the carriage return). If EDITFLAG is
not set, the carriage return results in $PE set to the input pointer minus 1;
the cursor is not set in this case. The input limit handler (point 4) finds
this situation and sets READYFLAG . (This limit also exceeds $PE if
an tape input has occurred and EDITFLAG is not set. Thus the
equivalence of keyboard and tape input). The special editing functions
taking more time than 20 ms may call the items 1 - 7 while performing
the action. The character processor again normalizes the input pointer
before leaving the 20 ms routine.

6.2 Directly available code routines

The following words implement functions introduced in chapter I:

@ @B ! !B DUP SOT DEL SWAP RTU I
R>S S>R =0 <0 >0 INV AND OR XOR BIT
>>> + - * /MOD F-COMP RUMPELSTILZCHEN

IPS code routines

The following words may also be used by the user directly. Their function
is somewhat specialized and they are thus not necessarily very useful outside the
compiler. Therefore they are defined as part of the implementation rather than
part of the language IPS. Not all of them are available in all installations.

RETEX exits from a definition. It is compiled by the ; and using this
word directly allows multiple exits from a definition.

$TUE expects a typecode field address on the stack. $TUE executes
this word and thus allows indirect execution.

$IPSETZEN takes a number off the stack and puts it into the input pointer.
$LPSETZEN takes a number off the stack and puts it into the load pointer.
$PSHOLEN gets the parameter stack pointer and pushes it on the

parameter stack.
$PSSETZEN takes a number off the parameter stack and sets the stack

pointer to this number.
$POLYNAME divides a character by the name encoding polynomial

(24-bits) and leaves the remainder on the stack. It expects the
previous remainder on the stack and on top of it the character
(3 numbers). It leaves 2 numbers, of which one byte is
unused. See Sect. 5.2.1 for the details.

88 Chapter 3 - The IPS System

6.3 Code routines managed by the compiler
IPS code routines

The following code routines can only be compiled within the proper routines;
trying to execute them from the keyboard may result in a system crash.

2BLITERAL within programs pushes the number (2 bytes) following it on
the stack. The pseudo-PC is incremented beyond these 2 bytes.

Pseudo-PC

1BLITERAL like 2BLITERAL, but pushes only 1 byte following in the
program (0 - 255) on the stack and then increments the pseudo-
PC beyond the byte. (These 2 words correspond to the
"immediate" instructions of assembler programming)

BRONZ branches on finding a 0 (even number) to the address following
it in the program. If it found an odd number, it increments the
pseudo-PC beyond the address.

LOOPEX the action taken with the NOW of loops. The address to the loop
entry follows LOOPEX in the program.

+LOOPEX like LOOPEX, but for the +NOW taking the increment off the
stack.

$JEEX The action going with the EACH . The address of the
corresponding LOOPEX address follows $JEEX in the program
to enable it to bypass the loop in case it is not to be executed at
all.

JUMP like BRONZ, but the jump is always taken and nothing is taken
off the stack. (Unconditional jump).

The following three routines define the types of IPS entries (definitions,
constants and variables including fields); their starting addresses are put into the
typecode fields of entries rather than into the normal program instruction stream.
Thus they do not require the header of the other code routines. For the compiler
they are represented as constants containing the starting address of the code.

The compiler places this address into the typecode field of the entry when
creating it. Upon execution of the entry, this address is found in the second step of
the emulation process and thus it must point to executable code.

89Sect. 6 - Machine dependent routines

DEFEX definition execution; pushes the pseudo-PC on the return stack
and put HP +2 into the pseudo-PC.

VAREX variable execution; pushes HP +2 (the parameter field address)
on the stack.

CONSEX pushes the content of the memory pointed to by HP +2 on the
stack. constant Pseudo-PC

6.4 Initialization
In addition to the executive described, all IPS versions require an

initialization routine setting up the various pointers and registers before the
emulator can be entered. This routine is only run through once; the memory space
can be used for other purposes later on. IPS initialisation

7 Typical IPS Compiler Routines
This generic IPS compiler and associated routines are based on the meta-

language coding of IPS-C, linked list version. It is designed to be processed by a
cross-compiler. When compiled, lower-case words will become uppercase,
destined for the target processor IPS image. Words :n and ;n become : and ; .

This listing uses German words as discussed in Sect. 5. Correspondence
between words is given below. Only differences are shown. Words ~ 'n +n 02 !t
and $OC are cross-compiler directives. Compiler routines

+NUN +NOW NEIN: NO:
ANFANG LBEGIN NUN NOW
BASIS BASE ODER OR
DANN THEN PWEG PDEL
DANN/NOCHMAL THEN/REPEAT RDU RTU
ENDE? LEND? UND AND
EXO XOR VERT SWAP
FELD FIELD WEG DEL
HIER HERE ZWO SOT
JA? YES? BEA LIS
JE EACH BEM LIM
KON CON EINGABEZAHL N-INPUT
NICHT INV Z-LESEN N-READ

WEG/AB DEL/FROM

SPEICHER VOLL ! MEMORY FULL !
NAME FEHLT ! NAME MISSING !
STAPEL LEER ! STACK EMPTY !
STRUKTURFEHLER ! STRUCTURE ERROR!
TEXTFEHLER ! TEXT-ERROR
UNZUL. NAME ! DUPLICATE NAME !

90 Chapter 3 - The IPS System

(Typical Compiler Routines)
(Based on IPS-C)

#0004 feld $ND #0001 var $RS
#0000 var $F1 #0000 var $F2
#0000 var $KK #0000 var BASIS

#0000 var BEM #0001 var BEA
#0000 var EINGABEZAHL #0000 var Z-LESEN

#0000 var COMPILEFLAG #0000 var $V1
#0000 var LINK
16 feld STACKMESSAGE 16 feld MEMMESSAGE
16 feld NAMEMESSAGE 16 feld STRUCMESSAGE
16 feld TEXTMESSAGE 16 feld RSMESSAGE

~ SPEICHER VOLL ! ~ 'n MEMMESSAGE 02 +n $OC !t
~ NAME FEHLT ! ~ 'n NAMEMESSAGE 02 +n $OC !t
~ STAPEL LEER ! ~ 'n STACKMESSAGE 02 +n $OC !t
~ STRUKTURFEHLER ! ~ 'n STRUCMESSAGE 02 +n $OC !t
~ TEXTFEHLER ! ~ 'n TEXTMESSAGE 02 +n $OC !t
~ UNZUL. NAME ! ~ 'n RSMESSAGE 02 +n $OC !t

 (DEFINITIONEN)
:n HIER $H @ ;n
:n H2INC HIER 2 + $H ! ;n
:n $DEP HIER ! H2INC ;n
:n $CEN $BU $PI ! 0 READYFLAG !B ;n
:n IE $P1 @ $PI @ 1 - je I @B #80 ODER I !B
 nun 0 $P2 ! $CEN WEG ;n
:n SYSWRITE SYSLINE 16 >>> 0 IE ;n
:n L>>> anfang DUP 256 > ja? 256 - S>R PDUP 256 >>>
 256 + VERT 256 + VERT R>S
 dann/nochmal DUP >0 ja? >>>
 nein: PWEG WEG
 dann ;n

code $SCODE (Machine specific code for $SUCH.)
 (see Chapter III sect. 5.1) NEXT

code $CSCAN (Machine specific code for $NAME.)
 (see Chapter III sect. 5.2.1) NEXT

91Sect. 7 - IPS Compiler

:n $SUCH LINK @ $P3 ! $SCODE ;n

:n $NAME 0 READYFLAG @B
 ja? 1 $CSCAN >0
 ja? $PI @ $P1 !
 2 $CSCAN PWEG #CE57 #8D
 $P1 @ $PI @ ZWO - DUP 63 > ja? WEG 63
 dann
 DUP $ND !B 1 - ZWO +
 je I @B $POLYNAME
 nun $ND 3 + !B $ND 1 + ! 1
 dann
 dann ;n

:n $ZAHL 1 (OK) 0 (ANF.) $PI @ 1 - $P1 @
 #2D ZWO @B = ja? 1 + -1 S>R (NEG) 10 (BASIS)
 nein: 1 S>R (POS)
 #23 ZWO @B =
 ja? 1 + 16
 nein: #42 ZWO @B =
 ja? 1 + 2
 nein: 10
 dann dann dann BASIS !
 VERT je BASIS @ * I @B DUP #3A < ja? #30 -
 dann
 DUP #40 > ja? #37 -
 dann
 DUP BASIS @ >= ZWO <0 ODER ja? (FEHLER) WEG 0 RDU
 dann +
 nun R>S * VERT ;n

:n COMPILER $NAME
ja? $SUCH
 1 (For continuing) BEM @B
 ja? ZWO 'n RUMPELSTILZCHEN
 = ja? (RUMP.) 0 BEM !
 nein: (NICHT RUMP.) Z-LESEN @
 ja? PWEG 0 1
 nein: ZWO BEA @ <
 ja? IE WEG 0
 dann
 dann
 dann
 dann (End limited input mode checks)

92 Chapter 3 - The IPS System

 (COMPILER cont.)

 ja? (Continue flag ?) DUP =0
 ja? (Number processor)
 WEG $ZAHL
 ja? COMPILEFLAG @B
 ja? DUP #FF00 UND
 =0 ja? 'n 1BLITERAL $DEP
 HIER !B $H INCR
 nein: 'n 2BLITERAL $DEP $DEP
 dann
 nein: BEM @B ja? EINGABEZAHL ! 0 Z-LESEN !
 dann
 dann
 nein: IE
 dann
 nein: (Found processor) DUP 6 - @B #C0 UND
 COMPILEFLAG @B ODER
 DUP 1 =
 ja? WEG HIER $ML >=
 ja? WEG MEMMESSAGE SYSWRITE
 nein: $DEP
 dann
 nein: DUP #80 = VERT #C1 = ODER
 ja? IE
 nein: R>S $V1 ! $TUE $V1 @ S>R
 dann
 dann
 dann
 $PSHOLEN $SL > ja? $SL $PSSETZEN
 STACKMESSAGE SYSWRITE WEG $F1
 dann
 dann
dann READYFLAG @B $P2 @B UND
 ja? #20 $BU !B $BU DUP 1 + 511 L>>> $CEN
 dann
;n

93Sect. 7 - IPS Compiler

 (Compiler Auxiliary Routines.)
 (See Sect.5.3 & 5.4)

:n ENTRYSETUP $F1 $KK ! $NAME DUP
 ja? $SUCH =0 NICHT $RS @ UND
 ja? RSMESSAGE SYSWRITE WEG 0
 nein: HIER DUP $KK ! LINK @ H2INC H2INC $DEP
 $ND ZWO 4 >>> LINK ! HIER VERT H2INC
 dann
 nein: NAMEMESSAGE SYSWRITE
 dann ;n

:n $GETADR $NAME ja? $SUCH DUP =0
 ja? IE 0
 nein: 1
 dann
 nein: NAMEMESSAGE SYSWRITE 0
 dann ;n

:hpri ' $GETADR ja? COMPILEFLAG @
 ja? 'n 2BLITERAL $DEP $DEP
 dann
 dann ;n

:prior ; 'n RETEX $DEP 0 COMPILEFLAG !B
 $F2 <>
 ja? STRUCMESSAGE SYSLINE #20 + 16 >>>
 LINK @ DUP $H ! 4 + @ LINK ! 0 IE
 dann ;n

:int : ENTRYSETUP ja?
 DEFEX VERT ! 1 COMPILEFLAG !B $F2
 dann ;n

:n PRIMODIFY $KK @ @B ODER $KK @ !B ;n

:int :PRIOR : #80 PRIMODIFY ;n
:int :HPRI : #40 PRIMODIFY ;n
:int :INT : #C0 PRIMODIFY ;n

94 Chapter 3 - The IPS System

:prior JA? 'n BRONZ $DEP HIER H2INC ;n
:prior DANN HIER VERT ! ;n
:prior NEIN: 'n JUMP $DEP HIER H2INC VERT DANN ;n
:prior JE 'n $JEEX $DEP HIER H2INC ;n
:prior NUN 'n LOOPEX $DEP DUP DANN 2 + $DEP ;n
:prior +NUN 'n +LOOPEX $DEP DUP DANN 2 + $DEP ;n
:prior ANFANG HIER ;n
:prior ENDE? 'n BRONZ $DEP $DEP ;n
:prior DANN/NOCHMAL VERT 'n JUMP $DEP $DEP DANN ;n

:int KON ENTRYSETUP ja? CONSEX VERT ! $DEP
 dann ;n
:int VAR ENTRYSETUP ja? VAREX VERT ! $DEP
 dann ;n
:int FELD ENTRYSETUP ja? VAREX VERT ! HIER + $H !
 dann ;n FIELD CON

:n !CHAR SP @ !B SP INCR ;n

:n TLITERAL I 1 + R>S @B PDUP + S>R SP @ PDUP + SP !
 VERT >>> ;n
:hpri "
 $PI INCR $PI @
 anfang $PI @ DUP @B #22 = VERT $RBE > ODER $PI INCR
 ende?
 $PI @ 2 - ZWO - DUP 1 < ZWO 256 > ODER
 ja? TEXTMESSAGE SYSWRITE VERT WEG
 nein: COMPILEFLAG @ ja?
 S>R I 'n TLITERAL $DEP
 HIER !B $H INCR
 HIER I >>> HIER R>S + $H !
 dann
 dann ;n

:int !T VERT >>> ;n

(End of Compiler and Auxiliary routines)

95Sect. 7 - IPS Compiler

96

Appendix A

IPS - Short Reference Summary

' Words ' are arbitrary character strings.
They are separated by at least one blank, by comments or by 'end of block'.
IPS Reference Summary

(...) Comment
numberCON name Constant definition
numberVAR name Variable definition
n FIELD name Definition of a field of n bytes length
: name ... words ... ; Creation of a program definition

Text Editor:
(entry by TEXT , exit by control D (EOT))
(Also available during IPS-entries)
 control \ (FS) Forwardspace
 control H (BS) Backspace
 control J (LF) Linefeed
(Only available in edit-mode)
 control P (DLE) Deletes all after cursor, cursor to top
 control M (Return) Normal function, not IPS entry indication
 control ^ (RS) Recording start function
(Not with all IPS versions)
 control O Deletes character
 control N Inserts blank for character insertion
 control R Deletes line
 control Q Inserts empty line
 control X Set blockcounter (1-5) to 1
 (DEL) Move cursor one line up

97Appendix A - IPS short reference summary

1. Stack manipulations
Before operation After operation
DEL a b a
PDEL a b c a
DUP a a a
PDUP a b a b a b
SWAP a b b a
SOT a b a b a
RTU a b c c a b
RTD a b c b c a
S>R Stack to return stack)
R>S Return stack to stack) one number
I Duplicate return stack to stack) operators stack

operators logical operators arithmetic logical operators arithmetic operators

2. Arithmetic and logic operations
+ AND and all bits
- OR or all bits
* XOR exclusive-or all bits
/ INV complements all bits
MOD remainder BIT select one bit 0 - 15
/MOD quotient, and remainder on top
operators comparison comparison operators stack operators

3. Comparison operators
=0 >0 <0 = < > =/ >= <=
F-COMP (expects two addresses and length in bytes. Compares two arrays

and delivers 1 if equal, 0 with smaller and 2 with larger) >0 <0 =0
> < = >= <= =/ <>

4. Storage operations
@ Get word operators storage storage operators

@B Get byte; MS-byte =0
! Store word
!B Store byte; LS-byte only, MS-byte discarded
!T stores text from screen. Format:

" text " fieldname !T

!FC stores field components. Format:
n1 n2 n3 ... nZ fieldname Z !FC

!CHAR stores a number as character as pointed at by SP and then
increments SP

98 Appendices

? name gets address of constant to store a new value into it
INCR expects variable address; increments its content

5. Control of flow
a. YES? NO: THEN
b. EACH NOW or +NOW
c. LBEGIN LEND?
d. LBEGIN YES? THEN/REPEAT operators looping looping operators

6. Field operations
>>> from-addr to-addr num-of-bytes (1-256) >>>

L>>> same as >>> , but length 0 - 32767 bytes
!FC see Storage operations, 4.
!T see Text operations, 7.
TRANSPORT expects address, moves 512 bytes starting at this location into

tape output buffer $BU operators field field operators

7. Text operations
" arbitrary text-string not containing quote "

 within definitions: text will be written at execution time starting at SP, SP
then points at first unused position.

 outside definitions: leaves on stack address of first character (on TV) and
length of string on top. Length of string is number of characters
between quotes minus two. This may be 1-256 characters.

!T stores text strings in fields. Field must have sufficient length. Format:
" ... " fieldname !T

BLANKS expects a number n; it writes n blanks starting at SP . SP is not

modified.
WRITE expects fieldname and on top number of characters to be

written. It writes starting at SP , SP is updated to next
location after string.

CONV expects a number. It converts it into a string and writes it at
SP . SP then is updated as in WRITE . The conversion format
depends on content of variable BASE .

text handling

99Appendix A - IPS short reference summary

8. Systems operations
DEL/FROM name Deletes all entries starting at name.
READ Reads a cassette-block into field $BU .
RECORD Writes a cassette-block from $BU to tape.
OK Clears error messages, enables cassette read.
n DCHN (n=0-7) dechains program at position n.
n ICHN name (n=0-7) puts definition 'name' into chain at

location n .
' name WAITDEF replaces current program in chain temporarily by

definition 'name'. Only permissible at two
definition levels below chain.

n YES:CONT if n is odd, it reverses the action of WAITDEF and
resumes the program with the word following
WAITDEF. Only permissible at one definition
level below chain.

Note: WAITDEF and YES:CONT are to be used with empty stacks only.
Inside the EACH ... NOW there are items on the return stack. Use
LBEGIN ... LEND? with iteration parameters in variables instead!

STACKDISPLAY Normally in chain at location 0.
HERE Delivers first free position of dictionary.
RUMPELSTILZCHEN No-op; in limited input mode it returns the

computer to the normal mode.

9. Variables, constants and fields
IPS-system:
Name Kind and length Function IPS variables IPS constants

CHAIN F 16 Main program. TV0 TV4 TV8

$H V Containing first free position of dictionary.
TV0 C 1st TV screen line position.
TV4 C 4th TV screen line position.
TV8 C 8th TV screen line position.
$TVE C Last TV screen position.
C/Z V 1 Cassette recording control.
TEXTREAD V 1 Tape read-enable flag.
READYFLAG V 1 1 while there is still input in $BU to be processed.
LOADFLAG V 1 1 while READ or $LOAD active.

100 Appendices

BASE V Conversion base for CONV .

N-INPUT V Destination of number input in limited input mode.
N-READ V Number requested in LIM.
LIM V limited input mode flag.
LIS V Address of first word to be recognized in LIM.
SP V Screen pointer for text output.

Process control related:
OUTPUT F 4 Hardware output ports) not with
INPUT F 3 Hardware input ports) all
A/D-CONV F 8 A/D-converter input) systems
CLOCK F 6 0.01s, sec, min, hr, day-lsb, day-msb
SW0) Stopwatches running backwards.
SW1) F 4 0.01s, sec, min (2 bytes)
SW2) After timeout 0.01s=1, rest=0.
SW3) With 0.01s odd, watch is halted. IPS fields

10. Storage and reloading binary object programs
1. After program has been translated, translate DUMPER (3 blocks). It

requires 74 bytes of storage, adds no names to dictionary and leaves one number
on the stack. Tape cassette operations

2. Load cassette and enter $TUE . This starts the dump of total system (IPS
plus translated program).

3. DUMPER is good only for one dump; if more are required, again translate
dumper.

4. Program is loaded like IPS itself, it in addition contains the translated
program in the state (chain, e.g.) at the time of the dump.

The source of DUMPER is lost. Though specifically for the Atari 800XL IPS
and its 6502 processor, the following is similar. [Ed]

 : DUMP HIER #FF ODER 1 + DUP #DD ! #1000 #DB !
 HIER #1234 !
 #1000 - 256 / #0A00 !B
 AUFNAHME
 ANFANG C/Z @B =0 ENDE? (Wait loop)
 $BU #DB ! #0A00 #DD ! ; (Restore pointers)

101Appendix A - IPS short reference summary

Appendix B

The AMSAT cassette standard

1. Tape speed: 4.76 cm/s (normal consumer recorder speed)
 Data rate : 400 bit/s Cassette standard

2. Recording format of the bits:
D State of data (0 or 1)
Cl 400 Hz clock (squarewave)
4Clv90 1600 Hz squarewave
8Clv90 3200 Hz squarewave

 90 degrees shifted with reference to Cl transition

3. Structure of the recordings:
a. Byte format: bit serial, most significant bit first, least significant bit

last. Synchronous recording, i.e. no start or stop bits.
b. Block format: (hexadecimal representation)

Blockbegin Motor start
50,50,50,...,50,50, 64 bytes leader
39,15,ED,30, Synchvector
data-byte0,db1,db2,... Data field 512 bytes
...,db510,db511, End of datafield
50,50,50,...,50,50, 48 bytes trailer
50,50,... Motor stops here

102 Appendices

Bit duration 2.5 ms

Cl

4Clv90

8Clv90

D=1 -> Cs

D=0 -> Cs

Cs = +((D + Cl) & 4Clv90)O ((D + Cl) & 8Clv90)

O

Note 1: while motor comes to stop, the recording of 50's continues; there are
no true block-gaps

Note 2: for recordings requiring exceptional data integrity, the first two bytes
of the trailer may be a CRC .

4. Tapes:
Standard audio tapes (Fe2O3), C60 , C90 or C120
Two-track recording (mono).

5. Audio levels:
The levels comply with the DIN standards and connectors. In particular the

recording interface produces approximately 15 mV p-p at pin 1 of the DIN
connector for the recorder. The output circuit contains some harmonic suppression
to prevent beats with the bias-current of the recorder:

The reading interface expects about 2 V p-p at pin 3 of the DIN connector
from the recorder. The internal resistance should be below 20 kW.

103

150n

33k

100

5v p-p

Square
Wave DIN pin 1

100n

Appendix B - AMSAT cassette standard

Appendix C

The ASCII code

 Most significant hexdigit of byte
 | 0 1 2 3 4 5 6 7

 least |-------------------------------------
significant 0 | NUL DLE SP 0 @ P ` p

 hexdigit 1 | SOH DC1 ! 1 A Q a q

 of 2 | STX DC2 " 2 B R b r

 byte 3 | ETX DC3 # 3 C S c s
4 | EOT DC4 $ 4 D T d t
5 | ENQ NAK % 5 E U e u
6 | ACK SYN & 6 F V f v
7 | BEL ETB ' 7 G W g w
8 | BS CAN (8 H X h x
9 | HT EM) 9 I Y i y
A | LF SUB * : J Z j z
B | VT ESC + ; K [k {

 C | FF FS , < L \ l |
D | CR GS - = M] m }
E | SO RS . > N ^ n ~
F | SI US / ? O _ o DEL

Remarks:
1. The most significant bit of the byte is occasionally used as parity check

bit. With IPS it serves to indicate an inversion of character and background
brightness; e.g. #D3, #D7, #C1, #D0 displays as SWAP

2. The characters of column 0 and 1, and the DEL are non-printing control
functions.

3. On teletypes (e.g. ASR 33) the characters of column 6 and 7 are printed
by the characters of columns 4 and 5, i.e. upper case only.

104 Appendices

! 10, 98
!B 13, 98
!CHAR 95, 98
!FC 12, 98-99
!T 21, 98-99
" 20, 74, 83, 99
5-6
$BU 35, 86, 99-100
$CEN 40, 80, 91, 93
$CHAINACT 85
$CSCAN 76, 78, 92
$CSCAN description 76
$DEP 74, 80, 91, 93
$F1 74, 81, 93-94
$F2 81, 94
$GETADR 83, 86, 94
$H 11, 69, 80, 86, 100
$INSERT 85
$IPSETZEN 88
$JEEX 89
$KK 82, 94
$LL 86
$LOAD 35, 86
$LPSETZEN 88
$ML 74, 93
$NAME 73-74, 76-78, 81-83, 92, 94
$NAME listing 76
$ND 78, 82, 92
$P1 76, 80, 92
$P2 40, 73-74, 76, 83, 93
$PE 71, 76, 80, 87
$PI 76, 80, 83, 92
$POLYNAME 78, 81, 88, 92
$POLYNAME algorithm 78
$PSHOLEN 84,88
$PSSETZEN 88
$RS 82, 94

$SL 74, 84
$SUCH 73-74, 79, 82-83, 92
$SUCH description 73-74
$TUE 74, 88, 93
$TVE 17, 80, 100
$V1 73-74, 93
$ZAHL 73, 80, 92
' 29-30, 74, 82, 94
(15
) 15
* 6-7, 98
+ 6, 98
+LOOPEX 89
+NOW 19, 99
, 45, 48
- 6-7, 98
/ 6, 98
/MOD 6-7, 98
\ 52
16-bit computer 3
1801 1, 3, 46
1802 1, 3, 46, 61
1BLITERAL 73, 89, 93
20 ms 2-3, 25-26, 34, 70, 86-87
20 ms routine 87
2BLITERAL 73, 83, 89, 93
6502 1, 3, 56
6800 1, 3, 52
8080 1-3, 24, 49
: 15, 80, 82, 94, 97
:HPRI 74, 82, 94
:INT 74, 82, 94
:PRIOR 74, 82, 94
; 15, 81-82, 94, 97
> < = >= <= =/ <> 16, 98
>0 <0 =0 16, 98
>>> 12, 99

Index 105

? 10, 82, 86, 99
@ 10, 98
@B 13, 98

A
A/D converter 87
A/D-CONV 24, 101
Acorn RISC Computer vii
AMSAT vii, x
AND 7
Arithmetic operators 6, 98
Assembler 28, 33, 43-45

Macro 44
Principles 44
Purpose 43

Atari 800XL vii
Atari ST vii

B
B 6
BASE 22, 80, 84, 101
BASIC 1, 37
BEGIN 49, 53, 57
Binary number 5
BIT 7
Blanks 4, 15, 20, 76, 99
Block counter 23
Bootstrap loader 2
Branch rule 16
Branches 15
BRONZ 89
Byte manipulation 13

C
C/Z 35, 86, 100
Cassette 2, 4, 80
Cassette standard 102

Chain 27-29, 72, 85, 100
Add item 28
Description 85-86
Multiprogramming 27
Principles 84-85
Remove item 28
Waiting for events 29

CLOCK 25, 87, 101
CODE 33, 44, 50
Code structure example 69
Colon 15, 82
Comment 15, 76
Comparison operators 16, 98
Compile mode 73
COMPILEFLAG 73-74, 81, 83, 93
COMPILER 27, 34, 72-74, 80, 92

Action matrix 74
Auxiliary routines 80
Description 72-74
Input 73
Outline 34
Routines 90
Support routines 76

CON 9, 74, 80, 95, 97
CONSEX 81, 90, 95
Constant 9-10, 32-33, 80, 90
CONV 22, 84, 99
COSMAC 1-3, 24, 79, 84, 87
CR 4, 6, 14
Cursor 4, 31

D
DCHN 28, 74, 85, 100
Debugging 38
Decimal number 6
DEFEX 33, 81, 90, 94

106 Index

Definition 15, 20, 32, 74, 90
Definition very long 20
DEL 6, 98
DEL/FROM 37-38, 86, 100
Deposit 1 byte 45
Deposit 2 bytes 74, 80
Dictionary 4, 10-11, 14, 31-32
Display 3
Division 7
DMA 87
DUMPER 35
DUP 98
DUPLICATE NAME 14

E
EACH 18-19, 89, 99
EDITFLAG 87-88
Emulator 33-34
END 44, 49, 53, 57
Entry summary 81

Generation 80
: 80
FIELD 80
VAR CON 80

ENTRYSETUP 80, 82, 94
Entrytype 32, 74, 77, 80-82
Entrytype code 74
Error 17, 21, 34, 37, 45, 73-74, 80-82
Error messages 14
Executable code 33, 68, 70, 81, 89
Exercises 37-38

Solutions 39

F
F-COMP 12, 16, 26, 39, 98

FIELD 10-13, 32, 74, 80, 95, 97
Comparison 13
Components 12
Operators 12, 99
Set to zero 13
Transport 12

FORTRAN 37
Found processor 73-74, 93
Front-panel 3

H
Hardware requirements 1-3
Hash table 79
Header Pointer 33, 70
HERE 31, 100
Hewlett Packard 64
Hex display 84
Hexadecimal number 6
HIER 91
Hints programming 37
HP 33, 70, 90

Storing 70

I
I 9, 18-19, 98
I/O ports 24
IBM-PC vii
ICHN 28, 74, 85, 100
IE 73-74, 80, 91
IMMAGE 86
INCR 99
Index (I) 9, 18
Indirect execution 69
Inner interpreter 33, 70
INPUT 24, 101
Input buffer 2, 73-74
Input keyboard character 87

107Index

Input scanner 76
Inputs and outputs 24
Intermediate storage 8
Interpretive mode 65, 73
INTLIMIT 87
INV 7, 90
Inverse video 1, 31
Inverted ? 14, 30, 80
IPS

20 ms routine 70
Code routines 88-89
Constants 100
Cross-compiler 72
Executive 70, 87
Fields 101
General design 63-66
Implementation 67
Initialisation 90
Pseudocode 68
Reference Summary 97
Variables 100

IPS-X 72
Iteration counter 18

J
JUMP 89

K
Keyboard 2-4, 70

L
L>>> 12, 80, 99
LBEGIN 17-19, 82, 99
Leading zero 6
Least significant 14
LEND? 17, 19-20, 82, 99
LIM 30, 101

Limited input mode 30, 73, 92
Link field 81
Linked list 78-79, 81, 90
LIS 30, 73, 101
LOADFLAG 35, 71, 86-87, 100
LOADLIMIT 71
Logical operators 7, 98
Loop 17

Index 19
Nesting rules 19
Operators 17-19, 99

LOOPEX 89
Lower case n 72

M
Mass-storage 3
Memory 3, 31, 65
MEMORY FULL 14
Memory hex display 40
Memory limit 74
Memory organisation 31
MOD 98

N
N-INPUT 30, 101
N-READ 30, 73, 101
N: 44, 49, 53, 57
Name encoding 76-78
NAME MISSING 14, 20, 80
Namecode 9, 11, 32, 76-79, 81
Nametable 10, 31-32, 34, 37, 73-74

76, 80-82
Nametable hash-table 79
Nametable linked-list 78
NEXT 44, 47, 50, 53, 56, 58
No-op 72, 85, 100
NO: 16, 18-19, 82, 99

108 Index

NOW 18-20, 99
Number 4-6, 34, 73

Entries 6
Processor 73, 93
Range 5-7
Requested 30
Type 5-6
Writing 22

N-INPUT 73

O
OK 14, 100
Operators

Arithmetic 6, 98
Comparison 16, 98
Field 12, 99
Logical 7, 98
Looping 17-19, 99
Stack 8, 98
Storage 98

OR 7
Oscar-13 vii
OUTPUT 24, 101
Output buffer 31, 79, 99
Overflow 7

P
Parameter field 20, 32, 80-82, 86
Parameter stack 5, 8, 31
PDEL 98
PDP 11 3
PDUP 98
Permanent storage 9
PPC 33
Primitive 87
PRIMODIFY 82

Process control 24
Processor 3
Programming 15
Pseudo-interrupt 28, 34, 70
Pseudo-PC 33, 70, 89-90
Pseudocode 68

Q
Quotient 7

R
R>S 9, 98
RAM 3, 31
RCODE 33, 50
READ 35, 86, 100
READYFLAG 74, 80, 83, 87-88

93, 100
RECORD 35, 86, 100
Remainder 7
Repeated execution 27
RETEX 82, 88
Return stack 8-9, 19, 31
Reverse polish notation 64
ROM 2-3, 10, 86
RTD 98
RTU 98
RUMPELSTILZCHEN 30, 73

85, 100

S
S>R 9, 98
Screen pointer 20
Semicolon 15
Separator 4, 15, 76
SOT 98
SP 20, 22, 83-84, 101

109Index

Stack 5, 8-9, 31, 64
Display 5-6, 22
Display description 83
Limit 74, 84
Manipulation 8
Operators 8, 98
Pointer 32
Top of 5

STACK EMPTY 14, 20
STACKDISPLAY 28, 72, 83, 100
Stopwatch 26, 70, 87
Storage operators 98
Store number 10
STRUCTURE ERROR 14, 19-20
Structuring error 81
SW0 26, 101
SWAP 98
System page 46, 49, 52, 56
SYSWRITE 80, 91

T
Tape cassette operations

22-23, 35, 101
TEXT 22, 97

Editing mode 22
Handling 20-22, 83, 99
Length 21

TEXT-ERROR 14, 21
TEXTREAD 35, 80, 87, 100
TH 44, 49, 53, 57
THEN 16, 19-20, 74, 81-82, 99
THEN/REPEAT 18-19, 99
Time 25
Timing 3
TLITERAL 83, 95
TRANSPORT 99
TV-screen 4

TV0 TV4 TV8 17, 100
Typecode 9, 11, 30, 32, 68
Typecode field 33, 74, 80-82, 86, 89

V
VAR 10-11, 74, 80, 95, 97
VAREX 81, 90, 95
Variable 9-11, 32, 80, 90

W
WAITDEF 29, 86, 100
Word 4
WRITE 21, 99
Write number 22

X
XOR 7

Y
Y? 44, 49, 53, 57
YES:CONT 29, 86, 100
YES? 16, 18-19, 74, 81-82, 99

Z
Z80 1, 3

110 Index

