
THE SHAPIRO-WILK AND RELATED TESTS FOR

NORMALITY

Given a sampleX1, . . . , Xn of n real-valued observations, the Shapiro–
Wilk test (Shapiro and Wilk, 1965) is a test of the composite hypothesis
that the data are i.i.d. (independent and identically distributed) and
normal, i.e. N(µ, σ2) for some unknown real µ and some σ > 0.
This test of a parametric hypothesis relates to nonparametrics in that

a lot of statistical methods (such as t-tests and analysis of variance)
assume that variables are normally distributed. If they are not, then
some nonparametric methods may be needed.
The 2-parameter normality hypothesis cannot just be reduced to a

simple hypothesis. Of course, the variables Xi − µ are i.i.d. N(0, σ2)
and (Xi − µ)/σ are i.i.d. N(0, 1), but these variables are not observed
because µ and σ are unknown. If we replace µ by its usual estimate
X = (X1 + · · · + Xn)/n and consider Xi − X, then these variables
have the same distribution, which is normal with mean 0, but they are
dependent (their sum is 0). If we replace σ by the usual estimate

sX =

(

1

n− 1

n
∑

j=1

(Xj −X)2

)1/2

,

then
√
n(X − µ)/sX has a tn−1 distribution (but involves µ), and

(Xi − X)/sX don’t have even that nice a distribution and are still
more dependent.

1. Classical diagnostics for non-normality: skewness and
kurtosis

Long before the Shapiro-Wilk test (or any other such general test)
for normality was invented, statisticians used the following diagnostics.

1.1. Skewness. For a random variable X with E(|X|3) < ∞, mean
EX = µ, and standard deviation σ > 0, the skewness of X or its
distribution is defined as γ1(X) = E((X − µ)3/σ3). Since any normal
distribution is symmetric around its mean µ, its skewness is 0. If σ = 0,
then X = c is a constant random variable. Its distribution is the limit
of N(c, σ2) distributions as σ ↓ 0. Its skewness is here defined as 0.
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For example, if Z has standard normal distribution N(0, 1) then
EZ3 = 0. The skewness is unchanged if we add any constant to X or
multiply it by any positive constant. The skewness can have any real
value. To see that, it suffices to consider Bernoulli random variables
Xp for 0 < p < 1 where Pr(Xp = 1) = p = 1 − Pr(Xp = 0). We have
EXk

p = p for any k = 1, 2, ..., or any k > 0, since Xk
p ≡ Xp. We have

the variance σ2
p = p(1− p). Also

E((Xp − p)3) = p− 3p2 + 3p3 − p3 = p(1− p)(1− 2p),

and for 0 < p < 1, the skewness p(1−p)(1−2p)

(p(1−p))3/2
= 1−2p√

p(1−p)
→ +∞ as p ↓ 0

and → −∞ as p ↑ 1. As the skewness is continuous in p for 0 < p < 1,
by the intermediate value theorem it takes all real values.

1.2. Kurtosis. An integration by parts shows that for a standard
normal variable Z, E(Z4) = 3. For any random variable X with
E(X4) < ∞, mean EX = µ, and standard deviation σ > 0, the
kurtosis is defined by

γ2(X) =
E((X − µ)4)

σ4
− 3.

It’s also sometimes called “excess kurtosis” or just “excess.” The kur-
tosis is unchanged if we add a constant to X or multiply it by any
non-zero constant. Any normal distribution or random variable has 0
kurtosis.
The kurtosis is clearly larger than −3. (In fact, it’s always at least

−2; to see this we can assume µ = 0, and then E(X4) ≥ σ4 because
Var(X2) ≥ 0. Letting X = ±1 with probability 1/2 each we see that
γ2(X) = −2, the smallest possible value.)

1.3. The Jarque–Bera test. To define forms of skewness and kurto-
sis for finite samples (X1, . . . , Xn), µ is replaced by the sample mean

X. In place of σ one uses the estimate s′X :=
[

1
n

∑n
j=1(Xj −X)2

]1/2

,

where s′2X is the maximum likelihood estimate of σ2 in the normal case,
also used in method of moments estimation, and equals (n−1)/n times
the usual unbiased sample variance s2X . In general, E is replaced by
1
n

∑n
j=1. The sample skewness thus is

S :=
1

n

n
∑

j=1

(Xj −X)3/(s′X)
3
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and the sample kurtosis is

K ′ := −3 +
1

n

n
∑

j=1

(Xj −X)4/(s′X
2
)2.

These are defined for any finite sample with s′X > 0, in other words,
not all Xj are equal. If X1, ..., Xn are actually i.i.d. with some normal
distribution and n is fairly large, then S and K ′ should be close to 0.
A statistic for testing normality called the Jarque–Bera statistic is

JB :=
n

6

(

S2 +
1

4
K ′2
)

.

As n becomes large, if normality holds, the distribution of JB converges
to a χ2 distribution with 2 degrees of freedom. The test was defined
and treated in Jarque and Bera (1987) and earlier papers by Jarque
and Bera. There exist distributions with skewness and kurtosis both
0 which are not normal, and so against which the Jarque–Bera test
may have low power, for example the so-called Tukey λ distribution for
suitable λ > 0. The test is said to have good power against many other
alternatives. But, the test will not be studied or used in this course, for

the following reasons: the distribution for finite n is hard to compute,
and convergence to the limit χ2

2 distribution is quite slow. Quantiles
for some n have been estimated by Monte Carlo simulation, i.e., a
large number N of samples of n variables i.i.d. N(0, 1) are generated,
the statistic JB is computed for each sample, and the 1 − α sample
quantiles from the N values of JB estimate the 1 − α quantiles for
the distribution. Jarque and Bera (1987), Table 2, reports results with
N = 10, 000, α = 0.05 or 0.1, and 14 values of n ranging from 20 up
to 800. For example, for α = 0.05, the 0.95 quantile of χ2

2 is 5.99.
For n = 20 the estimated quantile is 3.26, and it increases with n; for
n = 800 the estimate is 5.46, still substantially less than 5.99. The
Wikipedia article “Jarque–Bera test” as of Jan. 27, 2015, says that
MATLAB uses the χ2 approximation only for n > 2, 000, and a table
based on Monte Carlo simulations for smaller n.
The difficulty of finding accurate p-values seems to imply that it

will also be hard to find correctly the power of the Jarque–Bera test
against alternative distributions. (Recall that the power of a test of a
hypothesis H0 against an alternative H1 is the probability of correctly
rejecting H0 when H1 is true.)

1.3.1. Libraries and the Jarque–Bera test in R. In R there are various
“libraries” that may or may not be part of standard R or be installed
at a given location. There is a library “MASS” containing a lot of
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data sets, referred to many times in Venables in Ripley. Other li-
braries may consist of one or more programs, often some data set(s)
to illustrate use of the programs, and documentation files. Although
“library” is the word in R code for calling one, with the command
“library(libraryname),” a library may be called informally a package.
The Wikipedia article “Jarque–Bera test” says that there are programs
jarque.bera.test in “package tseries” (library on time series?) and jar-
que.test in the package “moments.” One can look up documentation
on R libraries and programs on the Web. For the Jarque–Bera test one
can see see if it is said how p-values are computed. Is the χ2

2 approxima-
tion is used for all n, or for n not large enough? If the documentation
doesn’t say, one could try some data and see what one gets. The situ-
ation can change with time, so if interested, one could check what the
latest documentation says.

2. Quantile-quantile plots (q-q plots)

If we have two data sets X1, ..., Xn and Y1, ..., Yn of the same size,
then we can form the two sequences of order statistics X(1) ≤ X(2) ≤
· · · ≤ X(n) and Y(1) ≤ Y(2) ≤ · · · ≤ Y(n). This gives pairs of points
(X(j), Y(j)), j = 1, ..., n, which when plotted give the q-q plot of the
data. If Xi and Yj are all i.i.d. with the same distribution, and n
is fairly large, the q-q plot will be approximately on the line x = y.
If for some a > 0 and b, Y1 has the same distribution as aX1 + b,
while X1, ..., Xn are i.i.d. and so are Y1, ..., Yn, then for n large, the
q-q plot will be approximately on the straight line y = ax + b. This
will imply since a > 0 that the correlation of the X(j) with the Y(j)

is approximately 1. Conversely, a correlation approximately 1 implies
that the q-q plot is approximately on a straight line with positive slope.
If F is any distribution function and 0 < u < 1, recall that F←(u) :=

inf{x : F (x) ≥ u}. IfG is another distribution function, then the curve
formed by the points (x, y) = (F←(u), G←(u)) for 0 < u < 1 is the q-q
plot of G against F . Recall also that if V has a U [0, 1] distribution then
X := F←(V ) has distribution function F , and likewise Y := G←(V )
has distribution function G. If the q-q plot is included in a straight
line y = ax+ b for some a > 0, that implies Y is equal in distribution
to aX + b.
One can also do a q-q plot comparing a data set (X1, ..., Xn) to a

distribution function F . Again take the order statistics X(1) ≤ · · · ≤
X(n). For points yj one possibility is to take yj = EY(j) where Y(j)

are order statistics of Y1, ..., Yn i.i.d. (F ). Another possibility is yj =
F←(j/(n + 1)), j = 1, ..., n. One plots the points (X(j), yj) for j =
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1, ..., n. If the plot is approximately on the line y = x then the Xj

appear to have approximately distribution F . If X1, ..., Xn are i.i.d.
with a distribution function G, and the plot is approximately on a line
y = ax+ b, then F is approximately the distribution of aξ + b where ξ
has distribution G.
If one does a q-q plot of a given data set against the normal quantiles

Φ←(j/(n + 1)), if it is approximately on the line y = x, it seems that
the data have approximately a N(0, 1) distribution. More to the point,
if the plot is approximately on a straight line, or equivalently, if the
correlation is close to 1, it indicates that the data have approximately
some normal distribution. That is the idea used in several tests for
normality, specifically the Shapiro–Francia test, which uses EZ(j) for
Zj iid N(0, 1). The Shapiro–Wilk test is similar but more complicated.

3. The Shapiro–Wilk test: Basics of Use in R

In practice, the test is simple to apply on a computer using R.
Namely, let X = (X1, . . . , Xn) be the data vector, represented in R
if entered individually as c(X1, . . . , Xn). Type
shapiro.test(X)

and you will see as output a test statistic called W (for Wilk) and a
p-value. If the p-value is less than, say, the conventional level 0.05,
then one rejects the normality hypothesis, otherwise one doesn’t reject
it. To apply the test it isn’t necessary at first to understand W , but in
this course we’re going to try. It always satisfies 0 < W ≤ 1. For values
of W close enough to 1 (depending on n) the normality hypothesis will
not be rejected. For smaller W it will be rejected.
For n = 2, normality can never be rejected, so the test is useful only

for n ≥ 3. The R implementation allows n up to 5,000.

4. Order Statistics

The sample skewness and kurtosis are each one-dimensional quan-
tities. Together with X and s2X they give a useful four-dimensional
summary about the location, scale, and shape of the data distribu-
tion, but they don’t completely characterize the data, as different
data sets can have the same values of the four quantities. Whereas,
if we arrange the data X1, . . . , Xn in order, to get the order statis-
tics X(1) ≤ X(2) ≤ · · · ≤ X(n), we haven’t lost any information.
Let Z1, . . . , Zn be i.i.d. N(0, 1) and also take their order statistics
Z(1) ≤ Z(2) ≤ · · · ≤ Z(n). Let’s consider the expectations of Z(j),
which of course depend on n, mj := mn,j := EZ(j) for the given n.
A next idea is to consider the correlation of X(1), X(2) . . . , X(n) with
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(m1,m2 . . . ,mn) = (EZ(1), EZ(2), . . . , EZ(n)), in other words, to ask
whether the order statistics of Xj are well correlated with expected
standard normal order statistics. A correlation close to 1 would sug-
gest a good fit to normality, whereas a correlation much less than 1
would suggest non-normality. This idea is on the right track in that if
we add a constant to all the Xj we will add the same constant to their
order statistics and to X, leaving X(j)−X and sX unchanged. Likewise

if we multiply all Xj by a positive constant, the ratios (X(j) −X)/sX
will be unchanged and so will the correlation. (Both the ratios and the
correlations are dimensionless.) Thus if the Xj are indeed i.i.d. normal,
the correlation will have the same distribution, not depending on the
location µ or scale σ of the Xj .
The Z(j) and their expectations mj have some symmetry proper-

ties. The random variables −Z1, . . . ,−Zn are also i.i.d. N(0, 1), but
the ordering of these variables is reversed. Thus Z(1) has the same
distribution as −Z(n), and more generally

(1) {−Z(n+1−k)}nk=1 =d {Z(k)}nk=1

where “=d ” means that the two vector random variables are equal in
distribution. It follows in particular that

(2) mj = −mn+1−j, j = 1, . . . , n.

The squared correlation of X(j) with mj, which I’ll call W ′, gives a
test statistic for normality called the Shapiro–Francia statistic (Shapiro
and Francia, 1972). But the better known Shapiro–Wilk statistic uses
not only the means but the covariances of the normal order statistics
Z(j). (In fact, Z(j) is rather strongly correlated with its neighbors Z(j−1)

and Z(j+1) because of the ordering Z(j−1) ≤ Z(j) ≤ Z(j+1).)
Let V be the n × n covariance matrix of the Z(j), Vij = E[(Z(i) −

mi)(Z(j) − mj)]. This is a positive definite symmetric matrix. For a
given n let m be the n × 1 column vector (m1, . . . ,mn)

′, consider the
vector m′V −1 whose length is C := (m′V −1V −1m)1/2, and let a′ :=
(a1, ..., an) := m′V −1/C, which is a unit row vector. The Shapiro–Wilk
statistic is then defined by

(3) W =

(

n
∑

j=1

ajX(j)

)2

/

(

n
∑

j=1

(Xj −X)2

)

,

as in the paper of Shapiro and Wilk (1965).
They point out that the statistic is preserved by a change in location,

adding a constant b to all the Xj and thus to each X(j). Since b will

also be added to X, this clearly won’t change the denominator. For the
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numerator, it follows from (2) that
∑n

j=1 mj = 0. From (1) it follows
that the covariance matrix V is also preserved if we interchange j with
n+1− j in the indices of both rows and columns, and so the same will
be true for V −1. From this and (2), we have

(4) aj = −an+1−j, j = 1, . . . , n,

from which it follows that
∑n

j=1 aj = 0, and that the numerator and
so W are also unchanged by adding b to all Xj. If all Xj and so all
X(j) are multiplied by a constant c > 0, then clearly the numerator and
denominator of W are both multiplied by c2, so W is again unchanged
and is preserved by changes of scale.
If n = 2k + 1 is odd then (4) implies that the coefficient ak+1 of the

sample median X(k+1) in the numerator is 0. Whether n is even or odd,
the numerator of W can be written as

(5)





⌊n/2⌋
∑

j=1

−aj(X(n+1−j) −X(j))





2

where ⌊x⌋ is the largest integer ≤ x. (The minus sign in front of aj
makes no difference because of the squaring, but is given because in
fact aj for 2j ≤ n are negative.)
Here are some remarks on the weighting of different order statistics

in the numerator of W . Suppose we were sampling from a heavy-
tailed distribution such as a Cauchy distribution with density f(x) =
1/(π(x−m)2+1) for all real x, where m is a location parameter around
which f is symmetric and so which is the median of the distribution.
Such a distribution tends to produce outliers, namely, observations
that are much larger than or much less than the other observations.
Thus in estimating m, we would want to downweight the extreme order
statisticsX(1) andX(n) which may be outliers. In particular, the sample

mean X has the same distribution as an individual observation X1 and
so is a very ineffective estimator of m. The sample median, namely
X(k+1) for n = 2k + 1 odd, or (X(k) + X(k+1))/2 for n = 2k even,
is a much more effective estimator, although it ignores all the order
statistics except the one or two in the middle.
For normal variables the situation is quite different. The numerator

of W , omitting the squaring, was chosen by taking an efficient unbiased
estimator of σ as a linear function of order statistics. For n = 7,
for example, Shapiro and Wilk (1965, Table 5) give the coefficients
a7 = −a1

.
= 0.6233, a6 = −a2

.
= 0.3031, a5 = −a3

.
= 0.1401, and

a4 = 0. Thus the weight is highest for the most extreme order statistics
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and decreases as one goes inward toward the median. Such a pattern
holds generally. It clearly also holds for mj in place of aj.

5. Consistency

A test of a given hypothesis, in this case normality, is said to be
consistent against a given alternative P , namely that the Xj are i.i.d.
but with some non-normal distribution P , if for any α > 0, if we reject
normality at level α, then the probability that we reject it approaches
1 as n → ∞. A test is called simply consistent if it is consistent against
all alternatives, in other words in this case, for any non-normal P and
fixed α > 0, normality will be rejected with probability converging to
1 as n becomes large.
Consistency of the Shapiro–Wilk test against all non-normal alter-

natives was conjectured in the 1970’s. Sarkadi (1975) gave a proof for
the Shapiro–Francia test. The proof is actually written for alternatives
having a finite second moment. Sarkadi wrote “the author will prove in
a subsequent paper” [presumably Sarkadi (1981)] “that this restriction
is not essential.” The consistency is more difficult for the Shapiro–Wilk
test because the covariance matrices V of the normal order statistics
and the inverses V −1 are not explicitly known. Leslie, Stephens, and
Fotopoulos (1986) give a proof of consistency, while giving credit to
Theorem 1 of Sarkadi (1981).

6. Values and Null Distribution of W

It was mentioned before that always 0 < W ≤ 1. In fact, for a given
n, the possible values of W are bounded below by a strictly positive
number na21/(n− 1) according to Shapiro and Wilk (1965, Lemma 3).
If the null hypothesis of normality holds, Shapiro and Wilk gave an
exact distribution of W only for n = 3. In that case a21 = 1/2 so
the lower bound of possible values is W ≥ 3/4. Shapiro and Wilk
(1965, Corollary 4) give the distribution as a truncated Beta(1/2, 1/2)
distribution, namely, having density (3/π)(1 − w)−1/2w−1/2 for 3/4 ≤
w < 1 and 0 elsewhere.
For n ≤ 20, values of V −1mi were available from Sarhan and Green-

berg (1956, Table II, for r1 = r2 = 0 [complete samples], second line for
each n [coefficients for estimating σ]), given to 8 decimal places. These
could then easily be normalized to get the coefficients ai, as given to
4 places in Shapiro and Wilk (1965, Table 5). For 20 < n ≤ 50, val-
ues of ai are also given, but these were approximate. Then Shapiro
and Wilk (1965, Table 6) gave percentage points for selected levels
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α = 0.01, 0.02, 0.05, 0.1, 0.5, and 1− α for those α, based on approx-
imations and Monte Carlo simulations.
Instead of distributing copies of such tables, I suggest that we just use

the R software to find p-values (for problem sets; for exams, questions
will be asked only about theoretical properties, or with more specific
information provided if needed).
Leslie, Stephens, and Fotopoulos (1986) found the limiting distri-

bution of W as n → ∞ when the null hypothesis of normality holds.
Namely, they show that the distribution of n(W − EW ) converges to
that of −ζ = −∑∞k=3(Z

2
k − 1)/k where Zk are i.i.d. N(0, 1) random

variables. More specifically, they define a sequence of constants which
they call an in equation (3) of their paper, but which are not the same
as the coefficients an used in forming W , defined just before (3), so
I’ll call An what they call an. Leslie et al. state that they themselves,
and Verrill and Johnson, in earlier unpublished technical reports, had
shown for the Shapiro–Francia statistic W ′ that

(6) ζn := 2n(1−
√
W ′)− An

converges in distribution to ζ. Leslie et al. (1986) show in their Lemma
(p. 1499) part (iv) that for some constants Cj > 0, j = 1, 2,

(7) C1 log log n < An < C2 log log n,

and in part (ii) that An − nE(1 − W ) → 0 as n → ∞. But the
paper only shows convergence at a painfully slow rate. For example,
inequality (1) of the paper gives a (log n)−1/2 rate, and the Lemma,
part (iii), a (log n)−1 rate. For such reasons, the limit distribution
seems not to be of much practical use, and for n > 50, Monte Carlo
simulation seems still to be needed. For the maximum n = 5,000 that
R allows, the simulation would have needed rather heavy computation.
For that n, (log n)−1/2

.
= 0.343, not very small.

The representations given by Leslie et al. are useful in comparing
different test statistics for normality. Namely, they show that under the
normality hypothesis, the Shapiro–Wilk and Shapiro–Francia statistics
W and W ′ are asymptotically equivalent in the sense (their equation

(5)) that as n → ∞, n(
√
W −

√
W ′) → 0 in probability. In other

words, using the op notation (as in the “Convergence and boundedness

in probability” handout), we have
√
W −

√
W ′ = op(1/n). Since 0 <

W ≤ 1 and 0 ≤ W ′ ≤ 1 we always have 0 <
√
W +

√
W ′ ≤ 2.

Multiplying this sum by the difference gives W −W ′ = op(1/n) also.
Rewriting (6) gives

(8)
√
W ′ = 1− An

2n
− ζn

2n
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where ζn converges to ζ in distribution. Squaring both sides of (8) gives

(9) W ′ = 1− An

n
− ζn

n
+ op

(

1

n

)

because terms with n2 in the denominator and at most quantities of
order (log log n)2 in the numerator are op(1/n). Since W −W ′ is also
op(1/n), (9) holds with the Shapiro–Wilk statistic W in place of W ′.
Moreover, since ζn + op(1) converges in distribution to ζ also, we in
a sense don’t need the op(1/n) term as long as we bear in mind that
ζn may be different by terms of order op(1) in representations of the
different statistics.
Further, Verrill and Johnson (1987) showed that three other test sta-

tistics for normality proposed by different authors, also of the form of
squared correlations of some coefficients bj with X(j), are all asymp-
totically equivalent in the same sense under the normality assumption.
The Shapiro–Wilk statistic is perhaps the hardest to compute if one
needs to (for example, if n > 5,000) although easily available in R
for n ≤ 5,000. The Shapiro–Francia and at least some of the others
are easier, and so might be preferred for n > 5,000. Apparently only
the Shapiro–Wilk test is implemented in R. I found that the Shapiro–
Francia test has been implemented, not in MATLAB itself, but by
someone on an “Open Exchange” site that MATLAB maintains.
For finite n, the relative power of the tests against given alternatives

depends on n and the alternative. Filliben (1975) gave power compar-
isons against 52 alternatives for n = 20 and 50. Just comparing the
W (Shapiro–Wilk) and W ′ (Shapiro–Francia) tests, Filliben found that
the W test is more powerful than the W ′ against “symmetric alterna-
tives shorter-tailed than normal” such as the uniform, whereas W ′ has
slightly higher power against symmetric alternatives longer-tailed than
normal such as the t2 distribution, but slightly lower power against
skewed alternatives.

7. Summary of asymptotic properties of the
Shapiro–Wilk and related statistics

How does the Shapiro–Wilk statistic W = Wn based on an i.i.d.
sample behave as n → ∞, first, if the samples are from a normal
distribution? We can read off properties from (9), as follows:
(i) Wn converges to 1 in probability;

How fast?

(ii) 1−Wn = Op(An/n) where An grow at the rate log log n by (7);
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(iii) In more detail, we have (9) itself for W in place of W ′.

Now, what if theXj are i.i.d. with a non-normal distribution? In that
case, not even (i) will hold, i.e. Wn will not converge to 1 in probability.
If Xj have finite variance, then Wn will converge in probability to some
number ρ2 less than 1. If the distribution of Xj is close to normal, ρ2

might be not far from 1, such as 0.985, but Wn will “get stuck” around
that value and not get closer to 1 when n gets large. So in a sense,
consistency is easier than showing that the different statistics have the
same detailed asymptotic behavior in the normal case.

NOTES ON THE LITERATURE

If one knows a basic paper on a subject, such as that of Shapiro and
Wilk (1965) in this case, one can look for more about it by doing a
citation search, as with Web of Science. I found that as of early Sep-
tember 2010 there had been over 3400 published papers citing Shapiro
and Wilk’s (Google Scholar said 3116, and 5270 through Sept. 10, 2012,
although it often gives more citations than Web of Science does). The
great majority of the citers are just applying the test and so seemed
not so interesting theoretically. In 2010 I scanned 200 relatively recent
citations (during 2009). The most interesting to me were a few papers
on testing for multivariate normality, which we may or may not get to
later in the course.
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