
ECE390
Computer Engineering I I

Lecture 10

Dr. Zbigniew Kalbarczyk

University of Illinois at Urbana- Champaign

Z. Kalbarczyk ECE390

Lecture outline

• Writing and installing your own interrupt service routines (cont)

• Video display

Z. Kalbarczyk ECE390

Replacing An Interrupt Handler

;install new interrupt vector
%macro setInt 3 ;Num, OffsetInt, SegmentInt

push ax
push dx
push ds

mov dx, %{2}
mov ax, %{3}
mov ds, ax
mov al, %{1}
mov ah, 25h ;set interrupt vector
int 21h

pop ds
pop dx
pop ax

%endmacro

;store old interrupt vector

%macro getInt 3 ;Num, OffsetInt, SegmentInt

push bx

push es

mov al, %{1}

mov ah, 35h ;get interrupt vector

int 21h

mov %{2}, bx

mov %{3}, es

pop es

pop bx

%endmacro

Z. Kalbarczyk ECE390

Replacing An Interrupt Handler

CR EQU 0dh
LF EQU 0ah
……..

Warning DB “ Overflow - Result Set to ZERO!!!!” ,CR,LF,0

msgOK DB “ Normal termination” , CR, LF, 0

old04hOffset RESW 1
old04hSegment RESW 1

New04h ;our new ISR for int 04

;occurs on overflow

sti ;re-enable interrupts

mov ax, Warning

push ax

call putStr ;display message

xor ax, ax ;set result to zero

cwd ;AX to DX:AX

iret

Z. Kalbarczyk ECE390

Replacing An Interrupt Handler
mov ax, msgOK

push ax

call putStr

Error:

;restore original int handler

setInt 04h, [old04hOffset], [old04hSegment]

mov ax, 4c00h

int 21h

..start
mov ax, cs
mov ds, ax

;store old vector
getInt 04h, [old04hOffset], [old04hSegment]

;replace with address of new int handler
setInt 04h, New04h, cs

mov al, 100
add al, al
into ;calls int 04 if an overflow occurred
test ax, 0FFh
jz Error

NOTES

• INTO is a conditional instruction that acts only when the overflow flag is set
• With INTO after a numerical calculation the control can be automatically routed to a handler routine if the

calculation results in a numerical overflow.
• By default Interrupt 04h consists of an IRET, so it returns without doing anything.

Z. Kalbarczyk ECE390

Installing an interrupt vector using
direct access to the vector table

Assume t hat we need t o i nst al l an keyboar d i nt er r upt (kbd)

KbdVec EQU 24h ; kbd gener at es i nt er r upt t ype 9
; t he l ocat i on i n t he vect or t abl e cor r espondi ng t o
; t hi s i nt er r upt i s 9* 4=36 (24h)

saveOf f set r esw 1
saveSegment r esw 1

cl i ; cr i t i cal sect i on begi ns – we do not want t o be
; i nt er r upt ed whi l e updat i ng t he i nt er r upt vect or t abl e

mov ax, 0 ; set ES t o poi nt t o t he vect or t abl e
mov es, ax

mov ax, [es: KbdVec] ; t he same as ES: 24h
mov [saveOf f set] , ax ; save ol d of f set
mov ax, [es: KbdVec+2]
mov [saveSegment] , ax ; save ol d segment

mov ax, kbdI nt ; of f set of our i nt er r upt ser vi ce r out i ne
mov [es: KbdVec] , ax

mov ax, cs
mov [es: KbdVec+2] , ax

st i ; end of t he cr i t i cal sect i on – enabl e i nt er r upt s

Z. Kalbarczyk ECE390

DOS function dispatcher

• INT 21h is the DOS function dispatcher. It gives you access to dozens of
functions built into the operating system.

• To execute one of the many DOS functions, you can specify a sub-function by
loading a value into AH just before calling INT 21

• INT 21h sub-functions
– AH=3Dh: Open File

– AH=3Fh: Read File

– AH=3Eh: Close File

– AH=13h: Delete File (!)

– AH=2Ah: Get system date

– AH=2Ch: Get system time

– AH=2Ch: Read DOS Version

– AH=47h: Get Current Directory

– AH=48h: Allocate Memory block (specified in paragraphs==16 bytes)

– AH=49h: Free Memory block

– AH=4Ch: Terminate program (and free resources)

Z. Kalbarczyk ECE390

System BIOS functions

• All PCs come with a BIOS ROM (or EPROM).

• The BIOS contains procedures that provide basic functions such
as bootstraping and primitive I/O.

– INT 19h: Reboot system

– INT 11h: Get equipment configuration

– INT 16h: Keyboard I/O

Z. Kalbarczyk ECE390

Video BIOS functions

• Video cards come with procedures stored in a ROM

• Collectively known as the video BIOS

• Located at C0000-C7FFF and holds routines for handling basic video
adapter functions

• To execute a function in video BIOS ROM, do an INT 10h with video
sub-function number stored in AX

• INT 10h, Sub-function examples

– AH=0, AL=2h: 80 column x 25 row text display mode

– AH=0, AL=13h: 320x200 pixel, 256-color graphics display mode

Z. Kalbarczyk ECE390

Where is all this stuff???

Interrupt vector table
00000

003FF

640KB of RAM

9FFFF

00400

Video RAM

Memory usable by your
real mode programs

A0000

BFFFF

C0000

C7FFF
Video BIOS functions

D0000
System BIOS functions

FFFFF

ROM or EPROM on the
video display adapter

ROM or EPROM on
system motherboard

Z. Kalbarczyk ECE390

Video output

• Video is the primary form of communication between a computer
and a human.

• The monochrome (single color) monitor uses one wire for video
data, one for horizontal sync, and one for vertical sync.

• A color video monitor uses three video signals: red, green, & blue

– these monitors are called RGB monitors and convert the
analog RGB signals to an optical image.

• The RGB monitor is available as either an analog or TTL (digital)
monitor.

Z. Kalbarczyk ECE390

TTL RGB monitor

• Uses TTL level signals (0 or 5V) as video inputs (RGB) and an
extra signal called intensity to allow change in intensity

• Used in the CGA (Color Graphics adaptor) system found in
older computers

• Can display a total of 16 different colors (eight are generated at
high intensity and eight at low intensity)

• Example:
Intensity Red Green Blue Color

0 0 0 0 Black

1 0 0 0 Gray

1 0 1 0 Light green

1 1 0 0 Light red

1 1 1 1 Bright white

Z. Kalbarczyk ECE390

The analog RGB monitor

• Uses analog signals - any voltage between 0.0 V and 0.7 V

• This allow an infinite number of colors to be displayed

• In practice a finite number of levels is generated (16K, 256K,
16M, colors depending on the standard)

• Analog displays use a digital-to-analog converter (DAC) to
generate each color video voltage

• A common standard uses a 6-bit DAC to generate 64 different
video levels between 0 V and 0.7 V

– this allows 64x64x64 colors to be displayed, or 262,144 (256 K)
colors

• 8-bit DACs allow 256x256x256 or 16M colors

Z. Kalbarczyk ECE390

The analog RGB monitor

• The Video Adapter converts digital information from the CPU to analog signals
for the monitor.

• VRAM/DRAM Video/Dynamic Random Access Memory

– Stores screen content

• Video BIOS

– Stores character mappings

• Palette registers

– Defines R/G/B color values

• Graphic accelerator

– Hardware implemented
graphic routines

• DAC

– Generates analog Red/Green/Blue signals

Z. Kalbarczyk ECE390

The analog RGB monitor

• Example: video generation used in video standards such as EGA
(enhanced graphic adapter) and VGA (variable graphics array)

• A high-speed palette SRAM (access time less than 40ns) stores
256 different codes that represent 256 different hues (18-bit codes)

• This 18-bit code is applied to the DACs

• The SRAM is addressed by 8-bit code that is stored in the computer
VRAM to specify color of the pixel

• Once the color code is selected, the three DACs convert it to three
video voltages for the monitor to display a picture element (pixel)

Z. Kalbarczyk ECE390

The Analog RGB Monitor
Example of Video Generation (cont.)

• Any change in the color codes is accomplished during retrace
(moving the electron beam to the upper left-hand corner for
vertical retrace and to the left margin of the screen for
horizontal retrace)

• The resolution and color depth of the display (e.g., 640x400)
determines the amount of memory required by the video
interface card

• 640x400 resolution with 256 colors (8 bits per pixel) 256K bytes
of memory are required to store all the pixels for the display

Z. Kalbarczyk ECE390

Text mode video

• There is not a single common device for supporting video
displays

• There are numerous display adapter cards available for the PC

• Each supports several different display modes

• We’ll discuss the 80x25 text display mode which is supported by
most of display adapters

• The 80x25 text display is a two dimensional array of words with
each word in the array corresponding to a character on the
screen

• Storing the data into this array affects the characters appearing
on the display

Z. Kalbarczyk ECE390

Text mode video

• Each text page occupies under 4K bytes of memory

• 80(columns) x 25 (rows) x 2 (bytes) = 4000 bytes

• The LO byte contains the ASCII code of the character to display

• The HO byte contains the attribute byte

• Display adapters provide 32 K for text displays and let you
select one of eight different pages

• Each display begins on a 4K boundary, at address:

– B800:0000, B800:1000, B800:2000, …. B800:7000

Z. Kalbarczyk ECE390

Text mode video

The attribute byte controls
underlying background and
foreground colors, intensity
and blinking video

Choose your colors with care
(some combinations of
foreground and background
colors are not readable)

Do not overdo blinking text on
the screen

Z. Kalbarczyk ECE390

The cursor

• A pointer to the “insertion point” on the screen

• When you use DOS/BIOS functions to display a character, it
displays where the cursor points

• The cursor then moves to the next column

• Other functions let you move backwards or up/down

Z. Kalbarczyk ECE390

Using DOS to Control Display – INT 21h

• DOS provides INT 21h, which is called the DOS function
dispatcher and supports functions such as: read from the
keyboard, write to the screen, write to the printer, read and write
to disk files, etc.

• INT 21h must be told which function is being requested

– this information is passed by placing the function number in
the AH register

– depending on the function being used, other information may
be needed

Z. Kalbarczyk ECE390

INT 21h, AH = 02h

• WRITE CHARACTER TO STANDARD OUTPUT

• AH = 02h

• DL = character to write

• Return: AL = last character output (despite the official docs
which state nothing is returned)

Z. Kalbarczyk ECE390

INT 21h, AH = 6

• DIRECT CONSOLE OUTPUT

• AH = 06h
• DL = character to output (except FFh)

• Return: AL = character output
• Note: When DL = 0FFh then the function reads the console .

If DL = ASCII character, then the function displays the
ASCII character on the console

Z. Kalbarczyk ECE390

Displaying A Single Character
Using INT 21h

Example:

• Suppose that the letter ‘A’ is to be printed to the screen at the current
cursor position

• Can use function 02h or 06h

• INT 21h must also be told which letter to print

– the ASCII code must be placed into DL register

MOV DL, ‘A’

MOV AH, 06h

INT 21h

Z. Kalbarczyk ECE390

INT 21h, AH = 09h

• WRITE STRING TO STANDARD OUTPUT

• AH = 09h

• DS:DX -> '$'-terminated string

• Return: AL = 24h (the '$' terminating the string, despite official
docs which state that nothing is returned)

Z. Kalbarczyk ECE390

Displaying A Character String
Using INT 21h

• DOS function 09h displays a character string that ends with ‘$’

MSG DB ‘This is a test line’,’$’

…

MOV DX, MSG

MOV AH, 09h

INT 21h

• The string will be printed beginning at the current cursor position

Z. Kalbarczyk ECE390

Using DOS to Control Display – INT 10h

• The DOS function calls allow a key to be read and a character to be
displayed but the cursor is difficult to position at a specific location on
the screen.

• The BIOS function calls allow more control over the video display
and require less time to execute than the DOS function calls

• BIOS provides interrupt INT 10h, known as the video interrupt,
which gives access to various functions to control video screen

• Before we place information on the screen we should get the position
of the cursor:

function 03h reads cursor position (DH=Row, DL=Column, BH=Page #)

function 02h sets cursor position (DH=Row, DL=Column, BH=Page #)

Z. Kalbarczyk ECE390

INT 10h

• Function 0Fh finds the number of the active page

– the page number is returned in the BH register

• The cursor position assumes that

– the left hand page column is column 0 progressing across a
line to column 79

– the row number corresponds to the character line number on
the screen, the top line being line 0

Z. Kalbarczyk ECE390

Writing characters directly

• Since the VRAM is memory mapped, you can use MOV
instructions to write data directly to the display

• Typically, we set the ES register to B800h so that the extra
segment can be used to address the VRAM

• Now video display can be accessed just like a 2D word array

Z. Kalbarczyk ECE390

Example

• Calculate the offset from the beginning of the VRAM segment
(B8000h) for an arbitrary page (P), row (Y) and column (X) in an
80x25 text display mode

– Offset = 1000h * page + 160 * Y + 2*X

Z. Kalbarczyk ECE390

String instructions

• Idea: Setup a data transfer and go

• Do an operation on source [DS:SI] and destination [ES:DI] and
change SI and DI depending on the direction flag

• Transfer data much more quickly than loops and movs

• Think of the following instructions in terms of their equivalents

– You can’t do memory to memory operations with other opcodes.

– The add’s at the end of the equivalent code do not affect the flags.

Z. Kalbarczyk ECE390

String instructions

• MOVS – Move source to destination

• mov byte [es:di], byte [ds:si]
add si, 1 ; if CLD
add di, 1

• CMPS – Compare source to destination and set ZF if [ES:DI] = [DS:SI]

•

Z. Kalbarczyk ECE390

String instructions

• SCAS – Compare destination to AL… and set ZF if [ES:DI] = AL…

•

Z. Kalbarczyk ECE390

String instructions

• Each of the instructions should be appended with B, W or D for byte,
word, or double word sized transfers.

• REP – What makes all this useful

– This is a prefix to the above opcodes

– REP/REPE/REPZ

• DEC CX

• LOOP until CX = 0 while ZF = 1

– REPNE/REPNZ

• DEC CX

• Loop until CX = 0 while ZF = 0

Z. Kalbarczyk ECE390

String instructions

; Exampl e: Copyi ng a di spl ay buf f er t o t he scr een

CLD ; c l ear di r f l ag so we go up

; set up sour ce

MOV SI , Di spl ayBuf f er ; of f set wi t h r espect t o DS

; set up dest i nat i on

MOV AX, Vi dGr Seg ; A800

MOV ES, AX ; set dest i nat i on segment as ES

MOV DI , 0 ; st ar t of scr een

; set up count er

MOV CX, (320* 200 / 4) ; movi ng 4 byt es at a t i me

REP MOVSD ; t hi s t akes awhi l ek

