

Critical Aspects of Spallation Neutron Sources

Satish Chandra Joshi Raja Ramanna Centre for Advanced Technology, Indore

Indo-Japan School on Advanced Accelerators of Ions & Electrons, 17 Feb, 2015, IUAC, N Delhi

- Motivation Spallation Neutron Source
- > Why Neutron
- Neutron v/s X-ray
- Sources of Neutron
- > SNS world scenario
- > Technology development
- Spallation Target
- Facility layout

Importance of Spallation Neutron Source

The proposed Indian Spallation Neutron Source (ISNS) will be a unique facility for neutron based multi-disciplinary research. The facility will compliment reactor based neutron research facility at BARC and synchrotron facility at RRCAT.

Motivation:

- Research in the fields of condensed mater physics, material sciences, chemistry, biology and engineering.
- Radiation therapy R&D using proton linac (~250 MeV)
- Nuclear physics experiments using 1 GeV proton (Exp. ADS)
- SCRF cavity infrastructure will be useful for domestic programs and International collaborations

Characteristics of neutron for material science

- No charge
- Spin 1/2
- Large cross sections for H, C...

Deep penetration through material Magnetism research

Soft materials, life science

~Unit size of materials Crystal structure < 10eV

- Wave length 1.8 A at En=25.3meV
- Atomic mass ~ 1

Sensitive to material motion Dynamics

Nobel prize to neutron scattering studies in 1994. C.Shull (Antiferromagnetism) &B. Brockhouse (Ineastic Scattering)

Neutrons as a Probe of Materials Vs X-rays and Electrons

- Thermal neutrons produced in the core of a reactor or through moderation in SNS, have a wavelength distribution peaked around 0.1 nm, ideally suited for studying atomic structure. Thermal neutrons having energy about 0.025 eV are incapable of disturbing even the most delicate materials, like biological materials.
- A further consequence of the low energy of thermal neutrons is that in inealstic scattering events neutrons exchange energy with the sample, creating or destroying excitations (phonons, magnons etc.) in the process. The study of these disturbances provides a unique probe of the inter-atomic forces in the materials.
- Electrons of wavelength 0.1 nm have energies more than 3 eV, which is greater than typical bonding energies.
- X-rays with 0.1 nm wavelength have about 12 keV energy, capable of multiple ionization of the most robust chemical structures.
- Neutrons can determine magnetic structures of the solids.

Comparison of Neutron Characteristics with X-ray

X-rays interact with electrons. X-rays see high-Z atoms.

Neutrons interact with nuclei.

Mass dependence of neutron scattering cross section is small.

Neutrons see low-Z atoms.

Material for Li-battery seen by

X-ray

Evolution of Neutron Sources

Comparison of neutron yield

Prostion	Example	Yield	Energy deposition	Yield/E-dep
Reaction	Example	(n/process)	(MeV/n)	(n/MW)
d(T, n)	400 keV d+ T in Ti	4x10 ⁻⁵ n/d	10,000	6.3x10 ¹⁴
Deutron stripping	35 MeV D on liq. Li	2.5x10 ⁻³ n/d	10,000	6.3x10 ¹⁴
(γ, n)	100 MeV e- on ²³⁸ U	5x10 ⁻² n/e	2,000	3.1x10 ¹⁵
Fission	Fission reactor	1 n/fission	180	3.5x10 ¹⁶
Spallation	800 MeV p on ²³⁸ U	30 n/p	55	1.1x10 ¹⁷
DT CTR	Laser or ion-beam imploded pellet	1 n/fusion	3	2.1x10 ¹⁸

N.B. Fission reaction emits 2-3 neutrons, but only one neutron is effective in order to self-sustain chain reactions in nuclear reactor.

Spallation Reaction

Spallation Reaction

Major Sub-Systems of SNS Facility

- High power proton linac
- Proton synchrotron / Accumulator Ring
- Target station
- Beamlines and experimental stations

Configurations of Proton Accelerator for SNS

Spallation Neutron Source

Accumulates current and bunches the proton beam into short duration pulses of \sim 1 μs duration

- Lower cost as compared to Linac based SNS
- Lower radiation activity at injection point
- Disadvantages:
 - Complex magnet power supplies for synchrotron due to fast ramping/rapid cycling
 - Complex RF cavities in synchrotron due to change in beam energy
 - Linac energy (~ 150 MeV) space charge and accumulation issues
 - Ceramic chambers (eddy currents fast cycling magnets)

- Advantages:
 - High intensities possible
 - Ease of operation of accumulator ring
 - Linac can also be used for target experiments
- Disadvantages:
 - High cost due to full energy linac
 - Higher operational cost
 - High radiation activity at injection point

Important Factors for Spallation Sources

SNS Linac

- Beam Energy ~100 MeV to full energy
- Duty Factor % (DF=RF pulse duration x Rep rate x 100)
 - E.g. DF = 3% in JPARC and 6% in SNS
 - Heat dissipation in the linac
- Choice between Normal Conducting v/s SCRF
 - Front end Normal Conducting (RFQ)
 - Lower energy part (NC/ combination of NC+SCRF) depending on DF
- RF Frequency
 - (325 MHz 402.5 MHz) Low energy Linac
 - 650 805 972 MHz for medium energy linac

Choice of Proton Beam Energy

Limitation on Beam Current & Injection Energy

The Coulomb force between the charged particles of a high-intensity beam results in defocusing of the beam in transverse plane. The repulsive Coulomb forces between the particles cause the tune to be shifted from the design value that may induce beam instabilities and losses.

The number of particles that can be injected into the ring, keeping the tune shift within certain limit, is proportional to the beam energy and phase-space area of the beam.

Dependence of Beam Power on Injection Energy

E (MeV)	β	γ	$\beta^2 \gamma^3$
100	0.428	1.107	0.25
500	0.758	1.533	2.07
1000	0.875	2.066	6.75

Since N_p is proportional to $\beta^2\gamma^3$, high injection energy is required to achieve high beam power

Uncontrolled Beam Loss

- Hands-on maintenance : no more than 100 mrem/hour residual activation (4 h cool down, 30 cm from surface)
- 1 W/m uncontrolled beam loss for linac & ring
- Less than 10⁻⁶ fractional beam loss per tunnel meter at 1 GeV; 10⁻⁴ loss for ring

SNS @ ORNL

Accelerating Structures / RF Power

Super Conducting Cavities for Proton Linacs

- The SC cavities (Q ~ 10⁹) have a large gain over NC cavities (Q~10³-10⁴). AC power consumption is therefore much lower using SC cavities.
- The savings in operating cost are estimated to be in the order of 3 M€/year for a 10-mA CW proton beam. This is somewhat offset by requirement of cryogenics.
- Choice of frequency has a trade-off between size and superconducting loss.

Size (Diameter) α 1/fSuperconducting loss α f²

- Multi-cell elliptical shape superconducting cavities are used for medium to high energy acceleration of protons.
- The elliptical shape is chosen for reducing multipacting and for ease of fabrication multicell structures

SCRF Cavities for Low β regime

- SC squeezed elliptical β=0.61 & β=0.81 have been adopted starting from 186 MeV at SNS Oak-Ridge
- SC squeezed elliptical cavities below <0.6 have certain technological limitations
- SC spoke cavities provide solution for low β (0.2 to 0.6) and has been a choice of designers for many proton accelerators
- SC spoke cavities have been proposed down up to 2.5 MeV (β=0.11) for Project-X FNAL

Klystron to Power Superconducting Cavities

	Frequency	User Laboratories	Klystron Suppliers
•	1500 MHz	Cornell design for CEBAF (J.Lab)	CPI (Communication and Power Industries)
	750 MHz		
	375 MHz		
•	1300 MHz	DESY (X-FEL), ILC (Proposed frequency), Fermilab (Project X)	CPI, Toshiba, Thales
	650 MHz		
	325 MHz	ISIS (upgrade), CSNS, Project X	Toshiba (Pulsed 324 MHz, which can be adjusted to 325 MHz)
•	972 MHz	J-PARC (NC + SC Linac)	Toshiba
	324 MHz	J-PARC (RFQ, DTL, SFDTL)	Toshiba
•	805 MHz	SNS (ORNL)	CPI
	402.5 MHz	SNS	Marconi
•	500 MHz	KEKB (B factory electron positron collider). DESY-PETRA (electron proton ring)	CPI, Toshiba, Thales
•	352 MHz	LEP(CERN : large electron positron collider), ESS (Planned)	Thales
	704 MHz		CPI

Survey of Spallation Neutron Sources / Pulsed Proton Linacs

World-wide Spallation Neutron Sources

Country	Facility	Status	RCS /AR	Injection energy	Pulse duration	Rep rate (Hz)	Duty factor	Final energy	Current @target	Protons per pulse (x10 ¹²)	Power
	IPNS	Closed (2007)	RCS	50 MeV	80 µs	30	0.24%	500 MeV	15 μΑ	3	7.5 kW
USA	PSR/ LANSCE	Operational (Since 1983)	AR	800 MeV	625 μs	20	1.25%	800 MeV	80 µA	25	64 kW
	SNS	Operational (Since 2006)	AR	1 GeV	1 ms	60	6%	1 GeV	1 mA	200	1 MW
Switzerland	PSI	Operational (Since mid-90's)	Isochronous Cyclotron (cw)			590 MeV	-	10 ¹⁴ n/cm²/s	1.2 MW		
ПК	ISIS	Operational (Since 1985)	RCS	70 MeV	300 µs	50	1.2%	800 MeV	200 μA	25	160 kW
0.14	ISIS Upgrade	Under Planning	RCS	800 MeV				3 GeV			
Sweden	ESS (H+)	Under Design	LINAC	2.5 GeV	2 ms	20	4%	2.5 GeV	2 mA	234	5MW
lanan	KEK- PSB/ KENS	Decommissioned 2006-07	RCS	40 MeV	-	20	_	500 MeV	4.6 μΑ	2.5	2.3 kW
Japan	<u>JPARC</u> Phase 2	Operational since 2006 / Under development	RCS	200 MeV (400 MeV)	500 μs	25	3%	3 GeV	200 μΑ (333 μΑ)	50 (83)	600 kW (1MW)
China	CSNS	Under Construction	RCS	80 MeV	500 μs	25	1.05%	1.6 GeV	76 μΑ	19	120 kW
Korea	PEFP	Under Planning	LINAC	100 MeV	1.3 ms	60	8%	1 GeV	1.5 mA	_	150kW

SNS Linac Configuration at ORNL, USA

SNS Site at ORNL, USA

Schematic of J-PARC Project

Site View of the J-PARC Project

ESS Linac Parameters

Linac Layout

	Lab	E _{out} (MeV)	Beta _{out}	Length (m)	Temp (K)	Freq (MHz)
Ion source + LEBT	Catania	0.075	0.01	4.6	300	-
RFQ	Saclay	3	0.08	5.0	300	352.21
MEBT	Bilbao	3	0.08	3.5	300	352.21
DTL	Legnaro	79	0.39	32.5	300	352.21
Spoke cavities	Orsay	201	0.57	58.6	2	352.21
Medium-beta ellipticals	Saclay	623	0.80	113.9	2	704.42
High-beta ellipticals	Saclay	2500	0.96	227.9	2	704.42
HEBT	Aarhus	2500	0.96	159.2	300	-

	Spoke resonators	Medium-beta ellipticals	High-beta ellipticals
Cells per cavity	3	5	5
Cavities per cryomodule	2	4	4
Number of cryomodules	14	15	30

Superconducting Proton Linac Project at CERN

We have participated and contributed to :

- 352 MHz modulator development
- Development of wave guide components for WR 2300
- 1MW test bench for modulator for 2Hz repetition rate

PIP-II Site Layout (provisional) at Fermilab, USA

6/11/2014

PIP-II Linac Technology Map

20 S. Holmes | PIP-II

6/11/2014

Ongoing Projects/Activities in India

Ongoing Projects/Activities in DAE & IUAC

Design and development work for proton accelerator and support technologies viz superconducting cavities, cryogenics, RF power, magnets is going on at RRCAT, BARC, VECC, IUAC

- LEHIPA (BARC)
- R&D Activities of high energy Proton Linac for SNS (RRCAT)
- SCRF Cavities, Test stands, RF Power and Control Instrumentation (RRCAT, BARC, VECC, IUAC)

International Collaborations

- Fermilab (Project X)
- CERN (Linac 4)

Schematic Layout of Proposed ISNS Facility

RR

R&D Activities related to concept building, design, simulation and development of various technologies are being pursued.

Schematic Layout of ISNS Facility

RRCAT

Accumulator Ring at SNS Facility, ORNL

Output Energy	1 GeV
Circumference	248 m
RF Peak Power (per PA)	200 kW/PA
Dipole Magnets	32
Arc regular quadrupoles	28
Arc large quadrupoles	8
Straight section long quadrupoles	8
Staright section short quadrupoles	8
Dipole & multipole corrector	28+8+8
Sextupole & Octupole corrector	8+8

Spallation Target at SNS, Oak Ridge

RTBT Beamline

Length	150.75
No of magnets	23 + 5

Target System

No of Target stations	1
No of neutron shutters	18
No of neutron beamlines	24
Target material	Mercury
Quantity of target	19 tons
Circulation rate	325 kg/s
Ambient moderator	Light water
Cryogenic moderator	Liquid Hydrogen

SCRF Cavity Fabrication, Processing Facilities at RRCAT

Cavity forming facility

Centrifugal barrel polishing machine

Electropolishing setup

High pressure rinsing Set up

15 kW e-beam welding machine

SIMS setup

Optical bench setup

3D CMM

- First 650 MHz single-cell niobium cavity fabricated by RRCAT and IUAC was processed and tested at Fermilab.
- It reached E_{acc} of 19.3 MV/m and Q_o of of 7×10^{10} at 2K. This performance exceeds the design parameters.

RRCAT

Cavity Insert assembly

RRCAT

Lowering of cavity insert in VTS cryostat

Cryogenic Transfer lines for VTS

Vertical Test Stand Facility for SCRF Cavity

A vertical test facility for RF characterization of SCRF cavities at 2 K was commissioned. Nearly 1400 liters of liquid helium was transferred and a single-cell 1.3 GHz cavity has been successfully tested using the facility.

Transfer of liquid helium in the VTS cryostat

Testing of single-cell 1.3 GHz SCRF cavity in the VTS facility at RRCAT

RR

- Radiation shielding and Beam dump design (linac+AR)
- Large size LHe plant and cryomodule test stand facility
- Sub-system development for 1 GeV AR
 - Beam Injection system, Magnets, RF cavities, vacuum chambers, beam diagnostic extraction
- Spallation target and moderator system
- Building design for linac + AR + target + beam lines
- Site evaluation and approval from AERB
- Infrastructure design + planning for civil works, electric power, water & utility services
- Development of Indian industry

RRCA

- Fermilab : Indian Institution –Fermilab Collaboration for Project X
- DAE CERN Collaboartion for NAT and Grid Computing Activities (SPL/Linac 4, CLIC/CTF3)
- * KEK : MoU has been signed for cooperation in the areas of Accelerator science and technologies
- × J.Lab : Development of SCRF cavities using large grain niobium material & study of SC materials

Layout for ISNS Facility

RRCAT

Satellite view of ISNS layout

RRCAT

Thank You